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The 1H NMR serum metabolomics response
to a two meal challenge: a cross-over
dietary intervention study in healthy
human volunteers
Millie Rådjursöga2* , Helen M. Lindqvist1, Anders Pedersen2, Göran B. Karlsson2, Daniel Malmodin2, Carl Brunius3,
Lars Ellegård1 and Anna Winkvist1

Abstract

Background: Metabolomics represents a powerful tool for exploring modulation of the human metabolome in
response to food intake. However, the choice of multivariate statistical approach is not always evident, especially for
complex experimental designs with repeated measurements per individual. Here we have investigated the serum
metabolic responses to two breakfast meals: an egg and ham based breakfast and a cereal based breakfast using
three different multivariate approaches based on the Projections to Latent Structures framework.

Methods: In a cross over design, 24 healthy volunteers ate the egg and ham breakfast and cereal breakfast on four
occasions each. Postprandial serum samples were subjected to metabolite profiling using 1H nuclear magnetic
resonance spectroscopy and metabolites were identified using 2D nuclear magnetic resonance spectroscopy.
Metabolic profiles were analyzed using Orthogonal Projections to Latent Structures with Discriminant Analysis
and Effect Projections and ANOVA-decomposed Projections to Latent Structures.

Results: The Orthogonal Projections to Latent Structures with Discriminant Analysis model correctly classified
92 and 90% of the samples from the cereal breakfast and egg and ham breakfast, respectively, but confounded dietary
effects with inter-personal variability. Orthogonal Projections to Latent Structures with Effect Projections removed inter-
personal variability and performed perfect classification between breakfasts, however at the expense of comparing
means of respective breakfasts instead of all samples. ANOVA-decomposed Projections to Latent Structures managed
to remove inter-personal variability and predicted 99% of all individual samples correctly. Proline, tyrosine, and N-
acetylated amino acids were found in higher concentration after consumption of the cereal breakfast while creatine,
methanol, and isoleucine were found in higher concentration after the egg and ham breakfast.

Conclusions: Our results demonstrate that the choice of statistical method will influence the results and adequate
methods need to be employed to manage sample dependency and repeated measurements in cross-over studies. In
addition, 1H nuclear magnetic resonance serum metabolomics could reproducibly characterize postprandial metabolic
profiles and identify discriminatory metabolites largely reflecting dietary composition.

Trial registration: Registered with ClinicalTrials.gov, identifier: NCT02039596. Date of registration: January 17, 2014.
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Background
To establish associations and causation between diet and
health, objective and reliable methods are needed to
measure dietary exposure [1]. Unfortunately, few such
methods exist. Instead, subjective assessment methods
are commonly used and these include dietary records,
food diaries, 24-h dietary recalls, food frequency ques-
tionnaires and diet history records. These methods rely
on subjects’ own reports of their diets [2]. As such, they
are associated with difficulties in estimation of consump-
tion over time and of portion size, variation in dietary
intake, cognitive processes such as episodic and generic
memory as well as bias in over- and under-reporting of
foods [2]. Despite validation efforts, random and system-
atic errors in subjective dietary assessment methods
limit the possibility to measure true dietary intake [3]. A
few single dietary biomarkers are today used to validate
or to substitute subjective dietary assessment methods
[1, 4–6]. Still, currently used dietary biomarkers do not
always correlate well with the nutrients or foods they are
intended to indicate and they fail to reflect the complex
matrix of an overall diet [3]. Providing accurate and reli-
able measurements of dietary exposure constitutes one
of the most challenging problems in nutrition research
today [7].
Metabolomics concentrates on the high-throughput

characterization of small molecule metabolites (< 1.5
kDa) in biological samples and is therefore a method
suitable to explore metabolic effects of dietary exposures
[8]. Using metabolomics, food-derived metabolites and
the change in endogenous metabolites can be identified
including amino acids, alkaloids, polyphenols and me-
tabolites of microbial origin. Metabolomics in nutrition
has been described as: “The study of endogenous and
gut microbiota metabolic response to food (general diet
or intervention) and the identification of metabolites
that originate from food and could be used as bio-
markers of exposure of these foods” [9]. In the area of
nutritional metabolomics, potential biomarkers for indi-
vidual food items and diets have been identified in both
urine and plasma/serum [10]. However, further studies
are needed to deepen the understanding of the food me-
tabolome and to identify additional potential nutritional
biomarkers for food items and complex diets. Controlled
dietary intervention studies, where true consumption
can be monitored in a supervised fashion, provide an op-
portunity to investigate the metabolic response of different
foods or diets using metabolomics. In clinical studies that
use metabolomics to explore the response to different ex-
posures, it is not self-explanatory what method to apply
regarding data analysis. Multivariate methods based on
projections to latent structures (PLS) with different exten-
sions are frequently applied, and orthogonal projections to
latent structures with discriminant analysis (OPLS-DA)

has become a standard method in metabolomics [11–13].
These multivariate methods are in their standard form
suitable only for independent data, as they do not by
themselves separate within- from between-individual ef-
fects but rather the average effect between two or more
sample classes [14]. However, clinical studies may entail
sample dependency from repeated measures on the same
investigated unit. Using an independent test on dependent
data generates less robust models and potentially both
false positive and negative discriminatory metabolites.
OPLS-EP is an extension of the OPLS-DA method devel-
oped to handle dependent data by data pre-processing
[15]. Using OPLS-EP the variation within and between
subjects is separated and intrinsic differences in treatment
effects between individuals can be identified [15]. How-
ever, a drawback lies in that only one measurement per
treatment can be used and, consequently, averages must
be used from repeated measurements on the same indi-
vidual instead of concurrently examining all samples.
ANOVA decompositioning of multivariate data offers a
means to subtract study factors from measured variables,
thus providing the possibility to focus on the reproducible
within-person effect (i.e. treatment) while still keeping all
individual samples in the analysis [16, 17].
The aim of the present study was to explore the

outcome, discriminative potential, reproducibility of
metabolic profiles, and biological relevance of discrimin-
atory metabolites, of three different multivariate models,
OPLS-DA, OPLS-Effect Projections (EP), and ANOVA-
PLS. This was performed in a nutritional cross-over
intervention study with the aim to investigate the serum
metabolic response to two isocaloric breakfast meals
using 1H NMR metabolomics. We have previously de-
scribed the urine metabolome of the same diet [18].

Materials and methods
Ethical approval, recruitment and subject screening
The project was approved by the Regional Ethical Re-
view Board in Gothenburg, Sweden (reference number
561–12), adhered to the Helsinki Declaration, and regis-
tered with ClinicalTrials.gov (identifier: NCT02039596).
Volunteers were recruited by advertisement at the

University of Gothenburg, Sweden, and Chalmers Uni-
versity of Technology in Gothenburg, Sweden. Before
entering the study participants provided written in-
formed consent.
In total, 24 healthy volunteers, 12 males and 12 fe-

males, were enrolled in the study (Table 1). Volunteers
were considered suitable if apparently healthy (normal
serum electrolytes, iron status, creatinine, liver transami-
nases, bilirubin and alkaline phosphatase, C-reactive
protein, plasma glucose, and thyroid status), with no
regular use of medications (contraceptives were permit-
ted), and BMI > 18.5 and < 30 kg/m2. Screening included
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a three-day weighed-food diary a short lifestyle question-
naire that included questions regarding food and alcohol
consumption, use of nicotine, drugs, herbal remedies
and supplements and level of physical activity. Body
composition was measured with bioimpedance (Impe-
diMed Bioimp Version 5.3.1.1). Exclusion criteria in-
cluded: aged <18 or >65 years, pregnancy or lactation,
use of nicotine, natural remedies and/or herbal tea, alco-
hol consumption higher than 5 units per week (1 unit =
12 g alcohol), allergies to food items included in the
study, and the practice of an extreme diet or intent to
change physical activity and/or dietary habits before or
during the intervention.

Study design
Study participants consumed the two different break-
fasts, cereal breakfast (CB) and egg and ham breakfast
(EHB), four times each, in the following order; abba/
baab, where a = CB and b = EHB, Tuesday to Friday dur-
ing two consecutive weeks (eight occasions in total).
Breakfasts were consumed at the Department of Internal
Medicine and Clinical Nutrition, University of Gothen-
burg, Sweden. The CB consisted of orange juice, oat
puffs with milk, and a rye bread sandwich with hard
cheese and fresh tomato. The EHB consisted of orange
juice, scrambled eggs, white beans in tomato sauce, fried
pork loin, tomato and toasted white bread with orange
marmalade. Study participants choose either coffee
(male n = 6, female n = 4) or tea (male n = 6, female n =
8), both with 20ml of milk. Participants were also given
a choice between a large (750 kcal) (male n = 12, female
n = 1) or a small (500 kcal) (female n = 11) breakfast size.
The two breakfast meals had similar composition of

protein, fat and carbohydrates. Breakfasts of 500 kcal
comprised 20 g protein, 19 g fat and 60 g carbohydrates
while the breakfasts of 750 kcal comprised 29 g protein,
34 g fat and 80 g carbohydrates (see supplementary file
information of previous article [18] for detailed meal
composition and Additional files 1, 2 and 3 for detailed
description of breakfasts’ nutrients, amino acids and
fatty acids).
Two weeks before and during the intervention, study

participants were asked to refrain from using dietary

supplements and occasional medications. The day before
and during the intervention, volunteers were asked to
abstain from drinking alcohol, engaging in strenuous ex-
ercise (> 2 h moderate intense physical activity, defined
as 3–6 MET:s (metabolic equivalents)) [19], and eating
fish. Volunteers did not have any other restrictions re-
garding food consumption.
To help stabilize background metabolic profiles fur-

ther, a standardized evening meal of quenelles with
tagliatelle in tomato sauce (488 kcal) was provided to be
consumed between 18:00 and 20:00 h (Fig. 1). Volunteers
were instructed to drink water for the evening meal, not
eat anything further and only drink water before arriving
to the test kitchen between 07.30 and 09.30 h where they
consumed the breakfasts within 30min. During the
intervention, volunteers noted health status, occasional
medications, and exact time of evening meal together
with water intake during the overnight fast.

Serum collection and preprocessing
Postprandial serum samples were collected after break-
fast meals (3 h 15 min ± 22min). In total, 192 samples
were collected. Venous blood was drawn into 4 mL Z
serum Separator Clot activator tubes (VACUETTE®
TUBE Greiner Bio-One), allowed to clot at 4 °C for 30
min and centrifuged at 4 °C at 2600 x g for 10 min.
400 μL serum was aliquoted in 500 μL cryo vials and
placed at − 20 °C within 1 h (57 min ± 11 min) and at −
80 °C within 2 h. Samples were stored at − 80 °C until
analysis. 1H-nuclear magnetic resonance (NMR) spec-
troscopy analysis was performed on all serum samples.
Prior to 1H-NMR analysis, serum samples were thawed
for 60 min at 4 °C, 100 μL serum was mixed with 100 μL
phosphate buffer (75 mM Na2HPO4, 20% D2O, 0.2 mM
imidazole, 4% NaN3, 0.08% TSP-d4, pH 7.4) in a deep
well plate. 180 μL sample mix was transferred to 3.0 mm
NMR tubes (Bruker BioSpin, 96 sample racks for Sam-
pleJet) using a SamplePro liquid handling robot (Bruker
BioSpin, Rheinstetten, Germany). Samples were kept at
6 °C until analysis. For quality control three samples with
pooled serum from four individuals in the dataset and
three buffer samples were used on each 96 sample rack.

NMR spectroscopy analysis
All 1H NMR spectra were measured on an Oxford 800
MHz magnet equipped with a Bruker Avance III HD
console and with a 3mm TCI cryoprobe and a cooled
(6 °C) SampleJet automatic sample changer for sample
handling. All 1H NMR experiments were performed at
298 K. NMR data (1D perfect echo with excitation
sculpting for water suppression) was recorded using the
Bruker pulse sequence ‘zgespe’. The spectral width was
20 ppm, the relaxation delay was 1.34 s. The acquisition
time was 2.04 s. With a total of 64 scans collected into

Table 1 Anthropometric characteristics of included volunteers
(n = 24)

Characteristics Males (n = 12) Females (n = 12)

mean ± SD min/max mean ± SD min/max

Age (year) 27.3 ± 11.2 19.0/54.0 24.4 ± 8.2 18.0/46.0

Height (cm) 184.3 ± 6.0 172.0/192.0 169.2 ± 6.1 159.0/177.0

Body weight (kg) 77.5 ± 7.8 66.8/91.3 66.2 ± 7.1 56.6/77.4

BMI (kg/m2) 22.8 ± 2.1 20.6/26.9 23.1 ± 2.3 19.5/26.7

Fat mass (%) 13.9 ± 5.9 6.7/24.7 26.9 ± 5.2 18.4/34.0
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64 k data points, the measurement time for each sample
was 4 min 19 s. All data sets were zero filled to 128 k
and an exponential line-broadening of 0.3 Hz was ap-
plied before Fourier transformation. All data processing
was performed with TopSpin 3.2pl6 (Bruker BioSpin,
Rheinstetten, Germany). TSP-d4 was used for referen-
cing. 1H NMR data were acquired for a total of 192
serum samples.
For annotation, pooled serum from all individuals in the

dataset was utilized for natural abundance 1H-13C HSQC
(‘hsqcetgpsisp2.24’) and 1H-1H TOCSY (‘mlevgpphw5’)
experiments. The 1H-13C HSQC spectra were measured
with acquisition times of 63.9ms (1H) and 50.9ms (13C), a
3 s pulse delay, 8 scans and acquisition of 2048 data points
(1H) in 768 increments (13C). The 1H and 13C pulse
widths were p1 = 7.44 μs and p3 = 9.3 μs, respectively. The
1H and 13C spectral widths were 20 ppm and 100.00 ppm,
respectively. 1H-1H TOCSY spectra were acquired with
the same proton pulse width as for the 1H-13C HSQC.
The spectral widths were13.95 ppm in both dimensions,
the acquisition times were 183.5ms (F2) and 229ms (F1),
the 1H-1H TOCSY mixing times 80ms and the pulse
delay 2 s. 8 scans were used, 2048 points and 512 incre-
ments were acquired in the direct and indirect dimen-
sions, respectively.
Sodium phosphate (Na2HPO4), imidazole, and sodium

azide (NaN3) were bought from SigmaAldrich, deuterium
oxide (D2O) from Cambridge Isotopes, and 3-(trimethylsi-
lyl) propionic-2,2,3,3-d4 acid sodium salt (TSP-d4) from
MerckMillipore.

Annotation of metabolites
1D proton, 2D 1H-13C HSQC, and 2D 1H-1H TOCSY
spectra of pooled serum from all individuals in the dataset
were used for metabolite identification. Chenomx NMR
suite 8.1 (Chenomx Inc., Edmonton, Canada) was used for
spectral line fitting of 1D proton spectra. Chemical shifts
in 1D proton, 2D 1H-13C HSQC, and 2D 1H-1H TOCSY
spectra were compared with reference spectra in the Hu-
man Metabolome Database (HMDB) [20].

Data pre-processing and statistical analyses
Data pre-processing
1H-NMR spectra were aligned using icoshift and manual
integration of peaks was performed to a linear baseline
on all spectra in parallel using an in-house MatLab

(MathWorks, Natick, USA) routine. In total 296 peaks
were integrated within chemical shift range of 0.721–
8.362 ppm. Data were normalized using Probabilistic
Quotient Normalization (PQN).

Principal component analysis
Principal component analysis (PCA) was performed
using SIMCA software v.14.1 (Umetrics AB, Umeå,
Sweden) [21]. PCA models were used to explore cluster-
ing patterns of observations, trends in the data and out-
liers. Two samples were removed due to poor data
quality. Samples from each breakfast group were mod-
elled separately to identify outliers, resulting in exclusion
of 2 of 96 for the CB samples and 6 of 96 for the EHB
samples according to Hotellings T2 range (Tcrit 99%)
and Distance to Model (DModX) (not exceeding 1.8). In
total, 182 samples were included in further data analysis.
Two variables were removed from the data set (imid-
azole (pH indicator)). In total, 294 variables were in-
cluded in the model for further analysis.

Orthogonal projections to latent structures with
discriminant analysis and orthogonal projections to latent
structures with effect projections
Orthogonal Projections to Latent Structures with Dis-
criminant Analysis (OPLS-DA) is a multivariate analysis
tool that is often used in metabolomics [13]. However,
OPLS-DA does not account for dependent data, such as
repeated measures on the same individual which is gen-
erated in cross-over studies [22, 23]. OPLS-Effect Pro-
jections (EP) is a newly developed multivariate analysis
that considers pairwise dependent samples in cross-over
studies [15]. Both methods were performed in the
present study using SIMCA software v.14.1 (Umetrics
AB, Umeå, Sweden).
In the OPLS-DA and OPLS-EP models, four add-

itional, highly abundant signals from unidentified lipids
were removed since they, as a consequence of using Pa-
reto scaling, influenced the model merely on account of
the magnitude of the peaks. However, these lipids did
not differ significantly between breakfast treatments
(Mann Whitney U-test p > 0.05). Furthermore, the use of
T2-filtered NMR experiment on water samples negated
any identification of individual hydrophobic lipids and
fatty acids. Hence, lipid variables did not contribute to
the biological understanding of the data and OPLS

Fig. 1 Study design of clinical intervention, Monday evening to Friday lunch during two consecutive weeks. *Volunteers were instructed to abstain
from eating fish, dietary supplements and drinking alcohol during the intervention
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models were not discernably affected by the removal
of these variables. The numbers of latent variables
(LV) in the models were determined using cross
validation and Q2.
The validity of the OPLS models was assessed using

Coefficient of Variation- ANalysis Of VAriance testing of
cross-validated predictive residuals (CV-ANOVA), the
cumulative amount of explained variation in the data
summarized by the model (R2X[cum] and R2Y[cum])
and the predictive ability of the model (Q2[cum]). In
addition, permutation tests (n = 999) was used for valid-
ation. For the OPLS-EP model, scores in relation to the
response vector (Y) was also used for validation [15].
Separation of classes and variables related to separ-

ation in the data according to classification of breakfast
meals was evaluated using OPLS-DA. Prior to modeling,
data were centered and Pareto scaled. Cross validation
groups were set to 24 (i.e. to number of study partici-
pants) and assigned observations based on observation
ID for each individual so that all samples from one indi-
vidual were left out in one cross-validation round. Re-
ceiver operating curve (ROC) analysis was performed
and the area under the curve (AUC) was used as an esti-
mate of the predictive accuracy of each breakfast meal in
the OPLS-DA model. To select class discriminating vari-
ables of interest for annotation, S-plot, loadings (pq >
0.1) and top ranked variables in variable importance
(VIP) scores in the OPLS-DA model were assessed.
For the OPLS-EP analysis, an effect matrix was calcu-

lated with Excel 2010. Mean values for each breakfast
meal were calculated and values from the CB were sub-
tracted from the EHB values for each volunteer (n = 24)
and variable (n = 290). The effect matrix, i.e. the difference
between breakfast meals, was modeled in relation to a re-
sponse vector (Y = 1). Prior to modeling in Simca, all data
were Pareto scaled (ParN) but not centered, and cross val-
idation groups were set to 7 (default). S-plot was used for
selection of variables of interest for annotation.

ANOVA-decomposed projections to latent structures
Multilevel methods, such as OPLS-EP, are capable of
managing sample dependency in a cross-over design, but
are in this case limited to comparing mean values between
treatments. To simultaneously manage sample depend-
ency and include all samples in the analysis, ANOVA de-
composition [16] of the data was performed, by the
factors: Coffee/Tea; Gender; Individual; and Breakfast.
The factor Size of breakfast was almost completely con-
founded by Gender, wherefore it was excluded from
ANOVA decomposition. Following the ANOVA-PLS ap-
proach [17], residuals were then added back to the break-
fast type data, and analyzed by PLS to investigate
systematic differences in the metabolome as a conse-
quence of breakfast type. This supervised model was

constructed in a repeated double cross validation proced-
ure (rdCV) [24, 25], and incorporated with unbiased vari-
able selection obtained by recursive feature elimination in
the inner rdCV loop [26]. All samples per individual were
co-sampled into the same cross validation segments to
avoid overfitting to dependent samples. This approach has
previously proven successful for supervised multivariate
modelling [27, 28] to produce robust predictive modelling
with effective variable selection and minimized risk of
false positive discovery and model overfitting. Model
performance was further assessed by permutation
tests (n = 300) [29]. These analyses were performed in
R v. 3.4.2 using in-house scripts, available from the
authors upon request.

Significance tests of variables in multivariate models
Univariate statistical analysis of variables was performed
using Mann Whitney U-test for the OPLS-DA model
and Wilcoxon signed rank test for the OPLS-EP model;
both with Benjamini Hochberg correction at the 95%
level. A variable was considered significant if p < 0.05.
These calculations were performed in MatLab R2015a.

Results
Breakfast related metabolic profiles
Statistics for the final OPLS models are presented in
Table 2. Overall, the OPLS-DA model correctly classified
92% of the postprandial samples from the CB and 90%
of the postprandial samples from the EHB while the
ANOVA-PLS correctly classified 99% of samples with re-
spect to breakfast type (ppermutation = 6.70e-17) (Table 3).
ANOVA decomposition of the original data showed that
the residuals represented the largest source of variability
in the data (49%). Structured variability was dominated
by inter-individual variation (38%) while breakfast
intervention-related variability comprised 3.6% (Fig. 2).
The ability of the OPLS-DA, OPLS-EP, and ANOVA-

PLS models to discriminate between metabolic profiles
of postprandial samples from volunteers who had con-
sumed the CB and the EHB are displayed in Figs. 3 and
4. Seven out of 92 postprandial samples from the CB
and nine out of 90 postprandial samples from the EHB
were misclassified in the OPLS-DA model. However,
when looking at the OPLS-DA model predictions
(Fig. 3b), only two individuals have consistent erroneous
breakfast predictions. The predictive accuracy for each
breakfast meal by the OPLS-DA model, as illustrated by
the area under the curve in ROC analysis, is displayed in
Fig. 5. Metabolites discriminating in the OPLS-DA
model were selected using a combination of S-plot
(Additional file 4), loadings, and top ranked variables in
VIP scores in the OPLS-DA model.
In the OPLS-EP model, all values above 0 in the

OPLS-EP model correctly predicted the order of
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consumption of the EHB or the CB, whereas a negative
value would predict the opposite. Only one individual dis-
played < 0.5 in predictive effect in relation to the response
vector (Y), whereas remaining volunteers displayed > 0.75
in predictive effect (Fig. 3c). Again, metabolites increasing
or decreasing in relation to the response vector were se-
lected using S-plot (Additional file 5).
Further, the influence of a single meal on the postpran-

dial metabolic profile the following day was studied by the
difference in metabolic profiles between the same break-
fast meal in relation to the breakfast meal served the day
before. However, OPLS-DA models displayed low predic-
tion (Q2) (data not shown) in class separation between
breakfast meals, consistent with the ANOVA-PLS analysis
showing no importance of the order of breakfast meals.

Discriminating metabolites
In total, seven unique metabolites were identified that
were selected responsible for class separation in all
models. Tyrosine, proline, and N-acetylated amino acid
were found in significantly higher concentrations after
consumption of the CB. In contrast, alanine, methanol,
creatine, and isoleucine were found in significantly
higher concentrations after consumption of the EHB.
For the OPLS models, five and six (excluding un-

knowns and glucose) metabolites were identified as dis-
criminating in postprandial samples from the CB and
the EHB respectively (Table 4). The ANOVA-PLS model

unbiasedly selected two components and 48 variables
corresponding to 12 metabolites as top predictors driv-
ing the separation between classes with three and nine
metabolites responsible for class separation in postpran-
dial samples from the CB and the EHB respect-
ively. 3-hydroxybutyrate, valine, and glycine were
selected as responsible for class separation in OPLS
models but not in ANOVA models. In contrast, arginine,
lysine, 4-aminobutyrate, choline, and glutamine were se-
lected as top ranked variables in ANOVA-PLS but not
in the OPLS models. All identifications of metabolites,
except 3-hydroxybutyrate, were supported by 2D 1H-13C
HSQC data.

Discussion
Evaluating the outcome of three different multivariate stat-
istical approaches, OPLS-DA, OPLS-EP and ANOVA-PLS,
in a cross-over design, including 24 healthy volunteers, we
explored the postprandial metabolic response to two

Table 2 OPLS models statistics

Model Nr of LVa n R2X [cum]b R2Y [cum]c Q2 [cum]d CV-ANOVAe (p-value) Permutation test (Q2)f

OPLS-DAg 1 + 2 + 0 182 0.428 0.712 0.619 < 0.001 −0.165

OPLS-EPh 1 + 2 + 0 24 0.656 0.966 0.922 < 0.001 –
aLatent Variables
b Cumulative fraction of the sum of squares of X explained by the selected latent variables
c Cumulative fraction of the sum of squares of Y explained by the selected latent variables
d Cumulative fraction of the sum of squares of Y predicted by the selected latent variables, estimated by cross validation
e ANalysis Of VAriance testing of Cross-Validated predictive residuals
f The intercept between real and random models, degree of overfit
g Orthogonal Projections to Latent Structures with Discriminant Analysis
h Orthogonal Projections to Latent Structures with Effect Projections
– Not applicable

Table 3 Classification of postprandial serum samples by different
models

True
intake

Classification

OPLS-DAa ANOVA-PLSb

CB EHB CB EHB Total (n)

CBc 85 (92%) 7 (8%) 91 (99%) 1 (1%) 92

EHBd 9 (10%) 81 (90%) 1 (1%) 89 (99%) 90

Total 94 88 92 90 182
aOrthogonal Projections to Latent Structures with Discriminant Analysis
(Cross-validated scores)
bANalysis Of Variance - Partial Least Squares
cCereal breakfast
dEgg and ham breakfast

Fig. 2 ANOVA decomposition visualising proportion of total variance
in relation to different factors in postprandial (3 h) serum samples
(n = 182) from 24 healthy volunteers

Rådjursöga et al. Nutrition Journal           (2019) 18:25 Page 6 of 12



isocaloric breakfast meals with similar macronutrient distri-
bution, but with different food items.

Multivariate statistical modelling of metabolic profiles
The OPLS-DA model correctly classified of 92 and 90% of
serum metabolic profiles the CB and the EHB meals, re-
spectively (Table 3 and Fig. 3b). Moreover, the OPLS-DA
model showed an overall difference in metabolic profiles
between breakfast meals with a high degree of
intra-individual similarity, although inter-individual vari-
ability was clearly discernible (Fig. 4). Similar to these
findings, Lenz et al. (2003) [30] found relatively low inter-
and intra-individual variation in 1H-NMR plasma

metabolic profiles when providing a semi standardized
diet during 2 days to healthy males. Likely, the confound-
ing effect of inter-individual variability depends on the ef-
fect size of the intervention.
OPLS-EP takes pairwise sample dependency into ac-

count by modelling the effect matrix rather than the ori-
ginal data [15]. When better accounting for the paired
structure of the data using OPLS-EP, the predictive abil-
ity of the model improved compared to the OPLS-DA
model (Table 2). This confirms the confounding effect of
inter-individual variability (Fig. 4). In addition, the
OPLS-EP model classified all individuals correctly using
7-fold cross validation.

a b c

Fig. 3 a Predicted values for breakfast classification in ANOVA-Partial Least Squares (PLS) model. The data were ANOVA-decomposed into the
factors Coffee/Tea, Gender, Individual and Breakfast type and PLS analysis was performed on the Breakfast type data after addition of the residual
matrix. Model included 290 variables and 182 postprandial observations from 24 healthy volunteers. b Breakfast dependent cross-validated scores
(cross-validated x scores (tcv)) in orthogonal projections to latent structures with discriminant analysis (OPLS-DA) model. Model included 290
variables and postprandial (3 h) serum samples (n = 182) from 24 healthy volunteers. c Predicted values in relation to response vector (Y) for
volunteers in the in OPLS with effect projections (EP) model. The dotted line (Y = 1) indicates the response vector value for the model. The
magnitude of the predicted effect for each volunteer is given by the height of the corresponding black bar. Deviations from the value 1 for a
specific volunteer indicate a larger (> 1) or smaller (< 1) metabolic effect (difference between breakfast meals) in the model direction (metabolic
profile) associated with the metabolism of foods included in the different breakfast meals. Model included 24 observations (equal to number of
individuals) and 290 variables

Fig. 4 Biplot in Orthogonal Projections to Latent Structures with Discriminant Analysis (OPLS-DA), OPLS with Effect Matrix (EP) and ANOVA-Partial
Least Squares (PLS) models of observation scores and variable loadings. OPLS-DA and ANOVA-PLS models included 182 postprandial observations
from 24 healthy volunteers and 290 variables while the OPLS-EP model 24 observations (equal to number of individuals) and 290 variables.
Labeled metabolites denote selected discriminating metabolites in the different models
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ANOVA-PLS was developed to allow for supervised
PLS analysis of data decomposed by one or several fac-
tors, which makes it efficient to manage e.g. cross-over
dependency by including Individual as a factor [17]. Al-
though not shown here, it can be shown that multilevel
approaches are special cases of ANOVA decomposition;
the latter being the broader framework. In fact, their re-
lation is conceptually similar to the difference between a
paired t-test and a classical ANOVA. The ANOVA de-
composition step thus manages not only to isolate
inter-individual variation, but also to isolate other factors
that may otherwise confound the analysis (in this case
Coffee/Tea consumption and Gender), analogously to
how such factors may be included in linear mixed
models to account for confounding variables [16]. This
approach provides a means to investigate contributions
of the factors to the total variance by comparing sums of
squares. In our data, the factor Individual was by far the
major contributor to systematic variability, although
overshadowed by the residual variability. This clearly in-
dicates between sample fluctuations as the major source
of variability, although the source of such fluctuations
was not investigated. It is likely, however, that such vari-
ability is composed of both biological variation in the in-
dividual, pre-analytical sample management and
instrumental variability [31]. It should be noted that the
sums-of-squares in the currently used function were cal-
culated sequentially (i.e. Type I sums-of-squares) and

are thus sensitive to the order of factors if the design is
not balanced. Sensitivity analysis, however, revealed only
minor effect of the order of factors on both
sums-of-squares and modelling outcomes in the present
case.
Similar to OPLS-EP, classes were visibly separated in

the ANOVA-PLS (Fig. 4). ANOVA-PLS thus managed to
improve classification accuracy compared to OPLS-DA,
even though this procedure employed a much stricter
validation scheme than either of the OPLS methods
[24]. This clearly shows the advantages of filtering out
inter-individual variability prior to analysis to be able to
focus on systematic differences between treatments.
Using this approach, all samples were maintained in the
analysis, leading to higher resolution in the multivariate
model compared to OPLS-EP (Fig. 4). This also provided
an opportunity to investigate whether effects were ro-
bust even with residual variability from multiple sam-
ples. ANOVA-PLS thus effectively combined the best
aspects of discriminant and standard multilevel (such as
Effect Projections) analyses for analysing complex
cross-over data structures. Permutation analysis showed
that the ANOVA-PLS was highly significant and devoid
of overfitting (Additional file 6), since the permutation
distribution median corresponded exactly to the ex-
pected value of 91 misclassifications for 182 randomly
permuted observations in a two-class problem.
The order of individual breakfast meals did not have

an impact on the metabolic profile in the present study,
implying that foods in our breakfast meals do not influ-
ence the postprandial serum metabolic profiles mea-
sured by NMR after 24 h. Previously, the fat to
carbohydrate ratio of an evening meal has been shown
to impact the postprandial metabolic response in plasma
12 h after intake [32]. However, in our study the break-
fast meals contained the same fat to carbohydrate ratio
and this might explain why the postprandial response
did not seem to be influenced by the type of breakfast
consumed the day before. Moreover, white bean con-
sumption has been shown to affect metabolite concen-
trations in urine up to 48 h after intake in a previous
study [33]. However, the effect was not captured in
serum, and this is in line with findings in the present
study.

Discriminating metabolites
The cross-over design has the advantage of comparing
each individual to themselves after the two different
breakfasts. Given the use of proper statistical tools fac-
tors such as age [34], gender [35], BMI [36], insulin sen-
sitivity [37], habitual diet [38], and habitual sleep [39],
have minimal impact on the results. Although
inter-personal variability confounded dietary effects in
OPLS-DA, model predictions and biplots from all

Fig. 5 ROC curve in orthogonal projections to latent structures with
discriminant analysis (OPLS-DA) model comparing the postprandial
metabolic response between cereal breakfast (CB) and egg & ham
breakfast (EHB). In total 182 serum samples from 24 individuals were
included in the model, 90 samples from volunteers who had
consumed the EHB and 92 samples from volunteers who had
consumed the CB. On average four samples per individual and
breakfast meal. AUC = area under the curve
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statistical methods provided similar output (Figs. 3 and
4). This was confirmed by the fact that discriminating
metabolites selected from both OPLS models were, in
fact, the same (Fig. 4 and Table 4). The difference in the
ANOVA-PLS model is likely to a large extent dependent
on the different procedures for variable selection. How-
ever, several variables were selected in all models (Fig. 4
and Table 4), suggesting that these may be the most ro-
bust findings.
The metabolites that were discriminating in all

statistical analysis are thus discussed first. Variables
including glucose, alanine, and lactate that discrimi-
nated between breakfasts in OPLS models had peaks
overlapping with other metabolites or were not
significant in univariate models and, since their
relevance is therefore unclear, these metabolites are
not discussed further.

Proline and tyrosine were found at higher concentra-
tions in postprandial serum samples from the CB in re-
lation to the EHB. Consistently, the CB had a higher
proline content, with the major contribution from the
cheese (Additional files 1 and 2). In contrast, there was
little difference in total tyrosine content between the
two breakfast meals, with sources as hard cheese in the
CB and white beans and pork loin in the EHB. Tyrosine
has previously been reported higher in postprandial
serum samples, following a dairy meal compared to
similar tyrosine content from fish, meat and lentils [40].
In our study the higher tyrosine in the CB may be re-
lated to the absorption and ratio between free and
bound amino acids and/or the metabolic turnover of the
different foods within the breakfasts [41].
The higher concentration of N-acetylated amino acids

(NAA) in the CB compared to the EHB, might be related

Table 4 Discriminating metabolites between breakfast meals in multivariate models

Meal Metabolite Chemical shift (ppm) p-valuea Model

CBb Tyrosine 7.19c, 6.89 < 0.0001 Alld

CB Proline 4.13e, 4.14, 4.15, 3.33, 3.34, 3.35, 2.37, 2.36, 2.35, 2.34, 2.33, 2.10,
2.09, 2.07f, 2.06, 2.03, 2.02, 2.01, 2.00, 1.99, 1.98, 1.97

< 0.0001 All

CB NAAg 2.09, 2.08, 2.06, 2.05, 2.03, 1.99 < 0.0001 All

CB 3-hydroxybutyrate 1.20 0.014 OPLS-DAh, OPLS-EPi

CB Valine 1.05, 1.04, 1.00, 0.99 0.0004 OPLS-DA, OPLS-EP

CB (Glucose)j 5.24, 3.91, 3.89 0.005 OPLS-DA, OPLS-EP

CB Unknown 3.44, 1.15, 1.14 – ANOVA-PLSk

EHBl Methanol 3.37 < 0.0001 All

EHB Creatine 3.94, 3.04 < 0.0001 All

EHB Isoleucine 1.97, 1.98, 1.02, 1.01, 0.95, 0.94, 0.93 < 0.0001 All

EHB (Alanine)m 3.79 < 0.0001 All

EHB Arginine 1.89, 1.90, 1.91, 1.92 < 0.0001 ANOVA-PLS

EHB Lysine 3.03, 3.02, 1.90, 1.91, 1.92 < 0.0001 ANOVA-PLS

EHB 4-aminobutyrate 1.90 < 0.0001 ANOVA-PLS

EHB Choline 3.21 < 0.0001 ANOVA-PLS

EHB Glutamine 2.16 < 0.0001 ANOVA-PLS

EHB (Glucose)j 3.86, 3.74, 3.72, 3.49 0.0006 OPLS-DA, OPLS-EP

EHB Lactate 4.11 0.60 OPLS-DA

EHB Glycine 3.57 0.0002 OPLS-DA, OPLS-EP

EHB Unknown 4.05, 3.77, 3.73, 3.68, 2.56 – All
aWilcoxon signed rank test
bCereal breakfast
cUnderscored chemical shift used for p-value calculation and variable rank number
dIncludes ANOVA-PLS, OPLS-DA, and OPLS-EP models
eBold chemical shifts indicate discriminating variable only in ANOVA-PLS model
fItalic chemical shifts indicate discriminating variable only in OPLS-DA and OPLS-EP models
gN-acetylated-amino acids
hOrthogonal Projections to Latent Structures with Discriminant Analysis
iOrthogonal Projections to Latent Structures with Effect Projections
jUnknown masked by glucose
kANalysis Of Variance – Partial Least Squares
lEgg and ham breakfast
mOverlap with glucose and unknown metabolites
– Not relevant
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to a higher beta-oxidation rate of fatty acids, since the
CB had a higher content of short chain fatty acids (Add-
itional file 3) [42]. NAAs and N-acetylcysteine in par-
ticular, has shown various biological activities such as
interaction with pathways regulating cell cycle and apop-
tosis, immune-modulation and gene expression among
others [43, 44]. Unfortunately, however, it was not pos-
sible to unequivocally identify involved N-acetylated
amino acids in this study.
For the EHB, methanol, creatine and isoleucine were

higher than for the CB. The metabolism of fruit and veg-
etables, mainly due to the pectin content that is metabo-
lized by the gut microflora, is believed to generate the
majority of the serum methanol originating from the
diet, other than alcoholic beverages [45, 46]. Together
with the tomatoes and white beans, the orange marma-
lade, high in natural as well as added pectin, likely
caused the higher methanol concentration after the
EHB. In similarity with previous findings creatine was
found in higher concentration in postprandial samples
where volunteer had consumed red meat [47]. Leucine,
as well as other branched amino acids has previously
been shown to be associated with dietary intake of ani-
mal products and pulses [48] and the serum concentra-
tion of isoleucine likely reflects the higher intake in
these products in the EHB.
In the OPLS models valine, 3-hydroxybutyrate, and

glycine were selected as discriminating metabolites and
these also differed between breakfast groups. Higher
serum glycine was found after consuming the EHB that
included both legumes and red meat, which are both
major dietary sources of glycine. Glycine is a non-chiral
amino acid that has also been identified as an endogen-
ous metabolite in plasma [49]. Further, the EHB had a
higher content of valine compared to the CB. Neverthe-
less, postprandial samples from the CB had higher con-
centrations of valine. The main food that contributed to
the valine content in the CB was the hard cheese,
whereas in the EHB it was white beans in tomato sauce.
Our results suggest that absorption rates of valine differ
between these foods. The ketone 3-hydroxybutyrate was
higher after consumption of the CB. 3-hydroxybutyrate
has previously been related to fat: carbohydrate ratio
[32], but since macronutrients were balanced in the two
breakfast meals we speculate that the observed differ-
ence in serum may be related to the composition of the
fatty acid profiles of the meals (Additional file 3).
The ANOVA-PLS model also included arginine, lysine,

glutamine, choline and, 4-aminobutyrate as discriminat-
ing metabolites. This reflected the fact that the EHB had
higher content of all amino acids, except proline, tyro-
sine and tryptophan (Additional file 1), with white beans
(arginine, lysine and, glutamine) and animal product as
dietary sources. Animal products also constitute rich

sources of choline [50] which might explain the higher
serum concentration in volunteers who had consumed
the EHB.

Strengths and limitations
Limitations of this study include that the study design
did not allow us to investigate specificity of metabolic
responses to the included foods, which is necessary for
biomarker discovery and validation, or long-term meta-
bolic effects. To evaluate potential health implications
and/or biomarker applications of specific food items,
other study designs are needed. However, the aim of this
study was to evaluate the acute metabolic serum re-
sponse between two complex meals. Further, specific
N-acetylated amino acids, metabolites with low abun-
dance in overlapping regions and individual fatty acids
could not be identified. This inability is related to the
NMR analysis of the current sample matrix. In addition,
the included volunteers in the present study constituted
a fairly homogenous group of individuals which is con-
sidered a limitation for the generalizability of the results.
A larger and more heterogeneous group of volunteers
may be preferable to reflect the metabolic response in
the general population. Strengths of the study include
the cross-over design to be able to focus on systematic
intra-individual effects of dietary interventions, the stan-
dardized prior evening meal, the equal numbers of
women and men, the repeated sampling which gave the
opportunity to investigate sample-by-sample variability
in relation to systematic dietary effects and, the applica-
tion of several statistical tools.

Conclusions
In conclusion, all statistical models successfully sepa-
rated metabolic profiles between the two breakfast
meals, but with some limitations: OPLS-DA could not
effectively manage sample dependency from the
cross-over design, OPLS-EP could not manage repeated
sampling per treatment, whereas ANOVA-PLS effect-
ively managed both the cross-over and repeated mea-
sures design. When having dependent samples,
OPLS-EP and ANOVA-PLS thus have the means to han-
dle the data structure and generate more robust models
with higher predictive performance than OPLS-DA. It is
thus necessary that multivariate models considering
sample dependency should be applied in cross-over
metabolomics studies. Using NMR-metabolomics, espe-
cially when combined with appropriate multivariate
models, it was possible to identify difference in serum
metabolic profiles between two isocaloric meals with the
same macronutrient composition yet including different
foods. The differences in metabolites, discriminating be-
tween breakfast meals, largely mirrored differences in
dietary composition. Thus, metabolomics holds the
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potential to complement traditional methods to evaluate
dietary intake and compliance in intervention studies.
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Additional file 1: Table S1. Amino acid content of breakfast meals
(mg). (DOCX 92 kb)

Additional file 2: Table S2. Amino acid content of individual foods
(mg). (DOCX 94 kb)

Additional file 3: Table S3. Fatty acid content of breakfast meals (g).
(DOCX 92 kb)

Additional file 4: S-plot in orthogonal projections to latent structures
with discriminant analysis (OPLS-DA) model comparing the postprandial
metabolic response between cereal breakfast (CB) and egg & ham breakfast
(EHB). The top box is displaying selected discriminating metabolites for the
EHB while the bottom box is displaying selected discriminating metabolites
for the CB. Grey circles indicate significant (p < 0.05) variables in
Mann Whitney U-test. (EPS 5517 kb)

Additional file 5: S-plot in orthogonal projections to latent structures
with effect matrix (OPLS-EP) model comparing variables increasing and
decreasing in relation to the response vector (Y). The top box is
displaying selected metabolites increasing and the bottom box is
displaying metabolites decreasing in relation to Y. Grey circles indicate
significant (p < 0.05) variables in Wilcoxon signed rank test. (EPS 890 kb)

Additional file 6: Permutation analysis of ANOVA-PLS, showing actual
model misclassifications as vertical lines with p-value calculated as the
cumulative probability of finding the actual model result is a Student’s
t-distribution of misclassification results obtained from randomly
permuted data (n = 300 per model). The permutation distribution had
median value of 91 misclassifications, corresponding exactly to the
expected value of 182 observations in a two-class problem. The
results show strong predictive modelling performance with absence
of overfitting in the validation frameworks. (EPS 418 kb)
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