
Information Flow in Software Testing - An Interview Study with Embedded
Software Engineering Practitioners

Downloaded from: https://research.chalmers.se, 2024-03-13 09:27 UTC

Citation for the original published paper (version of record):
Strandberg, P., Enoiu, E., Afzal, W. et al (2019). Information Flow in Software Testing - An
Interview Study with Embedded Software Engineering
Practitioners. IEEE Access, 7: 46434-46453. http://dx.doi.org/10.1109/ACCESS.2019.2909093

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Received January 23, 2019, accepted March 30, 2019, date of publication April 3, 2019, date of current version April 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909093

Information Flow in Software Testing – An
Interview Study With Embedded Software
Engineering Practitioners
PER ERIK STRANDBERG 1,2, EDUARD PAUL ENOIU2, WASIF AFZAL 2,
DANIEL SUNDMARK2, AND ROBERT FELDT3
1Westermo Network Technologies AB, 721 30 Västerås, Sweden
2Mälardalen University, 721 23 Västerås, Sweden
3Chalmers University of Technology, 412 96 Gothenburg, Sweden

Corresponding author: Per Erik Strandberg (per.strandberg@westermo.se)

This work was sponsored in part by the Knowledge Foundation under Grant 20150277 (ITS ESS-H), Grant 20160139 (TestMine), Grant
20130085 (TOCSYC), and Grant 20130258 (Volvo Chair), in part by the Swedish Innovation Agency (MegaM@Rt2), Electronic
Component Systems for European Leadership (Joint Undertaking under Grant 737494), and in part by the Westermo Network
Technologies AB.

ABSTRACT Background: In order to make informed decisions, software engineering practitioners need
information from testing. However, with the trend of increased automation, there is exponential growth
and increased distribution of this information. This paper aims at exploring the information flow in software
testing in the domain of embedded systems.Method:Data was collected through semi-structured interviews
of twelve experienced practitioners with an average work experience of more than fourteen years working at
five organizations in the embedded software industry in Sweden. Seventeen hours of audio recordings were
transcribed and anonymized into 130 pages of text that was analyzed by means of thematic analysis.Results:
The flow of information in software testing can be represented as feedback loops involving stakeholders,
software artifacts, test equipment, and test results. The six themes that affect the information flow are how
organizations conduct testing and trouble shooting, communication, processes, technology, artifacts, and
the organization of the company. Seven main challenges for the flow of information in software testing
are comprehending the objectives and details of testing; root cause identification; poor feedback; postponed
testing; poor artifacts and traceability; poor tools and test infrastructure; and distances. Finally, five proposed
approaches for enhancing the flow are: close collaboration between roles; fast feedback; custom test report
automation; test results visualization; and the use of suitable tools and frameworks.Conclusions: The results
indicate that there are many opportunities to improve the flow of information in software testing: a first
mitigation step is to better understand the challenges and approaches. Future work is needed to realize this in
practice, for example, on how to shorten feedback cycles between roles, as well as how to enhance exploration
and visualization of test results.

INDEX TERMS Embedded software development, information flow, interview study, software testing.

I. INTRODUCTION
Software testing includes not only the creation, execution
and evaluation of test cases, but also the process of com-
municating on test cases and their results between human
beings, or between humans andmachines. This includes face-
to-face discussions, writing standards-compliant test reports,
reading system logs, as well as making decisions based on
test results visualizations. There is a broad industrial interest

The associate editor coordinating the review of this manuscript and
approving it for publication was Michele Magno.

in the topic of test communication: Industry standards such
as ISO/IEC/IEEE 29119-3 [27] prescribe formats for test
reports and types of other test documentation. Many agile
practices are also prescribing formats for test reporting, such
as daily stand-up meetings. In addition, the International
Software Testing Qualifications Board (ISTQB) syllabus on
test automation prescribe approaches to logging and storing
test results [5].

Information flow can be defined by a distributed system
made up of agents and the behavioral and structural rules and
relationships between them. Information flow is important

46434 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1688-6937
https://orcid.org/0000-0003-0611-2655


P. E. Strandberg et al.: Information Flow in Software Testing

when a synergy between humans and software systems is
required for a work flow [16]. In the daily work of software
developers and testers, there is a need to make many small
decisions on what to implement, correct or test next, but also
decisions on a project level, e.g. if the software has been tested
enough, has a good quality, or can be released anytime soon.
Oftentimes, test results are needed to make these decisions,
and this information can be seen as flowing between humans
and/or software systems.

In the embedded systems domain, software failures in
communication equipment can lead to isolation of nodes in
a vehicle or a plant, in turn leading to delays, loss of produc-
tivity, or even loss of life in extreme cases. The software in
embedded systems needs to be of high quality, and software
testing is the standard method for detecting shortcomings in
quality. An important aspect of testing embedded systems is
to conduct some of testing on real hardware [6], [12], [52]
and a common approach to support this is to provide a test
environment with devices. Cordemans et al. [12] found that,
because software uploads to target are slow, a highly iterative
testing process such as test-driven development, can be hard
to implement, so some testing could be run on the host rather
than the target. Furthermore, testing on real hardware opens
up for questions on how the test environment has changed
since a function was tested last, or how the changed software
best reaches the test system.

In this context, an overwhelming majority of software
testing conducted in industry is manual – from test creation
and execution to evaluation of the test results. Kasurinen
et al. found it as high as 90% in a study in Finland in 2010,
a practitioner focused report from 2015 by Capgemini,
Sogeti and HP, found that only 28% of test cases are
automated [28], [44]. Software testing can represent between
30% to 80% of the development cost. Automation can
reduce this cost, and also improve time to market [51].
However, challenges for test automation include both lack
of time for testing, as well as low availability of the test
environment [51]. As automation improves at an organiza-
tion, the practice of continuous integration becomes relevant.
A recent literature study on continuous practices identi-
fied that, as the frequency of integrations increase, there
is an exponential growth of information used in software
development [43]. The same study also identified lack of
awareness and transparency in this process as an important
challenge.

In addition to testing, requirements engineering is an
important part of embedded system development. Require-
ments represents a major cost driver when developing embed-
ded systems [17], [31]. To ensure functional safety, some
embedded systems are developed according to standards
such as IEC 61508 or ISO 26262 [24], [26]. The processes
and people used for requirements engineering vary widely
depending on the application domain and the organiza-
tion developing and using requirements during development.
In many companies, people in different roles (e.g., develop-
ers, testers, experts, architects) are involved in this iterative

process and have overlapping goals, but also use different
perspectives [14].

Standard software engineering tools may facilitate the pro-
cess of testing, e.g. (i) requirements and traceability manage-
ment tools such as IBM Doors [1], (ii) Bug/Issue tracking
tools such as Mantis Bug Tracker [3], and (iii) build and
test results dashboard tools such as Jenkins [2]. However,
the flow of information in software testing cannot be seen as
a tooling issue alone. Some studies have found that important
challenges in software development are related to people and
not tools [13], [30]. While studies presenting such problems
and solutions exist in the wide scope of software engineering,
it is unknown to what extent these tools are contributing to
improving the information flow in practice.

A. RESEARCH QUESTIONS
There is a lack of evidence on how software testing can be
analyzed from an information flow perspective. The body
of knowledge on the flow information in software testing
is limited, in particular with regards to industrial evidence.
In this paper we explore the information flow and the factors
influencing it by interviewing experienced industrial prac-
titioners and analyzing interview transcripts with thematic
analysis. The practitioners were sampled from five different
organizations developing embedded software in order to get
a more diverse set of results.

The following research questions (RQs) were studied:
• RQ1:What is the information flow in software testing?
• RQ2:What are the key aspects influencing the informa-
tion flow in software testing?

• RQ3:What are the challenges affecting the information
flow in software testing?

• RQ4:What are the approaches for improving the infor-
mation flow in software testing?

B. MAIN FINDINGS
Software testing produces information that is non-trivial to
manage and communicate. The flow of information in soft-
ware testing is built up of a number of feedback loops with
an origin in software development activities. Geographical,
social, cultural, and temporal distances can have an impact
on the loops (see section III-B). Six key factors at the orga-
nizations developing embedded systems affect the flow of
information in software testing: how they conduct testing
and trouble shooting, communication, processes, technology,
artifacts, as well as how it is organized (see section III-C).
There are seven main challenges for the flow of informa-
tion in software testing: comprehending the objectives and
details of testing, root cause identification, poor feedback,
postponed testing, poor artifacts and traceability, poor tools
and test infrastructure, and distances (see section III-D).
Finally, we identified five good approaches for enhancing the
flow of information in software testing: close collaboration
between roles, fast feedback, custom test report automation,
test results visualization, and the use of suitable tools and
frameworks (see section III-E).

VOLUME 7, 2019 46435



P. E. Strandberg et al.: Information Flow in Software Testing

FIGURE 1. Overview of the method followed in this interview study: (1) preparing and validating the instrument,
(2) conducting interviews, (3) transcribing interviews, and (4) qualitative analysis with thematic analysis that includes
scripting of raw reports which were (5) interpreted when reporting the results.

II. METHOD
This study was conducted by doing face-to-faceå semi-
structured interviews, following Linåker et al. [32] as the pri-
mary interview guidelines. The interviews were transcribed
and then analyzed using Braun and Clarke’s guidelines for
thematic analysis [11]. The sections below explain the details
of our method while Figure 1 gives an overview of it.

A. PREPARATION AND PLANNING
1) ETHICAL AND CONFIDENTIALITY CONCERNS
Based on the ethical guidelines proposed by the Swedish
Research Council and the Centre of Research Ethics and
Bioethics at Uppsala University [50] we took several steps
to ensure we fulfilled ethical responsibilities as researchers.
In particular, we designed a process for anonymizing and
keeping the obtained data safe, keeping strict restrictions in
space and time on the raw interview files, and anonymized
the transcripts such that aggregated claims could not be
traced back to individual organizations or interviewees. Fur-
ther, we ensured that informed consent was obtained for all
participants.

2) INSTRUMENT
To plan and keep track of the work, a survey plan was written
according to the guidelines by Linåker et al. [32]. As the work
on the survey progressed, the survey plan was also used as a
research diary. A raw survey instrument with 40 questions
was created first. In a workshop amongst the authors, we
refined it and organized it into initial groups of questions
(topics). The topics were ordered to avoid sensitive topics
(e.g. asking about misunderstandings and challenges) early
on. The start of each interview was planned with a warm-up

where we would explain the interview and transcription
process. The first topic in the instrument focused on the
interviewee (e.g., education background, work experience)
while the last topic was related to challenges. In order to
understand the flow of information and the workflow at
the interviewed organizations, we used generic questions to
probe this, before asking specifically about information flow
in software testing. We purposely held three pilot interviews.
Since we made very few major changes to the instrument
after the pilot interviews, two of the three pilot interviews
were used in the final study. The third interview did not target
the context of embedded system development and therefore
was not further used. The final instrument, (1) in Figure 1,
covered eight topics, 31 questions and 43 sub-questions, [49].
The questions were open-ended, and most of them had sub-
questions to serve as guidelines for the researcher conducting
the interview.

B. INTERVIEWS AND TRANSCRIPTION
1) ROLES
We recruited a convenience sample of individuals affiliated
with organizations in the embedded system domain. Using
a stratified design to ensure experience and specialization
diversity, we selected individuals from each of the following
groups: developers, testers and managers. We later added the
category ‘other’ for very experienced interviewees that did
not fit into any of these three roles. The interviewees were
selected from a diverse set of organizations, again by using a
convenience sample.We recruited individuals that the authors
knew themselves or through one or more contact persons in
a given organization, or by searching for suitable individuals
in corporate address books.

46436 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

2) INTERVIEWS
Interviews were conducted face-to-face, and recorded with
an off-line digital voice recorder. The interviewees were
given a lot of freedom to express their thoughts and explain
topics not covered by the instrument. The majority of the
interviews were conducted by two researchers where one
was the ‘‘driver’’ and the other researchers made clarifying
questions, kept track of time and made sure no question
was forgotten. We got a total of about 17 hours of audio
material, (2) in Figure 1. The audio material was not stored
on servers or emailed.

3) TRANSCRIPTION
The interviews were transcribed verbatim into 130 dense
A4 pages of text, step (3) in Figure 1. However, the interviews
that were conducted in Swedish also involved translation to
English in the transcription process. Transcription was per-
formed by hand in a text editor, either by the first author or by
students having signed an NDA, while listening to the audio
file in a media player running at a low speed. During the
transcription we ensured anonymization of the transcript.
Personal details, names of individuals and products, etc.,
were all anonymized. Anonymized words were replaced with
neutral terms in pointy brackets, such as: <code change>,
<vehicle> or <city>. All transcripts were read at least once
as a double check, sometimes this involved improvements
in transcription and anonymization. Finally, we asked the
interviewees if they wanted to review the transcript, and
those who wanted to were sent their transcribed interview for
confirmation.

C. THEMATIC DATA ANALYSIS
There are many approaches to qualitative data analysis;
we decided to follow thematic analysis as described by
Braun and Clarke [11]. We saw this approach as comprehen-
sible, suitable for the type of data we had, and it allowed for
one sentence of the transcript to be coded as belonging to
several themes. The terminology used in thematic analysis
partially overlaps with the one in grounded theory (e.g., [47])
and content analysis (e.g., [22]). Important concepts are:

• Code: These are ‘‘[lables that] allows the data to be
thought about in new and different ways’’ [22].

• Subtheme: ‘‘Sub-themes are essentially themes-within-
a-theme’’ [11].

• Theme: A theme is a high-level abstraction of, or a ‘‘pat-
terned response or meaning within,’’ the data set [11].

• Theoretical saturation: is the ‘‘point at which a the-
ory’s components are well supported and new data is
no longer triggering revisions or reinterpretations of the
theory’’ [47].

According to Braun and Clarke [11], there are a number
of choices one must consider when doing thematic analysis.
One choice to make is to define a theme. For us, themes are
high level abstractions of the data. Another choice concerns
the coding style. As opposed to having a detailed description
of parts of the data, we did a broad and rich coding of the

interview data. For the actual thematic analysis, we did an
inductive or data-driven analysis, aiming at processing the
data without trying to make it fit into an existing theoretical
framework.We did not look for anything beyondwhat partici-
pants said, making our approach semantic. We were not inter-
ested in how meaning and experience are social constructs,
instead we aimed at an essentialist/realist approach.

1) THE CODING PROCEDURE
Text coding, step (4) in Figure 1, started with all five authors
coding one and the same interview to build consensus on the
procedure. During a full day co-located workshop, we dis-
cussed the method for the qualitative analysis. We made a
number of decisions: (i) to use the Braun and Clarke method,
(ii) codes should preferably have four words or less – themes
and sub-themes should preferably have fewer, and (iii) as not
all sentences in the transcript were on the topic of information
flow in software testing, we left the decision to each individ-
ual researcher whether to code, or not code, each fragment
of an interview. Each remaining interview was coded inde-
pendently by two authors in different combinations in order
to encourage diversity in the coding. Next the first author
merged the two codings of each interview into one. Below
is a coding example of an interview excerpt:

• Raw Transcript: ‘‘[. . . ] the test setup fails quite often,
there’s so much hardware, so like a timeout on a
link. . . that will probably generate, you know, like an
error.’’

• Code: (i) test setup fails often, (ii) test environment
instability.

• Subtheme: (i) test environment, (ii) root cause analysis.
• Theme: (i) testing and troubleshooting, (ii) technology,
(iii) challenges.

Completed interviews were added into an on-line spread-
sheet. A list of themes, subthemes and codes were used to
get consistency in the merged interviews. This sheet grew to
almost 10 000 rows of interview text, and was later exported
as a comma-separated-values (CSV) text file to support par-
tial automated analysis through scripting. About 17.9% of
the rows of the spreadsheet were coded. Next followed a
period of iterations where the sets of themes and subthemes
were reduced. For example, many subthemes on the lines
of ‘‘manager tester communication’’ and ‘‘developer tester
collaboration’’ were merged into the more general subtheme
‘‘collaboration between roles’’. This period ended with a
workshop where the number of themes was reduced to 6.
After a few iterations, the initial 357 subthemes were reduced
to 86. There were about 1550 unique codes.

Regarding the theoretical saturation we found that the
overwhelmingmajority of the subthemes (84 of 86, or 97.7%)
appear in two or more interviews, only two subthemes occur
in one, and nine occur in all twelve interviews. According
to Guest et al., [23], the discovery of new subthemes is slow
after twelve interviews, and according to statistical formulas
by Galvin, [19], we should have a 95% confidence level to

VOLUME 7, 2019 46437



P. E. Strandberg et al.: Information Flow in Software Testing

have identified subthemes present in 22% or more of the
interviewees.

To support the thematic analysis we implemented Python
scripts performing raw analyses on the spreadsheet (between
step (4) and (5) in Figure 1). The script summarized demo-
graphic information, ranked theme and subtheme combina-
tions, extracted interview fragments from all themes and
subtheme combinations, and summarized challenges and
approaches. The output of this script was a PDF document
that quickly grew to almost 2000 pages. Example of how
a scripted extraction of interview snippets By iterating over
these reports and generating ideas for challenges, a candidate
list of twelve challenges was initially generated. This list was
reviewed along with reading the raw data. Iterating over this
list during a workshop, we arrived at a final list of seven
main challenges. Using a similar approach, we arrived at five
perceived good approaches from the interviewees. All this
resulted in the final report.

III. RESULTS
Given the importance of context in empirical studies [40],
we start this section with an overview of the organizations
and interviewees. The central parts of this section covers the
results of the thematic analysis, and thus the answers to our
research questions.

A. ORGANIZATIONS AND INTERVIEWEES
All five organizations develop embedded systems. Three of
the organizations work in the domain of safety-critical vehic-
ular systems, one of which do this as a consulting service.
The remaining two produce communication equipment. The
organizations vary greatly in size and geographic distribution.
The largest has more than 50 000 employees over many sites
in and outside of Sweden. Two have between 10 000 and
50 000 employees over a few sites in Sweden, Europe, and
also in Asia. One has between 100 and 500 employees in a
few offices in the same building as well as a second office
about an hour by car away from the first. The smallest has
between 1 and 5 employees and does consulting at a few
different sites. All organization’s products and services target
an international market. The vehicle organizations develop
software according to the V-model, and at least parts of their
product development adheres to safety standards. The com-
munication equipment organizations are agile, one follows
Scrum, the other Kanban. Both communication organizations
have invested heavily in test automation. One of the vehicle
companies is undergoing a transition to test automation and
has started doing nightly builds and some of their projects
have partial automated testing. The second vehicle organiza-
tion has automation for some test levels, in some projects. The
final vehicle organization has very mixed usage of automa-
tion. The communication organizationsmake extensive use of
FLOSS (free, libre and open source software) tools for source
code management, automatic builds, continuous integration,
collaborative code reviews and so on.

We interviewed twelve practitioners, three women and nine
men, that we grouped as three developers, four testers, three
managers and two ‘others’. This division is not trivial as an
interviewee was for example a developer specialist, while
another was developer of an automated test framework. All
of the interviewed women were testers. The interviewees
have between 2 and 35 years of experience with an average
of 14.4 years. Eight had at least 10 years of work experience.
Typical activities for the developers were to write, analyze
and implement requirements. They also did design, and one
lead a group for process-improvements. They could also have
an architect role and no longer write code. Three of the
testers were involved in work on test frameworks, either in
a leading role (with responsibilities such as coaching and
planning), or with implementation. Testers mentioned that
they participate in meetings with test leaders or projects,
write test specifications, write test reports, perform manual
testing and implement test automation focusing on the test
framework part so that the test cases can use the framework.
The project manager interviewees included a line man-
ager, a project manager and a program manager. They were
responsible for teams from 10 to more than 100 members.
Their activities were on following up on and leading work
on a software release, making sure deadlines are reached,
and some had responsibilities on making sure that people
are being recruited, developed and are feeling well. Of the
others, the first had a high-level architect role that moved
between development teams. The second was a specialist in
functional safety workingwith safety assessment and require-
ments, safety management, and education. Functional safety,
architecture and requirements are not all in the domain of
one given role in an organization, the responsibilities of the
different roles had a considerable overlap, in particular with
respect to requirements engineering that was the responsibil-
ity of several roles.

B. RQ1: WHAT IS THE INFORMATION FLOW
IN SOFTWARE TESTING?
In this section we describe the testing process from the per-
spective of the overall information flow diagram described
in Figure 2. This is based on a synthesis of the information
provided by the interviewees and represents an abstract and
inclusive view of the testing processes used within the studied
organizations. In particular, if a test-related information flow
has been expressed by any of the interviewees, it is captured
in some form in the diagram. This does not necessarily mean
that any particular information flow in the diagram is present
in all studied organizations. Numbers within parenthesis refer
to process steps indicated in the diagram.

1) DEVELOPER TESTING
Software is created, enhanced or corrected by a team of
software developers (shown as (1) in Figure 2). Modified
software is often tested locally first at the developers desk
(2) – either by running unit level or integration level tests,
often without target devices, or only a part of a device.

46438 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

FIGURE 2. The overall information flow diagram for a typical software testing process, as described by our interviewees. The development
team (1) produces new software, or software with changes. This is tested in a short and fast loop locally at the developers desk
(2), or using some special hardware in a slower feedback loop (3). If the software is tested in a test environment (5) then there might be
gates (6) slowing this process down and the need for a dedicated test team (4). Testing produces test results in a test results database (7).
Sometimes the test results are pushed (8) back to the developers, sometimes they need to pull to get access to it (again: 8), and
oftentimes the test results is never used (‘‘void’’). Peripheral, but important, roles are requirements engineers (req.), project managers
(PM), and test leads (TL).

This is a fast feedback loop, initiated by the developer, when
the developer wants to run it, and with the developer as the
recipient of test results.

The software is also commonly tested in target devices (3).
Sometimes this is done at the desk of the developers, or
in a lab setting at some distance from the developers desk.
When done locally, the test setup is typically smaller, perhaps
containing one unit or subunit of an embedded system, and
not a full system. This is a slower feedback loop than (2), but
it is still initiated by the developer and with that developer as
the recipient of the test results.

Among the studied organizations, some use simulators that
could be used at a developers desk, allowing up to 90%
of the system-level tests cases to be executed locally. One
organization has test systems built up of network topologies
at the desk of most developers, thus allowing them to run
sophisticated test cases locally.

2) TESTING BY DEDICATED TESTERS
Software testing is typically divided in levels, where pieces
of source code at a low level are tested using unit tests,
with the purpose of testing one part of the code in isolation.
When units are being tested together we typically talk about
integration testing, with the purpose of verifying for example
interfaces between units. A next step is system testing, where

the whole system is being tested. Here the focus of the testing
is to verify that the system as a whole can accomplish its
task. During acceptance testing customers or external tester
are often involved to validate the software with respect to user
needs, typically in a customer setting. When going up in test
level more hardware is needed, and greater feedback loops are
required. In Figure 2 this is illustrated with feedback loops of
increasing size when going to the right of the diagram.

All organizations that were part of this study perform some
form of integration- or system-level testing in a dedicated test
environment (at (5) in Figure 2), typically in one or several
test labs. The test environment can be built up in racks, or on
wagons or walls in dedicated rooms. Peripheral hardware to
support testing in these labs include voltage generators, signal
generators, vehicle displays, or other subsystems. In addition
to undertaking manual or automated testing in these labs,
dedicated test teams (4) are sometimes responsible for the test
environment as well as for the test automation framework.

In order for the testing to commence, the softwaremodified
by the development team (1) must reach the test environ-
ment (5). The time required for this transition (6) varies con-
siderably among our studied organizations. The slower cases
typically involve checkpoints in the testing or development
process. One organization did not allow code to reach the
main repository, hence blocking it from testing, until the code

VOLUME 7, 2019 46439



P. E. Strandberg et al.: Information Flow in Software Testing

change had been reviewed – a process that could take days
depending on availability of colleagues. For safety critical
software, or when manual testing is done, it is common to
bundle many code changes into one test session – because
the test sessions require much resources such as manual test
effort. This means that testing of a code change will be put
on hold until a sufficient number of other code changes have
been done. In such cases, the feedback loop can be delayed
for months.

In the faster cases, testing typically involves some form
of automation that enables test execution without human
involvement. Alternatively, testing may be supported by a
nightly build solution that compiles the new software, deploys
it to the test system, and allows the test team to start testing as
soon as they come into the office at the start of business on the
work days. One of the studied organizations did automated
system level testing where code changes were automatically
tested nightly. Here the role of the test teamwasmore focused
on developing andmaintaining the test framework and the test
environment.

3) COMMUNICATION OF TEST RESULTS
Whenever testing is performed, it inherently produces test
results (step (7) in Figure 2). In case of a failure, it is common
for testers to have a face-to-face dialogue with the develop-
ers. This dialogue may lead to the failure being understood
and resolved directly, or to the issue being filed in an issue
tracker. Some organizations said that they both had a face-
to-face conversation and filed an issue. One tester said that
a considerable amount of effort (i.e., several hours of work)
was sometimes needed before filing the issue – this was done
out of fear of filing a false negative issue (i.e., issues that are
not related to the software under test).

All vehicle organizations used requirements management
tools to store requirements, test cases and the traceability
between them. These tools could also store test results in
the form of test records – typically an entry in a database
saying pass or fail, with a trace to the version of the software
being used. From this tool reports could be exported for
humans to read. The communication equipment organiza-
tions instead used web-based portals where test results could
be explored. One of them used plots of trends to visualize
aspects of the testing – such as trends over time, or over
test system. The other used a portal with many tabs to
present results. Both used links to rapidly provide log files
from the test framework to give developers the details they
needed. Further, one of the vehicle organizations had the
habit of gathering the team around visualizations exported
from a requirements management tool. However, it should be
noted that most of the data generated during testing is never
used or looked at, in particular when tests pass. One reason for
this is the rapid pace at which new, replacing, test results are
generated.

Often a test lead will write a test report and make a high
level investigation of all produced results. In those cases
where safety-critical software was being developed, a formal

test report was always written. For the interviewee in the
‘other’ category that works with functional safety, the test
report was tremendously important and these reports had to
strictly follow the domain specific safety standard. In more
agile contexts, the role of the test report was questioned.
In particular, when a test report was being produced the
information in it was typically late, in the sense that it was
not useful internally as the results had already reached the
developers through other channels. However, several of the
intervieweesmentioned that the test report could be important
for customers.

From our observations, test results are reaching developers
(step (8) in Figure 2) when information is pushed back.
This happens by allocating an issue directly to a developer
(i.e., using an automated system producing notifica-
tions) or when a tester is reaching out to the developer.
Another way for the test result to reach developers is for
the information to be pulled by curiosity, or discipline,
in the daily work of a developer. The pulled information is
often extracted from an interactive environment (i.e., a por-
tal or a requirement management system used for showing an
overview of the information as well as visualizations). The
result of a failed test could reach a developer weeks or months
after the developer performed the code change that triggered
the test execution.

As indicated in Figure 2, test leads, project managers and
requirements engineers are important for the software testing
process. Their interactions are diverse and occur with many
roles in an organization through many contact interfaces.
In other cases, customers or other external parties perform
testing and have access to the full hardware system, but their
test result feedback can be very slow.

C. RQ2: WHAT ARE THE KEY ASPECTS INFLUENCING THE
INFORMATION FLOW IN SOFTWARE TESTING?
The thematic analysis of the interview transcripts identified
six themes. The themes and their most important subthemes
are summarized in Table 1. Many subthemes are important to
more than one theme, such as collaboration between roles that
is important to both communication and organization. The
themes are:

1) Testing and troubleshooting:A prerequisite for using
and communicating information about test results is
testing, and this theme covers how the organizations
conduct testing.

2) Communication: The flow of information in software
testing is directly related to communication, and an
important theme in our interviews was of course the
ways in which the interviewees communicated with
different stakeholders.

3) Processes: The theme of processes has an important
impact on the flow of information: different develop-
ment models prescribe different communication pat-
terns, and enforced reviews turn out to be possible
bottlenecks for the information flow.

46440 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

TABLE 1. Overview of the identified themes and the most important subthemes.

4) Technology: In order to test complex embedded sys-
tems in the first place, a sophisticated test environment
is needed. Another technological aspect of the test-
related information flow is how it can be enhanced with
tools.

5) Artifacts: Requirements, issues, test cases, and also
coverage are important aspects of a software develop-
ment process, and how an organization handles these
are of importance to the information flow.

6) Organization: Two important organizational aspects
that have an impact on the flow of information are team
structure and the distances between stakeholders.

In the coming sections we present the themes and the most
important subthemes (with the latter boldfaced in the text).

1) THEME 1: TESTING AND TROUBLESHOOTING
Testing and troubleshooting covers aspects of performing
testing, regardless of level or degree of automation. We also
consider the environment in which the testing is performed, as
well as troubleshooting. This was the most important theme
in terms of how frequently it appeared in the interviews.

Test execution in the studied organizations encompasses
manual testing as well as automated testing. All studied
organizations do some form ofmanual testing. There seems
to be three main approaches for this; the most traditional
approach is typically done by a tester in a test lab by fol-
lowing a step-by-step test specification, while pushing but-
tons or setting signals using control panels and interfaces.
Organizations that perform testing like this typically store
the results as test records in a protocol, a database, or both.
The second approach is risk-based exploratory testing, where
a risk analysis has been completed to identify the test scope,
and manual testing is performed to cover different risks.
At one organization this type of testingwas conducted, but not
really sanctioned. The third approach is manual testing where
experience guides the testing, but there is no formal planning,
no test specification, and sometimes no artifact produced by
testing.

The two organizations producing communication equip-
ment have target hardware infrastructure for automated test-
ing in place. One of them use continuous integration, the other
runs nightly testing. The vehicle organizations have some

test automation in place, but primarily do manual testing.
However, even if testing is automated, running a full test
suite may still be time consuming: ‘‘we have old projects
that are fully automatized, or to a very big part. And, if you
run them 24/7 then it takes 3 weeks [. . . ]’’ It should be noted
that some organizations that are strong in test automation see
automation as a way to free up time and resources for manual
testing where it is most needed, as opposed to doing broad
manual regression testing.

Troubleshooting, or root cause analysis, refers to the pro-
cess of finding out more about a failure: Is it an issue with
the software being developed? Is this function not working
on this hardware platform? Are there glitches in the test envi-
ronment?Are peripheral hardware such as load generators not
working as expected? Is the simulator not modeling reality
with sufficient accuracy? The most common approach to
pinpoint the location of an issue is by collaboration between
roles. One manager mentions that a team of four roles might
be needed to pinpoint where an issue is: ‘‘But if there’s a
more complex functionality problem, then. . . the tester brings
down the developer, and if needed the requirement engineer
also. Then they sit together and analyze [. . . We also] have a
test tool team, responsible for the environment. And [some-
times] the test tool responsible engineer is coming also [. . . ]’’.

2) THEME 2: COMMUNICATION
In the context of this study, the concept of communica-
tion may include numerous activities and aspects, includ-
ing oral or written communication between colleagues, how
reports are prepared and read, and also how test results
are stored. Many interviewees expressed frustration over the
test results feedback loop duration, regardless of its length.
Waiting two months or two hours for test results was per-
ceived as waiting for too long in both cases. Developers may
have moved on to new tasks and they were annoyed when
receiving negative results. In the cases where the feedback
loop is slow because of process steps such as code reviews,
some respondents indicated that being pushy towards your
colleagues may speed up the loop. Slow feedback can have
an impact on quality – a developer waiting for feedback
on a code change, may break the implementation without
realizing it. Automated testing, nightly testing and continuous

VOLUME 7, 2019 46441



P. E. Strandberg et al.: Information Flow in Software Testing

integration facilitate more rapid feedback, but this informa-
tion may sometimes have troubles reaching the intended
recipient: ‘‘. . .we actually do have a large problem with com-
munication [. . . ] So I think that’s, the main problem actually
is to get that feedback, from, the [continuous integration]
system, and from our users, to the developer. . . ’’ A common
scenario was to get no feedback, sometimes expressed as ‘‘no
news is good news’’. However, the interviewees could not
know if there were no news because something had not been
tested yet, or there were no news because everything was
tested and passed.

The most frequently discussed subtheme in this entire
study was collaboration between roles. Notably, walking
over to a colleague to discuss test results is a standard
approach in all organizations. This face-to-face communica-
tion occurs between most roles. Understanding issues is not
always easy, and several interviewees emphasized that it is
very important that they are written in such a way that they
are understood. Collaboration seems to help locating issues
faster, and is thus of great help during root cause analysis.
There is often an informal communication between roles
before filing an issue. According to one project manager, a
tester finding a problem should first talk to a developer to
get the details needed, and then file an issue. This way the
developer will understand the issue once it reaches him or her.
A consequence is also that distance is an important factor.

Visual reporting (i.e., using visualizations to sup-
port or replace reporting) was used at most organizations.
It was suggested that visualizations supports communica-
tion. For example, organizations could use a practice where
they gather development teams around a visualization of test
results. A common visualization displayed the number of
found, open or corrected issues. One vehicle organization
used plots showing coverage in terms of system requirements,
broken down to show requirements without test cases, as well
as requirements with untested, failing, and passed test cases
respectively. Most organizations used color codes to separate
passing from failing results, here red means fail, and pass
could be green or blue. The color yellow or orange was
sometimes used – it could mean test not executed, or failure
due to shortcomings in the test environment. Aspects with
lacking visualization support included non-functional char-
acteristics (such as memory usage), test environment details
such as cable connection endpoints in the test system, and
various aggregated views such as test results only relevant to
a specific functional area, project or customer.

Both communication equipment organizations utilized
web-based portals to allow interactive visual exploration of
test results. These could display different aspects of testing,
provide links to log files, and produce plots to reveal patterns
in the test outcomes. In the test results exploration portals,
the ability to filter results was deemed important, as well as
being able to look at several log files at the same time in some
way, and also to show coverage and coverage gaps. However,
a test results exploration portal requires time and effort for
development and maintenance. A prerequisite for visualizing

trends is a test results database (also discussed in the theme
on artifacts).

3) THEME 3: PROCESSES
The two main development models adhered to by the stud-
ied organizations are the V-model and/or agile development
(according to scrum or kanban). The development of safety
critical systems is under rigorous control of standards, and
we repeatedly heard that it is important to harmonize the
development model with the safety standard to avoid extra
work. The testing of a project will get time pressure when
the project runs late – in the words of a project manager:
‘‘[T]esters are at the end [. . . ] So the money is out, time
is out, everything is out.’’ A consequent behavioral aspect
was having to work under stress. Generally, stress was felt
to create a bad atmosphere, and lead to reduced test effort
and lower quality. It was also suggested that stress may lead
to lack of understanding and appreciation of what testers do.
One tester said that his colleagues expect him to make tests
pass, as opposed to perform testing.

Earlier in the process, reviews are typically part of the
chain of events that comes after code change, before the
updated code reaches the test environment. Code reviews
were sometimes required by the process. These reviews could
be a bottleneck, limiting the progress of a code change,
in particular when other activities had priority over review-
ing. In Figure 2 this is indicated with a slow track at (6).
For development of safety critical software reviews not only
of code, but of all artifacts, are important, and has to be
carried out in rigorous ways by an independent person. A
notable aspect of reviews is the review team composition.
One interviewee mentioned that their organization had taken
action against reviews where some colleagues made sure that
‘‘unwanted’’ people would not come to a review, in order to
make sure the code review would produce a desired outcome.
Another interviewee, a tester, wanted to be part of require-
ments reviews, in order to improve the quality of the require-
ments: ‘‘[I] said that ‘I’d really want to be a part of reviews
and [. . . ] help you write better requirements.’ [But] I never get
[invited].’’

As visualized in Figure 2, there can be a push or a pull
of test results in the final stage of the feedback loop. In
comparison, a pushing system, such an issue tracker sending
an email, or sending a text message was preferred over having
to request test results. Regarding decisions and decision
support, experience-based decisions are common. When
an internal release is about to be made, the decisions are
often informal. Notably, a formal test report was not of cen-
tral importance to the release process, primarily since such
reports were typically late.

4) THEME 4: TECHNOLOGY
Tools are used in the creation, execution and handling of
artifacts and are used by developers, test engineers and
project managers to coordinate and communicate test results.
Thus, interviewees saw tool support as an important area

46442 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

supporting the flow of information and it was mentioned
both as an area of improvement, and as an important aspect
enhancing the use of test results. Some interviewees gave
examples of when tools are helpful for communicating infor-
mation about testing: tools for traceability, for pushing noti-
fications (such as sending an email when an issue in an issue
tracker has been resolved), or for following code changes
through the stages in the build and test phase. It is also
common to use tools for exporting test results from one
format to another for further analysis. However, interviewees
felt that too many tools were needed and that tool interop-
erability was low. Another technological aspect mentioned
by interviewees was related to the use of test environments.
This aspect refers to the equipment used for the execu-
tion of tests. Most of the studied organizations used several
co-located test environments (e.g., test rigs with several
embedded systems, or a software simulation environment
on a PC) or globally distributed environments supporting
different teams. Test environments occurred in the interviews
as amajor factor impacting software testing. The interviewees
perceived that these environments require a significant effort
for configuration. In one case, the interviewee was frustrated
with the test environment’s instability and unavailability.
When these issues do not occur, the availability of a test
environment (e.g, developers testing locally using their own
machines) speeds up the feedback cycles as well as reduces
the number of involved persons. Test environments typically
use simulators to simulate the environment around the sys-
tem and its dynamic behavior (e.g., signal and traffic genera-
tors). Further, simulators were used when destructive tests are
needed to not damage the hardware. One organization used
a software test environment to support testing performed by
developers at their own desks. These simulators are developed
and maintained by a separate team focusing on simulators
and test environments. Interviewees mentioned that testing
on the target hardware typically results in difficulties in
using test automation, which results in a slower feedback
loop that might postpone testing: ‘‘And, people don’t tend
to want to write [. . . ] component tests [. . . ] Because they
say [. . . ] ‘my component is so special that it must run on
hardware’ [. . . ]. Which might be true but still, that means
that, you need to roll this, component, far in the develop-
ment chain, until you actually have this particular type of
hardware.’’

Complexity is a major technological aspect influencing
the flow of information, and affects the system under test –
including the differences in the supported hardware tar-
gets, requirements on forwards or backwards compatibility
with respect to both software and hardware combinations.
Our interviewees also mentioned that the sheer number of
communication protocols and their combinations, system
configurations and code dependencies can directly influence
software testing. We found evidence that complexity is rarely
taken into account when testing and this can cause negative
emotions and impact team productivity.

5) THEME 5: ARTIFACTS
Test artifacts of many types are developed in most project
phases by different stakeholders, and are used to provide
information and identify future actions. These test arti-
facts (e.g., test strategies, test reports, test cases) and their
use or communication are discussed in this section. Organiza-
tions deal with test selection as a way to select a subset of the
available test cases for execution. One interviewee mentioned
that test selection seems to be easier when focusing on safety
functions than when dealing with regular software, mainly
because of the hazard analysis: ‘‘So you can sort of limit the
set of, the test space you need to explore, because you know
that only a few of these are connected to this hazard [. . . ]’’
It seems that good traceability simplifies the impact analysis
when changes occur to requirements. The organizations using
requirements management tools frequently mentioned that
selecting tests for execution was supported through the use
of these tools. On the other hand, test selection for covering
corrected issues is reported to be more difficult to perform.
A common practice is to focus on ‘‘testing the delta’’, focus-
ing a limited test effort on a bounded set of changes. One
interviewee mentioned that this practice needs special atten-
tion when applied to the safety-critical domain: ‘‘This is
always a concern, when they go into a maintenance phase,
or start working with <issues>, and only test the delta [. . . ]
To know that this has no impact on anything else.’’
In the development of safety systems, impact analysis, code
reviews and precise chains of evidence are needed for even
the most minor code changes. One experienced interviewee
in the domain of safety development mentioned that one
of the most important aspects of safety development is to
have a development process that is in harmony with the one
prescribed by safety standards. Thus, companies in the safety-
critical domain use formal standard-compliant test reports
documenting as much artifact information as possible.

The lifetime of a test case from its creation to its retirement
(i.e., the process of adding/removing test cases) may influ-
ence how test results are communicated. Several interviewees
mentioned that test cases can be added in an ad hoc man-
ner or in a structured strategy based on requirements or using
risk analysis (e.g., hazard analysis and a fault tree analysis).
In the organizations with good traceability between require-
ments and test cases, the retirement of a test case seems
relatively easy; if a test case had its linked requirements
removed then there is no reason for the existence of the
test case and its results. In two of the studied companies,
the interviewees instead mentioned that test cases are rarely
removed and that their test scope grows in an uncontrolled
way. Many interviewees mentioned that grouping of test
cases for particular areas was a common way of assigning
the responsibility of dealing with these test cases during their
lifetime to a certain developer. There was also a need for area-
tailored test reports.

Most of the studied companies use different types of
coverage information, typically based on different artifacts:

VOLUME 7, 2019 46443



P. E. Strandberg et al.: Information Flow in Software Testing

requirements coverage, code coverage, risk coverage, hard-
ware coverage, coverage of code changes, or coverage of
functional areas just to name a few. Requirements coverage
was a very important: ‘‘ everything is based [on] require-
ments [. . . ]. That’s the starting point, that is the answer.’’
Requirements and other types of specifications are in gen-
eral important artifacts for generating information about what
and how to perform testing. The two vehicular companies use
requirements management tools to keep track of all artifacts
created: requirements, test cases, test results and also the
traceability information between these artifacts. Interviewees
mentioned the use of a system for exporting of test reports
containing coverage information, such as the requirements
linked with passing test cases, failing test cases and the num-
ber of linked test cases created or executed. Respondents also
mentioned that in developing safety-critical software code
coveragewas important, and also required, in order tomanage
safety certifications.

When exploring test results, traceability between artifacts
allows a developer to easily obtain more information on the
result of a failed test by exploring other types of artifacts, such
as revision numbers, log files, test case description, require-
ments, issues in an issue tracker, details on the test system
used for executing the test, and the test case source code.
One developer, emphasized the importance of traceability in
the following way: ‘‘I think it’s good that we can connect
our issues to the requirements [but] we cannot [connect] our
issues to the source code in a good way.’’

By reporting and test reporting aspects we both mean
making an actual report, and reporting in general. For safety
critical development a formal test report in accordance with
the relevant safety standard was very important, other orga-
nizations saw little value in such test reports. A test results
database is a good starting point for a report, and our intervie-
wees argued that an automated summary would be excellent,
and that most parts of a report should be automated. But in
reality this is not the case. Typically a test leader writes a
report, and rather few people find value in the test report. In
addition: test reports age fast, act as a slow feedback loop, and
instead talking face-to-face or using issues were two central
ways to communicate around test results.

6) THEME 6: ORGANIZATION
We found that the team structure is an important fac-
tor impacting the flow of information in software testing.
Team design choices usually involve a separation between
the development and the test teams. It seems that develop-
ment teams are typically responsible for unit-level testing in
addition to programming and software development. On the
other hand, test teams can be categorized into three different
types: (i) a test framework team responsible for developing
and testing the software used in the test framework, (ii) a
team dealing with test equipment such as the test environ-
ment, test systems and simulators, and (iii) a traditional test
team in which testers are usually performing manual testing.
We found that most organizations had a clear separation

between the test framework team and the development
team(s), and that this separation was clearer in the vehicular
organizations. The interviewees involved in safety develop-
ment had an even stronger focus on clearly separating testing
and development roles.

Our interviewees also mentioned distance between teams
(or distribution of teams) as an important attribute affecting
the flow of information in software testing. For example,
the organizations had teams working together in different
cities, different countries, and even in different continents.
It seems that communication in large organizations between
teams not located together (even if the distance is relatively
short) negatively impacts testing. The interviewees men-
tioned that the organizational distance and the coordination
between large teams can affect the flow of information in
software testing. The communication links between team
members are scattered and divided throughout the organi-
zation: ‘‘ we often work pretty much independently, so you
don’t have so much in common with others. And then you
don’t have the natural group, that you probably should have
[in the agile process].’’ Another interviewee noticed that the
use of different development processes in other parts of the
organization was confusing. Several interviewees mentioned
that a way of overcoming this type of organizational distances
is to use different tools and techniques such as filming a test
session in the test environment.

Considering the staffing aspects, our findings indicate that
under-staffing, staff circulation and scarce resources assigned
for testing are heavily impacting the flow of information in
software testing. Team composition with low-ability profiles
and knowledge levels was considered an important negative
aspect. In addition, it seems that some organizations are not
having teams with enough testers while others are facing
the opposite organizational side of having more testers than
developers. Some respondents mentioned that many testers
do not possess any meaningful education in software testing,
and that in some cases developers are working as testers
without much test-related knowledge.

Through thematic analysis, we have identified three rele-
vantmisunderstandings related to the organizational aspects
of testing. First, the company background seem to have an
impact on how software testing is understood and imple-
mented in the organization: ‘‘It’s a mechanical company to
start with, so [managers], normally they don’t understand
software at all [. . . ] they’re just scared to death about soft-
ware. It’s always late, and not working, and you name it. And
then when it comes to testing: ‘Just do it [. . . ] how difficult
can it be?’ ’’ Secondly, interviewees faced the problem that
managers do not properly understand software testing and its
implications: ‘‘I said that ‘I don’t think we’re testing [. . . ] in a
good enough way.’ And they said that ‘well, we are working
with the system, we are not working with the source code
and testing. That’s part of [another department]’ [. . . ] people,
on top level, they find that testing [. . . ] is not part of the
product. . . ’’ And thirdly, test engineers feel that non-testers
don’t understand what their work is about: ‘‘I don’t create

46444 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

TABLE 2. Overview of challenges and recommendations for practitioners.

the green color [. . . it’s] the output of everybody [. . . ] from
requirements and through my written specification [. . . ]’’

D. RQ3: WHAT ARE THE CHALLENGES AFFECTING THE
INFORMATION FLOW IN SOFTWARE TESTING?
This section presents the findings related to seven challenges
strongly related with the identified themes and sub-themes
(also in Table 2).

1) CHALLENGE 1: COMPREHENDING THE OBJECTIVES AND
THE TECHNICAL DETAILS OF A TEST RESULT
When test results are coming back to developers, there is a
difficulty to access the particular information and technical
details needed to understand this information, e.g. how the
test results were created: ‘‘I can extract information [. . . ] but
I have no clue about what products we [used], and what roles
the different products have had [in the test case].’’ It can also
be difficult to identity the test steps of the test case, or the
source code of the test scripts. Some participants identified
that it is hard to find details on revisions of the test framework,
test case, simulator software, and the software under test. Due
to lack of possibility to extract these details, developers seem
to be struggling in how to make the test results actionable.
Other participants mentioned that reporting has a focus on
what has been tested and leaves the recipient wondering in
what order the tests were executed, or what features have not
been tested.

Some organizations store the results frommanual testing in
a test results database, but only when the testing is performed
by following manual step-by-step instructions. The use of
exploratory testing at one of the organization was incorpo-
rated in the development process and they stored these results
as part of the risk-based testing approach. All other organi-
zations seem to lose the results from performing exploratory
testing: ‘‘[T]he logs for each delivery [are] stored. But not for
the manual testing, of course. That’s lost.’’

2) CHALLENGE 2: UNDERSTANDING THE ORIGIN
OF A FAILURE
In a complex test environment the root cause of a failure
may be located in the software under test, the test frame-
work, hardware components in the test environment, or be
caused by shortcomings in the test case. This challenge is
related to issues the participants are facing when understand-
ing faults that could also originate from poor or untestable

requirements or from problems in the simulators used. Many
interviewees mention that this is a challenge, and some talk
about strategies on how to pinpoint the location of an issue
(e.g. use different exceptions for different root causes), and
how hard it is to perform such actions. A project manager
mentioned that this problem is worst in the early stages
of software development. One of the developers we inter-
viewed expressed that this challenge is primarily an issue
for testers: ‘‘You make these kind of checks. An experienced
tester, have already done that before coming to me as an
implementer.’’

3) CHALLENGE 3: POOR FEEDBACK ON TEST RESULTS
Several interviewees highlighted that poor feedback occurs
when the feedback loop is slow. ‘‘When I think I have done
a very good job and I have tested my stuff well and the
tester comes and says ‘I found faults,’ I get a little bit angry
because I have, I have that behind me [. . . ] and then all of a
sudden, months later, someone will show [up and say] ‘No,
you’re not done.’ ’’ In other organizations, a feedback loop
requiring hours is also considered slow and seems to affect
the communication of test results: ‘‘[A few] hours holding
up a test bed to get acceptance testing feedback [. . . ] is too
long. When it comes to having a developer keep track of his
[code change], someone said 15 minutes [which] would be an
acceptable time.’’

In one case, poor feedback was related to having too little
feedback information available: ‘‘Sometimes you have to
go back and see: Did this thing work ever before? What
did the log look like? [. . . ] That information gets [garbage
collected] after about 1 month [. . . ]’’. Equally important, too
much information in test reporting can also be a problem,
in particular when the information is unstructured or when
it cannot be furthered filtered in an overview. None of the
interviewees discussed strategies on how to actually perform
logging, and it seems that more logging is implemented when
needed, in an ad-hoc manner.

Some organizations have implemented test results explo-
ration solutions, but extending or maintaining these is not
a priority. These solutions are considered immature and lack
important features such as filtering. Thus, a number of partic-
ipants saw shortcomings related to poor feedback intertwined
with the lack of traceability between these tools and the
use of several different views and perspectives for searching
feedback information.

VOLUME 7, 2019 46445



P. E. Strandberg et al.: Information Flow in Software Testing

4) CHALLENGE 4: POSTPONING TESTING TO LATER
DEVELOPMENT STAGES
A number of participants saw that postponing testing is a
challenge to effective flow of information. If the testing
process does not start early, it means that the communi-
cation of test results cannot start and the results cannot
be transformed into actions. We identified four separate
causes for postponing testing: (i) unclear test entry
criteria, (ii) tight coupling between hardware and software,
(iii) scheduling of testing after software development
ends, and (iv) ‘‘the crunch’’ occurring when develop-
ment runs late and testing time needs to be dramatically
reduced.

One organization required code reviews prior to the start of
testing, but colleagues were not always available for reviews
and therefore the start of testing could be postponed. When it
comes to the development of safety critical software, partici-
pants judged that testing is cumbersome to perform for each
code change in isolation – this implies that testing is post-
poned until several major changes have been implemented.
Another participant mentioned that a possible misconception
in their organization is that testing can only be performed
when the target hardware is available which is a mindset
that delays the flow of information and feedback cycles for
a certain time.

In practice projects are delayed, and when organizations
experience tight deadlines, testers face time pressure: ‘‘
[what] you don’t trifle with is the development time, but
you trifle with test time.’’ As a consequence there may
be very poor information flow in the later stages of a
project.

5) CHALLENGE 5: THE USE OF POOR ARTIFACTS AND
TRACEABILITY
Several participants identified that the use of poor require-
ments specifications in software testing can lead to poor test
artifacts: ‘‘We have noticed in a number of instances that
because the tester doesn’t actually understand why this is
happening [because of a lack of a functional description],
they write poor test cases, that aren’t really executable.’’
Some interviewees recognized that too detailed specifications
influence the use of artifacts in software testing negatively. In
addition to poor requirements, another participant mentioned
that test specifications can be of poor and insufficient quality,
they are not properly created and not traceable from the test
results. It seems that poor traceability can lead to excess work
and lost opportunities for effective testing and the flow of
information. As already mentioned on Theme 5 Artifacts,
an additional aspect is the potentially uncontrolled growth
of the test scope when new test cases are added over time.
Many of these test cases are added while not taking into
account any traceability and coverage analysis. Equally, some
engineers are experiencing a certain fear of removing old
test cases, which may contribute to the growth of the test
scope.

6) CHALLENGE 6: USE OF IMMATURE TEST
INFRASTRUCTURE AND TOOLS
Software testing relies on several layers of environments
such as test automation frameworks or commercial testing
tools. Testing generates large amounts of information, uses
numerous software executions, and requires coordination and
communication between test engineers, managers and devel-
opers. Tools are used in the creation of tests, test execution,
test result handling, and test communication. Some study
participants have recognized that several test infrastructure
and tool issues seem to hinder their testing work. One par-
ticipant recognized that the test environment instability is
disturbing the execution of tests: ‘‘When you reset the units,
then it requires some time [. . . ] When you reboot it [. . . ] it
has to stabilize, this takes some time [. . . ] and this can disturb
the next test.’’ A related problem was the test environment
saturation that often happened when test cases cannot be
scheduled for execution: ‘‘you don’t always get testbeds [. . . ]
if someone else is testing something with higher priority then
we don’t get the feedback until later.’’

Another participant raised the issue of testing in a simulator
as a tool for rapid prototyping and development. Thoughmost
of the functionality can be simulated, some hardware and
software features are not matching their actual behavior. One
participant explained the problems related to simulators as
follows: ‘‘The simulators [. . . ] often don’t cover the entire
reality, [and they]miss certain situations [. . . ] sowhen you get
a fault, and you correct it, then it still won’t work in practice
because the simulator does not match reality.’’

In addition, participants felt that legacy tools that are not
well known among, or maintainable by, the colleagues repre-
sent a challenge in the testing.

7) CHALLENGE 7: GEOGRAPHICAL, SOCIAL, CULTURAL
AND TEMPORAL DISTANCES
The information flow is affected by geographical, social,
cultural and temporal distances. These distances are fairly
well known and researched in distributed software devel-
opment [9]. The interviewees expressed concerns that fac-
tors related to these distances are making communication
more difficult. For example, several participants observed
that spoken language affects communication of test results:
‘‘. . . so when we [say] the English term for something [. . . ] we
don’t knowwhat it’s called in Swedish.’’ Another interviewee
was concerned about the increase in geographical distance
between a development site and a testing site and how this
affects the flow of information: ‘‘Then you went 10 meters
down the hallway, and then we take their help and then they
find the error very fast. When it is <in other city>, it’s very
hard. Because often it’s something that actually is visual [in
the test environment].’’ Another participant recognized the
problem of increasing the organizational distance in terms
of the fragmentation of one development team with one kan-
board into several isolated teams.

With these increased distances come an increased need
for the use of tools to bridge the distances. One participant

46446 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

TABLE 3. Overview of approaches and their implications for practitioners.

mentioned video-recording test sessions or using a tool to
access a test system remotely. However, the use of tools can
negatively impact the flow of information. The challenge is
that tools may have compatibility distances, may not always
work well, and manual traceability between tools is quite
common. Sometimes tools are used in ways they are not
designed for, such as using an issue tracker as a to-do list
manager, because ‘‘it’s easier for everyone to keep all the
things in the same place instead of having fifteen different
places to look [in].’’

E. RQ4: WHAT ARE THE APPROACHES FOR IMPROVING
THE INFORMATION FLOW IN SOFTWARE TESTING?
In this section we present good approaches for improving the
information flow in software testing mentioned by the inter-
viewees (summarized in Table 3). Some aspects of them are
also discussed in relation to existing research in the discussion
section.

1) APPROACH 1: CLOSE COLLABORATION AND
COMMUNICATION BETWEEN DIFFERENT ROLES
Verbal communication is perceived as a good way to col-
laborate and communicate on test results, it also facilitates
knowledge transfer between experienced and novice engi-
neers. The participants saw face-to-face communication and
close collaboration as central when creating a common under-
standing of the scope of testing. For one organization in
particular, several participants mentioned an exceptional level
of collaboration between roles: ‘‘[We] have work days when
implementation, testing and requirements spend their day
together [. . . ] Just running tests and correcting quite fast’’
Also, in order to make the requirement specification less
of an obstacle, one participant suggested that, even if this
is not in reality a common occurrence, testers should phys-
ically join requirement reviews. Similarly, another partici-
pant emphasized that the communication between roles when
understanding how requirements should be tested is amplified
when done verbally between people sitting close to each
other.

2) APPROACH 2: FAST FEEDBACK
The participants recognized that fast feedback is a good
approach to improving the flow of information and com-
munication. Having the ability to compile locally, having
automated builds, using test automation frameworks, soft test
environments, hardware emulators, and testing in a simulator

are all methods to get fast feedback and deal with test results
in a good and efficient manner. One participant mentioned:
‘‘We have this database and [get] data out. You start a script
and it takes 10 minutes, and [. . . ] then it’s sent out. So it’s
working extremely well [. . . ]’’ Also, the use of push noti-
fications through email or text messages can speed up the
feedback loops.

3) APPROACH 3: CUSTOM TEST REPORT AUTOMATION
We identified several approaches regarding the automatic
creation of test reports and the use of custom reports tai-
lored to different roles. Many participants expressed the view
that there are benefits in creating custom reports focusing
on specific functional aspects and filtering out the useful
information from nightly testing in a summary report. The
participants wanted to understand where an error was located
and what factors to consider by examining the suggestions
given in the test report. Also, in order to make the bug finding
less ambiguous, one participant suggested that test reports
should be interactive. For example, one can claim a failure
for troubleshooting and trace the execution of a certain test
to specific errors in the software or the test environment by
using a user interface specifically designed for aggregating
test results. One participant explained the use of interactive
custom reports as follows: ‘‘. . .we have this aggregated view,
there’s a web-page that looks through the logs when it’s exe-
cuting, and it goes either yellow, green or red. And there’s an
excerpt, of the error message that triggered the fail. And then
you can click on it and get to the logs.’’ Another participant
suggested that reports should be automatically generated into
documents for a release, and this can be beneficial when used
for safety certification.

4) APPROACH 4: TEST RESULT VISUALIZATION
Visualization of test results may serve as an important instru-
ment in understanding the test execution by using different
feature and characteristic trends over time as well as a general
performance plot in form of a dashboard. One participant
mentioned that even the use of colors for visualizing the
results of testing can show where the errors manifest and how
acute the problems are by representing the severity and the
importance of the information using gradients of represen-
tative colors. For example, red is used for fail, yellow for
inconclusive results. Another participant encouraged the use
of an overview of the results that is used to examine in-depth
each level of information needed to discover the location of

VOLUME 7, 2019 46447



P. E. Strandberg et al.: Information Flow in Software Testing

a fault. These visualizations were thought as a good basis
for fostering the communication around diagrams and visual
information instead of using textual results which can be
difficult to understand.

5) APPROACH 5: USE OF TOOLS AND FRAMEWORKS FOR
ENHANCING THE INFORMATION FLOW
The participants stated that for strengthening the flow of
information, a better use of tools and frameworks is needed to
improve the continuous exchange of information between dif-
ferent tools and people throughout the development process.
One participant mentioned that the use of code collaboration
tools for reviews and static analysis could help improve the
flow of information, while another participant said that tools
and artifacts should be linked and test results must be showed
inside the IDE, for allowing developers to test in their own
sandbox. In addition, recording signal values, and re-running
test cases can help in enhancing the flow of information when
the SUT is located in another location than the main team(s).

IV. DISCUSSION AND RELATED WORK
In this study we have explored the information flow in soft-
ware testing by conducting and analyzing interviews with
twelve experienced practitioners in the embedded software
industry. While much of research and even practice of soft-
ware testing is focused on improving the testing itself a main
conclusion from our study is that large gains can be had
by better using and communicating around the testing that
already happens. In this section we put these results in context
of related work.

The results of the thematic analysis show that software
testing produces information that is non-trivial to manage and
communicate. The flow of information in software testing is
built up of a number of feedback loops initiated by software
development activities. As illustrated in Figure 2 distances
may have an impact on the loops. Six key factors at the
organizations developing embedded systems affect the flow
of information in software testing: how testing and trouble
shooting is conducted, communication, processes, technol-
ogy, artifacts, as well as how the companies are organized
(see Table 1). There are seven main challenges for the flow
of information in software testing: comprehending the objec-
tives and details of testing, root cause identification, poor
feedback, postponed testing, poor artifacts and traceability,
poor tools and test infrastructure, and distances (see Table 2).
Finally, we identified five good approaches for enhancing the
flow of information in software testing: close collaboration
between roles, fast feedback, custom test report automation,
test results visualization, and the use of suitable tools and
frameworks (see Table 3).

A. FINDINGS WITH RESPECT TO ESTABLISHED PRACTICES
There are well established practices in industrial software
engineering and software testing, described by e.g. Som-
merville’s book on software engineering [45] and ISTQB syl-
labi [37].Much of what we have found overlaps with or builds

upon already well established practices. However, in addition
to the already mentioned key findings, we have also discov-
ered that: (i) Much of the test results where tests pass are
never used. (ii) Processes such as reviews may slow down the
feedback loops. (iii) The test results may be pushed back to
developers, or pulled back by developers, or both. (iv) A test
report written by a human is not always seen as an important
document. (v) Testers may spend a significant amount of time
investigating a failing test before filing an issue out of fear of
reporting a false positive.

B. COMMUNICATION AND SOFTWARE TESTING
In what resembles a definition of communication for
software engineering, Kraut and Streeter [29] write that:
‘‘In software development, [coordination] means that differ-
ent people working on a common project agree to a common
definition of what they are building, share information and
mesh their activities . . . ’’ They found that certain coordina-
tion techniques were under- or over-utilized with respect to
how valuable they were. Underutilized techniques were: dis-
cussion with peers, customer testing, design reviews, require-
ment reviews, co-organization, discussions with boss and
group meetings. Overutilized techniques included: project
documentation and error tracking. In the light of our results,
one might say that the flow of information, the challenges
and good approaches are not just relevant for testing, but
for communication in software engineering in general. How-
ever, we argue that the contemporary industrial challenges
with respect to software testing motivates studying this phe-
nomenon specifically in the context of software testing of
embedded systems. An overlap of testing practices and gen-
eral communication practices is likely to be expected.

Communication frequently relies on the use of tools and
technology. Olson and Olson [38] use the example of a con-
ference phone and mention a type of failure in remote work:
‘‘They adapted their behavior rather than fix the technology.
On many occasions, the participants shouted because the
volume [. . . ] was set too low.’’ They also noticed that new
technology may make geographical distance smaller, caus-
ing cultural distances appear to be greater [38]. Bjarnason
et al. [9] propose a theory for distances in software engi-
neering, it ‘‘explains how practices improve the communica-
tion within a project by impacting distances between people,
activities and artefacts.’’ They mention eight people-related
and five artifact-connected distances. The first of the people-
related distances are also mentioned by our interviewees:
geographical, socio-cultural, temporal and organizational.
As an example, the practice of cross-role collaboration has
an impact on distances, for example on the temporal distance.
From this perspective, several of the approaches we propose
could be seen as related to this theory of distances.

Illes-Seifert and Paech [25] investigate the role of com-
munication, documentation and experience during system
testing. They found that ‘‘most communication during the
testing process occurs with the requirements engineer and the
project manager followed by the developer.’’ This is a type of

46448 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

pattern we had expected to be able to find in our interview
data, but we cannot confirm or reject their finding. However,
we note that communication patterns like this one could be of
importance to the practice of software testing.

C. COMMUNICATION IN AGILE ENVIRONMENTS
Two recent papers on agile communication practices discuss
approaches and barriers for agile communication. The barri-
ers for effective knowledge sharing were categorized as team
factors, process factors and contextual factors, and include:
distances, lack of social skills, stakeholder neglect of non-
functional requirements, product owner lack of sharing client
feedback, inadequate planning, insufficient documentation,
as well as lack of high-quality collaboration techniques and
processes [21]. Proposed approaches for enhanced communi-
cation in a global outsourced agile development included the
use of good tools that can replace face-to-face communication
when teams are distributed, as well as the use of tools for
social networking and continuous integration. The authors
also propose to establish trust and a one-team mentality to
overcome cultural distances [15]. This is in line with our
findings.

Continuous integration is an important agile practice.
A recent study by Spieker et al. [46] highlights the need
for speeding up continuous integration, and they describe
a method ‘‘with the goal to minimize the round-trip time
between code commits and developer feedback on failed
test cases.’’ In a literature study of 69 papers on continuous
practices Shahin et al. [43] identified that, as code integrations
become more frequent, the amount of data such as test results
will increase exponentially, therefore it is ‘‘critical to collect
and represent the information in a timely manner to help
stakeholders to gain better and easier understanding and inter-
pretation of the results. . . ’’ Also: ‘‘[CI tools] produce huge
amount of data that may not be easily utilized by stakeholders
. . . ’’ Furthermore, they identified 20 challenges in continuous
integration. Three of them were lack of awareness and trans-
parency, more pressure and workload for team members, and
skepticism and distrust on continuous practices.

We identified that a review process, and the practice of
bundling several software changes before testing can both
have a negative impact on the pace at which software is deliv-
ered from developers to the test environment. Two papers on
continuous practices in the embedded systems domain has
identified additional factors to this challenge: having a time-
consuming or complicated delivery process, difficulties with
configuration management of the test environment, and also
human factors such as team structure, or not seeing value in
delivering often, [33], [34].

D. TEST DESIGN TECHNIQUES
Well-defined test design techniques exist, e.g. [4] and [18],
but in practice ‘‘testers rely on their own experiencemore than
on test design techniques when deciding on test data and test
steps.’’ [25]. Our results indicate that a pattern of unbalanced
test techniques exist in the industry; organizations seem to

overly rely on one or a few testing techniques, and they seem
to over-depend on confirmatory and positive testing.

E. TEST RESULTS VISUALIZATION
A number of studies on visualizing test results exist. Just as
Shahin et al. [43] proposed, Nilsson et al. [36] emphasize
that summaries are needed, and Brandtner et al. [10] find
that information may be spread out in several different sys-
tems. Both studies also propose visualization methods. In two
recent literature studies [54], [55] the authors investigated
issue tracking and highlighted that too long reports are bad,
and that they need to be summarized, which is in line with
what we found. We also found that testers may spend a
significant amount of time before reporting an issue due to
fear of filing a false negative. Opmanis et al. [39] considers
transitions between different views of a test results visual-
ization tool. Strandberg [48] suggested that visualizations
may target managers, experts, testers and code maintainers,
with the purpose of giving early warnings, suggestions for
code improvements, planning support and support for making
decisions. The results of this study emphasize a need for
visualization and clear summaries as well as the generation
of custom test reports.

Ralph [41] argues that many mistakes in software devel-
opment have a root cause in cognitive biases, and that
‘‘sociotechnical interventions’’ such as planning poker might
reduce the effects of these biases. We speculate that good
practices such as custom automated reports and the use
of visualizations can serve to de-bias decision making.
Another aspect related to cognition is how visualizations are
perceived. Zeileis et al. [53] discuss that when making sta-
tistical graphics the colors should ‘‘not introduce optical
illusions or systematic bias’’ furthermore, the ‘‘different areas
of a plot should still be distinguishable when [. . . ] displayed
on an LCD projector [. . . ] or when it is printed on a gray-
scale printer, or when the person viewing the graphic is
color-blind.’’ Our study shows that test results visualizations
created in the embedded system industry today seem to be
implemented by engineers that are not skilled in how to make
interfaces with these considerations in mind.

F. TESTING EMBEDDED SYSTEMS WITH AND WITHOUT
HARDWARE
Because of timing issues and other non-functional aspects,
the software testing of embedded systems has to be con-
ducted on target hardware at some point in the develop-
ment process [6], [12], [52]. This will have a significant
impact on unit testing, if done on target, as software uploads
will be a limiting factor. Cordemans et al. [12] identified
strategies for combining unit level testing on both target
and host, as well as proposed new strategies for test-driven
development of embedded systems, in particular they dis-
cuss hardware mocking. In addition to testing on host and
on target, the use of simulators and emulators are common
and allow higher level testing without access to hardware.
Becker et al. [7] developed XEMU which extends the

VOLUME 7, 2019 46449



P. E. Strandberg et al.: Information Flow in Software Testing

common QEMU hardware simulator [8] for mutation based
testing of embedded systems. The importance of simulation
was also emphasized by web-based survey with more than
1200 respondents as the most important design technique
for future designs of embedded systems [35]. With respect
to the flow of information in software testing, we could not
only expect faster feedback loops with increased simulation,
testing would also be able to start earlier in the develop-
ment process. An earlier start of the testing could reduce
the impact of the gate at step (6) in Figure 2. There is,
however, a cost involved in developing and maintaining such
tools.

G. IMPLICATIONS FOR INDUSTRIAL PRACTICE AND
RESEARCH
Based on our findings, organizations developing embedded
software may want to tailor their communication processes
to improve the information flow and feedback loops. Tools
and frameworks for test result reporting and communication
should take these challenges and approaches into account.
For example, when developing frameworks for automated
test reporting one should try to address the challenges of
understanding the objectives and details of a test result and
how testing was conducted by providing all the needed
instructions and details; one idea would be to provide a
framework suggesting that a particular failure was due to
errors in the test environment, simulators, test case itself,
test framework, software or hardware under test. Success-
fully implementing this kind of suggestion system could
save a lot of time in properly using and communicating test
results.

Some of the mitigations to the challenges described are
already known to industry. One example is the ISTQB
released syllabus for certification of test automation engi-
neers from 2016 [5]. For example, it covers a generic test
automation architecture, as well as the potential risks when
implementing and using test automation. We would like to
highlight the chapter on reporting and metrics as these are
topics that occurred frequently in our thematic analysis and
results. This chapter recommends to: (i) measure benefits
of automation (costs are easily seen), (ii) visualize results,
(iii) create and store logs from both the system under test
and the test framework, and (iv) generate reports after test
sessions. This is an indication that this syllabus could be
relevant to the information flow in software testing, both for
an academic and an industrial perspective.

For research, the findings in this paper are important
as they bring ‘‘tacit knowledge’’ from industrial practice
into academia. By knowing that the information flow in
software testing is not a trivial process, further research is
made possible. We also provide a model for what we know
about the information flow inner-workings in organizations
developing real-world embedded software. We invite other
researchers to add on, revisit in other contexts, and possi-
bly revise or reject, this model of the overall flow of test
information.

V. VALIDITY EVALUATION
Here we present a validity analysis based on the guidelines
proposed by Runeson and Höst, [42].

A. CONSTRUCT VALIDITY
Research with good construct validity investigates the phe-
nomenon that the researchers intended to study – a misunder-
stood question is an example of a threat to construct validity.
The design of our instrument was based on research ques-
tions, and was thoroughly reviewed before use (by running
pilot interviews and evaluating the instrument in workshops).
We designed a process for managing and anonymizing the
interview audio files and transcripts, and by presenting it to
the interviewees we reduced the threat of evaluation appre-
hension, and reactivity, where interviewees alter their behav-
ior in the presence of others. Information flow in software
testing is an area of research that intertwines with other
processes of software development, therefore, we had to ask
interviewees a large number of questions, not necessarily
focused on communication of test results and the information
flow per se. This resulted in a large amount of data to analyze
for understanding the full spectrum of software testing and
sometimes it was difficult (in our analysis) to primarily focus
on the flow.

B. INTERNAL VALIDITY
FOR a qualitative study as ours, internal validity translates
to how credible the results and the analysis are. There was
a non-random selection of the interviewees – so one could
think of selection bias as a validity threat. However, since
our focus is on embedded systems development, we had to
select relevant companies and random selection was not an
option. We were also careful in selecting a variety of roles to
interview to reduce the threat of selection bias. This study is
performed in the context of embedded software organizations
in Sweden. Our general perception is that the overall commu-
nication style in Swedish embedded software organizations
is informal and this might have impacted our analysis. Thus
our results should be interpreted with keeping the context
in mind. Finally, as with the majority of interview studies,
the credibility of our results would have improved by con-
ducting a much larger set of interviews, owing to availability
of time and availability of industrial participants.

C. EXTERNAL VALIDITY
External validity refers to the generalizability of the study
results. We interviewed more than one type of role, in mul-
tiple organizations. Our focus on maximizing diversity in
organizations, roles and also in how coding of interviews
was made (more than one researcher coded each interview),
should serve to increase the external validity of the paper,
as should our efforts to try to ensure theoretical satura-
tion. Also, we followed the guidelines proposed by Petersen
and Wohlin [40] and make a detailed report on the context
(in section III-A) to support transfer of results in similar

46450 VOLUME 7, 2019



P. E. Strandberg et al.: Information Flow in Software Testing

contexts as ours. However, it should be noted that the external
validity of an interview study is always limited and our results
should be seen as a proposal for an explanatory model of
information flow in embedded software testing, rather than
conclusive evidence.

D. RELIABILITY
Studies with good reliability are independent of the
researchers that performed them. We have been careful in
describing the method used for conducting this study and
also made the instrument available [49], making it easier for
researchers and practitioners to understand the details of this
study. This threat has also been addressed by involving mul-
tiple researchers and iterating over proposed results between
researchers. That said, it is most likely inevitable for our
preconceptions and cultural and professional backgrounds to
have affected the data collection as well as the synthesis pro-
cesses, and consequently also the results. We thus welcome
complementary work on this topic in different settings and by
authors with contrasting backgrounds.

VI. CONCLUSION
We have conducted an interview study of information flow in
software testing of embedded systems in five organizations
in Sweden. The results presented in this paper are based
on semi-structured interviews with twelve practitioners with
an average work experience of more than fourteen years,
and thematic analysis to identify major themes, challenges
and good approaches. Based on this analysis we describe
the flow of information, and show how this communication
process is built up of a number of feedback loops originat-
ing in software development activities, typically connecting
test activities, test artifacts, test results databases and issue
trackers with teams of developers, testers and managers (as
described in Figure 2). These loops are negatively affected by
increased geographical, social, cultural or temporal distances.
We discovered themes that impact this flow: how organiza-
tions conduct testing and trouble shooting, communication,
processes, technology, artifacts, and the organization of the
company (summarized in Table 1).

We identified several challenges (Table 2) that need to
be considered: comprehending the objectives and details of
testing, root cause identification, poor feedback, postponed
testing, poor artifacts and traceability, poor tools and test
infrastructure, and distances. In addition, we highlight
approaches (Table 3) positively influencing the flow of infor-
mation. Close collaboration and communication between dif-
ferent roles was perceived as a good way to enhance the
information flow. Fast feedback, custom report generation,
and use of suitable tools were seen as critical approaches in
dealing with test results in an efficient manner. Our study
also indicates that visualization of test results can be used for
fostering communication around testing.

Finally, our results show that more research on the flow of
information and communication in testing is needed and that
practitioners need to take it more clearly into account; it is not

enough to improve testing itself unless its results are clearly
communicated so they can be acted upon.

VII. FUTURE WORK
Future work could investigate the information flow in con-
texts other than embedded software organizations, use a
larger sample, if possible in additional countries, in order to
strengthen our understanding, identify more challenges and
helpful approaches. In a recent literature study of literature
studies, Garousi and Mäntylä, [20], found that there is a
‘‘need for secondary studies in the areas of test-environment
development and setup, test results evaluation and reporting.’’
Secondary studies on test reporting, as well as on communi-
cation within the context of software testing, could widen and
extend the collective understanding of the flow of information
in software testing. Finally, we would like to see implemen-
tation of tools for improving the information flow in software
testing: from introduction of visualizations, to how to make
test results communication feedback loops faster, as well as
more general exploration tools of all aspects of test results.
Perhaps simplifications when going from test verdict via root
cause analysis and source code exploration to discussions
with colleagues on possible fixes for issues.

REFERENCES
[1] IBM Rational DOORS Family. Accessed: Dec. 10, 2018. [Online]. Avail-

able: https://www.ibm.com/us-en/marketplace/rational-doors
[2] Jenkins. Accessed: Dec. 10, 2018. [Online]. Available: https://jenkins.io/
[3] Mantis Bug Tracker. Accessed: Dec. 10, 2018. [Online]. Available:

https://mantisbt.org/
[4] P. Ammann and J. Offutt, Introduction To Software Testing. Cambridge,

U.K.: Cambridge Univ. Press, 2016.
[5] B. Bakker et al., ‘‘Certified tester advanced level syllabus test automation

engineer,’’ in Proc. Int. Softw. Testing Qualifications Board (ISTQB), 2016,
pp. 1–84.

[6] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, ‘‘On testing embed-
ded software,’’ Adv. Comput., vol. 101, pp. 121–153, 2016.

[7] M. Becker, D. Baldin, C. Kuznik, M. M. Joy, T. Xie, and W. Mueller,
‘‘XEMU: An efficient QEMU based binary mutation testing framework
for embedded software,’’ in Proc. 10th ACM Int. Conf. Embedded Softw.,
2012, pp. 33–42.

[8] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX Annu. Tech. Conf., FREENIX Track, vol. 41, 2005, p. 46.

[9] E. Bjarnason, K. Smolander, E. Engström, and P. Runeson, ‘‘A the-
ory of distances in software engineering,’’ Inf. Softw. Technol., vol. 70,
pp. 204–219, Feb. 2016.

[10] M. Brandtner, E. Giger, and H. Gall, ‘‘Supporting continuous integration
by mashing-up software quality information,’’ in Proc. Softw. Evolution
Week IEEE Conf. Softw. Maintenance, Reeng. Reverse Eng. (CSMR-
WCRE), Feb. 2014, pp. 184–193.

[11] V. Braun and V. Clarke, ‘‘Using thematic analysis in psychology,’’ Quali-
tative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[12] P. Cordemans, S. Van Landschoot, J. Boydens, and E. Steegmans, ‘‘Test-
driven development as a reliable embedded software engineering practice,’’
in Embedded and Real Time System Development: A Software Engineering
Perspective. Berlin, Germany: Springer, 2014, pp. 91–130.

[13] B. Curtis, H. Krasner, and N. Iscoe, ‘‘A field study of the software design
process for large systems,’’Commun. ACM, vol. 31, no. 11, pp. 1268–1287,
1988.

[14] R. C. de Boer and H. van Vliet, ‘‘On the similarity between requirements
and architecture,’’ J. Syst. Softw., vol. 82, no. 3, pp. 544–550, 2009.

[15] T. Dreesen, R. Linden, C. Meures, N. Schmidt, and C. Rosenkranz,
‘‘Beyond the border: A comparative literature review on communication
practices for agile global outsourced software development projects,’’
in Proc. IEEE 49th Hawaii Int. Conf. Syst. Sci. (HICSS), Jan. 2016,
pp. 4932–4941.

VOLUME 7, 2019 46451



P. E. Strandberg et al.: Information Flow in Software Testing

[16] C. Durugbo, A. Tiwari, and J. R. Alcock, ‘‘Modelling information flow for
organisations: A review of approaches and future challenges,’’ Int. J. Inf.
Manage., vol. 33, no. 3, pp. 597–610, 2013.

[17] C. Ebert and C. Jones, ‘‘Embedded software: Facts, figures, and future,’’
Computer, vol. 42, no. 4, pp. 42–52, 2009.

[18] S. Eldh, ‘‘On test design,’’ Ph.D. dissertation, School Innov., Des. Eng.,
Mälardalens Univ., Västerås, Sweden, 2011.

[19] R. Galvin, ‘‘How many interviews are enough? Do qualitative interviews
in building energy consumption research produce reliable knowledge?’’
J. Building Eng., vol. 1, pp. 2–12, Mar. 2015.

[20] V. Garousi and M. V. Mäntylä, ‘‘A systematic literature review of literature
reviews in software testing,’’ Inf. Softw. Technol., vol. 80, pp. 195–216,
Dec. 2016.

[21] S. Ghobadi and L. Mathiassen, ‘‘Perceived barriers to effective knowl-
edge sharing in agile software teams,’’ Inf. Syst. J., vol. 26, pp. 95–125,
Mar. 2016.

[22] U. H. Graneheim andB. Lundman, ‘‘Qualitative content analysis in nursing
research: Concepts, procedures and measures to achieve trustworthiness,’’
Nurse Edu. Today, vol. 24, no. 2, pp. 105–112, 2004.

[23] G. Guest, A. Bunce, and L. Johnson, ‘‘How many interviews are enough?:
An experiment with data saturation and variability,’’Field methods, vol. 18,
no. 1, pp. 59–82, 2006.

[24] Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems, Standard IEC 61508-1:2010, 2010.

[25] T. Illes-Seifert and B. Paech, ‘‘On the role of communication, documenta-
tion and experience during system testing—An interview study,’’ in Proc.
PRIMIUM, 2008, pp. 1–15.

[26] Road Vehicles—Functional Safety—Part 1: Vocabulary, Standard ISO
26262-1:2011, International Organization for Standardization, 2011.

[27] ISO/IEC/IEEE Software and Systems Engineering—Software Testing—
Part 3: Test Documentation, ISO/IEC/IEEE Standard 29119-3:2013, Inter-
national Organization for Standardization, International Electrotechnical
Commission, Institute of Electrical and Electronics Engineers, 2013.

[28] J. Kasurinen, O. Taipale, and K. Smolander, ‘‘Software test automation in
practice: Empirical observations,’’ Adv. Softw. Eng., vol. 2010, Nov. 2010,
Art. no. 620836.

[29] R. E. Kraut and L. A. Streeter, ‘‘Coordination in software development,’’
Commun. ACM, vol. 38, no. 3, pp. 69–82, 1995.

[30] P. Lenberg, R. Feldt, and L. G. Wallgren, ‘‘Behavioral software engineer-
ing: A definition and systematic literature review,’’ J. Syst. Softw., vol. 107,
pp. 15–37, Sep. 2015.

[31] P. Liggesmeyer and M. Trapp, ‘‘Trends in embedded software engineer-
ing,’’ IEEE Softw., vol. 26, no. 3, pp. 19–25, May/Jun. 2009.

[32] J. Linåker, S. M. Sulaman, M. Höst, and R. M. de Mello, ‘‘Guide-
lines for conducting surveys in software engineering,’’ Dept. Com-
put. Sci., Lund Univ., Lund, Sweden, 2015. [Online]. Available:
http://portal.research.lu.se/portal/files/6062997/5463412.pdf

[33] L. E. Lwakatare et al., ‘‘Towards devops in the embedded systems domain:
Why is it so hard?’’ in Proc. IEEE 49th Hawaii Int. Conf. Syst. Sci.
(HICSS), Jan. 2016, pp. 5437–5446.

[34] T.Mårtensson and P. Hammarström, and J. Bosch, ‘‘Continuous integration
is not about build systems,’’ in Proc. IEEE 43rd Euromicro Conf. Softw.
Eng. Adv. Appl. (SEAA), Aug./Sep. 2017, pp. 1–9.

[35] C. Maxfield. (2017). 2017 Embedded Markets Study. [Online]. Available:
Eetimes/embedded.com

[36] A. Nilsson, J. Bosch, and C. Berger, ‘‘Visualizing testing activities to
support continuous integration: A multiple case study,’’ in Proc. Int. Conf.
Agile Softw. Develop. Cham, Switzerland: Springer, 2014, pp. 171–186.

[37] K. Olsen et al., ‘‘Certified tester foundation level syllabus,’’ in Proc. Int.
Softw.Testing Qualifications Board (ISTQB), 2018, pp. 1–96.

[38] G. M. Olson and J. S. Olson, ‘‘Distance matters,’’Hum.-Comput. Interact.,
vol. 15, nos. 2–3, pp. 139–178, 2000.

[39] R. Opmanis, P. Kikusts, and M. Opmanis, ‘‘Visualization of large-scale
application testing results,’’ Baltic J. Mod. Comput., vol. 4, no. 1, p. 34,
2016.

[40] K. Petersen and C. Wohlin, ‘‘Context in industrial software engineering
research,’’ in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas., 2009,
pp. 401–404.

[41] P. Ralph, ‘‘Toward a theory of debiasing software development,’’ in
Research in Systems Analysis and Design: Models and Methods. Berlin,
Germany: Springer, 2011, pp. 92–105.

[42] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, 2009.

[43] M. Shahin, M. A. Babar, and L. Zhu, ‘‘Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges and
practices,’’ IEEE Access, vol. 5, pp. 3909–3943, Mar. 2017.

[44] World Quality Report 2014–2015, Sogeti, Capgemini, and HP, Paris,
France, 2015.

[45] I. Sommerville, Software Engineering. London, U.K.: Pearson, 2015.
[46] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, ‘‘Reinforcement

learning for automatic test case prioritization and selection in continuous
integration,’’ in Proc. 26th Int. Symp. Softw. Test. Anal. (ISSTA), Santa
Barbara, CA, USA, Jul. 2017, pp. 12–22.

[47] K.-J. Stol, P. Ralph, and B. Fitzgerald, ‘‘Grounded theory in software
engineering research: A critical review and guidelines,’’ in Proc. ACM 38th
Int. Conf. Softw. Eng., 2016, pp. 120–131.

[48] P. E. Strandberg, ‘‘Software test data visualization with heatmaps,’’
Mälardalen Real-Time Research Centre (MRTC), Mälardalens Univ.,
Västerås, Sweden, Tech. Rep. MDH-MRTC-318/2017-1-SE, 2017.

[49] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt,
‘‘Instrument from: Test results communication—An interview study in the
embedded software industry,’’ Mar. 2018. doi: 10.5281/zenodo.1189562.

[50] Forskningsetiska principer inom humanistisk-samhällsvetenskaplig
forskning, Swedish Res. Council, Stockholm, Sweden, 1996.

[51] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, ‘‘Impediments for
software test automation: A systematic literature review,’’ Softw. Test.,
Verification Rel., vol. 27, no. 8, 2017, Art. no. e1639.

[52] W. H. Wolf, ‘‘Hardware-software co-design of embedded systems,’’ Proc.
IEEE, vol. 82, no. 7, pp. 967–989, Jul. 1994.

[53] A. Zeileis, K. Hornik, and P. Murrell, ‘‘Escaping RGBland: Selecting
colors for statistical graphics,’’ Comput. Statist. Data Anal., vol. 53, no. 9,
pp. 3259–3270, 2009.

[54] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, ‘‘A survey on
bug-report analysis,’’ Sci. China Inf. Sci., vol. 58, no. 2, pp. 1–24, 2015.

[55] T. Zhang, H. Jiang, X. Luo, and A. T. S. Chan, ‘‘A literature review
of research in bug resolution: Tasks, challenges and future directions,’’
Comput. J., vol. 59, no. 5, pp. 741–773, 2016.

PER ERIK STRANDBERG received degrees in
applied mathematics and bioinformatics from
Linköping University, in 2004 and 2005, respec-
tively, and the Licentiate of Engineering degree
from Mälardalen University, Västerås, Sweden,
in 2018, where he is currently pursuing the Ph.D.
degree in the topic of software test automation
of networked embedded systems. He has more
than a decade of practical experience of working
with software development, software testing, and

requirements engineering. He is employed as the Test Lead and an industrial
doctoral student with the Westermo Network Technologies AB, Västerås.

EDUARD PAUL ENOIU received the Engi-
neer’s degree from the Polytechnic University of
Bucharest, in 2009, and the Ph.D. degree from
Mälardalen University, Västerås, Sweden, in 2016,
where he is currently a Researcher, primarily affili-
ated with the Software Testing Laboratory and the
Formal Modelling and Analysis Groups, Depart-
ment of Networked and Embedded Systems. His
research interests include software engineering
and empirical research.

WASIF AFZAL received the Ph.D. degree in soft-
ware engineering from the Blekinge Institute of
Technology. He is currently anAssociate Professor
with the Software Testing Laboratory, Mälardalen
University. His research interests include soft-
ware testing, empirical software engineering, and
decision-support tools for software verification
and validation.

46452 VOLUME 7, 2019

http://dx.doi.org/10.5281/zenodo.1189562


P. E. Strandberg et al.: Information Flow in Software Testing

DANIEL SUNDMARK is currently a Professor
of computer science with Mälardalen University,
Västerås, Sweden, and the Leader of the Soft-
ware Testing Laboratory Research Group. Since
2001, he has been focusing on research on testing,
debugging and monitoring, primarily of embed-
ded systems. His current projects, undertaken in
close collaboration with industry partners, focus
on engineering of embedded software and systems,
particularly focusing on embedded system archi-

tecture and software and system testing.

ROBERT FELDT is currently a Professor of soft-
ware engineering with the Chalmers University
of Technology, Gothenburg, where he is also a
part of the Software Engineering Division, Depart-
ment of Computer Science and Engineering. He
is also a part-time Professor of software engi-
neering with the Blekinge Institute of Technology,
Karlskrona, Sweden. He has broad research inter-
ests, but focuses on software testing, requirements
engineering, psychological and social aspects,

as well as agile development methods/practices. He was one of the pioneers
in the search-based software engineering field. He has a general interest in
applying artificial intelligence and machine learning and has tried to get
more research focused on human aspects – behavioral software engineering.
Since 2017, he has been the Co-Editor-in-Chief of the Empirical Software
Engineering (EMSE) Journal.

VOLUME 7, 2019 46453


	INTRODUCTION
	RESEARCH QUESTIONS
	MAIN FINDINGS

	METHOD
	PREPARATION AND PLANNING
	ETHICAL AND CONFIDENTIALITY CONCERNS
	INSTRUMENT

	INTERVIEWS AND TRANSCRIPTION
	ROLES
	INTERVIEWS
	TRANSCRIPTION

	THEMATIC DATA ANALYSIS
	THE CODING PROCEDURE


	RESULTS
	ORGANIZATIONS AND INTERVIEWEES
	RQ1: WHAT IS THE INFORMATION FLOW IN SOFTWARE TESTING?
	DEVELOPER TESTING
	TESTING BY DEDICATED TESTERS
	COMMUNICATION OF TEST RESULTS

	RQ2: WHAT ARE THE KEY ASPECTS INFLUENCING THE INFORMATION FLOW IN SOFTWARE TESTING?
	THEME 1: TESTING AND TROUBLESHOOTING
	THEME 2: COMMUNICATION
	THEME 3: PROCESSES
	THEME 4: TECHNOLOGY
	THEME 5: ARTIFACTS
	THEME 6: ORGANIZATION

	RQ3: WHAT ARE THE CHALLENGES AFFECTING THE INFORMATION FLOW IN SOFTWARE TESTING?
	CHALLENGE 1: COMPREHENDING THE OBJECTIVES AND THE TECHNICAL DETAILS OF A TEST RESULT
	CHALLENGE 2: UNDERSTANDING THE ORIGIN OF A FAILURE
	CHALLENGE 3: POOR FEEDBACK ON TEST RESULTS
	CHALLENGE 4: POSTPONING TESTING TO LATER DEVELOPMENT STAGES
	CHALLENGE 5: THE USE OF POOR ARTIFACTS AND TRACEABILITY
	CHALLENGE 6: USE OF IMMATURE TEST INFRASTRUCTURE AND TOOLS
	CHALLENGE 7: GEOGRAPHICAL, SOCIAL, CULTURAL AND TEMPORAL DISTANCES

	RQ4: WHAT ARE THE APPROACHES FOR IMPROVING THE INFORMATION FLOW IN SOFTWARE TESTING? 
	APPROACH 1: CLOSE COLLABORATION AND COMMUNICATION BETWEEN DIFFERENT ROLES
	APPROACH 2: FAST FEEDBACK
	APPROACH 3: CUSTOM TEST REPORT AUTOMATION
	APPROACH 4: TEST RESULT VISUALIZATION
	APPROACH 5: USE OF TOOLS AND FRAMEWORKS FOR ENHANCING THE INFORMATION FLOW


	DISCUSSION AND RELATED WORK
	FINDINGS WITH RESPECT TO ESTABLISHED PRACTICES
	COMMUNICATION AND SOFTWARE TESTING
	COMMUNICATION IN AGILE ENVIRONMENTS
	TEST DESIGN TECHNIQUES
	TEST RESULTS VISUALIZATION
	TESTING EMBEDDED SYSTEMS WITH AND WITHOUT HARDWARE
	IMPLICATIONS FOR INDUSTRIAL PRACTICE AND RESEARCH

	VALIDITY EVALUATION
	CONSTRUCT VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY
	RELIABILITY

	CONCLUSION
	FUTURE WORK
	REFERENCES
	Biographies
	PER ERIK STRANDBERG
	EDUARD PAUL ENOIU
	WASIF AFZAL
	DANIEL SUNDMARK
	ROBERT FELDT


