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Optimal trajectory planning and decision making in lane change maneuvers
near a highway exit

Johan Karlsson, Nikolce Murgovski and Jonas Sjöberg

Abstract— This paper presents a control architecture for
autonomous driving near a highway exit. In particular, detailed
descriptions are provided for the two main blocks in the
proposed architecture; a novel trajectory planner for lateral and
longitudinal motion, and a novel decision manager for choosing
the optimal target lane. We show that the trajectory planning
can be realized by executing two sequential quadratic programs
as two model predictive controllers, where one is planning the
optimal trailing of a leading vehicle and the other is planning a
lane change maneuver. Having the two optimal trajectories and
a scalarized objective that considers safety, comfort, reference
tracking and distance to the exit, the decision manager chooses
one of the planed trajectories that is send to the vehicle. A case
study is provided showing the effectiveness of the proposed
control architecture.

I. INTRODUCTION

A large number of traffic accidents happening on the roads
today are due to human factors such as fatigue, distracted
driving and speeding [1], [2]. To reduce the number of
accidents, a surge towards automated driving has been seen
in recent years. This surge has included driving assistance
systems such as adaptive cruise control (ACC), cooperative
ACC (CACC) [3], collision avoidance systems [4] and lane
keeping assistance [5]; many of which are already standard
in many production vehicles today [6]. To further improve
traffic safety and lower energy consumption, research is
being done towards fully autonomous vehicles, where a vast
number of possible driving scenarios are studied to address
traffic regulations, safety, energy efficiency and driver com-
fort, [7], [8].

One of the most studied scenarios for autonomous vehicles
is highway driving. This is because accidents tend to be
severe, due to the high velocity of the vehicles and that
highway travel tends to be long distance which increase the
risk of driver fatigue or loss of attention. In this paper we
study a particular highway scenario, where the ego vehicle
intends to exit the highway, either to the left or right.
Naturally, if the ego vehicle is in the same lane as the
upcoming exit, no action is needed besides that of staying
in the lane and avoiding collision with potential vehicles in
front, from now on referred to as trailing. However, if the exit
is in the adjacent lane, a lane change needs to be performed,
well in time before the exit is reached. To solve this problem,
we propose a control architecture, which consists of two
main parts, a novel trajectory planner and a novel decision
maker.

The authors would like to thank the master student Gudrun Dovner for
her development of the deicion manager and the implementation of the
architecture presented in this paper.

The trajectory planner includes calculation of two can-
didate trajectories, one for trailing a leading vehicle in the
same lane, and another for performing a lane change. For
the trajectory calculation, we propose a combination of
two model predictive controllers (MPCs), one optimizing
in a temporally-defined receding horizon and another in a
spatially-defined horizon. The combination of the two MPCs
allows for different implementation of the collision avoidance
constraints, which makes it possible to formulate both the
trailing and lane change programs as quadratic programs
(QPs). This is important since QPs can be solved efficiently;
efficiency is necessary since two optimization programs are
solved at each instance, one for trailing and one for lane
change planning.

For the trailing MPC, we propose a temporal formu-
lation which is a combination of ACC and lane keeping
control, for both longitudinal and lateral vehicle motion,
while considering ramp barrier constraints for surrounding
vehicles, similarly as proposed by [9]. For the lane change
MPC, we propose a combination of a temporal and a spatial
formulation which are triggered depending on the speed
difference of the ego and leading vehicle. We show that
for the scenario with a slow moving leading vehicle, the
spatial QP formulation allows usage of a box constraint for
preventing collision with the leading vehicle [10], instead of
a ramp barrier. This is advantageous since a box constraint
allows for planning beyond the position of the leading
vehicle, which a ramp barrier does not.

The paper is organized as follows. A description of the
problem is provided in Section II. An overview of the full
architecture is then presented in Section III. In Sections
IV and V the trajectory planner and decision manager are
introduced, respectively. Finally, a case study is presented in
Section VI before conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

We study the problem of controlling an autonomous
vehicle, from here on referred to as the ego vehicle (E),
driving on a straight, two-lane highway. Three surrounding
vehicles are considered: the leading vehicle (L) starting in
front of and in the same lane as the ego vehicle, two adjacent
vehicles (R) and (F), where (F) is in front of, and (R) is
behind, (E), see Fig. 1. Specifically, we consider the case
when the ego vehicle’s goal is to exit the highway. The
task of the controller is to calculate two candidate paths,
one for trailing, based on the reference velocity vr(t) and
lateral reference position yt

r(t), and one for lane change,
based on the reference velocity vr(t) and lateral reference
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Fig. 1: Straight highway with two lanes and four vehicle the ego vehicle
(E), the leading vehicle (L) and the adjacent vehicles (R) and (F).
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Fig. 2: The control architecture consists of four parts, from left to right:
destination and routing, which sets the goal of the maneuver, the situation
analyst which analyses the current traffic situation, the controller which
calculates optimal trajectories and decides whether lane change or trailing
should be performed and finally the vehicle itself.

position yls
r (t), and then choose which of these trajectories

is safest and most comfortable while bringing us closer to
the overall goal.

III. ARCHITECTURE

We address the problem by proposing a feedback control
architecture, as illustrated in Fig. 2.

The destination and routing block decide which exit to
take and where it is located, for a horizon of up to several
kilometers. The situation analyst gathers data in a small
neighborhood around the ego vehicle, which is relevant for
planning the trajectory of the ego vehicle within the MPC
horizon. This includes information on the current state of
the ego vehicle, a prediction of the future trajectories of the
surrounding vehicles and parameters needed for modeling the
safety constraints. This data is then sent to the controller,
which consists of two parts, a trajectory planner and a
decision manager. In every MPC update k the trajectory
planner calculates two candidate trajectories, one trailing
trajectory (xt

k,u
t
k) and one lane change trajectory (xl

k,u
l
k),

both consisting of a state vector x and an input vector
u, which will be introduced in Section IV-A and IV-B,
respectively. These trajectories are then sent to the decision
manager, that decides which of these two trajectories should
be sent to the local controllers of the ego vehicle. The
output of the decision manager, which is also the output
of the controller, is the first state and control of the chosen
trajectory (xO

k ,u
O
k ), labelled (xO

k,0, u
O
k,0). The input and state

(xO
k,0, u

O
k,0) is then applied to the vehicle. Further discussion

on the trajectory planning and the decision manager is
provided in Sections IV and V. The situation analyst, the
local controllers and the destination and routing are outside
the scope of this paper and are not discussed further.
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(a) Trailing a leading vehicle. The safety constraint preventing a collision
with the leading vehicle is modeled as a ramp barrier.
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(b) Lane change in the temporal domain. The safety constraint preventing
a collision with the surrounding vehicles are modeled as ramp barriers.
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(c) Lane change in the spatial domain. The safety constraint preventing a
collision with the leading vehicle is modeled with a critical zone.

Fig. 3: Illustration of traffic scenario on a highway with two adjacent
vehicles (R and F ) moving in the same direction as the ego vehicle. During
the lane change maneuver, the ego vehicle’s center of gravity is allowed to
reside between the limits ymin, ymax and the ramp barriers of the surrounding
vehicles.

IV. TRAJECTORY PLANNING

The trajectory planner solves two optimization programs,
one to calculate a trailing trajectory, see Fig. 3a and one to
calculate a lane change trajectory.

For the lane change planning, two cases are considered,
depending on the speed of the leading vehicle. These two
cases, which are described in more detail in Section IV-B,
results in two problem formulations, one temporal formula-
tion and one relative spatial formulation. As can be seen in
Fig. 3 collision avoidance is modeled via ramp barriers or
rectangular critical zones where wl is the lane width, w is
the road safety distance and the longitudinal parameters of
the ramp barriers and critical zone are calculated by

lLi =
lL + lE

2
+ θLi(vr(t)− vL(t)) + θ̃Livr(t), i = {x, f, r},

ljx =
lj + lE

2
+ θj(vr(t)− vj(t)) + θ̃jvr(t), j = {F,R},

where vr(t) is the longitudinal reference speed of the ego
vehicle, vL(t) is the longitudinal velocity of the leading
vehicle, vF is the longitudinal velocity of (F), vR is the
longitudinal velocity of (R), θLi is the desired time gap
between the leading and ego vehicle, θj is the desired time
gap between vehicle j and the ego vehicle, while θ̃Li and θ̃j
is a time gap increasing the safety distance with increasing
velocity of the ego vehicle. A typical choice for the lateral
parameters of the ramp barriers would be lLy = lRy = lFy =
wl, [10].

The trailing and lane change trajectory planning problems
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are formulated as QPs of the form

min
uj

k(τ)

τj
f,k∫

τj
0,k

‖xjk(τ)− xjr,k(τ)‖2Qj + ‖ujk(τ)‖2Rj + ‖ ddτ u
j
k(τ)‖2Sjdτ (1a)

subject to
d

dτ
xjk(τ) = Ajxjk(τ) +Bjujk(τ), (1b)

xjk(τ) ∈ [xjmin,k,x
j
max,k], (1c)

ujk(τ) ∈ [ujmin,k,u
j
max,k], (1d)

Cjkx
j
k(τ) +Dj

ku
j
k(τ) ≤ g

j
k, (1e)

xjk(0) = xj0,k, (1f)

where k is the kth step in the MPC-loop, τ is the sampling
variable going from [0, τf], xk(τ) and uk(τ) are the state and
input vectors, respectively, i.e., decision variables, xjr,k is the
reference vector and xj0,k is the vector of initial states. The
constraint (1b) describes the dynamics of the vehicle via the
matrices Aj and Bj , (1c) and (1d) are box constraints on
the states and inputs, steming from physical restrictions of
the ego vehicle and restrictions imposed by traffic rules, (1e)
are general linear constraints on states and inputs modeled
by the matrices Cjk, D

j
k, g

j
k and (1f) are the initial state

conditions. Further, j ∈ {t, lt, ls} indicates which program
we are currently solving, trailing j = t, temporal lane change
program j = lt or spatial lane change program j = ls.

A. Trailing program

Similarly as in [9], the ego vehicle is modeled with simple
point mass dynamics, using the state and control vectors

xt
k(t) = [xt

k(t), v
t
x,k(t), y

t
k(t), v

t
y,k(t)]

T , (2)

ut
k(t) = [at

x,k(t), a
t
y,k(t)]

T , (3)

where xt
k(t), y

t
k(t) is the longitudinal and lateral position

of the ego vehicle at time t in MPC loop k, respectively,
vt

x,k(t), v
t
y,k(t) is the corresponding velocities and at

x,k(t),
at

y,k(t) are the accelerations. The matrices of (1b) are thus
given by

At =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Bt =


0 0
0 0
1 0
0 1

 . (4)

The trailing program calculates a candidate trajectory that
keeps the ego vehicle in the current lane, see Fig. 3a, by
trailing the leading vehicle while penalizing deviation from
a given reference trajectory

xt
r = [0, vt

r(t), y
t
r(t), 0], (5)

where yt
r(t) is a lateral reference path, and actuator limits

with the weighting matrices

Qt = diag(0, qt
x, q

t
y, 0), (6)

Rt = diag(rt
x, r

t
y), (7)

St = diag(st
x, s

t
y). (8)

Further, the right hand side of the box constraints (1c) and
(1d) are given by

xt
min,k = [0, wE/2, 0, v

min
y,k ], (9)

xt
max,k = [free, 2wl −

wE

2
, vmax

x,k , vmax
y,k ]T . (10)

ut
min,k = [amin

x,k , a
min
y,k ], (11)

ut
max,k = [amax

x,k .a
max
y,k ], (12)

where wE is the width of the ego vehicle, xL(t) = vLt+ xL0
is the position of the leading vehicle, xL0 the initial position
of the leading vehicle and wl is the lane width. The speed
and acceleration limits satisfy vmin

y,k (t), a
min
y,k (t), a

min
x,k (t) < 0,

vmax
y,k (t), a

max
x,k (t), a

max
y,k (t) > 0. Additionally, for the trailing

program, the general constraints (1e) contain three rows, the
first two model slip constraints and the third the collision
avoidance with the leading vehicle

C t
k =

 0 0 s 1
0 0 s −1
1
lLx
∓ 1
lLy

0 0

 , Dt
k = 0, (13)

gt
k =

[
0, 0, −1 + xL(t)

lLx
∓ yL(t)

lLy

]T
, (14)

where s is the maximum slip, calculated via the maximum
slip angle β as s = arctan(β). Since, it is not allowed to
switch lanes during trailing, vehicles in the adjacent lane are
not considered.

The trailing program, i.e., the optimization (1) with the
problem data (2)-(14), is a continuous, convex QP.

B. Lane change programs

The lane change maneuver involves collision avoidance
modeling for, not only the leading vehicle, but also for the
vehicles in the target lane δt. The natural extension to the
lane change program from the trailing program would be to
model collision avoidance of all vehicles via ramp barriers in
the temporal domain, as is illustrated in Fig. 3b. However, as
can be seen in Fig. 3b, modeling the collision avoidance of
the ramp barrier cuts out the half-plane of the leading vehicle,
prohibiting the ego vehicle from passing. This might lead to
unnecessary deceleration of the ego vehicle, if the leading
vehicle is traveling slower than the reference speed of the
ego vehicle. This deceleration may render the lane change
maneuver a less viable option for the decision manager,
which will decide to trail instead. To resolve this, collision
avoidance of the leading vehicle is modeled as a ramp barrier
if the speed of the leading vehicle is higher than the reference
speed of the ego vehicle. On the other hand, if the speed
of the leading vehicle is lower than the reference speed
of the ego vehicle, the leading vehicle is modeled using a
rectangular critical zone, see Fig. 3c. To preserve the program
structure (1) when modeling with a critical zone sampling
is done in the relative spatial domain and the inverse of
the relative velocity between the ego and leading vehicle is
used as a state. This prevents the use of the spatially-defined
overtaking when the ego and leading vehicle are driving with
the same speed.
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For the temporally defined MPC, i,e, when vL > vr with
the leading vehicle collision avoidance modeled as a ramp
barrier, the data xlt, ult, xlt

r , Qlt, Rlt, Slt, Alt, Blt, xlt
min,k,

xlt
max,k, ult

min,k and ult
max,k, is identical to the trailing data

presented in (2)-(12), with the only difference that the lateral
reference position is now in the adjacent lane. The matrices
of the general linear constraints (1e) can be written as

C lt
k =


0 0 s 1
0 0 s −1

1/lLx ∓1/lLy 0 0
1/lFx ±1/lFy 0 0
−1/lRx ±1/lRy 0 0

 , Dlt
k = 0,

while the right hand side is given by

glt
k = [0, 0, −1 + xL(t)/lLx ∓ yL(t)/lLy,

− 1 + xF(t)/lFx ± yF(t)/lFy,

− 1− xR(t)/lRx ± yR(t)/lRy]
T .

where xR(t) and xF(t) are the longitudinal positions of the
adjacent vehicles R and F, respectively, and yR(t) and yF(t)
are the corresponding lateral positions. The top signs in glt

k

and C lt
k are used if lane change is done from the right lane

to the left, and the lower sign is used if the lane change is
from left to right. For detailed, derivation of this optimization
program, see [11]. This temporal lane change program is a
convex QP.

When vL ≤ vr, the collision avoidance with respect to the
leading vehicle is achieved using a rectangular zone instead
of a ramp barrier, as in Fig. 3c. If modeling was to be done in
the temporal domain we would end up with a mixed integer
formulation, since the time we reach the rectangular zone is
unkown (due to the fact that the position and speed of the ego
vehicle are decision variables). However, as mixed-integer
programs are computationally difficult to solve, we apply
the method proposed in [10], that transforms the program to
a smooth sequential QP that can be solved efficiently. The
method involves a change of independent variables from time
t to relative distance x̃ = x− (vL0+ tvL) where vL0 denotes
the intial speed of the leading vehicle. Further, the state and
control vectors are replaced by

x̂ls
k(x̃) = [t̃k(x̃), yk(x̃), zk(x̃), ṽy,k(x̃)]

T ,

uls
k(x̃) = [ux,k(x̃), uy,k(x̃)]

T ,

where ṽx,k = vx,k(x̃) − vL,k(x̃), zk(x̃) = ṽ−1x,k is the
lethargy, t̃k(x̃) is the travelling time fulfilling t̃′k(x̃) = zk(x̃),
ṽy,k(x̃) = vy,k(x̃)ṽx,k(x̃), ux,k(x̃) = −z3k(x̃)ãx,k(x̃) and
uy,k(x̃) = ay,k(x̃)z

2
k(x̃) − vy,k(x̃)z

3
k(x̃)ãx,k(x̃). This gives

Als = At and Bls = Bt. Further, the box constraints are
given by

xls
min,k(x̃) = [0, ymin

k (x̃), (vmax
x,k − vL(x̃))

−1, free]T ,

xls
max,k(x̃) = [free, ymax

k (x̃), 1/ε, free]T ,

where ε is a small positive number, representing a non-zero

minimum speed of the ego vehicle. Further, we have

xls
r = [0, yls

r (x̃), z
ls
r (x̃) , 0],

Qls = diag(0, qls
z , q

ls
y (x̃), 0),

Rls = diag(rls
z , r

ls
y ),

Sls = diag(sls
z , s

ls
y ),

where zr(x̃) = 1/vr(x̃). The general linear constraint matri-
ces read

C ls
k =



0 0 −svLx(x̃) 1
0 0 −svLx(x̃) −1
0 0 3z2r a

min
x,k 0

0 0 −3z2r amax
x,k 0

0 0 2zra
min
y,k 0

0 0 −2zra
max
y,k 0

vL−vF
lFx

± 1
wl

0 0

−vL−vR
lRx

± 1
wl

0 0


,

Dls
k =



0 0
0 0
−1 0
1 0
0 −1
1 0
0 0
0 0


, gls
k =



s
s

2z3r a
min
x,k

−2z3r amax
x,k

z2r a
min
y,k

−z2r amax
y,k

−1 + xF(x̃)−x̃
lFx

± yF(x̃)
lFy

−1− xR(x̃)−x̃
lRx

± yR(x̃)
lRy


,

The spatial formulation does not include box constraints
on the input, since these have been moved to the general
constraints (1e), due to their dependence on the lethargy
zk(x̃). Further, the box constraints on the input depended
nonlinearly on zk(x̃), so to write the constraints on the
form in (1e), they have been linearized around a reference
trajectory zr(x̃). Thus, a nonlinear program has been cast
into a sequential smooth quadratic program which, to remove
linearization errors, can be solved using sequential quadratic
programming (SQP), [12]. The first two rows of the general
constraints (1e) define the slip constraints, row three to six
are the transformed box constraints on the inputs and the
last two rows are the ramp barriers for the adjacent vehicles.
The collision avoidance of the leading vehicle is modeled in
ymin
k , as can be seen in 3c. For mathematical details, see for

example [10].
Given a solution for the spatially-defined MPC, the tem-

porally defined state and control values, corresponding to (2)
and (3), can be recovered via

xk(x̃)
yk(x̃)
vx,k(x̃)
vy,k(x̃)

 =


x̃+ vLt
yk(x̃)

1
zk(x̃)

+ vL(x̃)

ṽy,k(x̃)ṽx,k(x̃)

 ,
[
ax,k(x̃)
ay,k(x̃)

]
=

[ ux,k(x̃)

z3k(x̃)
uy,k(x̃)

z2k(x̃)
+ vy,k(x̃)ax,k(x̃)z

2
k(x̃)

]
,

and then sampled with the same time interval as the trailing
program, using interpolation.
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V. DECISION MANAGER

The trajectory planner deliver two solutions: the trailing
solution, Section IV-A, (xt

k,u
t
k) given the reference trajec-

tory xt
r and the lane change solution, Section IV-B, (xl

k,u
l
k)

given the trajectory xl
r. The decision manager selects the

one which gives best performance based on four factors.
comfort, reference tracking, distance to the (potential) exit
and avoidance of frequent switching between trailing and
lane change. This is done via the criterion

J(·) = qcJc(·) + qeJe(·) + qsJs(·), (15)

where qc, qe and qs are positive weights which determine
how important the different factors are, [11].

The first two factors, comfort and reference tracking, is
evaluated via the first term of (15), which is

Jc(x,xr,u) =

∫ tf

t0

, ‖x(t)− xr(t)‖2Qc + ‖u(t)‖2Rcdt,

where Qc and Rc are weighting matrices with the same
sparsity pattern as the trailing matrices in (6) and (7).

The second term of (15) considers the distance to the exit,
using the function

Je =

{
(1− (de−xk(t)

dmax
)α)|δt(y)− δe|, xk(t) ∈ de − [0, dmax]

0, otherwise

where de is the distance from the initial position of the ego
vehicle to the exit, dmax is the largest distance at which the
exit affects the decision making, α is a real number between
0 and 1, and δe is the lane containing the exit. The target
lane δt(y) for the trajectory currently being evaluated can be
found via

δt(y) = floor
(
y(tf)

wl

)
+ 1 =

{
1, 0 ≤ y(tf) < wl,

2, wl ≤ y(tf) ≤ 2wl,

where 1 is the right lane, 2 is the left lane and floor is an
operator that rounds a number down to its nearest integer.

Lastly, the third term of (15) is aimed at avoiding frequent
changes in decisions between trailing and lane change in the
following way

Js =

n∑
k=1

ρk|δprev(k)− δ0|,

where δprev(k) is the decision made k steps ago, n is
the number of previous decisions considered and δ0 is the
decision currently being evaluated. Hence, the decision is the
solution to

(xO
k ,u

O
k ) =

=argmin(J(xt
k,u

t
k,x

t
r, δ

t
current), J(x

l
k,u

l
k,x

l
r, δ

l
current))

If the trailing or lane change program is infeasible the vectors
xt
k,u

t
k or xl

k,u
l
k do not exist. When a solution does not exist,

the decision manager assigns it a value of infinity to make
sure the feasible solution is chosen. However, if the trailing
and lane change programs are solved using hard constraints
both problems might be infeasible at the same time. In this

case one could use a heuristic backup controller to make sure
that there is always a solution available. As an alternative,
one could formulate the trailing and lane change problems
using soft constraints, this would guarantee feasibility but
introduce additional tuning parameters.

VI. CASE STUDY

In this case study the vehicle model is the same point
mass model as we used in the optimal control programs,
i.e., there is no modeling error between the vehicle model
and the modeling in the optimization program, so the output
of the controller can be directly fed to the vehicle. Further,
it is assumed that the sensors provide perfect readings and
the predictions are calculated via the deterministic equations

xi(τ) = xi,0 + vi,0τ,

vi(τ) = vi,0 + ai,0τ,

for all i = {E,L,F,R} and all τ0 ≤ τ ≤ τf in each MPC-
cycle.

The architecture is fully implemented in MATLAB and the
optimization control programs are transferred into a discrete
form using first order Euler approximation with a sampling
interval of 0.1 s and horizon tf = 10 s for the temporal
programs, and a sampling interval of 1m and horizon of
x̃f = 50m for the spatial program. The discretized problems
are then solved using the solver HPIPM [13] on a laptop
with Intel Core i7-5600 CPU at 2.60GHZ with 16GB RAM.
New trajectories are planned each 1 s and the simulation is
stopped after 250 s.

The architecture was evaluated on three different scenar-
ios. In all three scenarios vr = 80 km/h, the ego vehicle is
heading for an exit in the left lane while starting in the right
lane. The rest of the problem data that is identical for all
three scenarios have been gathered in Table I.

A. Scenario I

In the first scenario the ego vehicle is driving behind
a slow moving leading vehicle, with a constant velocity
of vL = 60 km/h, in the presence of two surrounding
vehicles, maintaining the speed vF = vR = vr throughout
the simulation and the distance to the exit is de = 1100m.

The results for scenarios I can be seen in the first column
of Fig. 4, where the top plot depicts the position of all
vehicles, the middle plot the longitudinal and lateral velocity
of the ego vehicle, along with its limits and the bottom plot
depicts the target lane of the controller in each MPC update.
The thin lines in Figs. 4a depict the trajectories chosen by
the decision manager in each MPC iteration. The thin red
lines indicate candidate trajectories that end up in the right
lane and black thin lines represent candidate trajectories that
end up in the left lane. It can be seen that lane change is
done as soon as possible even though the distance to the
exit is large. This is because it is more beneficial to drive
between the fast-moving vehicles in the adjacent lane instead
of behind the slow-moving leading vehicle.
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TABLE I: Problem data common for the three scenarios

lR = 4.5m lF = 4.5m lL = 4.5m

lE = 12m θL = 1 s θ̃L = 0.5 s

θF = 0.5 s θ̃F = 0.5 s θR = 0.5 s

θ̃R = 0.5 s lLy = 2m lRy = 2m
lFy = 2m wE = 2.55m w = 1.275m
wl = 3.2m vr = 80 km/h vmin

x,k = 0km/h

vmax
x,k = 90 km/h vmin

y,k = −4m/s vmax
y,k = 4m/s

amin
x,k = −4m/s2 amax

x,k = 4m/s2 amin
y,k = −1m/s2

amax
y,k = 1m/s2 θr = 0.25 s Qt = Diag(0, 2, 1, 4)
Rt = Diag(4, 4) Qlt = Qt Rlt = Rt

Qls = Diag(0, 2, 4, 4) Rls = Diag(3, 4) Qc = Qt

Rc = Rt qc = 1 qe = 600
qs = 30 s = 0.18 tf = 10 s
x̃f = 50m x0,k = 45m vx0,k = vr
vL0 = 50 km/h vF = vr vR = vr

B. Scenario II

The second scenario is similar to the first, the only
difference being that the leading vehicle is driving with
vL = 70 km/h and the adjacent vehicles are decelerating
form their initial velocity vr to 60 km/h

The results for scenario II can be seen in the second
column of Fig. 4. In this case, the lane change is started
significantly later (about 180m later) than in Scenario I.
This is expected since it is no longer beneficial to drive
between the two adjacent vehicles, which are slowing down.
Therefore, the architecture decides to instead stay in the right
lane, see Fig. 4h, and trail the leading vehicle until it has
passed the decelerating adjacent vehicle before performing
the lane change, allowing the ego vehicle to keep a longitu-
dinal velocity close to the reference, see Fig. 4e.

C. Scenario III

The third scenario is identical to the second, except that
the distance to the exit is now 500m instead of 1100m.

In contrast to Scenario II, the ego vehicle is now so close
to the exit that the decision manager prompts an early lane
change, see 4c, and drive between the decelerating adjacent
vehicles to minimize the risk of missing the exit. However,
this yield a significant drop in the longitudinal velocity as
can be seen in Fig. 4f.

VII. CONCLUSIONS

In this paper we have presented an architecture for con-
trolling an autonomous vehicle near a highway exit. As part
of the control architecture, a trajectory planner is proposed
where two model predictive controllers are evaluated, one
which suggests an optimal lane change trajectory and one
which suggests an optimal trailing trajectory. Based on
safety, comfort, reference tracking and distance to the exit,
a decision manager chooses one of the optimal trajectories
to be sent to the vehicle. This approach allows for lane
changes, simple trailing (similar to adaptive cruise control)
and abortion of initialized lane changes. Further, two versions
of the lane change program are implemented. The first is in
the temporal domain and is applied when the leading vehicle
is driving faster than the desired velocity of the ego vehicle.

The second is in the spatial domain and is applied when the
leading vehicle is driving slower than the decired velocity
of the ego vehicle. This approach combines the strengths
of these two approaches, allowing us to efficiently compute
optimal lane change trajectories for all speeds of the ego and
leading vehicle. A case study was made that showed that both
the trailing and lane change before and after decision making
provide smooth trajectories and that the decision manager
adjusts its decisions based on factors such as distance to
the exit and velocity changes of the surrounding vehicles.
How to weight the different factors in the decision making
is an open question that could be subject to future research.
An idea would be to try and fine tunings corresponding to
different traffic rules.
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(a) Scenario I: Position
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(b) Scenario II: Position
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(c) Scenario III: Position
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(d) Scenario I: Velocity
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(e) Scenario II: Velocity
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(f) Scenario III: Velocity
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(g) Scenario I: Target lane
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(h) Scenario II: Target lane
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(i) Scenario III: Target lane

Fig. 4: a-c) The resulting position, velocity and target lane for scenario I. d-f) The resulting position, velocity and target lane
for scenario II. g-i) The resulting position, velocity and target lane for scenario III. The thick black line in the position plots
in the first row depict the position of the ego vehicle. The thin lines depict the trajectories chosen by the decision manager,
in each MPC update. The plots in third row depict the target lane the architecture is aiming for at each MPC update.
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