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2, Sergiu Netotea2,7,

Carl Wibom5, Kristina Cederquist8, Andrei Chabes1, Johan Trygg2, Beatrice S. Melin5‡,

Erik JohanssonID
1‡*

1 Department of Medical Biochemistry and Biophysics, UmeåUniversity, SE Umeå, Sweden,

2 Computational Life Science Cluster, Department of Chemistry, UmeåUniversity, SE Umeå, Sweden,

3 Division of CBRN Security and Defence, FOI–Swedish Defence Research Agency, SE Umeå, Sweden,

4 Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE Uppsala,

Sweden, 5 Department of Radiation Sciences, Oncology, UmeåUniversity, SE Umeå, Sweden, 6 Unit of
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Abstract

Whole-genome sequencing is a promising approach for human autosomal dominant dis-

ease studies. However, the vast number of genetic variants observed by this method consti-

tutes a challenge when trying to identify the causal variants. This is often handled by

restricting disease studies to the most damaging variants, e.g. those found in coding

regions, and overlooking the remaining genetic variation. Such a biased approach explains

in part why the genetic causes of many families with dominantly inherited diseases, in spite

of being included in whole-genome sequencing studies, are left unsolved today. Here we

explore the use of a geographically matched control population to minimize the number of

candidate disease-causing variants without excluding variants based on assumptions on

genomic position or functional predictions. To exemplify the benefit of the geographically

matched control population we apply a typical disease variant filtering strategy in a family

with an autosomal dominant form of colorectal cancer. With the use of the geographically

matched control population we end up with 26 candidate variants genome wide. This is in

contrast to the tens of thousands of candidates left when only making use of available public

variant datasets. The effect of the local control population is dual, it (1) reduces the total

number of candidate variants shared between affected individuals, and more importantly (2)

increases the rate by which the number of candidate variants are reduced as additional

affected family members are included in the filtering strategy. We demonstrate that the

application of a geographically matched control population effectively limits the number of
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candidate disease-causing variants and may provide the means by which variants suitable

for functional studies are identified genome wide.

Introduction

With the introduction of next-generation sequencing technologies, expectations were high that

disease-causing genetic variants in familial diseases could be identified. However, the discoveries

in recent years have in many cases been limited to the “low hanging fruit”, resolving familial dis-

eases with a strong phenotype and an early age of onset and predominantly finding variants in

coding regions and in known disease genes [1, 2]. A major reason for this is the high diversity of

the human genome that leads to a large number of candidate disease-causing variants within any

given family [3]. Prioritizing candidate variants for functional validation is difficult, often becomes

biased towards already-known disease pathways, and has lately been shown to be of limited use in

clinical settings [4, 5]. Large-scale functional studies are not possible to perform due to high cost

and time considerations, thus limiting functional investigations to the strongest candidates.

Large-scale projects that attempt to map the functional elements of the genome, such as

ENCODE, have suggested that as much as 80% of the genome might be involved in biological

processes or interact with proteins [6]. Others have reported that 8% of the genome is evolu-

tionarily constrained, arguing that these regions are functional, in contrast to the 1% repre-

senting regions coding for proteins [7]. Although there is a large span in the estimates of how

much of the genome might be functional, such estimates imply that many disease-related vari-

ants are overlooked when restricting the analysis to the coding genome. Thus, it is of utmost

importance to carry out unbiased whole-genome analyses. For this to be possible, the number

of candidate disease-causing variants needs to be limited, preferably to a level where all

remaining candidates can be assessed in functional assays.

Disease-variant filtering strategies today include initial steps that remove variants that are

highly unlikely to be disease causing e.g. based on their frequency in the general population or

because they do not segregate according to the disease model (Fig 1A). This is typically followed

by filtering steps based on previous knowledge and functional predictions (Fig 1B), that can be

highly constraining and are prone to accidental discarding of true disease causing-variants and

therefore needs to be used with caution [8]. Publically available population studies are valuable

for removing common variants that are not causative of rare hereditary diseases. These datasets,

however, typically lack phenotypic information such as age and disease state, making decisions

on suitable minor allele frequency (MAF) cut-offs difficult. Further, and more importantly, they

do not cover local variation [3]. Here we have whole genome sequenced (WGS) a control popu-

lation from the same geographical area as a sequenced family carrying an autosomal dominant

form of colorectal cancer. We demonstrate that the use of a geographically matched control

population efficiently eliminates the genetic variation that is not associated with disease, reduc-

ing the number of candidate variants to a level where manual curation and functional studies

are a viable option–without the use of previous knowledge or functional predictions. This

enables true whole genome analysis of families with autosomal dominant diseases.

Results

Successively increasing the number of sequenced affected family members

does not allow an unbiased identification of disease-causing variants

It is well known that whole-genome sequencing (WGS) the human genome results in a daunt-

ing number of genetic variants, forcing many disease studies to restrict their analysis to the

Effect of a geographically matched control population in an unbiased whole-genome analysis
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coding genome (the exomes) or even to nonsense mutations (Fig 1). In an attempt to avoid

this, we used genealogical studies to piece together a large family with an autosomal dominant

form of colorectal cancer (family CRC1) (Fig 2). The family consists of over 100 known family

members out of which 20 are classified as affected (diagnosed with cancer or >4 adenomas).

Blood samples were available for 11 of the affected individuals, and they were all sent for

whole-genome sequencing. We applied a filtering strategy where we first removed variants of

poor quality and variants common (MAF >1%) in any of six publically available variant data-

sets (1000g, ESP, ExAC, UK10K, GoNL, and deCODE [3, 9–12]).Thereafter we required that

all affected individuals share a variant for it to be considered a candidate (Fig 3). Increasing the

number of affected family members in the filtering analysis is expected to lead to a reduction

in the number of candidate disease-causing variants. This follows from that the fraction of the

Fig 1. General filtering strategy to identify candidate disease variants. The scheme outlines a typical candidate

disease variant filtering strategy whereby successive filtering steps are applied to reduce the number of candidate

variants. (A) The initial steps removing variants highly unlikely to be disease causative. (B) The more stringent and

error prone steps often applied to restrict the number of candidates for (C) functional analyses. The red circle (D)

illustrates the bulk of variants removed in step (B). Step B should be avoided as there is a large risk that disease causing

variants are discarded (D). This can in theory be achieved by improving the power of any of the steps in (A) e.g. by

increasing family size (to reduce number of shared candidate variants among affected individuals) or by better

knowledge about the genetic variation in the geographic area where the family has its origins (to exclude variants with

a local MAF incompatible with the prevalence of the disease).

https://doi.org/10.1371/journal.pone.0213350.g001
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genome that is shared between all affected individuals will be reduced as more individuals are

added. As expected, we saw that progressively adding affected individuals in the filtering analy-

sis gradually reduced the number of shared candidate disease-causing variants, but only by

20% on average each time the shared fraction of the genome was halved (Fig 4). The available

11 affected individuals shared as little as 1/8,192 of their genome, but still 18,661 candidate var-

iants across the genome remained for functional analysis (Fig 3). Removing all variants found

in the six databases (a cutoff of MAF>0%) gave little effect as 18,329 variants still remained.

Fig 2. Pedigree of family CRC1. The pedigree is abbreviated to increase readability and to protect the family from identification. Half-filled diamonds represent

individuals with stomach cancer, filled black diamonds represent individuals with colorectal cancer, grey diamonds represent individuals who have had four or more

adenomas removed, and empty diamonds represent individuals with undetermined phenotype. In case a diamond represents multiple individuals, the number is given

within the symbol. Whole genome sequenced affected individuals are indicated with an arrow.

https://doi.org/10.1371/journal.pone.0213350.g002

Fig 3. Number of candidate variants at successive steps of filtering and relaxation, with and without ACpop. The

numbers represent candidate variants in family CRC1 with and without access to the control population ACpop. The

first step of the filtering strategy consisted of removing variants of poor quality. Thereafter, variants that were

hypothesized to be non-disease-causing were removed. A minor allele frequency cut-off (MAF>1%) was used for the

six public variant databases while all variants found in ACpop were removed. In the next step, variants were

conditioned to exist in the 11 affected individuals. Two additional steps were applied where the conditions were

relaxed. The first was to allow for two sporadic cases of colorectal cancer among the 11 affected individuals, and the

second was to allow for reduced penetrance of the disease-causing variant in ACpop.

https://doi.org/10.1371/journal.pone.0213350.g003
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For a smaller study including 3–5 affected individuals that share 1/16–1/64 of their genome,

there would be an overwhelming 33,000–52,000 candidate variants left genome wide (Fig 4).

The large number of candidate variants remaining after the filtering analysis illustrates that

we have a substantial pool of variants in northern Sweden that are rare or absent in other pop-

ulations, i.e. they were not excluded when applying MAF filters to remove variants that are

common in public variant datasets (Fig 3). Additionally, because the number of candidate vari-

ants did not decrease at the expected rate when increasing the number of sequenced affected

individuals (Fig 4), we hypothesized that some of these variants are common in the local popu-

lation and for that reason not linked to hereditary colorectal cancer. This suggested to us that

sequencing a geographically matched control population could be an effective approach to

reduce the number of candidate disease-causing variants to a manageable level.

Sequencing of a geographically matched control population (ACpop) to

describe the local genetic variation

Family CRC1 originates from Västerbotten, a county situated in northern Sweden with a pop-

ulation of approximately 265,000 people (Fig 5A). Our control population named ACpop was

decided to consist of 300 individuals and samples were selected from the Västerbotten Inter-

vention Programme (VIP) [13], a public health program for which all inhabitants of the county

turning 40, 50, and 60 years old are invited. The inclusion criteria for the control population

were that an individual should have reached an age of at least 80 years and have had no

Fig 4. Number of shared candidate variants versus degree of relatedness. Plot over number of shared candidate

disease-causing variants when successively adding up to 11 affected individuals from family CRC1 to the filtering

analysis. The average reduction of the number of candidate variants for each halving of the fraction of the genome,

expected to be shared by the affected individuals, is 20%.

https://doi.org/10.1371/journal.pone.0213350.g004
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diagnosed cancer. Out of the approximately 95,000 individuals in the VIP 3,502 individuals

met these criteria. In order to detect as much of the county’s genetic variation as possible, half

of the 300 samples were spread evenly over the 15 municipalities within Västerbotten County

while the other half was used to enforce municipalities of higher population density. In addi-

tion, to minimize selection bias and maximize diversity, samples within each municipality and

gender were selected according to a systematic design where 27 phenotypic and lifestyle vari-

ables were taken into consideration (material and methods). This approach resulted in the

selection of individuals representing 0.2–0.6% of the population in each inland municipality

and 0.04–0.2% of the population in each municipality along the coast (Fig 5A). The lower

coverage along the coast is due to that 78% of the population resides in coastal municipalities

(Fig 5A).

A total of 17,070,830 variants–including 14,414,452 single nucleotide polymorphisms

(SNPs) and 2,656,378 insertions/deletions (indels)–were found in ACpop. Among these,

2,828,043 variants were unique to ACpop compared to the six publically available variant data-

sets 1000g, ESP, ExAC, UK10K, GoNL, and deCODE. Out of these 2.8 million variants,

706,315 (25%) had an allele frequency of over 1% (Fig 5B). In other words, 4.1% of the total

call set consisted of variants that are common in Västerbotten County but have not previously

been seen in any of the other six studies.

The local control population (ACpop) effectively limits the number of

candidate disease associated variants in family CRC1

The impact of the matched control population became apparent when removing all ACpop

variants from the variants in family CRC1. The 11 affected individuals together carried 7.8 mil-

lion variants (Fig 3), and this was reduced by 10 fold (to 820,989 variants) when removing vari-

ants common (MAF >1%) in any of the six publically available variant datasets (Fig 3).

Fig 5. Representation of ACpop in the total population of Västerbotten County and the allele frequency distribution. (A, left) The location of

Västerbotten County in Sweden. (A, top) The municipal share of the Västerbotten County population. (A, bottom) The share of the municipal population that

has been sequenced in ACpop. The maps were modified from an open map of the Västerbotten County and Sweden, published by the Swedish Mapping,

Cadastral, and Land Registration Authority URL: https://www.lantmateriet.se/en/maps-and-geographic-information/oppna-data/hamta-oppna-geodata/ (B)

The proportion of variants that are novel (light blue) in a comparison to the six public databases (1000g, ESP, ExAC, UK10K, GoNL, and deCODE) stratified

by allele frequency. The fraction of variants shared by ACpop and at least one of the six public databases are found in dark blue. AF stands for allele frequency

and AC for allele count.

https://doi.org/10.1371/journal.pone.0213350.g005
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Removing not only the common variants from these datasets but all variants (not recom-

mended because of the lack of phenotypic matching within these datasets) only led to a small

further reduction of number of variants to 643,818. Including ACpop in the analysis, however,

reduced the number of variants another 20-fold to 36,522 (Fig 3). Excluding the 6 public data-

sets from the filtering only increased the number of candidate variants to 40,671, illustrating

that we no longer need to depend on public datasets.

None of the 36,522 variants remaining in the above analysis were shared by all 11 affected

individuals in family CRC1, thus 0 candidate disease-causing variants were left in the filtering

analysis (Fig 3). However, because the lifetime risk of colorectal cancer is 4.5% [14], it is very

likely that phenocopies (sporadic cases of colorectal cancer) are present in the pedigree of

more than 100 individuals in family CRC1. In addition, the penetrance of the disease-causing

variant cannot be assumed to be 100%, meaning that even though we made a careful selection

of cancer free elderly individuals there is a risk that an individual in the control population

carry the disease-causing variant. Relaxation of the filtering strategy allowing for one individ-

ual in ACpop to carry the disease causing variant and assuming at most 2 phenocopies in the

family we end up with 26 candidate disease-causing variants genome wide (Table 1). Without

access to ACpop this number would have been 48,673 candidates out of which 413 are exonic

(Fig 3). None of the 26 candidates were exonic (Table 2). Allowing additional carriers in

ACpop slowly increases the number of candidate disease variants. However, allowing for as

many as seven individuals in ACpop to carry the variant (extremely unlikely) we still have

below 100 candidate variants genome wide out of which none are exonic (Table 1). This illus-

trates that the 413 exonic variants remaining when ACpop is not included (Fig 3), and which

are more likely to be predicted functional than non-coding variants, are unlikely to be the dis-

ease-causing variants because of their high frequency in the local population.

The 26 variants from the above analysis were considered for initial downstream evaluation

(Table 2). Twenty-three of the 26 candidate variants reside on the same 7.4 Mb haplotype on

chr20p13-p12.3 (Fig 6). The remaining three variants were found on chr3, chr9 and chr10.

The haplotype on chr20 interestingly covers three previously identified risk SNPs for colorectal

cancer rs2423279, rs961253 and rs4813802[15–18]. Five of the 26 variants were not found in

the latest release of dbSNP (build 151) and were therefore considered novel. Two of these

resided on opposite sides of one of the three GWAS risk SNPs (rs2423279) and around 1Mb

downstream of the other two risk SNPs (rs961253 and rs4813802). Screening another 95 fami-

lies originating from the same geographical region and with increased risk of colorectal cancer

we identified individuals with colon cancer that carried these two variants in two other fami-

lies. In summary, these data high-lights the 2 variants as of interest but functional studies are

required before a disease-causing variant can be confirmed and a molecular mechanism can

be proposed.

Table 1. Cumulative number of candidate variants depending on number of phenocopies and carriers in ACpop. Top right corner represents number of shared can-

didate variants by all 11 affected individuals but not present in ACpop. In each column we introduce the maximal number of carriers in ACpop. In each row we introduce

the maximal number of sporadic cases in the family (number of phenocopies).

Number of carriers in ACpop

0 1 2 3 4 5 6 7 8

Number of phenocopies 0 0 0 0 0 0 0 0 0 0

1 0 3 3 3 3 3 3 4 4

2 7 26 31 34 59 66 79 91 108

3 85 166 246 339 491 608 708 806 939

4 330 621 1039 1390 1831 2275 2589 2908 3231

https://doi.org/10.1371/journal.pone.0213350.t001
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ACpop enables a 50% reduction of candidate disease-causing variants when

the genome shared by affected individuals are halved

To determine the impact of the control population when investigating smaller families and to

see what effect a small shift in the family’s geographical origin might have on the number of

candidate variants, we whole genome sequenced two unrelated trios, one from Västerbotten

(TRIO1) and one from a neighboring county (TRIO2). In both cases, one parent and one child

were affected, while the second parent was unaffected. The inclusion of ACpop in the filtering

analysis resulted in 2,666 and 5,556 candidate variants in the two trios, respectively. This was a

28-fold decrease of candidate variants in the trio from Västerbotten as compared to only rely-

ing on the six public variant datasets and a 16-fold reduction in the trio from outside Väster-

botten (Table 3). Out of the candidate variants in the two trios, 44 and 137 were exonic,

respectively (Table 3). Variants that gave either a truncation or an amino acid substitution

with a predicted effect on protein function were limited to 9 and 27, respectively. We conclude

that it is still not sufficient to sequence a trio for identifying a variant causing an autosomal

dominant disease unless the variant is deleterious for protein function. It is also clear that even

a relatively small geographic distance between the studied family and the control population

has a great impact on the final number of candidate variants.

Table 2. Summary of the 26 variants remaining after filtering analysis of family CRC1.

Position Change

(ref/alt)

Type Gene

(RefSeq)

dbSNP 151 1000 genomes EUR (aaf�)

chr3:77201736 G/A Intron ROBO2 rs62251809 0.006

chr9:68504750 G/T intergenic None rs201332223 -

chr10:17301230 A/G intergenic None - -

chr20:1813341 G/A intergenic None rs180703964 0.002

chr20:1869125 C/T intergenic None rs146934631 0.003

chr20:1872351–1872354 ACCT/A upstream gene SIRPA rs778710946 -

chr20:2111830 G/T Intron STK35 rs35061411 0.001

chr20:2493371 T/G upstream gene ZNF343 rs147087733 0.003

chr20:2690886 C/T Intron EBF4 rs190090026 0.001

chr20:2733490 C/T Intron EBF4 rs187805451 0.002

chr20:2738462 G/T Intron EBF4 rs151095258 0.009

chr20:2790980 C/T upstream gene C20orf141 rs952465216 -

chr20:2845312–2845321 ATGGGGCGTG/A Intron PTPRA rs748038717 0.008

chr20:3922982–3922983 AT/A Intron RNF24 rs879326719 -

chr20:3998030 C/T upstream gene RNF24 rs889095036 -

chr20:4222335 T/C Intron ADRA1D rs191072065 0

chr20:6815078–6815090 AAGAAAGAAAGAG/A intergenic None rs144882419 -

chr20:7752380 C/A intergenic None - -

chr20:7887402 C/A Intron HAO1 - -

chr20:8067390 T/C intergenic None - -

chr20:8126125 G/A Intron PLCB1 rs143541837 0.003

chr20:8228298 C/A Intron PLCB1 rs534663667 0.003

chr20:8248534 T/G Intron PLCB1 rs191574108 0.003

chr20:8302274 A/G Intron PLCB1 rs182705116 0.002

chr20:8482637 T/C Intron PLCB1 rs753952228 -

chr20:8541488 A/G Intron PLCB1 - -

�Allele frequency of the alternative allele (non-reference)

https://doi.org/10.1371/journal.pone.0213350.t002
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Fig 6. Visualization of the haplotype on chr20 and the segregation within family CRC1. (A) Figure adapted from the UCSC Genome Browser illustrating the

positions of the 23 candidate variants on chr20. The relevant section is enlarged below the whole chromosome. The three SNPs found to be associated with colorectal

cancer in previous GWAS are depicted in the track below. An asterisk represents two variants in close proximity. (B) An abbreviated pedigree of family CRC1 showing

the segregation of the haplotype within the family. Filled black diamonds represent individuals with colorectal cancer, half-filled diamonds represent individuals with

stomach cancer, grey diamonds represent individuals who have had four or more adenomas removed, and empty diamonds represent individuals with undetermined

phenotype. The haplotype on chr20 is represented by a rounded rectangle. Blue color indicates a carrier of the haplotype and an empty symbol denotes individuals found

not to carry the haplotype.

https://doi.org/10.1371/journal.pone.0213350.g006

Table 3. Candidate variants after filtering analysis in two trios.

Without public datasets With public datasets�

Families Without ACpop With ACpop Without ACpop With ACpop

All Exonic All Exonic All Exonic All Exonic

TRIO1 830,500 12,675 3,187 51 73,432 959 2,666 44

TRIO2 853,374 13,164 6,396 148 87,708 1190 5,556 137

�Dataset used for filtering: 1000 genomes, Exac, ESP, UK10K, deCODE, and GoNL

https://doi.org/10.1371/journal.pone.0213350.t003
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As mentioned above, there is a relationship between the relatedness between sequenced

individuals and the final number of candidate disease-causing variants. To further explore this

relationship with access to ACpop, we carried out a series of filtrations on a decreasing level of

relatedness in three larger families, one from Västerbotten (family CRC1) and two from a

neighboring county (families FAM1 and FAM2). In this case, we did not include information

about affection state, and we only considered the relatedness to exemplify how many candidate

variants were shared. When ACpop was not included and only variants that are common

(MAF >1%) in the six variant datasets were removed during the filtering analysis, we saw

again on average a 20% decrease in the number of shared candidate variants when the fraction

of shared genome was halved. When also including ACpop, we found on average a 50%

decrease in the number of shared candidate variants when the fraction of shared genome was

halved (Fig 7). This illustrates that only when variants common for the geographic region are

removed from the analysis of a family is a filtration for a shared rare disease-causing variant

that is not a “low hanging fruit” likely to be successful. Interestingly, only removing common

variants (MAF >1%) in ACpop gave a comparable successive decrease (50%), but the total

number of shared candidate variants was higher at each point (Fig 7) and the separation

between the three families caused by geographical origin was lost.

Discussion

In this study we have shown that it is possible to limit the final number of candidate disease-

causing variants to a level where functional assays can be applied to identify the causal variant

Fig 7. Number of shared candidate variants versus degree of relatedness. Individuals sharing 50% (e.g. two siblings)

down to 0.4% of their genome were analyzed for number of shared variants. Three families were included, one from

within Västerbotten County (family CRC1) and two from a neighboring county (families FAM1 and FAM2). The

filtering analysis was performed three times with different applications of ACpop–(square) variants found in ACpop

were not subtracted during the filtration, (triangle) all variants with an allele frequency over 1% in ACpop were

subtracted during the filtration, and (circle) all variants present in ACpop were subtracted during the filtration.

Variants with a MAF over 1% in six public variant databases (1000g, ESP, ExAC, UK10K, GoNL, and deCODE) were

removed in all three filtering analyses.

https://doi.org/10.1371/journal.pone.0213350.g007

Effect of a geographically matched control population in an unbiased whole-genome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213350 March 27, 2019 10 / 17

https://doi.org/10.1371/journal.pone.0213350.g007
https://doi.org/10.1371/journal.pone.0213350


of a monogenic disease, even when using a whole-genome sequencing approach and without

the use of common practice functional prediction filters that may produce false negatives. In

other words, it is possible to successfully employ an unbiased filtering strategy where variants

found across the entire genome, regardless of predicted functional importance, are included in

the analysis. There is, however, an absolute requirement to remove variants that are common

and therefore not disease-causing, in the geographic area from where the studied family

originates.

We used a geographically matched control population to remove common variants in the

selected geographic region. This could in theory also be achieved by sequencing a number of

healthy individuals within the family. Acquiring these samples is, however, not trivial for

many diseases. For example, in this study of hereditary colon cancer, the carrier status of unaf-

fected family members is in many cases uncertain because they are younger than the average

age of disease onset. Other challenges include reduced penetrance and preventive treatment

that reduce the risk for disease. Parents who are married into the family should not be carriers

but are often already deceased because of the late onset of the disease. In our case, we

sequenced 27 family members in family CRC1 with uncertain phenotype (see Materials and

methods). Including these individuals in the analysis improved the filtering results, but

because of the uncertainty in the affection status were still too many candidate variants

remaining. A rough estimate of the number of individuals with uncertain affection status that

might carry the disease-causing variant is 9 (50% of the children of affected individuals and

25% of the grandchildren of affected individuals). Including these individuals in the filtering

analysis and requiring that no more than 9 of the 27 individuals with unknown affection status

can carry the variant gave a total of 1,347 candidate variants. This should be compared to the

26 candidate variants that remained when instead including ACpop in the filtering analysis.

Thus, the contribution of variants found in family members with uncertain affection status

was limited in the filtering strategy, while the carefully selected control population effectively

removed non-disease-causing variants. Another benefit of using a control population is that it

is not family specific and over time allows smaller families to be analyzed.

The explosive population growth over the last 400 generations has resulted in a large num-

ber of population specific rare variants [19]. Without knowledge about local genetic variation

these variants that over time has become common in a specific geographic region while still

rare in the global population, severely hinders the discrimination between disease variants and

harmless local polymorphisms [3]. With a geographically matched control population these

variants (globally rare but common in the local population) are identified. This explains why

the 50% reduction of candidate variants when the genome shared by affected individuals is

halved can be observed, and this is critical to reach a low number of candidate variants genome

wide. This highlights the importance of being able to break down large population datasets

into, for the analysis at hand, geographically meaningful subpopulations. The reason being

that a geographically focused small population for MAF estimates provides a better estimate of

common variants in the selected region, compared to a global estimate based on a million sam-

ples, (recently defined aims in both the US and Europe) where the local variation will be

diluted. Performing filtration studies on a few related individuals in a region of interest, using

available population frequencies, may provide an indication as to if a local control population

must be established for filtering approaches.

Dopazo et al. recently illustrated the importance of a local Spanish control population in

the filtering analysis of whole exome studies [20]. Here we broaden this to the whole genome,

showing that with data on local MAF it is possible to reach very few candidate disease-causing

variants also on a whole genome scale. In combination with the many large sequencing efforts

worldwide today and the recent steep reduction in sequencing costs, this urges for a change of
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focus from exons to the entire genome, realizing the full potential of whole-genome

sequencing.

Methods

Families included in the study

In this study, we have whole-genome sequenced blood samples from five families originating

from northern Sweden (CRC1, TRIO1-2 and FAM1-2). Our primary focus was on family

CRC1, a large family with high incidence of colorectal cancer. There are more than 100 known

family members in CRC1, and there are medical records available for 60 of them (27 women

and 33 men). Many of the individuals in the older generation were deceased, but blood sam-

ples could be obtained from 38 of the 60 family members with medical records (19 women

and 19 men). These samples were all sent for whole genome sequencing. To illustrate the

impact of the control population (ACpop) in our filtration strategy, we also collected blood

and sequenced individuals from families called TRIO1-2 and FAM1-2. Blood samples have

additionally been collected from at least one individual in another 95 smaller pedigrees. While

these samples have not been sent for whole-genome sequencing, they were available for screen-

ing of candidate disease-causing variants.

The lineage of family CRC1 can be traced back to the second half of the 19th century, and

the inheritance pattern in the pedigree suggests that the family suffers from an autosomal

dominant form of hereditary colorectal cancer. The family comprises 12 cases of colon cancer

and 2 cases of stomach cancer out of the 60 followed family members. The family has been

offered surveillance with colonoscopies since the mid-1990s, and all suspected pre-stages of

cancer (polyps and adenomas) are removed from the colon. This preventive treatment has

decreased the number of tumors in younger generations [21–23]. A colorectal surgeon with

extensive knowledge of colonoscopies therefore analyzed each family member’s colonoscopy

results and identified another six affected individuals with a high number of adenomas (�4)

occurring over time at different locations. In total, 20 individuals in the family were defined as

affected (8 women and 12 men), and 11 of these were whole genome sequenced (5 women and

6 men) (Fig 2). Sixteen of the 40 family members not classified as affected had between 1 and 3

adenomas of mainly small size removed from their colons. These individuals could not be

defined as either sick or healthy because occasional adenomas are common in the population

[24]. In addition, the average age of cancer diagnosis is 60 years, and many are older than 70

years before diagnosis. Many family members in the youngest generations were not yet 60

years. Taken together, we were unable to determine if unaffected individuals were healthy. In

total, 11 affected family members and 27 family members with uncertain disease phenotype

were whole genome sequenced. The study was approved by the ethics board in Umeå, Sweden

(dnr 2012-151-31, dnr 2013-121-32, dnr 2015-489-32, and dnr 2017-370-32), and written

informed consent was obtained from all living participants. The experiments were performed

in accordance with relevant guidelines and regulations.

Selection of the control population

In total, 300 people were sequenced for the control population, which was given the name

ACpop (AC is the official county letter for Västerbotten County in Sweden). The samples were

selected from the Västerbotten Intervention Programme (VIP)[13, 25], a cohort within the

Northern Sweden Health and Disease Study (NSHDS), after ethical approval by the ethics

board in Umeå, Sweden (dnr 2014-290-31). The VIP is a public health program in Västerbot-

ten County, which is located in the northern region of Sweden and is the county from which

family CRC1 originates. Within VIP, all inhabitants of Västerbotten County turning 40, 50,
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and 60 years old are invited to undergo a health checkup and, in addition, complete a ques-

tionnaire regarding their general health and lifestyle. Blood samples from the participants are

stored for research purposes. To be considered for inclusion in ACpop, an individual must

have donated a blood sample for research, reached an age of at least 80 years, and not been

diagnosed with cancer. Out of approximately 95,000 individuals in the cohort, 3,502 met these

inclusion criteria (2,079 women and 1,423 men). To map as many variants as possible from

this geographic area, it was important to include samples from across Västerbotten County. As

a baseline, half of the samples to be sequenced were spread evenly over the 15 municipalities of

the county. The remaining half were dedicated to increase the frequency of sequenced individ-

uals in the three most highly populated municipalities (Lycksele, Skellefteå, and Umeå), as well

as municipalities that border neighboring counties. Of the 300 selected individuals, 150 were

women and 150 were men. To maximize the diversity among selected individuals and to mini-

mize selection bias, 27 phenotypic, health, and lifestyle-related variables were extracted from

the VIP (S1 Table), and a principal component (PC) model was used to select the individuals

to be sequenced from each municipality. The PC selection process was done separately for

each gender and municipality. The 150 samples that form the baseline selection were selected

from each model according to a full factorial design in two levels with one center point (S1A

Fig). For the reinforced municipalities, the designs were extended with another full factorial

design around each corner in the baseline design, as well as another four center points (S1B

Fig).

Whole-genome sequencing of blood samples

DNA was either extracted from blood samples provided by family members (FlexiGene-kitet,

Qiagen Gmbh, Hamburg, Germany) or, in cases where there was a sample available, collected

from the clinic. DNA samples from the 300 individuals in the control population were

obtained from the NSHDS. All DNA samples underwent a quality check by the sequencing

facility. DNA samples from families were collected and sequenced over a period of several

years. Initially the samples were sequenced at Illumina (San Diego) and later at the Genomics

Production site in Stockholm (NGI-S) and the SNP&SEQ facility in Uppsala (NGI-U) (Swe-

den) using the HiSeq2000 and HiSeqX systems. The 300 samples of the control population

were sequenced at NGI-U using Illumina HiSeqX. PCR-free library preparation kits were used

on all occasions, and samples were paired-end sequenced with a read length increasing from

100 bp to 150 bp. All samples were sequenced to at least 30× depth.

Read alignment and data quality

The raw data from all samples were jointly processed to ensure that the same steps and soft-

ware versions were used. All analyses were performed according to the GATK best practice

[26, 27]. Briefly, reads were aligned to the 1000g fasta reference (b37) using BWA

(v0.7.10-r789)[28]. Sorting, indexing, and marking of duplicates was done using Picard

(v.1.118)[29], and realignment around indels was done using GATK (v3.3.0)[30]. Qualimap

(v2.0.2) [31] was used to assure sample quality and to identify any deviating samples.

Variant detection and quality filters

SNPs and small indels were called using HaplotypeCaller according to GATK’s best practice

with version 3.3.0 of the GATK software suite [26, 27]. Briefly, all samples were called sepa-

rately to produce one gVCF file per sample. The initial calls from families and the control pop-

ulation (gVCF files) were used to jointly generate one single VCF file containing all samples.

This improves detection of variants and outputs data in a suitable format for downstream
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analysis. VQSR was used for quality filtering according to GATK recommendations. For

SNPs, the truth sensitivity cutoff was set to 99.7 where the Ti/Tv ratio was equal to 2.1. For

indels, which are called with a lower reliability, the truth sensitivity was set to 99.0. The allele

frequencies of ACpop are published as a dataset that is retrievable from doi:10.17044/NBIS/

G000005 (https://doi.org/10.17044/nbis/g000005), and hosted at the SweFreq searchable web-

portal for specific allele-frequencies and read depth (https://swefreq.nbis.se).

Relationship analysis

The software PLINK [32] was used to analyze relationships between individuals. This was used

as a quality control against sample swap in the investigated families and to detect any cryptic

relationships in ACpop. The—genome command in PLINK (v1.90b3) was used to calculate

identity by descent (IBD) sharing between all samples. Variants that were included in the analy-

sis were common (MAF>10%) biallelic SNPs with a successful genotyping rate of at least 99%.

The variant set was LD-pruned using the—indep-pairwise command in PLINK with a window

of 10,000 SNPs, a window step of 10 SNPs, and the r2 threshold set to 0.3. In total, 178,498 vari-

ants were used for the IBD calculation. Allele frequencies were calculated from ACpop. All sam-

ples from family CRC1 were predicted to have relationships in accordance with the pedigree.

We found two pairs of siblings in ACpop. Additionally, a third-degree relationship was pre-

dicted between one individual in ACpop and one individual in family CRC1. The individual in

ACpop was, however, not related to any of the other cousins of the CRC1 individual and was

therefore assumed to be related on the mother’s side, who married into the family.

Disease variant filtering

The VCF files from SNP and indel calling were decomposed and normalized using vt (v.0.5)

[33], annotated using VEP (v. 82) [34], and loaded into Gemini (v.0.18.2)[35], a database

framework for variant annotation and filtering. Gemini was used to find variants that were

common to the affected individuals and rare in the public databases 1000g, ExAC, and ESP as

well as in our control population. Different filtering setups (MAF cut-offs and phenocopy rate)

were used as described in the main text. Bcftools (v1.3.1) [36] was used to remove variants

from three additional public variant databases not present in Gemini (UK10K, deCODE, and

GoNL).

Variant phasing

Phasing of variants to obtain haplotypes within family CRC1 was done using SHAPEIT2 [37].

Samples from the family and the control population were included in the analysis. All biallelic

SNPs with a genotyping rate above 1% were included. SHAPEIT2 was run with the duohmm
option active. The number of conditioning states was set to 1000, the window size was set to

300, and the MCMC iterations were set to have 15 burn-in and pruning iterations and 50 main

iterations.

Validation of variant calls by Sanger sequencing

SNP regions were PCR amplified, and the DNA was sent to Eurofins Genomics for purifica-

tion and sequencing (Plate Seq Kit PCR or Mix2Seq, Eurofins Genomics).

Supporting information

S1 Table. The variables used in the selection of ACpop.

(XLSX)
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S1 Fig. Designs used for selection of samples for ACpop. The figure illustrates a schematic

score plot of the first and second component from a PCA model. Pink dots represent the data

points (samples) and diamonds indicate selected samples. The baseline selection for all munic-

ipalities was made according to a full factorial design (A), whereas for the more populous

municipalities an extended design was used (B).

(TIF)
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Formal analysis: Matilda Rentoft, Daniel Svensson, Andreas Sjödin, Pall I. Olason, Olle Sjös-
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