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Robust Inversion Based Fault Estimation
for Discrete-Time LPV Systems

Balázs Kulcsár, Member, IEEE, and Michel Verhaegen

Abstract—The article presents a state-space based Fault Diagnosis (FD)
method for discrete-time, affine Linear Parameter Varying (LPV) systems.
The goal of the technical note is to develop a robust and dynamic inversion
based technique for systems with parameter varying representations when
an additive, exogenous disturbance signal perturbs the system. After ap-
plying geometric concepts for explicit fault inversion, a robust strategy is
proposed to attenuate the effect of the unknown disturbance input signal
on the fault estimation error. The proposed robust observer is derived as
a solution of off-line Linear Matrix Inequality (LMI) conditions. The tech-
nical note demonstrates the viability of the novel methodology through a
numerical example.

Index Terms—Discrete-time linear parameter varying (LPV) systems,
dynamic inversion, fault detection and isolation, fault diagnosis (FD), ro-
bust observers.

I. INTRODUCTION

Fault Diagnosis (FD) is of capital importance in the design of com-
plex and safety related systems. Since in FD recognition the occurring
malfunction always conveys substantial information, the idea of recon-
structing faults attracted significant research attention, e.g., [1]. Hence,
instead of designing a controller robust enough to cover all possible ef-
fectsof failures,FDtechniquessuggest thedirectuseof thedetected fault
signals, e.g. [2]. Even though, alternative nominal techniques have been
developed, in most cases disturbance or modeling error do influence the
quality of FD. Hence, various robust methods have been deployed, such
asdisturbancedecouplingorother robustapproaches,e.g. [3], [4].FDfor
nonlinear systems has recently become an active research field. [5] gives
an overview on nonlinear FD techniques considering both existing al-
gebraic (e.g. [6]) and geometric approaches [7]. Besides, robust non-
linear FD has been identified as a relevant future research direction [5].

A rich set of linear methodologies has been developed for control,
estimation and diagnosis of Linear Parameter Varying (LPV) model
representations, such as [8]. LPV models with appropriate parametriza-
tion can be alternative to nonlinear system description. Methods for FD
in LPV systems became attractive since they can significantly reduce
computational complexity respectively result in explicit diagnosis so-
lutions. In LPV FD literature, two main concepts have been proposed.
First, indirect methods provide a residual signal (fault indicator). A
nominal technique for continuous-time and affine LPV systems is de-
scribed in [9]. Robust observer based indirect solutions are presented
in [10]–[12]. Second, conceptually different (direct) approaches have
been introduced in LPV fault estimation e.g. by means of nominal
system inversion [13].

This technical note contributes to the field of fault estimation for
discrete-time, affine LPV systems. Motivated by and connected to the
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concise techniques in [9], [13], [14], this work presents a discrete-time
and dynamic inversion based FD solution. The present methodology
robustly reconstructs faults under the effect of unknown exogenous but
norm bounded disturbance signals. This technical note, for a wide class
of discrete-time LPV systems, allows one to consider a certain type of
parameter variation at the plant output, as well as at the fault and distur-
bance input directions. Quadratically stabilizing and disturbance atten-
uating fault estimation is achieved by assigning a dynamic FD observer
structure to the solution, namely a Luenberger type of observer. Even
though, the original discrete-time LPV dynamics is affine in the sched-
uling parameter, the robust inversion procedure results in generic LPV
model structures. Given the observer structure and the inverse system
dynamics, the technical note shows how to attenuate disturbance sig-
nals on the performance output of the fault estimation problem, i.e. on
the fault estimation error.

The technical note is divided into three main parts. After the
introductory part, Section II formulates the robust and dynamic in-
version problem to be solved. The main result of the technical note is
discussed in Section III. The elaborated methodology is demonstrated
by a numerical example in Section IV. Remarks and further concerns
conclude the technical note. Technical derivations are tabulated to the
Appendix.

II. PROBLEM FORMULATION AND NOTATIONS

Consider the following system by
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where � � � 
 	 � � ��� �������� �� are the fault, control input,
state, output, disturbance, and scheduling parameter signals with
appropriate dimensional, known, and real valued state-space matrices
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and � � �� . The scheduling parameter � belongs to a compact
polytope � � ��� with vertices 	� defined by � � 
� ��. In case
of the sensor fault, we suggest to use pseudo actuation [15] in order
to yield the above form. Up to the time sample �, the fault-free ��1,
����, and 
��� are measurable but the fault input ���� and the 2-norm
bounded disturbance signal 	��� are unknown.

For the sake of simplicity, we assume in the remaining part of Sec-
tion II that ���� � 	��� � �. The goal of the problem statement
section is to show how to express the fault signal ���� purely by mea-
surable quantities and model parameter information.

Assumption 1: We assume, the kernel space of the affine parameter
dependent output map, is parameter independent (constant) and will
be denoted by � � ����

�

��� �
���
� �

���
� �, ��� � � ,�� � . In other

words, the scheduling trajectories are such that they never cause any
changes in the kernel space directions of the measurement map, though,
the output (2) is parameter dependent.

Assumption 2:
�

��� �
���
� ���� is full column rank ��� � � . Alter-

natively, the kernel space of the fault insertion map is the origin for all
possible parameter trajectories.

In the sequel, an algorithm is provided to show how to over-param-
etrize the parameter varying fault direction.

1Sensors used for the measurement of the scheduling parameters have to be
free of direct fault. In case of endogenous parameters, we do not preclude im-
plicit fault conditions until � reflects the true system behavior.



Algorithm 1:
Step 1 Consider

�

��� �
���
� �������� � � �����, ����� � ��

� with
� � ���

�

��� �
���� where and ����� denote the

subspace dilatation and the computation of the range space,
respectively.� is an orthonormal basis representation of � .

Step 2 In virtue of Assumption 2, ����� can be unambiguously

projected back to ���� by � ��� � �
�

��� �
���
� �����

�
�,

where ���� stands for the pseudo inverse.
Assumption 3: System (1), (2) is reversible [16], [17], quadratically

detectable [18] and (strong) invertible, i.e. ��
� � ��� [19], with pa-

rameter invariant relative degree vector.��
� is the largest fault control-

lability subspace in the kernel space of the output map �.
Lemma 1: Given the system in (1)–(2) with ���� � 	��� � �.

If Assumptions 1–3. are fulfilled, based on Algorithm 1, the inverse
system dynamics can be written as
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���� � 	�� � ���������� (3)
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���� �
�� � ���������� (4)

where the coefficient matrices �����	�� � ��� �����
�� � ��
(see (16), (17)) are generic parameter varying coefficient matrices.
Furthermore, 
���� characterizes the dynamics within the largest
fault �

�

��� �
���
� ����

�

��� �
���
� ����� invariant subspace contained

in �, and �������� is the measured output vector along the future time
horizon up to � denoting the maximal element of the relative degree
vector.

Proof: ��
� can be constructed by [14], based on the fault

Controllability Subspace Algorithm starting from the largest
�

�
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�

��� �
���
� ����� invariant subspace denoted by

�� � �. The invertibility condition in Assumption 3 can be refor-
mulated as a left invertibility condition by ��  � � ���. The left
invertibility condition then gives rise to a nonsingular, parameter
independent coordinate transformation [13], � 
 ��� �� ��� splits the
original LPV representation into two parts. � � �� ��� � ��, where
� ��� and � � are bases for the orthogonal complement of �� denoted
by ����, and for ��, respectively. First, we apply Step 1 of Algorithm
1, then � to the original system in (1)–(2).

Then, the following form can be obtained:
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where the LPV system is decomposed in two interconnected dynamics,

� characterizes the dynamics in ���� with 	�������� � �� and 
�
refers to the dynamics in �� with 	������ � � � ��.

With an appropriately chosen feedback term �
���
� � 

���
�� can be nat-

urally canceled out by preserving invariance [13] if
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In this case, ���
���
� � �

���
�� is an obvious choice and ����� repre-

sents a synthetic fault signal. Thus, substituting (8) into (5) reads as


��� � 	� �

�

���

�
���
� 

���
�� 
���� � ������� (9)


��� � 	� �

�

���

�
���
� 

���
�� 
���� �

���
�� 
���� (10)

���� �

�

���

�
���
�

��
���
� 
����� (11)

Unlike the subsystem in (10), the dynamics in (9) can be completely
characterized by the output measurement (11) and the scheduling
parameter [14]. ����� can therefore be reconstructed simply
based on measurable information. Therefore, denote the rows
of the output map ��

���
� �� � 	   �� by �

���
	 � � � 	    �.

Define �	, the relative degree of the �
� output channel based
on Algorithm 2., �� � ���    �	    ��� (see Appendix for
details)2Thus, �	��� �
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where we collect output information as long as we do not
exceed sample �	 � 	.

Condensing the measurements of the output channel � into a vector
� results in

������� ��� � ������� ���
����� (12)

Repeating the above procedure for all output channels, we can write
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...
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� ����������
����� (13)

Note that in output segment ���������� no complete information will
appear on �����, in virtue of the definition of �� and �. Now, let us
define the vector
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 accordingly.

At time sample �� �, the effect of the fault term ����� appears in the
output equation under the form of

�������� � ��������
���� � ��������������� (14)

Consequently, by substituting the observations from (13) into (14) if
�

��� �� � � � �� and expressing �����, we can write

������ ���������� ������������������
�

������������������� �

(15)

Now, the dynamics of the inverse system w.r.t the fault input can be
read as a non-affine LPV system defined between the new system in-
puts �������� and the inverse system’s output ����. Recall the system
in equations (9)–(11) and replace the state vector 
���� by the mea-
surements based on (13).

The dynamics of the inverse system is charaterized by (10) and can
be rewritten into the form of (16), respectively. Furthermore, the com-
bination of (15) and the feedback term in eq. (8) together with Step 2
from Algorithm 1 results in (17). Accordingly
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2� �� � � � � � � is assumed to be constant for all possible scheduling trajec-
tory in any time interval.
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with the selector �� defined as ���������� � ����������. �� stands
for the identity matrix with dimension �� � �

	�� �	
3 This completes

the proof.
The above-mentioned nominal procedure for discrete-time LPV

fault inversion might be sensitive to exogenous disturbance signals.
If complete disturbance decoupling is not possible, this technical
note shows an efficient way for inversion based and disturbance
rejecting observer design via a Luenberger observer. We shall
refer to matrix inequalities by the symbol � � �, denoting that
matrix � is positive definite. The disturbance signal 	��� with
bounded 2-norm is denoted by �	�� � � �

��� 	���

 	������� and
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. The superscript �	�
 denotes

the transpose of the real matrix and 
 represents the symmetric term
of the matrix inequality.

III. ROBUST FAULT INVERSION

The following Lemma extends the results of Lemma 1., first, by con-
sidering non-zero input and disturbance signals. Second, it explains the
way of obtaining a system description for robust and model-based ob-
server design.

Lemma 2: Given the system in equations (1)–(2). If Assumptions
1–3. are fulfilled, based on Algorithm 1, the inverse system dynamics
can written as
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where the coefficient matrices �����
���� �������������
����������� � ��� ����� � �������� � ��, [see (28)–(31)]
are generic parameter varying coefficients. Furthermore, ��������

and ��������� � �����
 �
�������	



are the vectorized values of

3In case of discrete-time LPV inversion, one both needs the forward time
shifted output and scheduling parameter values with at least � � �������
samples. Consequently, if we have causal measurements the system can only be
inverted with a time delay �.

disturbance and of the augmented input signals for the time interval
� � � to �, respectively.

Proof: Recall the system representation in (1)–(2) with Step 1
of Algorithm 1 and apply the coordinate transformation  with the
feedback design in (8), then
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In (24) and (25), shown at the bottom of the page, ���� is a
zero block and � is the largest relative degree number � � 
 � � � �.
Therefore4
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Together with the dynamic evolution of �� in (20), (27) defines the
inverse system w.r.t. the synthetic fault input �����. Instead of directly
using the inverse system for robust detection filter design, we revert to

4In (24)–(25) the amount of information (i.e. the number of � and � samples)
influencing the output at time sample ������ is changing due to fact that � is
different �� � 	 
 
 
 �. In fact, the Toeplitz structures in (24)–(25), shown at the
bottom of the page, might have zero padded columns depending on � as well
as on the relative degree vectors associated to the input and disturbance terms.
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the original system description, (19)–(21). By feeding back the infor-
mation ����� (and using the Step 2 in Algorithm 1) as well as consid-
ering ��������� � ���� � ��� ����������
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, we can write
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In addition, we define ���� as a performance output of the inverse
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In case of causal measurements, we can shift the future sample back
to the current time instant and write
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(32)

which form directly implies equations (19)–(21). This completes the
proof.

In system representation (19)–(21), reconstruction of ���� will be
effected by � �� �. Hence, in the sequel, we suggest to reject the dis-
turbance on the fault estimation error up to a certain performance level
� � �. We propose to formulate a quadratic objective function and
minimize the effect of � 
 	
� on �� � � � �

��� � ��� ��� � ��
�
� �

�
�������� �

� � (33)

��� 
 � with a scalar � � �. This objective can be achieved by
assigning a structure to the robust fault estimation problem.

In the present technical note, we apply a Luenberger observer by

������ �� ��������������������������

����� ��������������� (34)

������ � ��������������	���������������� (35)
������ � ������������	���������������� (36)

where we have a large freedom to select the structure behind
the gain matrix ����. With the help of affine gain structure,
we can involve past scheduling parameters under the form of
���� � ���� � �

��	

�

��� �
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���
� . Apart the fulfillment of the

predefined objective in inequality (33), the closed-loop observer has
to preserve asymptotic stability. Note that the above criteria fit to the
generic problem formulation of �� smoothing [20], or delayed ��
filter design [21]. As a result of Lemma 2, the inverse system naturally
structures delays when replacing the fault input with measurement.
Moreover, throughout ����, we encounter past scheduling measure-
ments in the robust observer synthesis.

Theorem 1: Given the system in (18), the quadratic objective func-
tion in (33) together with the observer structure in (34)–(36). With
���� � ���� � �

��	

�

��� �
���
����

���
� the proposed observer results

in a asymptotically unbiased estimate of � when� � �, furthermore, in
case of � �� �, it attenuates in induced �� norm sense the disturbance
on the fault estimation error �� up to a given � � � with � � � if the
following matrix inequalities are feasible:

�� �

� ��� ��
�� ����� �� ������

����� 	�����

�

�
� ��� �� �

� ���

� � (37)

with � � � � � � and ����� � ���������������� and ������
����	���� � ��.

Proof: Consider the dynamics of the state reconstruction error by

��� � �� ��� ��������������� ���

�����

��� � ��

� ������ �����	����� ���

�� ���

�������� (38)

���� � ������ � ��� ��� � ��

���������� �� �	�������������� (39)



Define a Lyapunov function with constant � � � � � � for the state
reconstruction error by

� �� � �� � ���� � ��
������ � �� � �� ���� � �� �� �� (40)

Consequently, to achieve asymptotic stability, we intend to find � and
���� based on the dissipativity condition and the performance objec-
tive [defined in (33)]

� �� � �� ��� � �� � �� � �	�� � ����	�� � ��

� 
������������������

� ���� � �� �������� � �� ���

� ���� � ��
������ � �� � �	�� � ����	�� � ���

� 
������������������ � �� (41)

By using the dynamics of the error equation and rearranging the terms,
we can write

�� � ������� ������ � � �����
������ (42)

�� � ������� �	���� � �����
�
����� (43)

�� � �	����
�� �	���� �
�����

�
������ 

��� (44)

���� � ��

��������

�
�� ��

��
� ��

���� � ��

��������
� �� (45)

Equivalently, we can write

����� �	���

����� 
�����

�
� �

� ��

����� �	���

����� 
�����

�
�� �

� �
���
� �� (46)

Applying the Schur decomposition and a weighted over-bound on���

by������ � �������with� � � [22] we arrive to the matrix
inequality in (37).

Remark 1: The disturbance rejection problem can also be formu-
lated as a minimization problem considering 
 as a decision param-
eter. Moreover, the inverse system in (18) cannot preserve affinity in
the scheduling parameters anymore. Consequently, solution of the fea-
sibility problem in (37) has to be approximated. Instead of solving the
disturbance rejection problem �� � � , we propose to use a gridding
based method [18]. Finally, this approximate solution can be performed
off-line.

IV. NUMERICAL EXAMPLE

The above inversion based and disturbance attenuating fault esti-
mator method is illustrated on a simulation example. A third-order dis-
crete-time LPV model of a unbalanced, nonlinear dc motor [23] is used
in the sequel.

Given the discrete-time state-space LPV representation by

�� � ��

���� ��

��� � ��

�

� �� �

�� � ������� �� ����� �����

� ������ �� �����
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����

�

�

�

����
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���

���

�

���� �

�

�� � �

�

	��� (47)

Fig. 1. Simulation results. The first row depicts the ���� (dotted line), ����
(dashed and dashdot lines) and ���� � ���� (solid line). The second row is a
comparative plot of nominal inversion based (grey dashed line), robust inversion
based with parameter independent (dotted line) and dependent (solid line) gains,
and existing robust fault estimation (grey solid line) methods.

����

�
� � �

� �� �

���

����

����

�
���	

���	�� � ���
���� (48)

where � � �����. In this specific case study the following dimen-
sions are used �� � 
, � �, �	 � �, � � �, � � 
, �
 � �.

By using the nominal motor parameters [23], it can easily be seen
that a matrix representation of � can be written as �� � �� . We pro-
pose to use ! � �� � � �� . Based on [14] and � � � �� � �� , the
largest controllable subspace in � results in�� � ���. The coordinate
transformation matrix can therefore be written as � � �� ��� � � �
� � �

� � �

� � �

. Applying � on the system above and computing the

feedback gains results in " ���
� � ���� and " ���

� � �. Afterwards, the
relative degree vector computation returns with �� � �� ���� � � ,
consequently ��
 � 
.

Being �� � ���� �, an equidistant grid is proposed over � by 10
partitions ����� � ���	�. Evaluating the matrix inequality conditions
around those grid-points and solving the performance minimization
problem, two different disturbance rejection levels were obtained, 
� �
������ and 
� � ������. These levels refer to the robust inversion
based solutions computed for the cases when the gain matrix is param-
eter independent � and parameter varying ���� � �� � ���

�
� �

�����
�
� , respectively.

Fig. 1 depicts the simulation results of a 200 sample long time sce-
nario. The aim of the simulation is to show the viability of the robust
method when the fault variation to be estimated is described as

	��� �

��� �� � � 	�

���� �� 	� � � � �	�


�� �� �	� � ��

(49)

Methods have been tested and compared when a series of step distur-
bance act upon the dc motor system. Results of a robust model-based
technique derived form [21] is compared to a nominal and robust dy-
namic inversion estimation techniques. The first row of the plots in
Fig. 1 shows the values of the signals ����, ���� and ����. Simula-
tion results in the second row of Fig. 1 depict the achieved results with
the nominal and robust inversion based methods, and with the existing
robust model-based fault estimator, respectively. Comparing the nom-
inal and robust inversion based results, one can conclude that the ro-



bust solution attenuates the effect of disturbance more than the nominal
one. Robust inversion based techniques with parameter varying gain,
���� slightly over-performs the observer with constant gain matrix �
in terms of disturbance rejection, which can also be seen at time sample
96 (differences between dotted and solid lines). Contrasting the robust
inversion based alternatives (with � and ����) for FD to the existing
and model-based robust observer design (grey solid line), one can see
that the robust inversion based solution could react faster to show the
presence of the fault, although, in this specific case the existing tech-
nique was more robust against disturbances.

V. CONCLUSION

The technical note shows a novel and robust algorithm for discrete-
time LPV fault estimation. This method is proposed to use inversion
based concepts and to describe how to attenuate an additive distur-
bance signal on the fault reconstruction error in an induced �� norm
sense. Dynamic inversion w.r.t. additive fault input does not preserve
the originally affine parameter varying structure, and introduces (rela-
tive degree dependent) time delay in the inverted system description. In
case of an additive and exogenous disturbance signal, a robust objec-
tive can be formulated. With the help of a Luenberger fault observer, the
technical note presented a robust and inversion based LPV FD method.
Since the availability of fault-free scheduling signal is of paramount
importance for the underlying design process, further research can be
carried out to investigate the effect of impair scheduling measurement.

APPENDIX

Algorithm 2 (Relative Degree Vector Computation): Denote by �����

the ��� row of ��
���
� , � � � � � � �, � � � � � ���. Given the system

in (9)–(10), the relative degree �� associated to the output channel �
w.r.t the fault input 	� can be algorithmized as, 
�� �

�

��� �
���
� �

���
� ,


�� �
�

��� �
���
����

���
�

�

��� �
���
� �

���
�� , 
�

� �
�����

�

� �� �

��� �
���
� �

���
�� ,

where
��
��� denotes the forward shift operator, until we reach �� where

���

�

� �

��� �
���
� 	� �� � but � � ��,

��

�

	 �

��� �
���
� 	� � ���� � 	 .

Performing this computation to all output channel, we can define the
relative degree vector �� � ��� � � ��
	. The maximal element of the
vector will be denoted by � � 
�� ����.
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