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Ionic Liquids: A Simple Model to
Predict Ion Conductivity Based on
DFT Derived Physical Parameters
Jonathan Nilsson-Hallén, Bodil Ahlström †, Maciej Marczewski † and Patrik Johansson*

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden

A model able to a priori predict ion conductivities of ionic liquids (ILs) is a desired design

tool. We here propose a set of simple conductivity models for ILs composed of small

ions by only using data easily derived from standard DFT calculations as input; ion

volume, ion mass, ion moment of inertia, and the ion-ion interaction strength. Hence

these simple models are totally without any need for experimental parametrization. All

model are made from fits of 22 ILs based on 12 different cations and 5 different anions,

resulting in correlations vs. experiment of R2≈0.95 and MAE of 25–36%. Given their

(very) simple layout and how fast they can be applied (and re-used), the models allow for

ample screening of new IL designs, while not aimed for perfect predictions per se.

Keywords: ionic liquid, conductivity, DFT, model, ion

INTRODUCTION

Ionic liquids (ILs) represent an interesting class of materials that during the last few decades have
been intensely studied (Plechkova and Seddon, 2008; Castner and Wishart, 2010; Thematic issue:
Physical chemistry of ionic liquids, 2010; Thematic issue: Ionic liquids, 2012), partly driven by
the many potential applications suggested, such as electrolytes in electrochemical energy storage
and conversion devices e.g., batteries, fuel cells, solar cells, etc (Armand et al., 2009; Lewandowski
and Swiderska-Mocek, 2009; Thematic issue: Ionic liquids for energy applications, 2013). Due to
the large number of possible ILs, often estimated to 1012-1014, or even up to 1018(!) (Plechkova
and Seddon, 2008), methods for predicting the properties of ILs a priori to any time-consuming
synthesis attempts are highly desirable. Any such method needs to take stance at the ion level and
should preferably be general, accurate, non-empirical, and fast. Indeed, there are many different
standard modeling approaches applied to ILs from ab initio, DFT, MD, to ab initio molecular
dynamics (AIMD) (Del Pópolo et al., 2005; Tsuzuki et al., 2005; Borodin, 2009; Kirchner, 2009;
Maginn, 2009; Angenendt and Johansson, 2010; Johansson et al., 2010; Ueno et al., 2010; Liu and
Maginn, 2012; Tsuzuki, 2012), and more analytical methods (Abbott, 2004, 2005; Matsuda et al.,
2007; Slattery et al., 2007; Tochigi and Yamamoto, 2007; Preiss et al., 2010; Eiden et al., 2011). All
aim at predicting/estimating melting points (Slattery et al., 2007; Preiss et al., 2010), viscosities
(Abbott, 2004; Matsuda et al., 2007; Slattery et al., 2007; Tochigi and Yamamoto, 2007; Ueno et al.,
2010; Eiden et al., 2011), and not the least the ionic conductivities (Abbott, 2005; Del Pópolo et al.,
2005; Tsuzuki et al., 2005; Matsuda et al., 2007; Slattery et al., 2007; Tochigi and Yamamoto, 2007;
Borodin, 2009; Johansson et al., 2010; Ueno et al., 2010; Eiden et al., 2011; Liu and Maginn, 2012;
Tsuzuki, 2012). While in general highly successful for their purposes, they often, however, have
either limited accuracy, are time-consuming or require ion-specific or empirical parameters.
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From an experimental point of view ion conductivity data are
most often provided as Arrhenius plots, σ = f(1/T), and can for
ILs be accurately fitted using the Vogel-Tamman-Fulcher (VTF)
equation (Vila et al., 2006),

σ = σ∞ exp

(

−
Ea

kb (T − T0)

)

(1)

where σ∞ is the conductivity at infinite temperature, Ea is the
activation energy, and T0 is a constant related to transformation
of the observed glass transition temperature, Tg, to the ideal.

The general features of the VTF equation, together with a lot
of other types of expressions, were here used as starting points to
generate models for the ionic conductivity of ILs. Many previous
IL conductivity models have shown a strong dependency on the
ion volumes, but require ion-specific, most often anion-specific,
parameters (Tsuzuki et al., 2005; Matsuda et al., 2007; Slattery
et al., 2007; Borodin, 2009; Angenendt and Johansson, 2010;
Ueno et al., 2010; Tsuzuki, 2012) or resort to analyzing ILs with
very similar anions (Johansson et al., 2010). In order to avoid this,
which severely limits the generality, we have included not only
the ion volumes, but also ion (reduced) masses—as proven to
affect the viscosity (Abbott, 2004, 2005; Matsuda et al., 2007), and
ion moments of inertia as input parameters to a wide variety of
(VTF-based) models. Furthermore, as a combination of (at least)
two ions, a cation and an anion, is needed to create any IL, the
strength of the specific ion-ion interaction was used as another
parameter—more or less as a proxy for the activation energy
(Ea) in the VTF expression—even if the connection between
these is far from obvious (Tsuzuki et al., 2005; Borodin, 2009;
Angenendt and Johansson, 2010; Johansson et al., 2010; Ueno
et al., 2010; Tsuzuki, 2012). We would also like to stress that we
here avoid any additional complexity of IL nano-structuration
by only studying ILs with rather short cation alkyl chain lengths.
We have also chosen to include imidazolium based ILs with the
C2 position methylated as these seem to introduce a specific
behavior in terms of ion-ion interaction. All the parameters
are obtained starting from standard density functional theory
(DFT) calculations on ions and cation-anion ion pairs—and can
thus be used to create models totally without any experimental
parametrization—one major advantage of the approach chosen.

The various models developed in this study have been fitted
and evaluated against in-house measured ionic conductivities.
While this clearly limits the statistics of the study in terms of
quantity, it improves the quality as it avoids the errors that
can result from gathering data from many different sources—
important as reported IL conductivities are very sensitive to
impurities, not the least water, and the set-up/sample history.
From this approach the best fits are reported as largely
phenomenological models using some few statistical measures
and then discussed in terms of e.g., sensitivity vs. the different
input parameters computed and the ILs chosen to study.

MATERIALS AND METHODS

In total 22 different ILs were used as received from Solvionic
with the highest purity available (99.9 or 99.5%). The temperature

TABLE 1 | Name (acronym), volume (V), mass (M), and moment of inertia (I) of

ions.

Name V [Å3] M [u] I [Å2u]

1-ethyl-3-methylimidazolium (EMI) 156 111 315

1-butyl-3-methylimidazolium (BMI) 196 139 577

1-hexyl-3-methylimidazolium (HMI) 246 167 1,041

1,3-dimethyl-2-propylimidazolium (PMMI) 204 139 536

1,3-dimethyl-2-butylimidazolium (BMMI) 224 153 760

trimethyl-butylammonium (Me3BuN) 111 193 429

trimethyl-hexylammonium (Me3HexN) 148 240 934

diethylmethylpropylammonium (Et2MeProN) 212 130 438

1-propyl-1-methylpyrrolidinium (MPPyr) 199 128 409

1-butyl-1-methylpyrrolidinium (BMPyr) 222 142 638

1-pentyl-1-methylpyrrolidinium (MPePyr) 242 156 896

1-propyl-1-methylpiperidinium (MPPip) 221 142 483

tetrafluoroborate (BF4) 71 87 95

hexafluorophosphate (PF6) 96 145 201

trifluoromethanesulfonate (Tf) 115 149 276

bis(fluorosulfonyl)imide (FSI) 136 180 446

bis(trifluoromethanesulfonyl)imide (TFSI) 199 280 1,214

dependent ionic conductivity was measured using a Novocontrol
broadband dielectric spectrometer in the frequency range 10−1-
107 Hz. A liquid parallel plate cell, BDS 1308 Novocontrol, with
two stainless steel electrodes with a Teflon spacer (Ø= 13.2mm,
d = 0.99mm) was assembled in an Ar glove box (H2O and O2

< 1 ppm) and loaded into a cryo-furnace with N2 gas flow. Data
were collected during heating from 298.15 to 368.15K in steps
of 10K and stabilization times of 30min. The DC conductivities
were obtained from the low frequency plateau of the conductivity
isotherms by plotting the real part of the complex conductivity as
a function of frequency.

Computationally low-energy conformers of all cations (12)
and anions (5) (Table 1) constituting the totally 22 ILs
investigated experimentally were initially generated by the
molecularmechanics based scan routine in Spartan 061. Amongst
the cations we use the most popular families: imidazolium,
EMI etc., and pyrrolidinium, MPPyr (Pyr13) etc. From these
the geometries and energies were optimized by DFT, first at
the B3LYP/6-311+G∗ level and subsequently further with M06-
2X/6-311+G∗ (Vosko et al., 1980; Lee et al., 1988; Becke,
1993; Zhao and Truhlar, 2007), and their 2nd derivatives
calculated to ensure the geometries to be local minima energy
structures. From the DFT results the ion volumes were
calculated as averages of 10 runs using a Monte Carlo (MC)
integration scheme of a 0.001 e/bohr3 density envelope and 100
integration points/bohr3. The moments of inertia of the ions
were calculated as the arithmetic mean of the three principal
eigenvalues obtained from the routine in the VMD software
(Humphrey et al., 1996).

The lowest energy conformers (B3LYP) for each of the ions
were used to generate cation-anion ion pairs, with 20 starting

1Spartan ’06, Wavefunction Inc.
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TABLE 2 | Cation-anion ion-pair, Eint, and glass transition temperature (Tg) of the

ILs.

Cation-Anion Eint (M06-2X/6-
311+G*)[kJmol−1]

Tg[K]

EMI-Tf −378.9 –

EMI-FSI −362.3 –

EMI-TFSI −360.5 181 (Fredlake et al., 2004)

BMI-BF4 −385.0 188 (Fredlake et al., 2004)

BMI-PF6 −363.6 197 (Fredlake et al., 2004)

BMI-Tf −376.5 191 (Tokuda et al., 2006)

BMI-TFSI −367.3 187 (Fredlake et al., 2004)

HMI-PF6 −362.2 195 (Harris et al., 2007)

HMI-Tf −374.6 189 (Gómez et al., 2013)

HMI-TFSI −363.7 189 (Gómez et al., 2013)

PMMI-TFSI −364.2 –

BMMI-TFSI −363.7 –

Me3BuN-TFSI −343.9 199 (Tokuda et al., 2006)

Me3HexN-TFSI −353.5 202 (Taggougui et al., 2008)

Et2MeProN-FSI −340.7 –

MPPyr-FSI −343.3 190 (Zhou et al., 2008)

MPPyr-TFSI −346.8 188 (Calvar et al., 2013)

BMPyr-Tf −361.5 197 (Calvar et al., 2013)

BMPyr-TFSI −351.2 191 (Calvar et al., 2013)

MPePyr-TFSI −352.1 –

MPPip-FSI −332.9 –

MPPip-TFSI −338.5 192 (Paduszynski et al., 2011)

configurations for each pair generated by our in-house developed
software SECIL (Angenendt and Johansson). All structures
were optimized in two steps; i) B3LYP/6-311+G∗ - providing
a selection of 10 structures/ion pair based on energy and
transferred to ii) M06-2X/6-311+G∗. Not all SECIL generated
configurations reach SCF convergence, but most B3LYP minima
produce M06-2X minima, as verified by the 2nd derivatives.
All DFT and MC calculations were made using the Gaussian
03 and 09 program packages (Frisch et al., 2004, 2010). From
the M06-2X/6-311+G∗ data the ion-ion interaction energy, Eint
= E(ion pair)-Σ(Ecation+Eanion), was calculated—as a measure
of specific ion-ion interaction strength (Table 2). Due to the
main aim of arriving at a proof-of-concept method, and not
the most performant, and the many other model omissions
and simplifications, no comparisons to other DFT functionals
(or higher ab initio methods) nor any basis set size effect
investigations or basis set super-position error corrections
were made.

Using the ion volume (V), mass (M), moment of inertia (I) and
ion pair (Eint, reduced mass) data generated, potential models
for the conductivity as function of temperature were formulated
and tested withOriginPro 20152, using the Levenberg-Marquardt
iteration algorithm to fit the data to a predefined function. The
most promising models were further combined to achieve better
fits, while kept physically sound.

2OriginLab, Northampton, MA, USA

FIGURE 1 | Measured and predicted conductivities using model A.

RESULTS AND DISCUSSION

The computational data generated span an appreciable range of
IL ion volumes (71–246 Å3), masses (87–280 u), moments of
inertia (95–1214 Å2u), and interaction energies (−333 to −385
kJmol−1). The first model found with an appreciable fit to the
conductivity data, 176 data points for the 22 ILs, is A (Figure 1):

σ =
b

Vtot
2I+

exp

(

c
Eint

T − T0

)

(A)

where the input parameters Vtot is the sum of the cation and
anion volumes, I+ is the moment of inertia of the cation, and
Eint is the interaction energy, while b, c, and T0 are fitting
parameters. That the conductivity is inversely proportional to the
ion volumes, as in A, can easily be understood as larger ions both
move slower and hinder movement of other ions and this has
indeed been found previously (Slattery et al., 2007; Johansson
et al., 2010; Tsuzuki, 2012), but why it should be proportional to
the inverse of the volume squared is unclear.

It has previously been shown that the viscosity of ILs is affected
by the IL ion masses (Abbott, 2004, 2005; Matsuda et al., 2007)
and as the conductivity is related to the fluidity, the inverse of
the viscosity through the fractional Walden rule, it is reasonable
to assume that these could affect the conductivity. The reduced
masses, Mred, are indeed almost linearly proportional to the
volumes Vtot (Figure 2).

why a secondmodel,A2, with one of the terms exchanged, was
investigated—with almost equally good fit (Figure 3):

σ =
b

VtotMredI+
exp

(

c
Eint

T − T0

)

(A2)

In both models A and A2 T0 has to some extent been treated
as a normal fitting parameter. This enables a true prediction
of conductivity without any prior IL synthesis, but given the
coupling of T0 to Tg, experimental Tg data as input might
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FIGURE 2 | Correlation between total volume and reduced mass for the

IL ion pairs.

FIGURE 3 | Measured and predicted conductivities using model A2.

improve the fits and models. In the literature Tg for 15 of
the 22 ILs used were found (Table 2) covering the range 181-
202K (which arguably is a rather limited span in temperature).
Applying these data to A and A2 result in models B and
B2, respectively:

σ =
b

Vtot
2I+

exp

(

c
Eint

T − (Tg + d)

)

(B)

σ =
b

VtotMredI+
exp

(

c
Eint

T − (Tg + d)

)

(B2)

where d is an additional fitting parameter and indeed the fits are
slightly improved. Using the reduced data set (15/22) in A and
A2 did not improve their fits and thus the improvement indeed
comes from the inclusion of Tg (keeping in mind the limited
T range). All models with their parameter values and statistical
measures are summarized in Table 3.

TABLE 3 | Fitting parameter values, correlation coefficients (R2), and mean

absolute errors (MAE) for the four IL conductivity models.

Model b [Scm−1Å8u] c [KkJ−1] T0/d [K] R2 MAE [%]

A 1.29 ± 0.45×107 −1.01 ± 0.26 204 ± 18.0 0.9538 35.3

A2 2.52 ± 0.88×106 −0.90 ± 0.25 211 ± 18.0 0.9508 36.5

B 1.09 ± 0.38×107 −0.82 ± 0.23 34.6 ± 15.9 0.9627 24.8

B2 3.19 ± 1.22×106 −1.01 ± 0.28 22.6 ± 17.6 0.9600 26.1

CONCLUDING REMARKS

Two VFT based models for IL conductivity without any
experimental input have been developed using volume, mass,
and moment of inertia of the constituting ions and the energy
of the interaction between cation and anion. In contrast to
earlier models there are no anion-specific parameters needed,
and in addition moments of inertia of the cations are for the
first time included. For the latter feature we initially believed
a larger principal moment of inertia to be likely to have a
decisive influence due to the elongated shape of many of the
ions. However, no such behavior was found in the fits why
the arithmetic mean of the three principal values is used. The
main influence by the cation moment of inertia is due to
many anions being close to spherical. All models without I+
performed much worse than the fits here obtained and the
inclusion of experimental glass transition temperatures improves
the fit, but not to any large extent. From a physical point of
view, the ion mass may influence the conductivity, why both
A2 and B2, replacing one of the volume terms with the reduced
masses of the ion pairs, could improve the fit if applied to a
larger and more diverge data set (even if they here actually
reduce the goodness of the fit). As VFT models in general
captures ion conductivities of ILs (and other systems) quite
well all of the above in terms of overall agreement come as
no major surprise. Phenomenonlogically all the four (VFT)
models show the expected behavior; as the volumes, moments
of inertia, and masses of the ions increase, the conductivity will
approach zero (0), and if they decrease the conductivity will
increase. Likewise, if the ion-ion interaction energy increases to
infinity the conductivity will approach zero and the conductivity
increases with temperature. The inclusion of experimental glass
transition temperatures did improve the fit, but there is a rather
narrow temperature range for the Tg used. We stress that we
do refrain from trying to connect the input parameters to any
direct physical interpretation—such as why the prefactor in the
VFT equations seem to relate to the ion volume squared, and
how in the exponential the ion-ion interaction energy relate
to the activation energy, etc. We do, however, believe it to be
straightforward to produce input to these models for any IL of
choice—remembering our deliberatively set limits of no nano-
structured ILs—for which this model is likely to fail—dependent
on how the ion mobility is affected. The DFT calculations will be
the time-determining step, even if most data required only needs
to be calculated once for each ion, the interaction energy of each
ion pair must be obtained separately for each IL.
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