Abstract—Automotive active safety systems can significantly benefit from real-time road friction estimates (RFE) by adapting driving styles, specific to the road conditions. This work presents a 2-stage approach for indirect RFE estimation using front-view camera images captured from vehicles. In stage-1, convolutional neural network model architectures are implemented to learn region-specific features for road surface condition (RSC) classification. Texture-based features from the drivable surface, sky and surroundings are found to be separate regions of interest for dry, wet/water, slush and snow/ice RSC classification. In stage-2, a rule-based model that relies on domain-specific guidelines is implemented to segment the ego-lane drivable surface into [5x3] patches, followed by patch classification and quantization to separate images with high, medium and low RFE. The proposed method achieves average accuracy of 97% for RSC classification in stage-1 and 89% for RFE classification in stage-2, respectively. The 2-stage models are trained using publicly available data sets to enable benchmarking for future methodologies in the autonomous driving domain.

Index Terms—Deep learning, convolutional neural network, classification, drivable surface, features.

I. INTRODUCTION

Active safety systems and self-driving cars can significantly benefit from real-time prediction of drivable surface conditions, since driving styles can be adapted to corresponding road conditions. In 2017, the US department of transportation Federal Highway Administration reported that about 22% of vehicle crashes per year, with about 16% life casualties, are weather-related [1]. Also, majority of accidents were reported to happen during wet road conditions, where 73% of accidents occurred on wet pavements, and 17% on snow or sleet. Further, the National Safety Council in USA estimated a 6% rise in motor vehicle crashes in 2016 over the year 2015 leading to motor-vehicle deaths, injuries, and property damage in 2016 that amounted to $432 billion [2]. Such events agglomerated with the recent surge in vehicles on roads, motivate active monitoring of drivable surface/road conditions that can lead to prediction and prevention of motor vehicle crashes on slippery roads. One of the most important measures of drivable surface/road condition is the road-tire friction coefficient that indicates vehicle grip. Active safety functions, such as collision avoidance by braking, can significantly benefit from low friction predictions by avoiding any imminent threat early.

Road friction estimation methods are dived into direct and indirect categories [3]. Direct methods, such as [4], use slip measurements from the tires for friction estimation. However, such methods have low data availability and large levels of friction utilization i.e., the vehicle must approach the current grip limit to estimate friction with sufficient confidence. To increase the data availability, studies such as [5] have estimated friction independently from high friction utilization by using specific optical sensor-based indirect methods. Some prior works have used front-view camera sensors to infer road surface conditions, such as [6], that transformed the road surface image into spatial frequency spectra and analyzed the frequency distribution corresponding to road surface types such as: dry/wet asphalt, fresh/trampled snow, and black ice. Another work in [7] fed color-transformed road surface images from static cameras to multi-layered perceptrons for surface classification. Further, the works in [8] [9] used polarization filter and wavelet transformations to classify dry, snow and ice surfaces. All such existing methods lack consistency in predicting road surface condition (RSC) and inferring road friction estimates (RFEs). In this work, we investigate a variety of supervised methods in a 2-stage approach to analyze the importance of image-based features towards RSC and RFE classification tasks, as shown in Fig. 1.

This paper makes two key contributions. First, we analyze deep learning and feature-based models for drivable RSC classification. We observe that the texture of the drivable surface in conjunction with the sky and surroundings are significant features for RSC detection with 94-97% average classification accuracy per class. Second, we propose a novel approach for spatially segmenting the drivable surface to identify the extent of vehicle ego-lane patchiness that can indicate high, medium or low RFE. The proposed approach is capable of separating icy roads (low RFE) from well-ploughed snow roads (high RFE) with 89% accuracy in real time using only front camera images.

The rest of the paper is organized as follows. Related prior works are discussed in Section II and materials and methods are presented in Section III. In Section IV the experimental setups and results are presented. Finally, conclusions and discussion are given in Section V.

II. RELATED WORK

Most prior works on RFE detection implement experiment-based or model-based approaches to find a correlation between the vehicle dynamics sensor data and road-tire friction related parameters [10]. The recent work in [11] used 6 vehicle...
Fig. 1. The proposed 2-stage method. Stage-1 includes pre-processing each image followed by the implementation of deep learning and feature-based models for RSC classification. Stage-2 includes spatial segmentation of drivable surface into patches followed by patch quantization and classification for low, medium and high RFE. The 2-stage method enables hierarchical classification for RFE. Images with ‘dry’ RSC can be assumed to have high RFE, hence, they are not subjected to Stage-2. Stage-2 is designed specifically for combination surfaces with dry asphalt road and snow patches in the ego-lane drivable surface.

Among state-of-the-art methods that implement vehicle front-facing camera image processing for RSC classification, the work in [9] color transformed image planes and used Naive Bayesian, Random Forest, NN and SVM classifiers, that resulted in a recognition rate of 83% for dry and wet roads. Another work in [17], investigated hybrid road conditions by partitioning of the road surface images to [9x5], [8x6] etc. sub-regions/patches followed by classification of each patch as dry, wet, snow, ice or water. This method reported up to 90% accuracy on image patch classification. All these existing works were analyzed on limited local data sets, which raise bench-marking issues for further research. This work is the first contribution towards methodological bench-marking on public domain data sets and inferring image-based features indicative of RFE.

III. MATERIALS AND METHODS

The proposed method involves two stages that classify RSC using image-based features, followed by segmentation of the drivable surface for RFE classification. The 2-stage process is designed for hierarchical decision making for active safety functions. While images with ‘dry’ RSC imply high RFE, images with slush or wet, unploughed snow and ice roads may display medium to low RFE. Thus, images classified with RSC=[2,3,4] are subjected to stage-2 classification. The RSC definitions are provided in Fig. 1.

In stage-1, three variants of NN-based models are implemented that include two deep learning models and one feature-based classification model. So far, deep learning models, optimally parameterized for few to several deep layers, have proven effective for extracting abstract features from groups of image pixels [18] [19]. While deep learning models provide generalizability with minimal pre-processing, they require large numbers of training samples to avoid over-fitting. Further, we analyze the hidden layer kernels of the trained deep learning models under analysis is the convolutional neural network (CNN) architecture defined in [19]. Training this model on the RSC data set from scratch results in AFMs shown in Fig. 2, where we observe that texture of road surface, sky and remaining regions in the image that constitute ‘surroundings’ are significant for overall drivable condition classification. The second deep learning model includes the SqueezeNet model [20], where the parameters from Alexnet [21] are pruned to significantly reduce the number of training parameters. The third feature-based model used in stage-1 segments each image into regions of interest (ROIs) followed by regional feature extraction and classification using single hidden layer NN classifier as shown in Fig. 3.
A. Data, Notation and Metrics

For all the aforementioned NN-based models, model training is performed by stratified sampling using 70% of the data samples and tested on the remaining 30% samples. Stratified sampling ensures similar sample class frequency distributions in the training and test data sets [18]. For the stage-2, the drivable surface is spatially segmented into a [5x3] matrix of patches followed by color and texture-based quantification for each patch. Finally, the drivable surface matrix is subjected to classification for high, medium and low RFE indicative of non-slippery, moderately slippery and highly slippery surfaces, respectively. The image data sets and the data models under analysis are explained in the following subsections.

A. Data, Notation and Metrics

For this work, public domain data was collected from 48 youtube videos. Each video was sampled to isolate frames that are greater than 1 second apart, to ensure variability across images. Each image, treated as an independent sample, has size in the range of [640x360] to [1280x720] pixels. Examples of the 4 classes of images, thus extracted from the videos are shown in Fig. 4. Each image is manually annotated to assign one RSC and RFE groundtruth (GT) label per image by two expert annotators. The data set is available for benchmarking purposes.

For model training and testing in stage-1, 40-100 frames are extracted per video, thereby resulting in 3750 training images and 1550 test images, respectively. The numbers of images belonging to class [1,2,3,4] in the training and test data sets are [1047,893,574,1196] and [430,376,238,546], respectively.

The pre-processing module for the deep learning models extracts 6 color channels per image that represent the red (R), green (G), blue (B), hue (H), saturation (S) and intensity (V) planes, respectively. Also, for the deep learning models, each image color channel is resized to [256x256] to control the model complexity, thereby resulting in input size per image of [256x256x6]. Additionally, for the deep learning models, training data is augmented to six-times the number of samples by applying histogram-based image equalization (‘clahe’ function) and contrast enhancement (‘imadjust’ function) followed by horizontal flip applied to each image plane.

The stage-2 of the proposed method is designed to analyze images with varying combinations of dry and snow patches to accurately estimate high, medium and low RFE conditions. Since classification of RFE is the tire-to-road friction assessment that can be expected when driving with similar tires, the stage-2 model is trained and tested with data that appear to satisfy this assumption. A drivable surface patch classifier is trained with [5x3=15] patches per image on perspective transformed images of vehicle ego-lane from dry asphalt and fresh snow images gathered from public and local data sets, respectively. Next, the classified and quantized patches are analyzed to predict RFE as class 0: low RFE, class 1: medium RFE, class 2: high RFE. The stage-2 patch classifier is tested against a homogeneous set of images that contain 355 and 128 perspective transformed images of dry asphalt and fresh snow, respectively. Next, a test set of images containing 114 images with mixed snow and dry asphalt are analyzed on the respective test data sets in terms of classification accuracy (Acc), precision (PR) and recall (RE). Here, Acc analyzes the percentage of correct classifications, PR analyzes the false positive rate, while RE analyzes the false negative rate, respectively. The definition of notations used by the models are presented in Table I.

B. Step 1: RSC Classification

1) CNN Model: This category of deep learning models are well known for hybrid feature abstraction from images [22]. While the convolution (C) layers extract neighborhood pixel contributions, the sub-sampling (S) & pooling layers followed by a non-linear activation function enable multi-resolution feature learning. A sample architecture of a CNN model with 3 convolution/sub-sampling layers (CS3) followed by a dense (D) flattening layer is shown in Fig. 5.

Optimal parameterization for the CNN model involves selection of sufficient C-S layers, and optimal filter bank sizes to ensure low trainable parameters, thereby preventing over-fitting. Often, deep CNN models with many hidden layers
are shown to overfit to training data, when huge disparities between validation and test data accuracies are observed [18]. In this work, we investigate several CNN architectures with consecutive C-S layers, such as CS, CS, CS, where, single C-S configuration, 2 consecutive C-S layers and 3 consecutive C-S layers, respectively, are applied between the input and the D-layer. Also, the optimal filter bank sizes \([w, h, v]\), representing the width, height and number of filter banks per ‘C’ layer are varied in the range \([3:17]\) with stride of 2. The initial filter bank dimension that results in maximum test accuracy following this grid search is \([5x5x8]\).

Each CNN model is designed to process images of size \([256 \times 256 \times 6]\), where 6 refer to the color channel features. The max-pooling (S) layer further reduces the resolution of the convoluted image exactly by half, followed by a Rectified Linear Unit (ReLU) activation function and batch normalization operation along with dropout probability of 0.8. The addition of batch normalization [19] makes the network train faster while ensuring low training losses. The number of filters in each convolutional layer double in each consecutive stage. Thus, for \(n_T\) training images, and \(n_c\) number of output classes, the cross-entropy loss function used for training NN-based models by back-propagation is given in (1),

\[
L = - \sum_{i=1}^{n_T} \sum_{t=1}^{n_c} \mathbb{1}[t_i = l] \log(p^i_{st})
\]

where, \(\mathbb{1}[t_i = l]\) is the indicator function that GT vector \(t_i\) is equal to class label \(l\), while \(p^i_{st}\) represents the model predicted probability that image \(i\) belongs to class label \(l\). The ReLU activation function applied on weighted sum of outputs from the previous layer \(i'\) are given in (2).

\[
y_{i'} = \sum_{k=1}^{n} x_{ki} w_{ki'}', \quad p^i_{st'} = \max(0, y_{i'}).
\]

Here, \(n\) signifies the number of neurons present in the layer just before the activation layer. The final predicted class label is the class with maximum predicted probability in (3).

\[
s_i = \arg \max_{l} (p^i_{sl}) \quad \forall l \text{ classes.}
\]

The predicted class \(s_i\) is then compared with the actual target class label, and with the aid of the loss function \(L\), model weights are updated such that the loss is minimized for subsequent epochs. Once trained, convolution of the learned kernel weights demonstrate the structure and textural features/ROIs that aid the classification process, as shown in Fig. 2. By analyzing AFMs from different drivable surface conditions, we observe that texture of drivable surface, surroundings and the sky are collectively useful for RSC classification.

2) SqueezeNet Model: This deep learning model proposed in [20] involves replacing \([3x3]\) convolution filters in the AlexNet model [21] by \([1x1]\) filters, thereby decreasing the number of input channels by using ‘squeeze’ layers. The process of reducing the number of model parameters is through a Fire Module. Here, a Fire Module contains the following: a \([1x1]\) convolution module that reduces the number of channels, and an expand Module, where a \([1x1]\) convolution and a \([3x3]\) convolution, both are applied to the output of the previous layer, and their results are concatenated. The use of several \([1x1]\) convolutions is found to be advantageous, since they need less parameters than \([3x3]\) filters. Additionally, the activation layer uses ReLUs [20], only convolutions and

\[
\text{TABLE I } \quad \text{NOTATION TABLE FOR STAGE-1 AND STAGE-2 MODELS PER IMAGE/PATCH.}
\]

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_i)</td>
<td>Input features for image (i)</td>
</tr>
<tr>
<td>(x_i')</td>
<td>(j) th feature for image (i), (x_i' \in X_i)</td>
</tr>
<tr>
<td>(y_i')</td>
<td>(i') th output from previous NN-layer</td>
</tr>
<tr>
<td>(w_{ij})</td>
<td>NN-layer weights between input (j) and output (i')</td>
</tr>
<tr>
<td>(t_i)</td>
<td>GT class label vector for stage-1 models and image (i)</td>
</tr>
<tr>
<td>(p^i_{st})</td>
<td>Predicted probability that image/patch (i) belongs to class (l).</td>
</tr>
<tr>
<td>(s_i)</td>
<td>Predicted class label for image/patch (i).</td>
</tr>
</tbody>
</table>

Fig. 4. Examples of images under analysis for Stage-1 of the proposed method.

Fig. 5. Example of CNN architecture with 3 consecutive C-S layers (CS) followed by a dense D layer for 4 output classes.
C. Step 2: RFE Classification

Once RSC is detected, the next step involves estimation of patchiness in the vehicle’s ego-lane, to separate low RFE conditions from iced roads from high to medium RFE conditions on ploughed snow-roads. For this purpose, the ego-lane ahead of the vehicle can be segmented into 5 spatial sub-regions/patches across the width and 3 patches across the height, as shown in Fig. 7. The patch sizes are motivated by domain knowledge to accommodate the two wheel-tracks and neighboring lanes for an automobile. The steps for patch segmentation, quantization and RFE classification are explained below.

1) Patch Segmentation: To ensure similarly sized patches, the ego-lane drivable surface below horizon is subjected to perspective transformation to obtain the birds-eye view of the drivable surface. The resulting [5x3] image patches in the driving direction are shown in Fig. 8.

2) Patch Quantization: Each image patch is classified for its composition as ‘dry road’ (class 0) or ‘snow’ (class 1) using a logistic regression model, resulting in a probabilistic patch matrix shown in Fig. 9. This patch classifier is trained on 400 dry asphalt and 400 fresh snow image patches, respectively. 26 color and textural features are extracted per patch for this classification purpose. These features include mean and standard deviation of pixel intensities in [R,G,B,H,S,V] planes with and without contrast enhancement (‘imatjust‘ function), and mean and standard deviation of HOG features extracted using [16x16] block size. This step outputs a probability score ($p_{s,t}$) corresponding to per-patch composition. A low
probability indicates a 'dry' patch while a high score indicates a snow patch.

Next, the individual patch scores are subjected to four levels of patch quantization using (4). Here, an 'ice' patch would typically be identified as $s_i = [2, 3]$. The quantization thresholds are empirically determined to maximize patch classification accuracy. The resultant quantized drivable surface patches are shown in Fig. 9.

$$s_i = \begin{cases}
1, & 0 \leq p_{s_i}^1 < 0.05, \Rightarrow \text{dry road,} \\
2, & 0.05 \leq p_{s_i}^1 < 0.5, \Rightarrow \text{more dry, less snow,} \\
3, & 0.5 \leq p_{s_i}^1 < 0.8, \Rightarrow \text{more snow, less dry,} \\
4, & 0.8 \leq p_{s_i}^1 \leq 1, \Rightarrow \text{snow.}
\end{cases} \quad (4)$$

3) RFE Classification: The quantized and probabilistic patch matrices are analyzed for patterns suggestive of well-ploughed/uniform patches in high RFE roads versus irregularly placed dry road and snow patches in unploughed roads, or black ice formations. Due to data set size and class imbalance constraints, a rule-based method is utilized for RFE classification from the patch matrices. We initially applied structural similarly index metric (SSIM) [26] and coefficient of variation to quantify regular vs. irregular patchiness. However, we observe that the domain specific rule-based model in (5) results in the most accurate prediction of RFE_i. The conditions for (5) are domain-motivated, such that if at least two out of five columns exist with average patch probability score per column less than 0.05, it would indicate at least two well-ploughed surfaces under the vehicle wheels, implying a high RFE surface. However, if at least two out of five columns have medium average patch probability score (denoted by indicator function: $I[0.05 < p_{s_i}^1|col < 0.12]$), then the road surface would most likely have medium RFE, or low RFE otherwise. (5) constitutes the rule-based classification module for stage-2 in Fig. 1.

$$RFE_i = \begin{cases}
2, & \sum_{col=1}^{5} I[p_{s_i}^1|col \leq 0.05] \geq 2, \\
1, & \sum_{col=1}^{5} I[0.05 < p_{s_i}^1|col \leq 0.12] \geq 2, \\
0, & \text{otherwise.}
\end{cases} \quad (5)$$

IV. EXPERIMENTS AND RESULTS

The performances of stage-1 and stage-2 models in comparison with state-of-the-art methods are given below.

A. Step 1: RSC Classification Performance

The average performance metrics per RSC class for various CNN architectures, SqueezeNet and the feature-based model are presented in Table II. Here, we observe that the SqueezeNet model is the fastest and most accurate model. Also, the CS^2, CS^3 architectures of the CNN model have comparable performances. To further analyze the sensitivity of RSC classification to training data, a limited subset of data is created with 400 training and 400 test images, such that all images in this data are high quality with similar fields of view and similar camera calibrations. The average classification performance metrics per class on this limited data set is presented in Table III. Here, we observe that CS^3, CS^2 CNN model architectures have best classification Acc, followed by the feature-based model. Thus, the SqueezeNet model, although fast, is more sensitive to training data when compared to the proposed CNN models.

It is noteworthy that images that are falsely classified as ‘dry’ RSC are not further analyzed in stage-2, which can lead to erroneous RFE estimates. Also, we observe that images with slush and wet/water RSC have significantly lower numbers of samples, thereby resulting in 94% and 97.34% Acc, respectively. Future work with high resolution class-balanced data can be directed to reduce false positives for ‘dry’ RSC conditions and to improve classification Acc for slush and wet RSC classes. Also, the feature-based model utilizes color and textural features for individual images, and it is robust to data set variabilities with lowest computational time complexity due to few parameters. Some examples of the limiting conditions for RSC classification using the feature-based model are shown in Fig. 10. Here, we qualitatively observe that structural similarities between certain ROIs of each test image with the ROIs from images in the training data set cause the misclassifications. Such misclassifications can be significantly reduced by training the models with high quality and similar field of view images.

B. Step 2: RFE Classification Performance

The average performance metrics per class for the stage-2 model are shown in Table IV. Here, we observe that for patch classification into dry road and snow patches, 60 images...
TABLE II
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-1 MODELS PERFORMING RSC CLASSIFICATION. THE TEST TIME PER IMAGE IS PRESENTED IN MILISECONDS.

<table>
<thead>
<tr>
<th>NN-based Model</th>
<th>Train Time (hrs)</th>
<th>Train Acc (%)</th>
<th>Test time (ms)</th>
<th>Acc (%)</th>
<th>PR (%)</th>
<th>RE (%)</th>
<th># parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN (CS1, 10 epochs)</td>
<td>4.6</td>
<td>99.10</td>
<td>1.1</td>
<td>93.96</td>
<td>94</td>
<td>94</td>
<td>134224060</td>
</tr>
<tr>
<td>CNN (CS2, 10 epochs)</td>
<td>4.9</td>
<td>99.66</td>
<td>1.15</td>
<td>95.53</td>
<td>96</td>
<td>96</td>
<td>67118412</td>
</tr>
<tr>
<td>CNN (CS3, 10 epochs)</td>
<td>5.1</td>
<td>99.54</td>
<td>1.26</td>
<td>95.60</td>
<td>96</td>
<td>96</td>
<td>33576812</td>
</tr>
<tr>
<td>SqueezeNet (20 epochs)</td>
<td>0.69</td>
<td>98.5</td>
<td>4.0</td>
<td>97.36</td>
<td>97</td>
<td>97</td>
<td>727428</td>
</tr>
<tr>
<td>Feature-based Model</td>
<td>0.51</td>
<td>93.35</td>
<td>250</td>
<td>91.76</td>
<td>92</td>
<td>92</td>
<td>7200</td>
</tr>
</tbody>
</table>

Fig. 10. Analysis of the misclassified RSC images using feature-based model. For the dry test image, the shadowed drivable surface resembles that of a wet day training image. For the water test image, the limited field of view obstructs the sky, thus resulting in misclassification. The ice image resembles a water training image due to image blurriness, while the snow image is misclassified owing to the snow particles settled on the windshield resembling a slush training image. The surrounding below horizon for the wet image resembles ice texture from a training image, thus causing misclassification.

TABLE III
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-1 MODELS ON LIMITED TRAINING/TEST DATA.

<table>
<thead>
<tr>
<th>NN-based Model</th>
<th>Train Time (hrs)</th>
<th>Train Acc (%)</th>
<th>Acc (%)</th>
<th>PR (%)</th>
<th>RE (%)</th>
<th># parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN (CS1, 10 epochs)</td>
<td>0.5</td>
<td>98.2</td>
<td>92.9</td>
<td>94</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>CNN (CS2, 10 epochs)</td>
<td>1.0</td>
<td>99.82</td>
<td>94.6</td>
<td>95</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>SqueezeNet (20 epochs)</td>
<td>0.11</td>
<td>97.4</td>
<td>98.7</td>
<td>89</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Feature-based Model</td>
<td>0.105</td>
<td>93.85</td>
<td>92.1</td>
<td>92</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

(45 dry, 15 snow) suffer misclassifications. Next, on the test images for RFE classification, 12 images are misclassified, primarily due to class imbalance. Some examples of the rule-

TABLE IV
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-2 MODEL PERFORMING PATCH AND RFE CLASSIFICATIONS.

<table>
<thead>
<tr>
<th>Test</th>
<th>Data (# images)</th>
<th>Acc (%)</th>
<th>P N (%)</th>
<th>RE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch classification</td>
<td>355 dry road/128 snow</td>
<td>87.5</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td>RFE classification</td>
<td>114 mixed snow and dry</td>
<td>89.5</td>
<td>88</td>
<td>89</td>
</tr>
</tbody>
</table>

C. Comparison with State-of-the-art Methods

Among existing works, Li et al. [17] applied color transformations to road surface images using an NN-based model and achieved an accuracy rate of about 85% on a local limited data set. Further, in the recent work [9], out of 376 test images, an accuracy of 83% was achieved for classification of dry and wet roads. The comparative evaluation of the proposed models with works that report higher recognition
accuracies are shown in Table V. We observe that for RSC classification, the SqueezeNet model significantly improves classification accuracies when compared to existing works. For RFE classification, the proposed method has comparable accuracy to the existing rule-based work in [12].

V. CONCLUSIONS AND DISCUSSION

This work presents a 2-stage hierarchical method for RSC and RFE classification tasks using public domain data sets in stage-1 and 2, respectively. This hierarchical method separates images with 'dry' RSC, that generally incur high RFE, from images with combination drivable surfaces, that can then be further analyzed for patch-based RFE classification. Thus, stage-1 significantly reduces the number of images that require fine-tuned analysis of the ego-lane drivable surface in stage-2. Stage-1 involves feature-learning from trained CNN model kernels, that lead to 94-99% classification accuracies for dry, wet/water, slush and snow/ice conditions. In stage-2, a rule-based model motivated by domain-specific guidelines, is found to achieve up to 89.5% RFE classification accuracy. Future works will be directed towards generating larger annotated data sets that are high-quality and camera calibrated to learn the decision boundaries for ego-lane drivable patch quantization and RFE classification tasks. Also, images with multiple RSC labels, e.g., surfaces with snow and water etc., can be analyzed for robust feature learning tasks. Besides, future efforts on application of deep learning models for fusing vehicle dynamics sensors along with the camera data may significantly enhance RFE estimation performances. Since the proposed models have low computational time complexity for processing test images, they are suitable for real-time prediction of drivable conditions for active safety functions and autonomous vehicles.

REFERENCES