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Abstract—Automotive active safety systems can significantly
benefit from real-time road friction estimates (RFE) by adapting
driving styles, specific to the road conditions. This work presents
a 2-stage approach for indirect RFE estimation using front-view
camera images captured from vehicles. In stage-1, convolutional
neural network model architectures are implemented to learn
region-specific features for road surface condition (RSC) clas-
sification. Texture-based features from the drivable surface, sky
and surroundings are found to be separate regions of interest for
dry, wet/water, slush and snow/ice RSC classification. In stage-
2, a rule-based model that relies on domain-specific guidelines
is implemented to segment the ego-lane drivable surface into
[5x3] patches, followed by patch classification and quantization to
separate images with high, medium and low RFE. The proposed
method achieves average accuracy of 97% for RSC classification
in stage-1 and 89% for RFE classification in stage-2, respectively.
The 2-stage models are trained using publicly available data
sets to enable benchmarking for future methodologies in the
autonomous driving domain.

Index Terms—Deep learning, convolutional neural network,
classification, drivable surface, features.

I. INTRODUCTION

Active safety systems and self-driving cars can significantly
benefit from real-time prediction of drivable surface condi-
tions, since driving styles can be adapted to corresponding
road conditions. In 2017, the US department of transportation
Federal Highway Administration reported that about 22% of
vehicle crashes per year, with about 16% life casualties, are
weather-related [1]. Also, majority of accidents were reported
to happen during wet road conditions, where 73% of accidents
occurred on wet pavements, and 17% on snow or sleet. Further,
the National Safety Council in USA estimated a 6% rise in
motor vehicle crashes in 2016 over the year 2015 leading to
motor-vehicle deaths, injuries, and property damage in 2016
that amounted to $432 billion [2]. Such events agglomerated
with the recent surge in vehicles on roads, motivate active
monitoring of drivable surface/road conditions that can lead
to prediction and prevention of motor vehicle crashes on
slippery roads. One of the most important measures of driv-
able surface/road condition is the road-tire friction coefficient
that indicates vehicle grip. Active safety functions, such as
collision avoidance by braking, can significantly benefit from
low friction predictions by avoiding any imminent threat early.

Road friction estimation methods are dived into direct and
indirect categories [3]. Direct methods, such as [4], use slip
measurements from the tires for friction estimation. However,

such methods have low data availability and large levels of
friction utilization i.e., the vehicle must approach the current
grip limit to estimate friction with sufficient confidence. To
increase the data availability, studies such as [5] have estimated
friction independently from high friction utilization by using
specific optical sensor-based indirect methods. Some prior
works have used front-view camera sensors to infer road
surface conditions, such as [6], that transformed the road
surface image into spatial frequency spectra and analyzed
the frequency distribution corresponding to road surface types
such as: dry/wet asphalt, fresh/trampled snow, and black ice.
Another work in [7] fed color-transformed road surface images
from static cameras to multi-layered perceptrons for surface
classification. Further, the works in [8] [9] used polarization
filter and wavelet transformations to classify dry, snow and
ice surfaces. All such existing methods lack consistency in
predicting road surface condition (RSC) and inferring road
friction estimates (RFEs). In this work, we investigate a variety
of supervised methods in a 2-stage approach to analyze the
importance of image-based features towards RSC and RFE
classification tasks, as shown in Fig. 1.

This paper makes two key contributions. First, we analyze
deep learning and feature-based models for drivable RSC clas-
sification. We observe that the texture of the drivable surface
in conjunction with the sky and surroundings are significant
features for RSC detection with 94-97% average classification
accuracy per class. Second, we propose a novel approach for
spatially segmenting the drivable surface to identify the extent
of vehicle ego-lane patchiness that can indicate high, medium
or low RFE. The proposed approach is capable of separating
icy roads (low RFE) from well-ploughed snow roads (high
RFE) with 89% accuracy in real time using only front camera
images.

The rest of the paper is organized as follows. Related prior
works are discussed in Section II and materials and methods
are presented in Section III. In Section IV the experimental
setups and results are presented. Finally, conclusions and
discussion are given in Section V.

II. RELATED WORK

Most prior works on RFE detection implement experiment-
based or model-based approaches to find a correlation between
the vehicle dynamics sensor data and road-tire friction related
parameters [10]. The recent work in [11] used 6 vehicle



Fig. 1. The proposed 2-stage method. Stage-1 includes pre-processing each image followed by the implementation of deep learning and feature-based models
for RSC classification. Stage-2 includes spatial segmentation of drivable surface into patches followed by patch quantization and classification for low, medium
and high RFE. The 2-stage method enables hierarchical classification for RFE. Images with ‘dry’ RSC can be assumed to have high RFE, hence, they are
not subjected to Stage-2. Stage-2 is designed specifically for combination surfaces with dry asphalt road and snow patches in the ego-lane drivable surface.

sensors as inputs to a neural network (NN) model for predic-
tion of slippery/non-slippery RSC, which controlled the driver
maneuvering actions for left or right lane departures. Some
other vision-based works have implemented classification of
the road texture immediately ahead of vehicles using rule-
based models or texture-based features in [12] and [13],
respectively. Till date, several patents have addressed the
problem of drivable RSC prediction. The apparatus in the
patent [14] included a stereo camera and memory to store road
surface conditions and predict dry, wet, snow and icy states.
This work depended on color space transformations, wavelet
transforms and classifiers such as support vector machines
(SVM) and AdaBoost for RSC classification. The patent in
[15] included apparatus for focusing circular lights ahead
of the vehicle and measuring 4 intensity-based features that
include normalized mean, variance and maximum of pixel
intensities within a certain ROI of the focused light. The patent
in [16] implemented several probabilistic binary classifiers for
classification of dry, wet, snow and ice RSC followed by a
fusion unit, to generate control parameters for braking, steering
and acceleration sensors.

Among state-of-the-art methods that implement vehicle
front-facing camera image processing for RSC classification,
the work in [9] color transformed image planes and used
Naive Bayesian, Random Forest, NN and SVM classifiers, that
resulted in a recognition rate of 83% for dry and wet roads.
Another work in [17], investigated hybrid road conditions by
partitioning of the road surface images to [9x5], [8x6] etc.
sub-regions/patches followed by classification of each patch
as dry, wet, snow, ice or water. This method reported up to
90% accuracy on image patch classification. All these existing
works were analyzed on limited local data sets, which raise
bench-marking issues for further research. This work is the
first contribution towards methodological bench-marking on
public domain data sets and inferring image-based features
indicative of RFE.

III. MATERIALS AND METHODS

The proposed method involves two stages that classify RSC
using image-based features, followed by segmentation of the
drivable surface for RFE classification. The 2-stage process
is designed for hierarchical decision making for active safety
functions. While images with ‘dry’ RSC imply high RFE,
images with slush or wet, unploughed snow and ice roads
may display medium to low RFE. Thus, images classified with
RSC=[2,3,4] are subjected to stage-2 classification. The RSC
definitions are provided in Fig. 1.

In stage-1, three variants of NN-based models are im-
plemented that include two deep learning models and one
feature-based classification model. So far, deep learning mod-
els, optimally parameterized for few to several deep layers,
have proven effective for extracting abstract features from
groups of image pixels [18] [19]. While deep learning models
provide generalizability with minimal pre-processing, they
require large numbers of training samples to avoid over-fitting.
Further, we analyze the hidden layer kernels of the trained
deep learning models, also known as the activated feature
maps (AFMs), and learn the region-based features that can
then be extracted directly from the images for feature-based
classification. One deep learning model under analysis is the
convolutional neural network (CNN) architecture defined in
[19]. Training this model on the RSC data set from scratch
results in AFMs shown in Fig. 2, where we observe that texture
of road surface, sky and remaining regions in the image that
constitute ‘surroundings’ are significant for overall drivable
condition classification. The second deep learning model in-
cludes the SqueezeNet model [20], where the parameters from
Alexnet [21] are pruned to significantly reduce the number
of training parameters. The third feature-based model used in
stage-1 segments each image into regions of interest (ROIs)
followed by regional feature extraction and classification using
single hidden layer NN classifier as shown in Fig. 3.



Fig. 2. Feature learning from AFMs of a CNN model. The AFMs from the
first 2 layers are shown. Drivable surface, sky and surroundings texture are
learned as significant features from different kernels for this image.

Fig. 3. Image processing followed by NN-classifier for RSC classification.
The automated horizon detection enables separation of the sky above and
drivable surface below it.

For all the aforementioned NN-based models, model train-
ing is performed by stratified sampling using 70% of the data
samples and tested on the remaining 30% samples. Stratified
sampling ensures similar sample class frequency distributions
in the training and test data sets [18]. For the stage-2, the
drivable surface is spatially segmented into a [5x3] matrix of
patches followed by color and texture-based quantification for
each patch. Finally the drivable surface matrix is subjected
to classification for high, medium and low RFE indicative of
non-slippery, moderately slippery and highly slippery surfaces,
respectively. The image data sets and the data models under
analysis are explained in the following subsections.

A. Data, Notation and Metrics

For this work, public domain data was collected from 48
youtube videos. Each video was sampled to isolate frames that
are greater than 1 second apart, to ensure variability across
images. Each image, treated as an independent sample, has
size in the range of [640x360] to [1280x720] pixels. Examples
of the 4 classes of images, thus extracted from the videos are
shown in Fig. 4. Each image is manually annotated to assign
one RSC and RFE groundtruth (GT) label per image by two
expert annotators. The data set is available for benchmarking
purposes1.

For model training and testing in stage-1, 40-100 frames are
extracted per video, thereby resulting in 3750 training images
and 1550 test images, respectively. The numbers of images

1https://sites.google.com/a/uw.edu/src/road-friction-estimation-volvo-
research

belonging to class [1,2,3,4] in the training and test data sets
are [1047,893,574,1196] and [430,376,238,546], respectively.
The pre-processing module for the deep learning models
extracts 6 color channels per image that represent the red (R),
green (G), blue (B), hue (H), saturation (S) and intensity (V)
planes, respectively. Also, for the deep learning models, each
image color channel is resized to [256x256] to control the
model complexity, thereby resulting in input size per image
of [256x256x6]. Additionally, for the deep learning models,
training data is augmented to six-times the number of samples
by applying histogram-based image equalization (‘clahe’ func-
tion) and contrast enhancement (‘imadjust’ function) followed
by horizontal flip applied to each image plane.

The stage-2 of the proposed method is designed to analyze
images with varying combinations of dry and snow patches
to accurately estimate high, medium and low RFE conditions.
Since classification of RFE is the tire-to-road friction assess-
ment that can be expected when driving with similar tires,
the stage-2 model is trained and tested with data that appear
to satisfy this assumption. A drivable surface patch classifier
is trained with [5x3=15] patches per image on perspective
transformed images of vehicle ego-lane from dry asphalt and
fresh snow images gathered from public and local data sets,
respectively. Next, the classified and quantized patches are
analyzed to predict RFE as class 0: low RFE, class 1: medium
RFE, class 2: high RFE. The stage-2 patch classifier is tested
against a homogeneous set of images that contain 355 and
128 perspective transformed images of dry asphalt and fresh
snow, respectively. Next, a test set of images containing 114
images with mixed snow and dry RSC are analyzed for RFE
classification task, with [8, 6 and 100] images with high,
medium and low RFE, respectively.

The stage-1 and stage-2 models are analyzed using input
vector Xi for each image ‘i’, such that manually annotated GT
label assigned per image is target label vector ti and RFEi

for stage-1 and stage-2, respectively. The proposed methods
are analyzed on the respective test data sets in terms of
classification accuracy (Acc), precision (PR) and recall (RE).
Here, Acc analyzes the percentage of correct classifications,
PR analyzes the false positive rate, while RE analyzes the
false negative rate, respectively. The definition of notations
used by the models are presented in Table I.

B. Step 1: RSC Classification

1) CNN Model: This category of deep learning models are
well known for hybrid feature abstraction from images [22].
While the convolution (C) layers extract neighborhood pixel
contributions, the sub-sampling (S) /pooling layers followed
by a non-linear activation function enable multi-resolution
feature learning. A sample architecture of a CNN model with
3 convolution/sub-sampling layers (CS3) followed by a dense
(D) flattening layer is shown in Fig. 5.

Optimal parameterization for the CNN model involves se-
lection of sufficient C-S layers, and optimal filter bank sizes
to ensure low trainable parameters, thereby preventing over-
fitting. Often, deep CNN models with many hidden layers



Fig. 4. Examples of images under analysis for Stage-1 of the proposed method.

TABLE I
NOTATION TABLE FOR STAGE-1 AND STAGE-2 MODELS PER IMAGE/PATCH.

Notation Definition
Xi Input features for image i

xj
i j th feature for image i, xj

i ∈ Xi

yi′ i′ th output from previous NN-layer
wji′ NN-layer weights between input j and output i′

ti GT class label vector for stage-1 models and image i
pisl Predicted probability that image/patch i belongs to class l.
si Predicted class label for image/patch i.

Average probability of image patch i per column col

p̄is1|col in the patch quantized matrix for stage-2.
Ra Segmented ROI above detected horizon for stage-1 feature-based model.
Ras Segmented ROI above horizon depicting the surroundings.
Rak Segmented ROI above horizon depicting the sky.Ra = Ras ∪Rak

Rb Segmented ROI below detected horizon for stage-1 feature-based model.
Rbs Segmented ROI below horizon depicting the surroundings.
Rbd Segmented ROI below horizon depicting drivable surface.Rb = Rbs ∪Rbd

Fig. 5. Example of CNN architecture with 3 consecutive C-S layers (CS3)
followed by a dense D layer for 4 output classes.

are shown to overfit to training data, when huge disparities
between validation and test data accuracies are observed [18].
In this work, we investigate several CNN architectures with
consecutive C-S layers, such as CS1, CS2, CS3, where, single
C-S configuration, 2 consecutive C-S layers and 3 consecutive
C-S layers, respectively, are applied between the input and
the D-layer. Also, the optimal filter bank sizes [w, h, v],
representing the width, height and number of filter banks per
‘C’ layer are varied in the range [3:17] with stride of 2.
The initial filter bank dimension that results in maximum test
accuracy following this grid search is [5x5x8].

Each CNN model is designed to process images of size
[256 × 256 × 6], where 6 refer to the color channel features.
The max-pooling (S) layer further reduces the resolution of the
convolved image exactly by half, followed by a Rectified Lin-
ear Unit (ReLU) activation function and batch normalization
operation along with dropout probability of 0.8. The addition

of batch normalization [19] makes the network train faster
while ensuring low training losses. The number of filters in
each convolutional layer double in each consecutive stage.
Thus, for nT training images, and nc number of output classes,
the cross-entropy loss function used for training NN-based
models by back-propagation is given in (1),

L = −
nT∑
i=1

nc∑
l=1

1, [ti = l]log(pisl) (1)

where, 1[ti = l] is the indicator function that GT vector ti is
equal to class label l, while pisl represents the model predicted
probability that image i belongs to class label l. The ReLU
activation function applied on weighted sum of outputs from
the previous layer i′ are given in (2).

yi′ =

n∑
k=1

xkwki′ , pisi′ = max(0, yi′). (2)

Here, n signifies the number of neurons present in the layer
just before the activation layer. The final predicted class label
is the class with maximum predicted probability in (3).

si = argl max(pisl) ∀l classes. (3)

The predicted class (si) is then compared with the actual target
class label, and with the aid of the loss function L, model
weights are updated such that the loss is minimized for subse-
quent epochs. Once trained, convolution of the learned kernel
weights demonstrate the structure and textural features/ROIs
that aid the classification process, as shown in Fig. 2. By
analyzing AFMs from different drivable surface conditions,
we observe that texture of drivable surface, surroundings and
the sky are collectively useful for RSC classification.

2) SqueezeNet Model: This deep learning model proposed
in [20] involves replacing [3x3] convolution filters in the
AlexNet model [21] by [1x1] filters, thereby decreasing the
number of input channels by using ‘squeeze’ layers. The
process of reducing the number of model parameters is through
a Fire Module. Here, a Fire Module contains the following: a
[1x1] convolution module that reduces the number of channels,
and an expand Module, where a [1x1] convolution and a
[3x3] convolution, both are applied to the output of the
previous layer, and their results are concatenated. The use
of several [1x1] convolutions is found to be advantageous,
since they need less parameters than [3x3] filters. Additionally,
the activation layer uses ReLUs [20], only convolutions and



dropout (0.5, before the last convolution). This model uses late
max-pooling to improve accuracy while not needing additional
parameters. Finally, residual connections are applied between
layers of same dimensionality followed by parameter pruning
from ‘Deep Compression’ to reduce the parameters further.

For our data set, each input image channel [256x256x6]
is subjected to convolution, fire and subsampling/pooling
layers (max-pooling with filter size [3x3] and stride 2)
based on the network structure in [20]. The input channel
size for each layer are as follows: Input:[256x256x6],
C1:[127x127x96], S1:[127x127x96], Fire2:[63x63x128],
Fire3:[63x63x128], Fire4:[63x63x256], S2:[31x31x256],
Fire5:[31x31x256], Fire6:[31x31x384], Fire7:[31x31x384],
Fire8:[63x63x512], S3:[15x15x512], Fire9:[15x15x512],
D-layer (flatten):[15x15x4], Output:[1x1x4]

3) Feature-based Model: In this model, the pre-processing
steps involve a horizon detector to separate the sky and
drivable surface components. For this purpose, GIST feature-
based horizon detector described in [23][24] is invoked. Here,
the relative horizontal location of the horizon is evaluated as
a regression problem using GIST features from the training
set of images on the LabelMe data set [25]. Next, the sub-
image under the horizon (Rb) is segmented into the drivable
surface (Rbd) and surroundings (Rbs). The sub-image above
the horizon (Ra) is similarly segmented into sky (Rak) and
surroundings (Ras), as shown in Fig. 3. Further, the RGB
image plane is transformed to HSV plane, and HOG de-
scriptors are computed for each of the 4 segmented ROIs
(Rbd, Rbs, Rak, Ras), to extract color and texture-based
features, as shown in Fig. 6. Next, the following 15 color
and texture based regional features are extracted per seg-
mented ROI: mean and standard deviation of pixel intensities
segmented ROI RGB, HSV plane, and HOG feature planes,
and the fraction of pixels belonging to each segmented ROI.
The HOG features are extracted using an empirically selected
block size of [16x16]. These 15 features corresponding to 4
segmented ROIs result in a 60 feature-vector corresponding to
Xi for each image i, that are then subjected to classification
using a single hidden layer NN-model. The number of hidden
neurons are varied between [10:500], to identify the optimal
number of hidden neurons that maximize test accuracy.

Fig. 6. Examples of color and texture-based features extracted for each
segmented ROI.

C. Step 2: RFE Classification

Once RSC is detected, the next step involves estimation
of patchiness in the vehicle’s ego-lane, to separate low RFE
conditions from iced roads from high to medium RFE con-
ditions on ploughed snow-roads. For this purpose, the ego-
lane ahead of the vehicle can be segmented into 5 spatial

sub-regions/patches across the width and 3 patches across the
height, as shown in Fig. 7. The patch sizes are motivated by
domain knowledge to accommodate the two wheel-tracks and
neighboring lanes for an automobile. The steps for patch seg-
mentation, quantization and RFE classification are explained
below.

Fig. 7. Rationale behind [5x3] patch segmentation of the ego-lane drivable
surface. The 5 patches across width accommodate vehicle wheels and their
neighborhood. The 3 patches across height accommodate 30-50 meters of
drivable surface ahead of the vehicle. Note that the opposite lane and ego-
lane share one column of patch segments.

1) Patch Segmentation: To ensure similarly sized patches,
the ego-lane drivable surface below horizon is subjected to
perspective transformation to obtain the birds-eye view of the
drivable surface. The resulting [5x3] image patches in the
driving direction are shown in Fig. 8.

Fig. 8. Segmentation of the [5x3] patches for the drivable surface. (Left:)
Perspective transform limits ROI up to 50 meters ahead of vehicle in driving
direction. (Right:) Segmented uniformly sized patches.

2) Patch Quantization: Each image patch is classified for
its composition as ‘dry road’ (class 0) or ‘snow’ (class 1) using
a logistic regression model, resulting in a probabilistic patch
matrix shown in Fig. 9. This patch classifier is trained on 400
dry asphalt and 400 fresh snow image patches, respectively.
26 color and textural features are extracted per patch for
this classification purpose. These features include mean and
standard deviation of pixel intensities in [R,G,B,H,S,V] planes
with and without contrast enhancement (‘imadjust’ function),
and mean and standard deviation of HOG features extracted
using [16x16] block size. This step outputs a probability
score (pis1) corresponding to per-patch composition. A low



Fig. 9. Example of road patch quantization and RFE classification. (Top:) Probability score ‘pis1’ for patch composition. (Bottom:) Quantized Patches and
their GT. (Left:) High RFE for well-ploughed road. (Center:) Medium RFE for partially patchy road. (Right:) Low RFE for patchy snow and dry surfaces
that can lead to slippery roads.

probability indicates a ‘dry’ patch while a high score indicates
a snow patch.

Next, the individual patch scores are subjected to four levels
of patch quantization using (4). Here, an ‘ice’ patch would typ-
ically be identified as si = [2, 3]. The quantization thresholds
are empirically determined to maximize patch classification
accuracy. The resultant quantized drivable surface patches are
shown in Fig. 9.

si =


1, 0 ≤ pis1 < 0.05,=> dry road,
2, 0.05 ≤ pis1 < 0.5,=> more dry, less snow,

3, 0.5 ≤ pis1 < 0.8,=> more snow, less dry,
4, 0.8 ≤ pis1 ≤ 1,=> snow.

(4)

3) RFE Classification: The quantized and probabilistic
patch matrices are analyzed for patterns suggestive of well-
ploughed/uniform patches in high RFE roads versus irregularly
placed dry road and snow patches in unploughed roads, or
black ice formations. Due to data set size and class imbalance
constraints, a rule-based method is utilized for RFE classifi-
cation from the patch matrices. We initially applied structural
similarly index metric (SSIM) [26] and coefficient of variation
to quantify regular vs. irregular patchiness. However, we
observe that the domain specific rule-based model in (5) results
in the most accurate prediction of RFEi. The conditions for
(5) are domain-motivated, such that if at least two out of
five columns exist with average patch probability score per
column less than 0.05, it would indicate at least two well-
ploughed surfaces under the vehicle wheels, implying a high
RFE surface. However, if at least two out of five columns have
medium average patch probability score (denoted by indicator
function: 1[0.05 < p̄is1|col < 0.12]), then the road surface
would most likely have medium RFE, or low RFE otherwise.
(5) constitutes the rule-based classification module for stage-2
in Fig. 1.

RFEi =


2,

∑5
col=1 1[p̄is1|col ≤ 0.05] ≥ 2,

1,
∑5

col=1 1[
¯

0.05 < p̄is1|col ≤ 0.12] ≥ 2,

0, otherwise.

(5)

IV. EXPERIMENTS AND RESULTS

The performances of stage-1 and stage-2 models in com-
parison with state-of-the-art methods are given below.

A. Step 1: RSC Classification Performance

The average performance metrics per RSC class for various
CNN architectures, SqueezeNet and the feature-based model
are presented in Table II. Here, we observe that the SqueezeNet
model is the fastest and most accurate model. Also, the
CS2, CS3 architectures of the CNN model have comparable
performances. To further analyze the sensitivity of RSC classi-
fication to training data, a limited subset of data is created with
400 training and 400 test images, such that all images in this
data are high quality with similar fields of view and similar
camera calibrations. The average classification performance
metrics per class on this limited data set is presented in
Table III. Here, we observe that CS3, CS2 CNN model
architectures have best classification Acc, followed by the
feature-based model. Thus, the SqueezeNet model, although
fast, is more sensitive to training data when compared to the
proposed CNN models.

It is noteworthy that images that are falsely classified as
‘dry’ RSC are not further analyzed in stage-2, which can
lead to erroneous RFE estimates. Also, we observe that
images with slush and wet/water RSC have significantly lower
numbers of samples, thereby resulting in 94% and 97.34%
Acc, respectively. Future work with high resolution class-
balanced data can be directed to reduce false positives for
‘dry’ RSC conditions and to improve classification Acc for
slush and wet RSC classes. Also, the feature-based model
utilizes color and textural features for individual images, and
it is robust to data set variabilities with lowest computational
time complexity due to few parameters. Some examples of the
limiting conditions for RSC classification using the feature-
based model are shown in Fig. 10. Here, we qualitatively
observe that structural similarities between certain ROIs of
each test image with the ROIs from images in the training
data set cause the misclassifications. Such misclassifications
can be significantly reduced by training the models with high
quality and similar field of view images.

B. Step 2: RFE Classification Performance

The average performance metrics per class for the stage-
2 model are shown in Table IV. Here, we observe that for
patch classification into dry road and snow patches, 60 images



TABLE II
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-1 MODELS PERFORMING RSC CLASSIFICATION. THE TEST TIME PER IMAGE IS PRESENTED IN

MILISECONDS.

NN-based Model Train Time (hrs) Train Acc (%) Test time (ms) Acc (%) PR (%) RE (%) # parameters
CNN (CS1, 10 epochs) 4.6 99.10 1.1 93.96 94 94 134224060
CNN (CS2, 10 epochs) 4.9 99.66 1.15 95.53 96 96 67118412
CNN (CS3, 10 epochs) 5.1 99.54 1.26 95.60 96 96 33576812

SqueezeNet (20 epochs) 0.69 98.5 4.0 97.36 97 97 727428
Feature-based Model 0.51 93.35 250 91.76 92 92 7200

.

Fig. 10. Analysis of the misclassified RSC images using feature-based model. For the dry test image, the shadowed drivable surface resembles that of a wet
day training image. For the water test image, the limited field of view obstructs the sky, thus resulting in misclassification. The ice image resembles a water
training image due to image blurriness, while the snow image is misclassified owing to the the snow particles settled on the windshield resembling a slush
training image. The surrounding below horizon for the wet image resembles ice texture from a training image, thus causing misclassification.

TABLE III
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-1 MODELS ON

LIMITED TRAINING/TEST DATA.

NN-based Model Train Time (hrs) Train Acc (%) Acc (%) PR (%) RE (%)
CNN (CS2, 10 epochs) 0.5 98.2 92.9 94 93
CNN (CS3, 10 epochs) 1.0 99.82 94.6 95 95
SqueezeNet (20 epochs) 0.31 93.1 88.3 89 88

Feature-based Model 0.165 95.83 92.1 92 92

(45 dry, 15 snow) suffer misclassifications. Next, on the test
images for RFE classification, 12 images set are misclassified,
primarily due to class imbalance. Some examples of the rule-

TABLE IV
AVERAGE PERFORMANCE METRICS PER CLASS FOR STAGE-2 MODEL

PERFORMING PATCH AND RFE CLASSIFICATIONS.

Test Data (# images) Acc(%) PR (%) RE (%)
Patch classification 355 dry road/128 snow 87.5 89 88
RFE classification 114 mixed snow and dry 89.5 88 89

based RFE misclassifications are shown in Fig. 11. Here,
we observe that the lack of camera calibration information
on public data can lead to a mis-aligned birds-eye view
image with the patch quantizated matrix, thereby leading to
misclassification. Thus, the use of camera calibrated, similar
field of view and larger training data sets can significantly
enhance the RFE classification performances.

Fig. 11. Analysis of misclassified RFE images. (Row 1:) Low resolution and
narrow view of drivable surface leads to a low RFE prediction. Remaining
rows suffer from mis-aligned birds-eye view image.

C. Comparison with State-of-the-art Methods

Among existing works, Li et al. [17] applied color transfor-
mations to road surface images using an NN-based model and
achieved an accuracy rate of about 85% on a local limited
data set. Further, in the recent work [9], out of 376 test
images, an accuracy of 83% was achieved for classification
of dry and wet roads. The comparative evaluation of the
proposed models with works that report higher recognition



accuracies are shown in Table V. We observe that for RSC

TABLE V
COMPARATIVE PERFORMANCE ANALYSIS WITH EXISTING WORKS.

Stage-1: RSC
Method # Images Acc (%)

Kim et. al. [13](Dry) 25 88
(Wet) 25 84

(Snow/Ice) 50 78
Average 100 85

Proposed (Dry) 430 96.98
(Wet/Water) 376 97.34
(Snow/Ice) 546 99.08

Average 1307 97.36
Stage-2: RFE

Raj et. al. [12] 1180 90
Proposed 114 89.5

classification, the SqueezeNet model significantly improves
classification accuracies when compared to existing works.
For RFE classification, the proposed method has comparable
accuracy to the existing rule-based work in [12].

V. CONCLUSIONS AND DISCUSSION

This work presents a 2-stage hierarchical method for RSC
and RFE classification tasks using public domain data sets in
stage-1 and 2, respectively. This hierarchical method separates
images with ‘dry’ RSC, that generally incur high RFE, from
images with combination drivable surfaces, that can then be
further analyzed for patch-based RFE classification. Thus,
stage-1 significantly reduces the number of images that require
fine-tuned analysis of the ego-lane drivable surface in stage-
2. Stage-1 involves feature-learning from trained CNN model
kernels, that lead to 94-99% classification accuracies for dry,
wet/water, slush and snow/ice conditions. In stage-2, a rule-
based model motivated by domain-specific guidelines, is found
to achieve up to 89.5% RFE classification accuracy. Future
works will be directed towards generating larger annotated
data sets that are high quality and camera calibrated to learn
the decision boundaries for ego-lane drivable patch quantiza-
tion and RFE classification tasks. Also, images with multiple
RSC labels, e.g., surfaces with snow and water etc., can be
analyzed for robust feature learning tasks. Besides, future
efforts on application of deep learning models for fusing
vehicle dynamics sensors along with the camera data may
significantly enhance RFE estimation performances. Since the
proposed models have low computational time complexity
for processing test images, they are suitable for real-time
prediction of drivable conditions for active safety functions
and autonomous vehicles.
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