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decreases due to the shipborne nitrogen
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The Baltic Sea is a severely eutrophicated sea-area where intense shipping as an additional nutrient source is a
potential contributor to changes in the ecosystem. The impact of the two most important shipborne nutrients,
nitrogen and phosphorus, on the overall nutrient-phytoplankton-oxygen dynamics in the Baltic Sea was deter-
mined by using the coupled physical and biogeochemical model system General Estuarine Transport Model–
Ecological Regional Ocean Model (GETM-ERGOM) in a cascade with the Ship Traffic Emission Assessment
Model (STEAM) and the CommunityMultiscale Air Quality (CMAQ)model.We compared two nutrient scenarios
in the Baltic Sea:with (SHIP) andwithout nutrient input from ships (NOSHIP). Themodel uses the combined nu-
trient input from shipping-related waste streams and atmospheric depositions originating from the ship emis-
sion and calculates the effect of excess nutrients on the overall biogeochemical cycle, primary production,
detritus formation and nutrient flows. The shipping contribution is about 0.3% of the total phosphorus and
1.25–3.3% of the total nitrogen input to the Baltic Sea, but their impact to the different biogeochemical variables
is up to 10%. Excess nitrogen entering the N-limited system of the Baltic Sea slightly alters certain pathways:
cyanobacteria growth is compromised due to extra nitrogen available for other functional groups while the bio-
mass of diatoms and especially flagellates increases due to the excess of the limiting nutrient. In terms of the Bal-
tic Sea ecosystem functioning, continuous input of ship-borne nitrogen is compensated by steady decrease of
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nitrogen fixation and increase of denitrification, which results in stationary level of total nitrogen content in the
water. Ship-borne phosphorus input results in a decrease of phosphate content in thewater and increase of phos-
phorus binding to sediments. Oxygen content in the water decreases, but reaches stationary state eventually.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In natural waters, phytoplankton growth is usually limited by phys-
ical and biogeochemical factors (Hecky and Kilham, 1988; Chislock
et al., 2013). Human-induced change in these limiting factors may
have a considerable effect on the entire ecosystem where phytoplank-
ton usually plays the key role (Schelske, 1975; Hecky and Kilham,
1988; Chislock et al., 2013). In coastal waters the limiting element is
most often a nutrient; either nitrogen or phosphorus (Hecky and
Kilham, 1988; Granéli et al., 1990). Changes in the input of the limiting
nutrient into the particular coastal ecosystemmay, in turn, alter phyto-
plankton biomass and cause other ecosystem alterations (Schelske,
1975; Schindler, 2006; Chislock et al., 2013). Since ecosystems are com-
plex and their responses non-linear, secondary changes, which occur as
a consequence, are more difficult to assess in advance (Duarte et al.,
2009; Savchuk, 2018).

Maritime transport, among other sources, increases nutrient input
into the marine ecosystem via emissions to the air and the concurrent
deposition, as well as direct discharge (Aulinger et al., 2016; Bartnicki
et al., 2011; Herz and Davis, 2002). Emissions from marine transport
contribute significantly to air pollution globally, with commercial ship-
ping estimably responsible for around 4–14% of the global nitrogen
emissions (Wang et al., 2008; Corbett and Fischbeck, 1997; Corbett
and Köhler, 2003; Eyring et al., 2005). Marine pollution from direct san-
itary wastewater discharge is an especially pronounced problem with
large cruise ships, which represent b1% of the global merchant fleet,
while estimably being responsible for 25% of all the waste generated
by merchant vessels (Perić et al., 2016; Herz and Davis, 2002). Global
maritime transport is experiencing an increasing trend (Eyring et al.,
2005; Marmer et al., 2009).

Worldwide, the coastal areas ofWestern and Southern Europe (North
Sea and theMediterranean), theUnited States and South-East China have
been more thoroughly studied regarding the amount and effect of ship-
related emissions on the environment (Viana et al., 2014; Marmer
et al., 2009; Aksoyoglu et al., 2016; Chen et al., 2019; Djambazov and
Pericleous, 2015).

In Northern Germany and Denmark that are surrounded by numer-
ous shipping lanes, the contribution of shipping emissions to the atmo-
spheric nitrogen dioxide is around 15% in winter and 25% in summer,
whereas in the western entrance of the English Channel the ship-
derived nitrogen dioxide contribution can be up to 90% (Aulinger
et al., 2016). This demonstrates that in the case of lacking additional
sources, shipping can be the primary contributor to the atmospheric
input of nutrients, providing extra fuel for the already intense eutrophi-
cation in the coastal waters of Western Europe. Quantitatively, the con-
tributions from shipping emissions to nitrogen dioxide pollution show a
large spatial variability, with maximal contributions in the Mediterra-
nean basin and the North Sea, and the average being 7–24% across
Europe (Viana et al., 2014).

A highly industrialized and rapidly transitioning areawith densema-
rine traffic lies in South-East Asia. Modelled annual ship emissions on
the most active routes reach up to 104 kg N/km2/yr (Chen et al., 2019).
The ship-induced increase of nitrogen deposition is not only found
along the shipping routes but also spread to wide land regions. The
highest simulated total N deposition from ship emissions appeared in
the coastal areas, which reached 1000 kg N/km2/yr. In the sea area, the
N deposition fluxwas ranged from 200 kgN/km2/yr to 900 kg N/km2/yr.
The Arctic Ocean is an area of growing global interest, as increasing
navigability enables more intense/frequent shipping activity that will
bring about higher input of nutrients and pollutants into a formerly pris-
tine environment (Gong et al., 2018).

Multiple studies have implied that additional input of nutrients has
an effect on (marine) ecosystems, especially by increasing primary pro-
duction and decreasing oxygen concentrations due to the increased
production of dead organic matter (Herz and Davis, 2002; Perić et al.,
2016; Hagy et al., 2004; Spokes and Jickells, 2005; Troost et al., 2013;
Djambazov and Pericleous, 2015). In a study by Troost et al. (2013) ad-
ditional nitrogen from atmospheric deposition lead to increased pri-
mary production in the North Sea. There are temporal and spatial
differences in the effect of additional nutrient input, which determines
ships as effective proxies to areas lacking other nutrient sources. The
offshore areas (N30 km off the coast) are, in general, more affected
due to absence of land input and the systembeing nitrogen limited dur-
ing long periods in summer (Troost et al., 2013). It is thus mainly the
nitrogen-limited phytoplankton species that benefit from the atmo-
spheric deposition, that has been estimated to be accountable for
13.8–15% of primary production in several studies (Troost et al., 2013;
Spokes and Jickells, 2005). Atmospheric nitrogen input can, hence, sup-
port a significant increase in phytoplankton biomass and will, along
with other nitrogen sources, enhance long-term eutrophication effects
in the intensely shipped coastal waters of Western Europe and England
(Spokes and Jickells, 2005; Djambazov and Pericleous, 2015). Similar
results have been obtained or are expected to occur in the actively in-
dustrializing South-East Asia region and the increasingly shipped Arctic
Sea (Zhao et al., 2015; Gong et al., 2018). Through its effects on primary
production, addition of nutrients may also influence the rest of the eco-
system via changes in the carbon equilibrium or shifts in the species
composition on higher trophic levels of the food chain (Voss et al.,
2001; Van de Waal et al., 2010).

The Baltic Sea has been, similarly to other intense shipping areas,
under humanpressure for a long time, aswell as facing natural challenges
from being a northerly inland sea with long residual time, limited water
exchange and slow degradation processes in a temperate region (Zillén
et al., 2008; Reusch et al., 2018). The anthropogenic nutrient input to
the Baltic Sea has been the major cause of eutrophication and the conse-
quent extensive cyanobacteria blooms (Elmgren, 1989; Reusch et al.,
2018; Jonson et al., 2015; Aksoyoglu et al., 2016; HELCOM, 2014). Contri-
bution of the shipping sector to the total atmospheric deposition of oxi-
dized nitrogen into the Baltic Sea is driven by the source strength as
well as by the meteorological conditions which means that the annual
contribution does not only vary with changing shipping emissions, but
also with inter-annual variability of the meteorology (Bartnicki et al.,
2011). Bartnicki et al. (2011) and Jonson et al. (2015) studied atmo-
spheric deposition of nitrogen to the Baltic Sea for the time period be-
tween 1995 and 2012 with atmospheric chemistry-transport model
EMEP and found contribution from the Baltic Sea and North Sea shipping
to the total deposition of oxidized nitrogen to be on average 18 kt N/year
which makes a relative contribution of 13–20%. A similar result was ob-
tained by Raudsepp et al. (2013) in the Gulf of Finland, where NOx depo-
sition to the sea fromship exhaust gaseswas estimated to be about 12%of
the annual atmospheric NOx deposition. The total atmospheric nitrogen
deposition is estimated to be about 220 kt N/year (HELCOM, 2013a,
2013b; Simpson, 2011) and the waterborne nitrogen input ca. 760 kt N/
year, which makes the atmospheric contribution of nitrogen around

http://creativecommons.org/licenses/by/4.0/


Fig. 1.Map of the Baltic Sea with locations relevant for the article. Blue contour lines show
borders of territorial waters. The location of main shipping lanes is shown as grey
underlay.
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22%. Therefore, the shipping contribution is about 1.25–3.3% of the total
nitrogen to the Baltic Sea.

Phosphorus enters the Baltic Sea mainly as waterborne while the at-
mospheric contribution is calculated to be approximately 5.5% of the
total phosphorus input (HELCOM, 2013b). Shipborne phosphorus enters
the sea via waste generated onboard the ships such as sewage (black
water), food waste and grey water (Wilewska-Bien et al., 2018). Other
possible phosphorus sources of significance are bilge water and atmo-
spheric deposition (Wilewska-Bien et al., 2018; Neumann et al., 2018b,
2018c). The atmospheric contribution of phosphorus from ships is
small because marine fuels contain very little (b15 ppm) phosphorus
(Wilewska-Bien et al., 2018; ISO 8217, 2012). Compared to the overall
phosphorus input to the Baltic Sea, the phosphorus from shipping is es-
timated to comprise around 0.3% of the total annual input (HELCOM,
2013b; Wilewska-Bien et al., 2018).

Similarly to the North Sea, any additional nutrient deposition in the
nitrogen limited offshore areas of the Baltic Sea influences the phyto-
plankton biomass during spring by changing the interspecies dynamics
of different functional groups (Tilman, 1982; Stockner and Shortreed,
1988). Furthermore, increased production of organic matter also in-
creases oxygen demand and may expand the hypoxic areas below the
upper mixed layer of the Baltic Sea water column (Zillén et al., 2008;
Conley et al., 2002). The share of nutrient input from shipping to the Bal-
tic Sea is small compared to the total input, but its relative importance
may become important due to spatio-temporal variance of the different
sources and the natural spatio-temporal dynamics. Further, despite
being a small share, the shipborne nutrient input contributes to the cu-
mulative nutrient input as one of many small sources.

The objective of this study is to evaluate the response of the Baltic
Sea ecosystem to excess nutrients from shipping (SHIP scenario
minus NOSHIP scenario). While other studies have either focused
on a certain area of the Baltic Sea (Raudsepp et al., 2013; Neumann
et al., 2018a, 2018b, 2018c), or a selected discharge or nutrient
type (Wilewska-Bien et al., 2016, 2018), the current study takes
into account all shipping-related nutrient sources: atmospheric
emissions and the concurrent deposition, as well as direct discharges
of different categories. We evaluate the impact of shipborne nutri-
ents on the overall nutrient-phytoplankton-oxygen dynamics across
the entire Baltic Sea and determine which processes are responsible
for a transformation of the nutrients. We compare the situation
under current regulation of ship emissions (SHIP) to a zero ship-
borne nutrient emission scenario (NOSHIP).

2. The Baltic Sea

TheBaltic Sea is a brackish semi-enclosed sea in northeastern Europe
with a surface area of 422,000 km2 and a volume of 21,205 km3

(Leppäranta and Myrberg, 2009). The Baltic Sea is characterized by rel-
ative shallowness with an average depth of 54 m, while N1/3 of the sea
is shallower than 30 m (Fig. 1), giving it a small total water volume rel-
ative to the surface area. Themaximum depth of 459 m is located in the
deep trench of the Landsort Deep. The Gotland Deep with a maximum
depth of 250-m in the central Baltic Proper is considered a dynamic
deep area with a high significance in shaping hydrographic and biogeo-
chemical fields of the Baltic Sea. The long-term salinity is determined by
net precipitation (e.g. Jaagus et al., 2018) and river discharge across the
Baltic Sea coast (Hansson et al., 2011) and by the saline water inflows
from the North Sea through very narrow and shallow channels in the
Danish Straits (BACCII Author Team, 2015). The saline and oxygenated
water inflows to the Baltic Sea, especially the Major Baltic Inflows,
occur only intermittently (e.g. Mohrholz, 2018).

The surface salinity varies horizontally from ~10 near the Danish
Straits down to ~2 at the northernmost and easternmost subbasins of
the Baltic Sea. The halocline, a vertical layer with rapid depth-
dependent changes of salinity that separates the well-mixed surface
layer from the weakly stratified layer below, is located at the depth
range of 60–80 m (Matthäus, 1984). The bottom layer salinity
below the halocline depth varies from 15 in the south down to 3 in
the northern Baltic Sea (Väli et al., 2013). Long-lasting periods of ox-
ygen depletion in the deep layers of the central Baltic accompanied
by salinity decline and overall weakening of vertical stratification
are referred to as stagnation periods. Extensive stagnation periods
occurred in the 1920s/1930s, in the 1950s/1960s and in the 1980s/
beginning of 1990s (BACCII Author Team, 2015).

The upper mixed layer temperature of the Baltic Sea is characterized
by a strong seasonal cycle driven by the annual course of solar radiation
(Leppäranta and Myrberg, 2008). Maximum water temperatures are
reached in July and August and minimums during February, when the
Baltic Sea becomes partially frozen. The strongly seasonal sea ice coverage
has a vital role in the annual course of physical and ecological conditions.
In general, sea ice starts to form in October and may last until June. De-
pending on the year maximum ice extent could vary in the range of
30,000 km2 (e.g. in 2015) to 260,000 km2 (e.g. in 2011). In case of a
fully ice-covered Baltic, the maximum ice extent is 422,000 km2, which
was last observedduring the1940s (VihmaandHaapala, 2009). Temporal
trends of sea ice extent could be a valuable indicator of the climate change
signal in the Baltic Sea region. It has been estimated that a 1 °C increase in
the average air temperature results in the decline of ice-covered area in
the Baltic Sea by about 45,000 km2 (Granskog et al., 2006). Seasonal ther-
mocline, developing at the depth range of 10–30m in spring, is strongest
in summer and is eroded in autumn. In autumn andwinter the Baltic Sea
is thermallymixed down to permanent halocline at the depth of 60–80m
(Matthäus, 1984). The 20–50 m thick cold intermediate layer forms
below the upper mixed layer in March and is observed until October
within 15–65 m depth (Chubarenko and Stepanova, 2018; Liblik and
Lips, 2011). Decrease inmaximum ice extentmay influence vertical strat-
ification of the Baltic Sea (Hordoir andMeier, 2012) The deep layers of the
Baltic Sea are disconnected from the ventilated upper ocean layers, and
temperature variations are predominantly driven by mixing processes
and horizontal advection.
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The large-scalemean horizontal circulation is dominantly cyclonic in
the Baltic (Meier, 2007; Jędrasik and Kowalewski, 2019). Deep water
circulation consists of dense bottom currents of the inflowing saline
water in the southern Baltic Sea, while convection,mixing, entrainment
and vertical advection of water masses leads to interactions between
upper and lower layers (Leppäranta andMyrberg, 2008). Instantaneous
surface circulation pattern is driven by wind in the Baltic Sea.

The Baltic Sea has been suffering from eutrophication for at least half
a century already. Out of external sources, rivers contribute most to the
Baltic Sea nutrient input (HELCOM, 2018a). Seven biggest rivers -
Daugava, Gota, Nemunas, Neva, Oder, Tornio and Vistula - cover 50%
of the Baltic drainage area of 1.74 km2 (HELCOM, 2018a). The average
flow of the largest rivers Neva and Vistula is 2310 m3/s and 1112
m3/s, respectively, whereas smallest contributing rivers have a flow
b600 m3/s (HELCOM, 2018a). Rivers with catchments in densely popu-
lated agricultural areas, such as Vistula, Nemunas andOder in the south-
ern part of the Baltic Sea have a bigger nutrient input compared to
northern areas, where large parts of river drainage areas are under for-
est (HELCOM, 2018a). Although, nutrient input from the rivers has de-
creased by 12% in case of nitrogen and 25% of phosphorus over couple
of decades, no improvement of the Baltic Sea state has been detected
(HELCOM, 2018b). A warming trend of 0.08 °C/year in the upper 50 m
layer and 0.04 °C/year in the deep layers (N60 m) reinforce a cascade
of biogeochemical processes which is called the “vicious circle”
(Savchuk, 2018; Meier et al., 2012; Vahtera et al., 2007). Due to the “vi-
cious circle” there is enhancement of cyanobacteria blooms, which
hampers nitrogen reduction attempts and sustains an elevated trophic
state via accelerated oxygen consumption during organic matter oxida-
tion, an increase of denitrification and nitrification rate in sediments
and enhanced release of phosphates from the accumulated sediments
due to hypoxia and anoxia (Seitzinger, 1988; Vahtera et al., 2007;
Savchuk, 2018). On the other hand, the cyanobacteria blooms stimulate
summer production in the entire food web, from zooplankton and ben-
thos to fish (Karlson et al., 2015).
3. Methods

The effects of additional shipborne nutrients on the marine primary
production is estimated using the coupled physical and biochemical
model system GETM-ERGOM (Burchard and Bolding, 2002; Bruggeman
and Bolding, 2014) for the Baltic Sea. Combining the simulation results
from Automatic Identification System (AIS) based emission modelling
using The Ship Traffic Emission Assessment (STEAM) and atmospheric
deposition fields from the Community Multiscale Air Quality (COSMO-
CLM/CMAQ) model system (Rockel et al., 2008; Matthias, 2008; Byun
and Schere, 2006; Karl et al., 2018) using consistent STEAM shipping
emissions to the atmosphere, the input of nitrate, ammonium, phos-
phate and organic matter are applied as mass fluxes to the surface
layer of the sea. The year 2012 is considered as the reference year
(SHIP model simulation). A NOSHIP model simulation is performed ex-
cluding the above-mentioned external input of nutrients from shipping
activity. In general, annual mean temperatures were 0.5 °C to 0.7 °C
above normal and it was wetter in the Nordic and Baltic regions in
2012 (Achberger et al., 2013). The year 2012 can be considered as typical
for hydrographic and biogeochemical conditions relative to the climato-
logical period 1993–2014. Horizontally averaged annual temperature
and salinity profiles, as well as sea ice extent and volume were close to
themean (Von Schuckmann, 2019). The year 2012 shows decrease of sa-
linity below the halocline in the Gotland Deep (Von Schuckmann, 2019)
and relatively high spatial extent of oxygen depleted water accountic for
the hypoxic area of 60,000 km2 in the Baltic Sea (Savchuk, 2018). Previ-
ous salinewater inflowwhich signal of the salinity increasewas detected
in the Gotland Deep took place at the end of 2006. The mean total fresh-
water discharge into the Baltic Sea for the year 2012was 14%higher than
long-term average in year 2012 (Kronsell and Andersson, 2013).
Spring bloom started relatively early, in March already, with the
start date varying little across the entire Baltic Sea area (Raudsepp
et al., 2019a). Peak bloom day stretched from the end of March to the
end of April. The spring bloom ended at the end of May, similarly to
the other years since 2007. The spring bloom's spatiotemporal coverage
in 2012 was close to the mean, but the phytoplankton summer bloom
was among the smallest (Raudsepp et al., 2018). The latter is consistent
with a minimum of the interannual oscillations of cyanobacterial
blooms with a period of about 3 years in the Baltic Sea (Kahru et al.,
2018).

TN and TP pools were in a stable level of about 6000 ktons and 680
ktons, respectively since 2005, as well as DIN and DIP pools of about
1000 ktons and 480 ktons, respectively (Savchuk, 2018). In general
this is consistent with the period of stable nutrient input, within other-
wise decreasing trend since 1980 (Savchuk, 2018).

The modelling system consists of the ship emission model, The Ship
Traffic Emission Assessment Model (STEAM) (Jalkanen et al., 2009;
Jalkanen et al., 2012; Johansson et al., 2013; Johansson et al., 2017),
the atmospheric chemistry modelling system, Climate Limited-area
Modelling Community (COSMO-CLM) and The Community Multiscale
Air Quality (CMAQ) model system (Rockel et al., 2008; Matthias, 2008;
Byun and Schere, 2006; Karl et al., 2018), and the coupled marine phys-
ical model, General Estuarine Transport Model (GETM) (Burchard and
Bolding, 2002; Bruggeman and Bolding, 2014), and the biogeochemical
model, the Ecological Regional Ocean Model (ERGOM) (www.ergom.
net; Neumann and Schernewski, 2008). The STEAM is ship Automatic
Identifiation System (AIS)-based emission model providing shipping
emissions for the CMAQ model system and direct ship discharges to
thewater. The atmospheric deposition fields from the CMAQmodel pro-
vide the input of nitrate, ammonium, phosphate and organic matter
mass fluxes to the surface layer of the sea. Further on, the GETM-
ERGOM system uses the atmospheric deposition fields and direct ship
discharges for the estimation of the effects of shipborne nutrients on
the Baltic Sea ecosystem.

Themodel system simulationswere carried out for the year 2012. In
general, annual mean temperatures were 0.5 °C to 0.7 °C above normal
and it was wetter in the Nordic and Baltic regions in 2012 (Achberger
et al., 2013). The year 2012 can be considered as typical for hydro-
graphic and biogeochemical conditions relative to the climatological pe-
riod 1993–2014. Horizontally averaged annual temperature and salinity
profiles, as well as sea ice extent and volume were close to the mean
(Von Schuckmann, 2019). The year 2012 shows decrease of salinity
below the halocline in the Gotland Deep (Von Schuckmann, 2019)
and relatively high spatial extent of oxygen depleted water accountic
for the hypoxic area of 60,000 km2 in the Baltic Sea (Savchuk, 2018).
Previous saline water inflow which signal of the salinity increase was
detected in the Gotland Deep took place at the end of 2006. Freshwater
discharge. Spring bloom started relatively early, in March already, with
the start date varying little across the entire Baltic Sea area (OSR 3). Peak
bloom day stretched from the end of March to the end of April. The
spring bloom ended at the end of May, similarly to the other years
since 2007. The spring bloom's spatiotemporal coverage in 2012 was
close to the mean, but the phytoplankton summer bloom was among
the smallest (Raudsepp et al., 2018). The latter is consistent with amin-
imum of the interannual oscillations of cyanobacterial blooms with a
period of about 3 years in the Baltic Sea (Kahru et al., 2018). TN and
TP pools were in a stable level of about 6000 ktons and 680 ktons, re-
spectively since 2005, as well as DIN and DIP pools of about 1000
ktons and 480 ktons, respectively (Savchuk, 2018). In general this is
consistentwith the period of stable nutrient input, within otherwise de-
creasing trend since 1980 (Savchuk, 2018).

3.1. STEAM model description

The STEAM (Jalkanen et al., 2009, 2012; Johansson et al., 2013, 2017)
uses Automatic Identification System (AIS) data to describe ship traffic
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activity and the detailed technical knowledge of the ships for the calcu-
lation of the atmospheric emissions and discharges directly from the
ships to the sea. In this work, new capabilities were built into STEAM,
which enabled the description of various discharges, like Black Water
(BW), Grey Water (GW), Ballast Water (BLW), Bilge Water (BLG),
Food Waste (FW), Scrubber water from open and closed loop systems
(SWO, SWC), Stern Tube Oil (STO) and several species of antifouling
paints (AFP) from ships. These developments of STEAM are described
in a separate manuscript (Jalkanen et al., in preparation). BW is defined
as sewage, wastewater that originates from toilets, medical facilities,
premises for living animals or other wastewaters when mixed with
those drainages (MARPOL Annex IV). GW is collected from dishwater,
shower, laundry, bath and wash-basin drains, and its discharges are
not limited by the international law (MARPOL Annex V). BLG is a mix-
ture of different substances from machinery, spills and overflow tanks
and gets accumulated in the lowest part of the ship (Klein Wolterink
et al., 2004; IMO, 2006). FW generated on-board can be any ‘spoiled
or unspoiled’ foods and food scraps (MARPOL Annex V). GW, BW and
FW are functions of people carried onboard, both crew passengers.

Vessel activity for year 2012was described with AIS data sent by the
Baltic Sea fleet and provided to us by the Helsinki Commission
(HELCOM), which consists of all Baltic Sea countries. This data consists
of over 320million automatic position reports. In addition, technical de-
scription of thefleetwas based on data from IHS (IHSGlobal, 2016). Pas-
senger capacity utilization wasmodelled based on the quarterly reports
of major passenger vessel operators, who together carry over 20million
passengers each year. Based on these reports, passenger capacity utili-
zation was estimated as 50% throughout the year, except for cruise ves-
sels, which have been reported to use close to 90% of their capacity
(HELCOM, 2015; Wilewska-Bien et al., 2018). The time spent on-board
was separately estimated for the crew and passengers based on AIS
data. This resulted to estimates of the discharge amounts. The spatio-
temporal releases of accumulated quantities were modelled as defined
by the MARPOL convention Annexes I, IV and V, which define what,
where and how discharges can be released to the sea. Some of the re-
leases occur randomly, like GW, BW and BLG, which were modelled as
continuous discharges in areas defined by current MARPOL rules and
national environmental legislation if they are stricter than MARPOL
(like oily releases in Finnish waters and SWO discharges in German
waters).

The atmospheric emissions were delivered as input for the chemical
transport model CMAQ, which was used to calculate the atmospheric
transformation and transport of pollutants. The STEAMoutputs consisting
of gridded daily inventories of nutrients in BW, GW and BLG as well as
total volumes of discharges were used as input data for the GETM-
ERGOM.

3.2. CMAQ model description

The CMAQmodel used for calculation of the deposition fields (Byun
and Schere, 2006; Appel et al., 2013, 2017) is an atmospheric Eulerian
chemistry transport model. It computes atmospheric concentrations
and deposition of numerous trace gas species and aerosol components,
depending on emissions and the physical state of the atmosphere.
CMAQ was developed by the US EPA about 20 years ago (Byun and
Ching, 1999). It is freely available through the CMAS center and perma-
nently updated. In the SHEBA project, the model was run in version
5.0.1.

The model was set up in three nested domains, a grid with 64
× 64 km2 for entire Europe, 16 × 16 km2 for northwestern Europe and
4 × 4 km2 over the Baltic Sea. In the vertical, the model extends up to
100 hPa in a sigma hybrid pressure coordinate system with 30 layers.
Twenty of these layers are below approximately 2 km; the lowest
layer extends to ca. 36 m above ground. The entire year 2012 was run
with a spin-up period of one month for the initialization of the model
runs. Meteorological fields were calculated with the COSMO-CLM
model (Rockel et al., 2008) and interpolated to the CMAQ grid with an
adapted version of the Meteorology-Chemistry Interface Processor
(MCIP) (Otte and Pleim, 2010).

3.3. GETM description

The GETM is a numerical hydrodynamics model which is solving
sea state by means of salinity, temperature, currents and water
level (Burchard and Bolding, 2002). The modular concept of GETM
makes it possible to use various parameterizations and numerical
techniques to solve numerically three-dimensional primitive ocean
equations. The time split technique allows using shorter timestep
for solving free-surface evolution in barotropic mode and longer
timestep for internal baroclinic mode solving transports. Spatially
the equations are discretized on a staggered Arakawa-C grid using
spherical horizontal coordinates and bottom-following adaptive
layers discretization in vertical direction. The vertical resolution
has been enhanced by reducing layer thicknesses near the bound-
aries and in the vertical ranges where stratification is strong. Such
adaptive coordinate system produces less numerical mixing com-
pare to general sigma-coordinate discretization (Gräwe et al.,
2015). The horizontal advection has been solved using third-order
TVD scheme with P2-PDM limiter. Directional splitting technique
has been applied according to Pietrzak (1998). To minimize known
pressure gradient errors internal pressure has been solved using z-
interpolation method according to (Shchepetkin and McWilliams,
2003). The vertical subgrid turbulence is solved using k-ε model using
algebraic turbulence closure formomentumequations has been applied
via General Ocean Turbulence Model (GOTM, Umlauf and Burchard,
2005). Background vertical diffusivity has been set to 10−6 m/s. Hori-
zontal viscosity coefficient has been set to 10 m2 s−1 according to
Wallcraft et al. (2005) considerations. Air-ocean momentum and heat
fluxes were calculated using Kondo (1975) bulk parametrizations.

Themodel domain covers thewhole Baltic Seawith closed boundary
in the Kattegat. The bathymetry has been derived from the Baltic Sea
Digital Database (BSBD 0.9.3) and interpolated on a 1 nautical mile
grid, which is the horizontal resolution of the model. In vertical direc-
tion 40 bottom-following and adaptive layers have been defined, ensur-
ing b5 m vertical resolution in halocline and near the surface. The
timestep for the biogeochemical processes is set to baroclinic timestep,
which was 500 s.

3.4. ERGOM description

ERGOM (Neumann, 2000, 2002) is an extended version of the N-
based NPZD model taking into account processes like N-fixation, phos-
phorus limitation, denitrification and phosphorus binding into iron
compounds. 12 state variables are used which describe the N cycle in
molar N units. The inorganic nutrients, which are consumed by primary
producers, are defined as dissolved nitrate, ammonium and phosphate.
Primary producers are divided into three functional phytoplankton
groups: diatoms, flagellates and N-fixing cyanobacteria. Chlorophyll-a
(chl-a): is the sum of all three functional groups of algae and detritus.
Nitrogen in phytoplankton and detritus (mol N/kg) is converted into
molar carbon-content according to the Redfield ratio (Redfield, 1934).
Grazing of phytoplankton is described as the growth of zooplankton.
Phyto-and zooplankton are transformed into dead organic matter,
which sinks and contributes to the sediment pool as detritus. Under
oxic conditions part of the detritus is remineralized back to dissolved
nutrients; this process uses oxygen and has a temperature-dependent
rate. Under anoxic conditions denitrification reduces nitrate to molecu-
lar nitrogen, which leaves the system. If nitrate is depleted under anoxic
conditions, detritus is oxidized with sulfate and generates dihydrogen
sulfur gas, which is considered as negative oxygen. Under oxic condi-
tions reactive phosphates are bound into iron-phosphates, which sink
out of the water-column and accumulate in the sediment layer. In case



194 U. Raudsepp et al. / Science of the Total Environment 671 (2019) 189–207
of anoxiawith the presence of sulfuric acid, iron-oxide gets reduced and
phosphates are released back to the system as nutrients available to the
primary producers. A fraction of these iron-phosphate complexes is also
assumed to be buried permanently, depending on the sediment thick-
ness and sedimentation rate (Neumann and Schernewski, 2008). More
detailed descriptions of the ERGOM model are available in Neumann
(2000); Neumann et al. (2002); Neumann and Schernewski (2008);
Radtke et al. (2012) and Lessin et al. (2014a).

The initial conditions for salinity and temperature have been taken
from a hindcast simulation of Maljutenko and Raudsepp (2014) to
avoid a long spin-up period and instabilities, which occur during cold
starts. Stable density fields from December 2000 were chosen based
on similar measured salinity values and stratification conditions in the
GotlandDeep in 2012. A short spin-up period of onemonthwas applied
to adjust themodelwith newatmospheric forcing and river inflows. Ini-
tial nutrient pools have been adopted from climatic average fields for
January from the 40 year long hindcast ERGOM simulation for the Baltic
Sea (Kõuts et al., 2019). The oxygen profilemeasured in 2011December
at theGotlandDeephas been assimilated to the initialfield of oxygen for
the whole Baltic Proper domain to adjust the extent of the anoxic area
for the year 2012. The open boundary conditions have been closed to
neglect the nutrient fluxes from the North Sea and therefore to study
the Baltic Sea as a closed system. This assumption affects the biogeo-
chemistry in the Kattegat and southwestern Baltic but as we deal with
one year and one year simulation repeated for five years, we assume
the impact to be minor in the context of the entire Baltic Sea.

3.5. Coupled GETM-ERGOM justification

Placke et al. (2018) have compared main hydrographic and circula-
tion fields of the long-term model simulation results performed by
GETM, MOM and RCO circulation models in the Baltic Sea. Their assess-
ment remains without general conclusion that all considered fields are
reproduced better by one of the model than by the others. Therefore,
we do not have solid justification of using one particular circulation
model in our study. Although, Gräwe et al. (2015) have argued that
the adaptive vertical coordinate system (Burchard and Beckers, 2004;
Hofmeister et al., 2010) implemented in GETM has an advantage in
comparison to fixed vertical coordinate system implemented in MOM
and RCO by having less numerical mixing due to a better resolution of
a strong vertical stratification. Our argument of using GETM is that we
have successfully validated the model for long-term simulation period
of 1996–2006 (Maljutenko and Raudsepp, 2014).

Comprehensive comparison of the Ecological Regional Ocean
Model (ERGOM) (www.ergom.net; Neumann and Schernewski,
2008) coupled to the physical Modular Ocean Model (MOM 3.1)
(e.g. Pacanowski and Griffies, 2000), the Swedish Coastal and
Ocean Biogeochemical (SCOBI) model (Eilola et al., 2009; Almroth-
Rosell et al., 2011) coupled to the Rossby Centre Ocean (RCO) circu-
lation model (RCO–SCOBI) and the BAltic sea Long-Term large-Scale
Eutrophication Model (BALTSEM) (Gustafsson, 2003) long-term
simulation results of nutrient and oxygen dynamics in the Baltic
Sea show no advantage of any model (Eilola et al., 2011). The
ERGOM and SCOBI models are relatively similar in terms of the set
of state variables used and key biogeochemical processes imple-
mented in the models (e.g. Eilola et al., 2011).

The SCOBI model has been mainly used in the coupling with RCO
model for climate change studies (e.g. Meier et al., 2018) and recently
coupled with NEMO (Raudsepp et al., 2019b). The MOM-ERGOM
coupled model system has been widely used for the biogeochemical
studies of the Baltic Sea (e.g. Neumann et al., 2017). A coupled GETM-
ERGOMmodel has been used for different studies of the biogeochemis-
try of the Baltic Sea in multi-year simulations (Lessin et al., 2014a,
2014b) and in particularly for investigating the ship impact to marine
biogeochemistry (Raudsepp et al., 2013). Besides, the model system of
the 3D ocean circulation Hiromb-BOOS model (HBM) coupled with
the biogeochemical ERGOM model (Maar et al., 2011, 2014; Wan
et al., 2012) has been used for studying nutrient loads impact to primary
production in the western Baltic Sea (Maar et al., 2016) and for evalua-
tion of atmospheric nitrogen inputs including ship-borne nitrogen to
marine ecosystems (Neumann et al., 2018a, 2018b, 2018c).

3.6. Meteorological forcing

Meteorological fields to drive the CMAQ and GETM-ERGOM system
were calculated with COSMO CLM version 5.0 (Geyer, 2014). COSMO
was driven with ERA–Interim reanalysis fields using the spectral nudg-
ing technique to force themodel to stay close to the reanalysis. The runs
were performed on a 0.11° × 0.11° rotated lat/lon grid with 40 vertical
layers up to approx. 20 km altitude. A nested model run on a 0.025° ×
0.025° grid with 50 vertical layers was applied to the Baltic Sea region
and then interpolated on a 4 × 4 km2 grid with a modified version of
the MCIP (Otte and Pleim, 2010). We have applied hourly atmospheric
forcing for the GETM-ERGOM model system.

3.7. Input of nutrients

Nutrient input from the 36 largest rivers has been derived from the
European hydrology model (E-HYPE) hindcast simulation of Donnelly
et al. (2015). The diffuse inputs of adjacent regions along the coast
have been added to the nearest rivers. Since only total nitrogen (TN)
was available from hindcast simulations, we used fractions of 0.70 and
0.05 for nitrate and ammonium, respectively. The remaining fraction
of 0.25 from TN contributes to the organic nitrogen pool as detritus
input. The input of phosphates and organic phosphorus was assumed
0.25 and 0.75 fraction of the total phosphorus, respectively. The used
fractions were inferred from numerous studies on nutrient loads to
the Baltic Sea (e.g.Stålnacke et al., 1999; Vahtera et al., 2007; Savchuk
et al., 2012).

Nutrient input from shipping to the Baltic Sea has been considered
from two main sources: atmospheric depositions and discharge from
shipping. The emission of NOx to the atmosphere from shipping has
been taken from hourly emission dataset of STEAM simulation covering
the full calendar year of 2012. In STEAM, each vessel is considered as
unique case considering vessel specific ship activity and technical de-
scription. Daily emissions of NOx, SOx, CO, Elementary Carbon (EC), Or-
ganic Carbon (OC), SO4 and Ash were generated as emission grids,
which were used as input for atmospheric modelling.

Emissions for all other anthropogenic sources except shipping are
based on EMEP emission data for the year 2012. They include NOx,
NH3, SO2, CO, NMVOCS and PM10. Biogenic emissions were calculated
with BEIS 3.4 (Schwede et al., 2005; Vukovich and Pierce, 2002). Sea
salt emissions followed the parametrization of Gong (2003), but exclud-
ing surf zone emissions because of overestimation of the emission flux
in some regions (Neumann et al., 2016). All emissions were temporally
and spatially disaggregated and distributed to the CMAQ model's grids
with the SMOKE for Europe emission model (Bieser et al., 2011a). The
vertical distribution of the emissions from certain sectors followed the
standard profiles given in Bieser et al. (2011b).

Atmospheric deposition of NOx species into the sea have been
considered from the following wet and dry depositions of: particu-
late NO3 (PM_NO3), nitrogen trioxide (NO3), nitrogen dioxide
(NO2), nitric oxide (NO), nitric acid (HNO3), nitrous acid (HONO), ni-
trogen pentoxide (N2O5), peroxyacetyl nitrate (PAN), oxidized
peroxyacetyl nitrate (OPAN) and peroxynitric acid (HNO4). Particu-
late ammonium (PM_NH4) and ammonia (NH3) contribute to re-
duced nitrogen deposition. The atmospheric phosphorus deposition
has been considered as 3.5% of mineral ash deposition calculated in
CMAQ. The hourly atmospheric depositions from a 4 × 4 km2 atmo-
spheric deposition grid have been interpolated on the 2 × 2 km2

shipping discharge grid used for the direct nutrient inputs.

http://www.ergom.net
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Discharge of nutrients from BW, GW, FW, SWO and SWC have been
calculated from the discharge volumes and concentrations in wastewa-
ters (Wilewska-Bien et al., 2018; Jalkanen et al., in preparation.,
Wilewska-Bien et al., 2016, Jönsson et al., 2005, McLaughlin et al.,
2014, Furstenberg et al., 2009, Hufnagl et al., 2005, Wartsila, 2010pers.
comm). The organic nitrogen is considered as dead organic matter
input and is recycled to dissolved nutrients in the water by bacteria.
The actual numbers of different inputs are given in Table 1.

3.8. GETM-ERGOM validation

GETM-ERGOM system validation is performed for the year 2012.We
have calculate model and data bias and root mean square error (RMSE)
for basic state variables as water temperature, salinity, nitrate, phos-
phate, oxygen and chlorophyll a (Chl-a) at the station BY15 of the Got-
land Basin. Surface layer temperature is significant abiotic variable that
controls the seasonal cycle of the biogeochemical processes and is well
reproduce by the model (Fig. 2a, Bias = −0.5 °C, RMSE = 0.8 °C). Bot-
tom temperature (Fig. 2a, Bias = −0.3 °C, RMSE = 0.4 °C) and bottom
salinity (Fig. 2b, Bias = 0.7 g/kg, RMSE = 0.7 g/kg) do not vary signifi-
cantly in time, as their dynamics ismainly related to theMajor Baltic In-
flows which are absent in 2012 (Raudsepp et al., 2018). Surface salinity
(Fig. 2b, Bias=0.5 g/kg, RMSE=0.5 g/kg) aswell as entire vertical tem-
perature (Fig. 2d) and salinity (Fig. 2e) profiles are well reproduced ex-
cept that halocline is about 10-m deeper in the model than in the
measurements. The latter affects vertical distribution of nitrate
(Fig. 2f), phosphate (Fig. 2g) and oxygen (Fig. 2h). Seasonal variations
of nitrate (Bias= 1.1 mmol N/m3, RMSE= 1.5 mmol N/m3), phosphate
(Bias = −0.1 mmol P/m3, RMSE = 0.2 mmol P/m3) and chl-a (Bias =
−0.9 mg/m3, RMSE = 1.0 mg/m3) in the surface layer are depicted in
Fig. 2c. Their basic seasonal cycle is well reproduced by the model - nu-
trients concentrations are high in spring before the spring bloom of di-
atoms, depleted in summer and start to increase in autumn; spring
diatom bloom and summer cyanobacteria bloom are present in the
model results. Deficiencies of the model are that phosphate concentra-
tion is underestimated in spring and spring bloom is delayed in time
(Fig. 2c). Large model errors in the nitrate concentration between the
depth of 60 and 150 m (Fig. 2f) and in the phosphate concentration
from 60 m depth to the bottom (Fig. 2g) originate from the errors in
the model initial fields (not shown) indicated by the variability of the
model profiles of corresponding variables.

The GETM-ERGOM system consists a number of nonlinear related
equations and calibration parameters. To perform mathematically cor-
rect uncertainty estimations and model sensitivity analyses is complex
task on its own. Besides of the uncertainties of the GETM-ERGOM sys-
tem, we have uncertainties related to the STEAMmodel and their treat-
ment of emission and discharge of each particular ship, uncertainties
related to COSMO CLM and CMAQ model; uncertainties due to river
load of nutrients and uncertainties related to the GETM-ERGOM setup.
The provided list of potential sources of uncertainties is far from being
complete. In the present application of the GETM-ERGOM we rely on
the wide use of this model system for similar research (Schernewski
and Neumann, 2005; Neumann and Schernewski, 2008; Radtke et al.,
2012; Lessin et al., 2014a; Lessin et al., 2014b; Neumann et al., 2018a,
Table 1
Annual total excess nutrient input (SHIP minus NOSHIP), nutrient input in the form of di-
rect discharge from the ships and percentage of contribution from different sources to di-
rect discharge.

Annual nutrient input Share of shipping emissions

Nutrients Inputs (t) Total
(t)

BW
(%)

GW
(%)

FW
(%)

SWO
(%)

SWC
(%)

BLG
(%)

N-NO₃ 20,260.00 14.27 – 63.59 – 1.92 34.49 –
N-NH₄ −664.20 518.99 94.60 3.52 1.87 0.01 – –
N-Det 239.20 258.65 33.58 36.40 28.90 – – 1.12
P-PO₄ 57.50 60.54 62.17 33.09 4.69 0.05 – –
2018b, 2018c; Kõuts et al., 2019). Therefore, we have kept the set of cal-
ibration parameters similar to the previous studies and rely on the val-
idation results of the model. The strong argument for the reliability of
the model results and conclusion drawn from the study is that we
have performed two identical model simulation, i.e. with and without
input of the ship-borne nutrients. Mainly, differences of the spatio-
temporal distribution of the biogeochemical variables and their fluxes
are analysed, not the absolute values. The calculated RMSE values are
considered as proxies for the uncertainties of state variables.

The choice of biogeochemical model parameters and systems dy-
namics is sensitive to the physical model parameters and external forc-
ing (Burchard et al., 2006; Miladinova and Stips, 2010).

4. Results

4.1. Sources of nutrients from shipping

Annual input of nitrate is two orders of magnitude larger than the
input of other nutrient compounds (Fig. 3a). Nitrate deposition consists
of atmospheric deposition and direct discharges to the water. Atmo-
spheric deposition of nitrate prevails over the direct discharge, which
results in continuous distribution over the Baltic Sea. There is a south-
west gradient of the nitrate input distribution due to increase of ship-
ping intensity towards the southern Baltic Sea and Danish Sounds
(Sime, 2014) and due to prevailing atmospheric circulation. Prevalent
winds are from W/SW, so the area receives shipping emissions from
the North Sea as well.

N-NH4 input also combines atmospheric deposition and ship dis-
charge (Fig. 3b). High input from discharges is observed on the shipping
lanes, while more continuous spatial map of the atmospheric input is
negative. The negative values increase towards the southwestern Baltic
according to the increase of shipping activity. Discharge of N-NH4 from
ships, which originates mainly from BW, are compensated by reduced
atmospheric deposition of N-NH4 in the SHIP case compared to the
NOSHIP case along the main shipping routes. Input remains positive
on the routes of passenger ferries in the Gulf of Finland and northern
Baltic Proper. Same holds for the southwestern Baltic and the Danish
Sounds, although reduced deposition of ammonium in the SHIP case
compared to the NOSHIP case is high there.

P-PO4, which enters the sea via direct discharge, has a distribution
pattern with elevated concentrations directly on the shipping lanes,
where the input takes place (Fig. 3c).

Discharge of organic compounds of nitrogen and phosphorus takes
place in the shipping lanes (Fig. 3c,d). BW, GW and FW are discharged
to the sea in shipping lanes, but only allowed outside of 12 Nm from
the coast. Only not comminuted or disinfected discharges were taken
into account because at the time of modelling regulations did not re-
quire nutrient reduction in wastewater. The untreated wastewater
was modelled beyond 12 Nm from coastline and when ships were en
route moving at 4 knots. The wastewater generated within the 12 Nm
boundary is collected onboard the ships and released outside the
12 Nm zone with a determined rate. Parameters like kinetics, mixing
or transport (advection) were not included in the modelling. In the
case of cargo ships, it results in point-discharge at the start of the ship-
ping lanes outside of the 12 Nm coastal zone. The much larger volumes
released frompassenger ferries are assumed to be continuous,which re-
sults in a line discharge. The discharge rates for different type of ships
are included in the modelling runs.

4.2. Time series of marine environment response to ship deposition com-
pared to natural processes

The Gotland Basin was selected to study the immediate effect of
shipborne nutrient input on the biogeochemistry of the Baltic Sea.
Time series of main biogeochemical parameters were selected from
the BY15 monitoring station (Fig. 1), which is a HELCOM monitoring



Fig. 2. Timeseries of bottom and surface temperature a) and salinity b) at Gotland station. Timeseries of surface nitrate, Chl a and phosphate is shown on c). Vertical mean profiles and the
range of ±1 STD variability (as shaded area) of d) temperature, e) salinity, f) nitrate, g) phosphorus and h) oxygen at Gotland station. Observations from HELCOM database are shown as
black line and modelled profiles as blue line.
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station since 1978. BY15 is located in the middle of the Eastern Gotland
Basin close to the main shipping lines (Fig. 1). BY15 as a deep station
(250 m) represents deep-layer biogeochemical processes, which are
detrimental in steering the eutrophication process in the Baltic Sea. A
major part of the research on the influence of MBIs on hydrophysical
and biogeochemical conditions in the Baltic Sea are based on the mea-
surements there (e.g. Savchuk, 2018; Mohrholz, 2018). It is also consid-
ered as a representative area of spring and summer blooms - with
medium to high chl-a concentrations (Kahru et al., 2007; Zhang et al.,
2018).
Nitrate, phosphate, phytoplankton and zooplankton variations un-
dergo the commonly known annual cycle in the Baltic Sea without vis-
ible differences between the SHIP and NOSHIP simulations. In order to
estimate the impact of the SHIP scenario on the Baltic Sea ecosystem
we calculated the relative changes of themain biogeochemical variables
as (SHIP-NOSHIP)/SHIP.

Nitrate and phosphate concentration increases on the surface until
April–May and go into steep declinemid-May (Fig. 4a,b). This coincides
with the diatom bloom,which peaks at the end of Junewhen nitrate be-
comes depleted (Fig. 4c). Simultaneously to the steep decline of nitrate



Fig. 3. Spatial distribution of annual shipping related inputs of a) nitrate, b) ammonium, c) organic nitrogen, and d) phosphorus.
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and phosphate at the end of May, shipping-derived relative changes in
nitrate and phosphate become apparent: more nitrate (max. +10%)
and less phosphate (max. −3%) is available on the surface, in SHIP
case compared to NOSHIP case (Fig. 4a,b). This lasts from June till the
end of July/beginning of August. Relative changes of nitrate and phos-
phate are then reversed, starting at the end of August, with less than av-
erage surface nitrate being available from August to the second half of
September and more phosphate from the beginning of August to the
end of September. Relative increase (max. +5%) of diatoms is evident
mostly after their bloom, whereas flagellates experience a relative in-
crease (+12–13%) before their bloom peak (Fig. 4c,d). Cyanobacteria
go through a relative decrease (−10%) from June to October and coin-
cides with the relative shipping-related increase of diatoms and flagel-
lates (Fig. 4e). Zooplankton experiences very little relative change due
Fig. 4. Time-series of concentrations at the surface layer of the Gotland Deep for the SHIP
and the NOSHIP scenario regarding a) nitrate, b) phosphorus, c) diatom, d) flagellate,
e) cyanobacteria, and f) zooplankton. Relative difference between the SHIP and the
NOSHIP scenario is shown as green line.
to shipping, with a slight increase (+1%) during their bloom in end of
May/June and decrease (−4%) from August to October (Fig. 4f), slightly
shifted from the cyanobacteria bloom peak (Fig. 4e).

Snapshots of vertical profile of the biogeochemical variables at sta-
tion BY15 show that the surface layer is representative of the entire
upper mixed layer and shipping-related impact does not go below the
pycnocline, except for oxygen (Fig. 5). While nutrient concentrations
are determined by the depth of the mixed layer (around 75 m)
(Fig. 5a,b,c), phytoplankton and zooplankton depend on the euphotic
zone in the upper 30 m (Fig. e,f,g,h). Changes in dissolved oxygen are
most pronounced at the transition depth from hypoxic to anoxic condi-
tions (concentration of dissolved oxygen between 1 and 2 ml l−1),
which is at 150 m depth at the BY15 station (Fig. 5d). Relative changes
aremost severewhere oxygen values are close to zero initially. Absolute
decrease in oxygen results in an increase of the anoxic bottom area by
50 km2 at the end of the year compared to the total anoxic area of
40,000 km2 in NOSHIP scenario.
4.3. Spatial distribution to complement time series

The exact location of the shipping lanes does not have a substantial
effect on the spatial distribution of the surface excess nitrate (Figs. 1,
6a) as NOx ismainly emitted to the air, where it undergoes atmospheric
chemistry transformation and redistribution due to atmospheric circu-
lation. This means that the spatial pattern of atmospheric deposition
of nitrate is strongly dispersed compared to the concentrated discharge
pattern of e.g. phosphate (Fig. 3c).

Deposited atmospheric nitrate is redistributed in the marine envi-
ronment due to currents and mixing, so there is no resemblance of ex-
cess nitrate (Fig. 6a) to the deposition pattern (Fig. 3a). The Bothnian
Bay has the lowest excess nitrate in the surface layer, which corre-
sponds to the low nitrate input in the area. The rest of the Baltic coastal
areas have higher surface concentrations of excess nitrate than the open
sea areas. This pattern of redistribution is explained by shallower water
columnnear the coastwhere thewater depth is smaller than themixing
depth. For instance, in the case of equal deposition of nitrate to the deep
and shallow area relative to mixing depth, the nitrate is equally mixed
over the surface mixed layer in the deep area, but equally mixed over
the entire water column in the shallow area. As the layer thickness is
bigger in the first case than in the second case, the concentration of ni-
trate is lower in the first case than in the second case. The excess nitrate
has highest concentrations on the eastern coast of the Baltic.

The mean distribution of excess phosphate in the water has a
fragmented pattern (Fig. 6b). The area of high excess phosphate is
clearly seen in the northeastern Baltic Proper due to the continuous
line discharge from passenger ships. The other region of elevated excess
phosphate concentration is in the southern Baltic around the Danish
Sounds, also explained by very heavy ship traffic which is concentrated
in a relatively small sea area.

The elevated excess diatom concentrations correspond to the excess
nitrate, most notably in the Estonian Archipelago Sea (Fig. 6a,c). Ele-
vated concentrations are also evident in the northern Baltic Proper
and the northern part of the Gulf of Finland, in the central part of the
Gulf of Bothnia, on the Polish coast and in the Kattegat. No excess dia-
toms are seen in the phosphorus limited areas, e.g. southern and eastern
Gulf of Riga, and the eastern coastal area of the Baltic Proper.

The distribution of excess flagellates, which bloom at the end of
summer and in autumn, mostly concentrates into Kattegat and less in-
tensively in the Northern Baltic Proper - Gulf of Finland area (Fig. 6d),
which slightly reflects the pattern of excess phosphorus on the surface.
The spatial extent of cyanobacteria blooms is reduced in vast areas in
the Baltic Proper, the Gulf of Finland and several coastal areas
(Fig. 6e). The areas with little to no change in cyanobacteria blooms
overlap with the areas with phosphorus limitation - e.g. Bothnian Bay
and big river estuaries.



Fig. 5. Vertical profiles of modelled a) nitrate, b) phosphorus, c) ammonium, d) oxygen, e) flagellate, e) cyanobacteria and f) zooplankton concentrations at the Gotland station from SHIP
(blue line) and NOSHIP (red dashed line) scenario. The time instances for correspond to peak concentrations in the surface layer (Fig. 3). The time instance for the oxygen profile
d) corresponds to cyanobacteria bloom peak. Relative difference between the SHIP and the NOSHIP scenario is shown as green line. Potential density (σt) is shown as yellow line.
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Deposition of organic matter into the sediment was calculated during
two periods: intense phytoplankton bloomperiodMay–June and decom-
position period in October–December (Fig. 6f,g). Maximum excess sedi-
mentation in the period of May–June is heaviest in the southern Baltic
(south of Gotland), the West-Estonian archipelago, Gulf of Finland and
the Aland Sea. The Gulf of Bothnia, the southern part of the Gulf of Riga
and areas on the eastern coast of the Baltic Proper are less affected by
excess organicmatter. Thedistributionof surplus sediments is spreaduni-
formly over the Baltic Proper and the Gulf of Finland bywater circulation.
Organic matter accumulation inMay–July is spatially more extensive and
contains more organic matter due to primary production than in
October–December when sediments are already being remineralized
and the flux from the surface is declining. In autumn organic matter
mostly accumulates in the medium deep and deep areas in the central
part of the basins. The period from October to December reflects a more
long-term distribution of sediments, shaped by transport. Another dis-
tinctive feature of the sediment distributions from both periods (Fig. 6f,
g) is the small-scale spatial heterogeneity. This is related to the small-
scale topographic irregularities that hinder smooth horizontal transport
and favor sedimentation on the slopes of topographic shoals.
The pattern of organic matter accumulation in the two periods is in
most parts similar to oxygen distribution, with decreased oxygen
areas overlapping with high organic material accumulation spots
(Fig. 6h,i). Summer bottom oxygen reduction is mostly seen in shallow,
coastal areas in the Archipelago Sea in Estonia, as well as the coasts of
southern Finland and Sweden. Large areas are affected by ship-
induced oxygen decline west of Bornholm island and in the Danish
Straits, where marine traffic is also intensive. Central deep and mostly
anoxic areas of the Baltic Proper are not affected by ship-induced oxy-
gen decline. Winter oxygen conditions show a different pattern with
minimum concentrations in the areas of medium depth, i.e. 60 m
depth. The shallower sea areas are well ventilated by wind and thermal
mixing and are not affected. The most severe impact is seen in the Kat-
tegat, southern Baltic, Bornholm Basin, Stolpe Channel and Gdansk
Basin (Fig. 6h, i).Winter oxygen conditions reflect the accumulation im-
pact of shipborne nutrients and represent oxygen conditions that re-
main poor after dead organic matter has decomposed. Longitudinally,
the reduction of bottom oxygen is stronger along the eastern bottom
slope than along the western slope of the Baltic Proper due to the pre-
vailing cyclonic circulation (Omstedt et al., 2014).
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5. Discussion

This study is based on one year of ship traffic data, the corresponding
emissions and discharges and the atmospheric andmarine conditions of
the year 2012. The intensity of ship traffic can vary annually (HELCOM,
2010) and the same holds for atmospheric and marine conditions,
which influence the actual deposition of nutrients to the sea and their
spreading. A study by Raudsepp et al. (2013) for repeated ship deposi-
tion in changing hydrodynamic conditions in the Gulf of Finland
Fig. 6. Spatial distributions of variable differences between the SHIP and the NOSHIP scenario. T
during the period from February to June, for a) nitrate, and b) phosphorus. The difference of c
scenario. e) Difference of summer bloom (cyanobacteria) during the peak bloom for the NOSH
the spring bloom from May to July, and g) after the bioactive period from October to Decemb
for the near-bottom oxygen concentrations during the summer months from h) July to Septem
shows interannual variations of different biogeochemical variables in
the range of 50%. The ship routes do not change from year to year,
hence the general pattern of direct nutrient discharge from ships re-
mains unchanged, which means that main discharge areas are south-
western and northeastern Baltic Proper. Nitrogen discharge is two
orders of magnitude lower than atmospheric deposition of nitrogen. At-
mospheric nitrogen deposition could be inter-annually more variable in
terms of the spatial distribution. However, as the results show a rather
smooth and only slightly varying spatial nitrogen deposition pattern,
he difference in surface concentrations at the time of their maxima in the NOSHIP scenario
) diatoms, and d) flagellates, during the time of the peak bloom in spring for the NOSHIP
IP scenario. Distribution of the maximum difference of the nitrogen in sediments f) after
er. The distribution of maximum differences between the SHIP and the NOSHIP scenario
ber, and i) for the period after the bioactive season from October to December.
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we expect that atmospheric circulationwill redistribute NOx emitted to
air rather homogeneously in the other years, as well. The spatial distri-
bution of excess nitrate, phosphate and organic matter from shipping
discharge is more heterogeneous than atmospheric deposition of ni-
trate. The circulation can vary a lot in the Baltic Sea from year to year
(Lehmann et al., 2002; Meier and Kauker, 2003; Väli et al., 2013), so
the areas of high and low nitrate concentration can vary accordingly be-
tween years.

Diatoms and flagellates benefit from the ship-borne nutrients which
reflects in the increase of their biomass. The spatial distribution of
excess diatoms and flagellates might depend on the competition for
the nitrogen between two groups. Nutrients play an important role in
the structure of phytoplankton communities, which can be explained
by varying nutrient-acquiring abilities of different species (Lomas and
Glibert, 2000). However, it must be taken into consideration that it is
difficult to determine exactly how important nutrients are, as there
are also many other factors at play (which we do not look at in this
study) regarding the competition between diatoms and dinoflagellates
- e.g. other nutrients (silica), light conditions, water stratification, ice
conditions and specific characteristics of the species, e.g. mixotrophy,
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which gives a competitive advantage in some nutrient enrichment situ-
ations (Lagus et al., 2004; Granéli et al., 1990; Lomas and Glibert, 2000;
Spilling et al., 2014).

Cyanobacteria biomass is reduced themost in the areas with usually
strong cyanobacteria blooms, which include southern and central Baltic
and the western part of the Gulf of Finland (Kahru et al., 1994, 2007;
Kahru and Elmgren, 2014). This result is in accordance with previous
studies on the effect of additional nitrogen on cyanobacteria blooms
(Elmgren and Larsson, 2001). The areas with little to no change in
cyanobacteria blooms overlap with the areas with phosphorus limita-
tion - e.g. Bothnian Bay and big river estuaries (Kõuts et al., 2019). Ex-
cess detritus distribution and corresponding oxygen reduction reflect
the pattern of excess diatom distribution and possibly water circulation
in summer. The same is generally true for autumn except that shallow
areas are well ventilated then. Deep areas in the central and northern
Baltic Proper are unaffected as they are anoxic already (Fig. 6h).

The biogeochemical cycle in the Baltic Sea is defined by nitrogen
being mostly the limiting nutrient. This is due to the system's ability
to remove the added biologically available nitrogen through the micro-
bial conversion back to N2 gas via denitrification, which each year
removes nitrogen corresponding to most of the input (Voss et al.,
2005; Radtke et al., 2012). This takes place in the sediments as well as
in oxygen-deficient deep waters and becomes more effective when
oxygen-deficiency is widespread (Voss et al., 2005; Radtke et al.,
2012). Therefore, any changes in nitrogen input affect the Baltic Sea eco-
system functioning.

To assess the impact of shipping-related excess nitrogen on the bio-
geochemical processes in the Baltic Seat we subtract fluxes of nitrogen
from two model simulations, i.e. SHIP minus NOSHIP, like we did for
the biogeochemical variables. The nitrogen balance in the marine sys-
tem takes into account nitrogen content in the sea, both in water and
sediments, nitrate and ammonium flux from the atmosphere and rivers,
nitrogen brought to the system by nitrogen fixation and outflow of ni-
trogen to the air in the form of molecular nitrogen, i.e. the result of de-
nitrification. River fluxes of nitrogen are the same in both cases giving
zero contribution to excess nitrogen.

The results show that since the beginning of January until the end of
March, shipborne nitrogen input exists in the form of nitrate in the
water column (Fig. 7a). When the spring bloom starts, not all nitrogen
load into the water remains there, i.e. total nitrogen in the ecosystems
becomes lower than the shipborne nitrogen input. Total nitrogen in
themarine system consists of nitrate in thewater as themain contribu-
tor, nitrogen bound in phytoplankton, dissolvedmolecular nitrogen and
nitrogen in detritus in the water and sediments. The difference of the
input and the total nitrogen in the marine system increases slowly
until mid-July.

The pool of dissolved inorganic nitrogen decreases due to the spring
bloom of diatoms in May. Diatom biomass remains on an elevated level
after bloom peak, compared to NOSHIP scenario, due to additional ni-
trates in the surface layer (Fig. 3a,c). With a short delay, the pool of ni-
trogen bound to detritus grows as phytoplankton starts to decay.
Decomposition of organic matter leads to an increase of the ammonium
pool, but as ammonium is rapidly oxidized to nitrate and molecular ni-
trogen, the concentration of ammonium-bound nitrogen remains low.
Until mid-July when cyanobacteria start blooming, the content of inor-
ganic nitrogen stays stable in thewater, as well as nitrogen bound to di-
atoms, while nitrogen content in the sediments increases. In July the
share of nitrogen in phytoplankton increases slowly due to the uptake
of nitrogen by increasing flagellates. In principle, the nitrogen fluxes
during that period could be described as concurrent uptake of inorganic
nitrogen by phytoplankton, their death (formation of detritus) and de-
composition of organic nitrogen into NH4 as a short-lived compound,
and finally transformation into molecular nitrogen and dissolved inor-
ganic nitrogen again via denitrification.

The Baltic Sea as a nitrogen-limited ecosystem gives an advantage to
the phosphorus-limited nitrogen fixing cyanobacteria (Granéli et al.,
1990). Hence, additional nitrogen input due to shipping results in
lower cyanobacteria biomass and an overall decrease of total excess ni-
trogen in the marine system. The decline in cyanobacteria biomass re-
sults in a decrease of the amount of dead organic matter and detritus-
boundnitrogen aswell as a negative contribution tomolecular nitrogen.
The share of nitrogen in the other functional groups of phytoplankton
and inorganic nitrogen in the water is also declining, but less strongly
compared to cyanobacteria. Since the end of August until November,
the amount of inorganic nitrogen in the water is stable, the negative
contribution of cyanobacteria is decreasing, nitrogen in phytoplankton
and in detritus varies slowly around stable content, mostly due to the
flagellate bloom, but total nitrogen starts to increase slowly. Roughly
since November primary production ceases, concentration of inorganic
nitrogen increases due to shipborne input, nitrogen in phytoplankton
decreases to zero, and nitrogen in detritus gains stable positive level.
By the end of the year shipborne nitrogen consists mainly of inorganic
nitrogen in the form of nitrate in the water and organic nitrogen in
the form of detritus in the water and in the sediments. Smaller amount
of dead organic matter results in lower denitrification in the NOSHIP
case compared to the SHIP case and negative excess gaseous nitrogen.

Considering all the fluxes as explained above, the 5-year nitrogen
balance is depicted in Fig. 5b. The difference in the atmospheric fluxes
consists of shipping related deposition of nitrate and ammonium. Nitro-
gen fixing is lower with SHIP scenario due to smaller amount of
cyanobacteria in the system and has negative excess flux. Also, denitri-
fication is higher in the SHIP case due to the internal dynamics of the
marine system and the excess flux is negative, which means that more
nitrogen is removed from the system in the case of SHIP scenario. The
difference in the nitrogen input to the sea and excess nitrogen is more
than twofold after one year of shipping activity (Fig. 5a). When we ex-
tend our simulation to a five-year period, repeating the same annual
ship input and hydrophysical conditions, we obtain that the total annual
amount of nitrate, i.e. sum of nitrate in the water and nitrogen in detri-
tus approaches a steady state. The ship input of excess nitrogen is
largely compensated by decreasing nitrogen fixation and increasing ni-
trogen removal due to denitrification compared to the NOSHIP case.

The phosphorus content shows a decrease of the phosphate in the
water column, i.e. excess phosphate is negative, but an increase of the
phosphorus pool in the sediments (Fig. 5c). The phosphorus input to
the Baltic is mainly eliminated by binding them in the sediments. In
the Baltic Proper, where much of the sediment is oxygen-deficient, sed-
iments are an inefficient sink, indicating that phosphorus, that is already
in the system, is eliminated very slowly (Savchuk and Wulff, 2009).
Continuous decomposition of organic material results in higher oxygen
consumption and a negative trend of the oxygen contentwhich deceler-
ates in time (Fig. 5d).

In absolute values, an annual nitrogen input of 20 kt from shipping,
is comparable with the nitrogen input of a big river of the Baltic, e.g.
the Neva river (Stålnacke et al., 1999). Hence, it could also be assumed
that ship-nutrient reductions have a similar response in the ecosystem
as the reduction of nutrients in rivers, which has beenmore thoroughly
studied in the Baltic Sea. River nutrient reduction has an effect on the
ecosystem - nitrogen and phosphorus inventories decrease, but it usu-
ally takesmore than two years to be significant according to simulations
(Neumann et al., 2002) and even longer in natural systems, depending
on their complexity (Duarte et al., 2009; Schindler, 2012). Also, a com-
pensatory mechanism often contributes in relation to the N/P ratio -
cyanobacteria concentrations are known to increase after nutrient re-
ductions (Higgins et al., 2017).

Coastal ecosystems are complex and responddifferentlywhennutri-
ent input is decreased, as the response trajectories are rather complex.
Duarte et al. (2009) has stated that coastal ecosystems seldom return
to a previous, oligotrophic level, but rather remain on a new, medium
level. In general an oligotrophication process starts when nutrients are
reduced - phytoplankton biomass will decrease and so will the oxygen
deficient zones, until a new steady state is achieved. Well-known
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examples of ecosystems improving to a certain level are the Black Sea
shelf area and Chesapeake bay (Kideys, 2002; Langmead et al., 2009;
Lefcheck et al., 2018), where dissolved oxygen conditions have im-
proved and phytoplankton blooms have slightly decreased with nutri-
ent reduction and ecological communities have benefitted from that.
Several studies suggest that decreasing inputs of nitrogen will not has-
ten recovery from eutrophication (in lakes) and may even hinder it by
favoring nitrogen fixers or stimulating internal loading of phosphorus.
Instead repeated adding of additional nitrogen could suppress
cyanobacteria blooms and in the long-term reduce nitrogen import to
the system (Schindler, 2012), which was also seen in our study. Similar
relative contribution of shipborne dissolved inorganic and particulate
organic nitrogen has been estimated for the southern Baltic Sea by
Neumann et al. (2018c). Raudsepp et al. (2013) have shown annual
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decrease of nitrogen fixation due to ship nitrogen deposition by 2–6% in
the Gulf of Finland. Other previous studies have estimated relative ship
contribution to be around 10% for different nitrogen compounds into
the Baltic Sea (Tsyro and Berge, 1998; Bartnicki and Fagerli, 2008;
Bartnicki et al., 2011; HELCOM, 2005).

6. Conclusions

The shipping contributes about 0.3% of the total phosphorus and
1.25–3.3% of the total nitrogen input to the Baltic Sea. The amount
of nitrogen directly discharged to the sea from the ships is about
two orders of magnitude smaller than atmospheric input of excess
nitrogen (SHIP minus NOSHIP). Excess ammonium deposition is
negative.

Spatially, the Gulf of Bothnia has almost negligible deposition and
discharge of nutrients due to shipping, while the North-Eastern and
South-Western Baltic Sea and the Kattegat area are the most impacted.
Relative impact of shipborne nutrients on the biogeochemical variables
in the surface layer does not exceed 10% locally, but this is already four
to eight times larger than the share of the ships in total nitrogen input to
the Baltic Sea. Diatoms and flagellates have amarked increase in spatial
distribution while the reduction of the spatial extent of cyanobacteria
blooms is extensive and covers vast areas in the Baltic Proper as well
as the Gulf of Finland and several coastal areas. The relative reduction
of cyanobacteria concentration of 10% due to shipping is significant dur-
ing their blooming period, whereas other phytoplankton functional
groups experience notable relative changes during their low concentra-
tion period in summer. Some of the additional organic matter produced
with the added nitrogen sinks to the bottom, where its decomposition
consumes oxygen and increases the areas of oxygen-deficient bottoms
by 50 km2 in the deep area of the central Baltic Proper within one
year of model simulation. This increase in anoxic bottom area deceler-
ates in time.

In general, the nitrogen balance showed that shipborne nitrogen
input does not result in equal increase of total excess nitrogen in the
water system. In the mostly nitrogen-limited Baltic Sea ecosystem, the
excess nitrate is consumed by diatoms and flagellates. The increase of
diatoms and flagellates biomass leaves less phosphate in the water for
the cyanobacteria that occur later in summer. Their biomass decreases,
which results in less atmospheric nitrogen being fixed and brought to
themarine environment. Besides, denitrification is higher due to the in-
ternal dynamics of themarine system, the excess flux is negative, which
means that more nitrogen is removed from the system.Multi-year con-
tinuous input of ship-borne nitrogen does not accumulate in themarine
environment, but total nitrogen reaches a stationary state. The excess
phosphate in the water column is negative, but phosphorus pool in
the sediments increases steadily.

In summary, nutrient input from shippingdoes not have a significant
effect on the Baltic Sea ecosystem in terms of the ecosystem functioning
as changes remain within 10%. Still, shipping accounts as an important
nutrient source in the context of the Baltic Sea, and is comparable in
size to a large river.
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