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Abstract

WC-Co cemented carbides combine superb hardness with high toughness making
them ideal for usage in high-speed machining of steels and in wear resistance tools.
These excellent mechanical properties are to a large extent dependent on the mi-
crostructure and thus the interfacial properties of the material. Hence, being able
to predict and understand interfacial properties in this material can allow for e.g.
optimizing the manufacturing process in order to improve mechanical properties
further.

Atomic scale ab-initio calculations allow for accurately predicting interface energies
for a given structure and composition. However, finding the ground-state interfa-
cial structure and composition becomes a challenge as the search space is very
large when considering all degrees of freedom. Furthermore, direct sampling of
interfacial properties at finite temperature using density functional theory (DFT)
often becomes computationally unfeasible as hundreds, thousands or even millions
of calculations may be required. Therefore, employing atomic scale models based
on DFT calculations is advantageous and allows for investigation of the interface
structure, composition and free energy at finite temperatures. In this thesis the
computational methods for calculating temperature dependent interfacial free en-
ergies are developed and applied to the WC-Co system.

An interfacial phase diagram for cubic thin films in undoped WC-Co is constructed.
Here, configurational degrees of freedom are treated using cluster expansion models
and Monte Carlo sampling. Vibrations are treated in the harmonic approximation
using force constant fitting to significantly reduce the number of DFT calculations.

The temperature dependence of interface free energies for surfaces, grain bound-
aries and phase boundaries is using an analytic bond order potential. Here, multi-
ple different free energy calculation methods are employed such as quasi-harmonic
approximation, 𝜆-integration, thermodynamic integration and surface tension cal-
culation.



Keywords: Cemented carbides, Hard Metals, Interfacial free energies, Force con-
stants, Molecular dynamics, Cluster expansion, Monte Carlo
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1
Atomic-scale computational

materials science

On of the more popular computational methods for solving the many-body quan-
tum mechanical problem for electrons in condensed matter or chemistry is density
functional theory (DFT). DFT is a first principle method, i.e. no extra param-
eters are apart from the atomic positions and numbers are needed to carry out
calculations of electronic properties. It does, however, require an approximate de-
scription of the exchange correlation function. DFT has been used through out
the years with great success. The quick advances in both computational power
and algorithms have allowed for using electronic structure calculations to predict
various characteristics of materials. Fundamental understanding of materials has
been improved and new materials have been designed on the atomic scale with op-
timal properties. However, solving the quantum mechanical problem for electrons
quickly becomes computational expensive when the number of atoms increases up
to the hundreds or thousands.

The computational cost of DFT calculations often becomes a limiting factor when
trying to predict thermodynamic averages at finite temperatures. This usually re-
quires taking into account configurational degrees of freedom, i.e. composition and
ordering. Vibrational degrees of freedom often also plays an important role for
thermodynamic properties. Hence thermodynamic sampling often requires calcu-
lations for many hundreds, thousands or millions of calculations depending on the
problem.

To overcome this problem, models for atomic interactions can be used, where
electronic degrees of freedom often are neglected all together. These models are
usually trained from DFT and/or experimental data. They are often many orders of
magnitude faster when e.g. evaluating the total energy of an atomic configuration
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Chapter 1. Atomic-scale computational materials science

while still retaining good accuracy. There are of course limitations of these models
and understanding in which regions the models are accurate and in which they
are not is very important. The construction of these models is often non-trivial
and can be a very challenging task, specially in regards to training process and
understanding the transferability of the models. Examples of atomic-scale models
are interatomic potentials, cluster expansions and force constants. Development of
software for model construction is part of the present thesis.

The free energy of a system can be used to explain most thermodynamic proper-
ties, it is for example necessary when analyze phase stability and when constructing
phase diagrams. Free energy of complex systems, even when given an interatomic
model, can be tricky to calculate. For example, the free energy of liquids are no-
toriously difficult to compute. Multi-component systems also poses a sampling
problem, which when considering many species is not easily solved. Atomic simu-
lation methods and free energy sampling techniques have also been developed over
the years including Monte Carlo and molecular dynamics simulations. Many free
energy calculation methods are employed in the present thesis.
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2
Cemented Carbides

2.1 General
Cemented carbides, or hardmetals, combine both hardness, the ability to resist
plastic deformation, and toughness, the ability to absorb energy and deform plas-
tically without fracturing [1]. These are two competing properties, meaning as one
increases the other one tend to decrease. For example, diamond is a very hard ma-
terial but also brittle (low toughness) and shatters easily. The excellent mechanical
properties of cemented carbides make them ideal for usage in diverse applications
including high speed machining of steels and in wear resistance tools[2, 3].

The most commonly used cemented carbide is WC-Co which is the material
studied in this thesis. The cemented carbide microstructure consists of WC grains
forming a continuous skeleton embedded in the Co binder phase. A typical mi-
crostructure of WC-Co is shown in Fig. 2.1. The WC grains provide the hardness
of the material whereas the Co binder phase adds toughness to the material [4].

2.2 Manufacturing
The WC-Co cemented carbide is manufactured from powders of the carbide and
the binder. First, the powders are mixed and milled in order to create an uniform
mixture and to reduce the carbide grain size. The milled powders are then pressed
to a desired tool shape and then, lastly, sintering takes place [4]. The goal of the
sintering is to densify the cemented carbide by eliminating pores, obtain strong
inter-grain bonds and achieve a desired microstructure. The sintering is often
done in several steps, usually reaching temperatures above 1300 ∘C where cobalt
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Chapter 2. Cemented Carbides

Figure 2.1: Scanning electron microscopy micrograph showing the typical mi-
crostructure of WC-Co with at.12% Co, from Ref. [5].

Figure 2.2: Phase diagram of W-C-Co system for a 10 wt% Co as a function of
carbon content and temperature, from Ref. [4].
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2.3. Microstructure

melts. This separates the sintering process into solid-state sintering and liquid-
phase sintering.

One important aspect of manufacturing is the carbon content which has a sig-
nificant impact on the mechanical properties. The phase diagram of W-C-Co for a
system with 10 wt% Co as a function of carbon content and temperature is shown in
figure Fig. 2.2. When manufacturing, it is desired to be in the two phase, WC-Co,
region in order to avoid the formation of either 𝜂-phases or graphite. If the carbon
content is too low complex carbides denoted 𝜂-phases will form. At low tempera-
tures the 𝜂12-phase (M12C) will form, whereas at temperatures above 1150 ∘C the
𝜂6-phase (M6C) will form [6]. The 𝜂-phases are brittle and are, therefore, detri-
mental to the mechanical properties of the cemented carbide. If the carbon content
is too high graphite will form which reduces the strength of the cemented carbide.

2.3 Microstructure
The microstructure of cemented carbides, shown in Fig. 2.1, consists of WC grains
forming a continuous skeleton in the Co binder phase. The WC grains are shaped
as truncated prisms since this shape yields the lowest overall interface energy [7].
Typically, WC grain size ranges from 200 nm to 10 𝜇m [4]. The evolution of the
microstructure during manufacturing is driven by the reduction of the total inter-
face free energy in the system, which can be done via reducing the interface area
and reorienting grains to find favorable interface orientations. Understanding the
interfacial free energies both at zero Kelvin at liquid-phase sintering temperatures
can, thus, help to understand and predict the microstructure.

The mechanical properties of the cemented carbide WC-Co is closely connected
to its microstructure [5]. Specifically, the size of the WC grains has a significant
impact on the mechanical properties, where smaller grains yields a harder mate-
rial. Due to the inverse proportionality between hardness and toughness a finer
microstructure also results in a decrease in toughness [5, 8]. The relation between
hardness and toughness has been speculated to change for ultra fine microstructure
with grains smaller than 100 nm [8]. Because of this, it is often desirable to keep
the grain size as small as possible in order to obtain a hard material.

2.4 Grain growth inhibition
Grain growth is driven by a reduction in overall interface free energies since a few
large grains have less interface area than many smaller grains. This can happen via
so called Ostwald ripening, where smaller grains are dissolved and, after diffusion,
redeposited on larger grains [9]. In WC-Co the grain growth is slow and thought to
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Chapter 2. Cemented Carbides

Figure 2.3: High resolution transmission electron microscopy image of a thin cubic
VC film from Ref. [15].

be limited via interfacial processes rather than diffusion in the binder phase [10].
Meaning it is likely that either the nucleation of a new atomic layer or the interface
mobility is limiting the growth rate. Grain growth in WC-Co have recently been
modeled via simulations in Ref. [11]. In this work the rate limiting process was
found to be dependent on the grain size, where smaller grains we’re limited by
nucleation of atomic layers and larger grains limited by the interface mobility.

The grain growth rate can be inhibited via addition of so called grain growth
inhibitors [12]. The most common grain growth inhibitors are the transition metals
such as V, Ti, Cr, Ta, Mo and Nb [13], where the most potent is V [12]. It is
reasonable to believe that the inhibitors in some way interfere with the processes
at the interfaces as these are likely the rate limiting processes. These dopants
are frequently observed in the phase boundaries between WC and Co where they
form thin films. The films exhibit a cubic rocksalt stacking which differs from the
ground-state WC hexagonal stacking. In general, the cubic films most often form
on the WC basal plane in contact with cobalt, but films can also form on the WC
prismatic planes [14]. It is probable that the cubic films are related to the grain
growth inhibition effect the dopants have. Thus, it is important to understand
under which conditions these films can form in order to e.g. be able to tailor the
sintering conditions to achieve a desired microstructure.

2.5 Cubic thin films
2.5.1 Experimental observations
Thin cubic VC films have been observed when doping the WC-Co system with the
cubic carbide VC [16, 17, 18]. These films are found to be about 1-2 VC layers
thick, a high resolution transmission electron microscopy (HRTEM) image of a film
is shown in Fig. 2.3.
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2.5. Cubic thin films

Figure 2.4: Scanning transmission electron microscopy image of a cubic TiC film
from Ref. [19].

Figure 2.5: High resolution transmission electron microscopy image of a two layer
thick cubic film at the phase boundary between the basal WC plane and Co from
Ref. [20].

Films have also been observed when doping with the cubic carbide TiC [14, 19],
an example is shown in Fig. 2.4. This TiC film from the more recent study, Ref. [19],
shows an interesting behaviour where the Ti atoms are located not in the first cubic
metal layer (counted from cobalt) but in the second. In this study it is also noted
that when measuring the spacing between metal layers in the cubic film there is a
significant deviation from ab-initio calculated values. This behaviour is also found
in paper I, in which undoped films are studied, where carbon vacancies are shown
to drastically reduce the layer spacings in the film. Hence, it is probable that this
observed TiC film also contains a significant amount of carbon vacancies.

Even in the undoped WC-Co systems cubic films have been observed [20, 21, 22],
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Chapter 2. Cemented Carbides

Co

WC
WC

MC

Co

Figure 2.6: Schematic representation of the creation of a thin film. Here MC
represents a cubic carbide film with for example M=(W, Ti, V).

a HRTEM image of such a film is shown in Fig. 2.5. These films are 2-4 layers
thick and observed on the WC basal plane (0001) with an (111) orientation of the
cubic phase. In Ref. [22] films were also observed films on prismatic planes. In
Ref. [20] it is stated that cubic films in undoped WC-Co are seldom found in the
C-rich materials, whereas very frequently in the W-rich materials. This can be
understood from the fact that the WC cubic phase contains a high concentration
carbon vacancies whereas the hexagonal WC phase is very stoichiometric [23].
In W-rich materials the carbon chemical potential is lower compared to C-rich
materials, this means that the cubic WC films (containing carbon vacancies) are
more stable in the W-rich materials.

2.5.2 Simplified modeling
The stability of cubic thin films can to a large extent be understood from a simpli-
fied model as demonstrated in Ref. [24]. The formation of a film can be thought of
inserting a thin region of cubic MC at the phase boundary, as illustrated in Fig. 2.6.
The system goes from having one interface WC/Co to having two, WC/MC and
MC/Co. In order for the thin film to be stable it is thus a necessity that the sum
of two latter interface energies are lower than the starting interface energy, i.e.

𝛾WC/MC + 𝛾MC/Co < 𝛾WC/Co, (2.1)

where 𝛾X/Y denotes the interface energy between the two phases 𝑋 and 𝑌 . Even
if this condition is met, creating the film also comes with an associated cost of
creating the MC phase of Δ𝑔MC + 𝑒MC per MC-layer. Here, Δ𝑔MC denotes the
cost of creating the cubic MC phase compared to the equilibrium phases and 𝑒MC
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2.5. Cubic thin films

M 𝛾WC/Co 𝛾WC/MC 𝛾MC/Co 𝑒MC Δ𝑔MC Δ𝛾film(𝑁 = 2)
V 1.12 0.03 -0.01 0.01 0.00 -1.08
Ti 1.12 -0.33 0.82 0.40 0.00 0.17
W 1.12 0.42 -1.29 0.40 2.03 2.87

Table 2.1: The relevant interface energies and associated cost for creating the cubic
phase given for V, Ti and W. All values are given in J/m2.

denotes the strain energy associated with the misfit between the hexagonal WC
phase and the film. In total, a film of 𝑁 MC-layers is stable if the formation energy
of the film, Δ𝛾film, defined as

Δ𝛾film(𝑁) = 𝛾WC/Co − [𝛾WC/MC + 𝛾MC/Co + 𝑁(Δ𝑔MC + 𝑒MC)]

is negative. This estimate of the formation energy of the film becomes less reliable
when 𝑁 is very small. Values for the relevant interface energies are shown in
Table 2.1 for a for V and Ti doped films [25] as well as the undoped film, where
the film is placed on the basal plane with the following orientation

WC𝛿(0001) ‖ WC𝛾(111) ‖ Co(111)

where WC𝛿 and WC𝛾 corresponds to the hexagonal and cubic phases, respectively.
It is clear from Table 2.1 that all three films fulfill Eq. (2.1). For the V films
Δ𝛾film (assuming two MC layers) is negative, meaning VC films are stable. In the
case of Ti a small but positive value is obtained, indicating the possibility of film
formation.

Ti segregating to the second cubic layer, as was reported in Ref. [19] (see Fig. 2.4),
can also be qualitatively understood from this simplified model. TiC have a large
interface energy towards Co, 0.82 J/m2, whereas the cubic WC phase have a very
favorable interface towards Co, -1.29 J/m2. Hence, changing the first Ti layer to
W would yield a reduction in interface energy, 𝛾MC/Co, of -2.11 J/m2 which would
compensate for the bulk cost of changing a cubic Ti layer to W of 2.03 J/m2.

For the undoped cubic films the formation energy is very large, 2.87 J/m2, yet
these films are frequently observed in experimental studies. In order to understand
this we must thus go beyond this simplified modeling.

2.5.3 Extensive modeling
V-doped films have been extensively studied in Ref. [26]. In this work cluster-
expansions were employed to model the mixing of W and V atoms on the cubic
lattice sites in the film. This allowed for the interfacial phase diagram of the

9



Chapter 2. Cemented Carbides

system to be constructed as a function of V chemical potential and temperature.
It also allows for more precise prediction of the ordering of V and W atoms in
the cubic film. Further calculations predicted that even at liquid-phase sintering
temperatures and low doping concentration, for which the cubic (W,V)C bulk
phase is not thermodynamically stable, the cubic VC films was stable. In paper
I we employ similar methodology in order to understand cubic films in undoped
WC-Co. We also extend this method further by including vibrational contributions.
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3
Alloy cluster expansions

One of the most common lattice based interatomic model is the so-called alloy clus-
ter expansion. They are based on a static lattice where the degrees of freedom are
the occupation of the lattice. The main idea is to decompose an atomic structure
into its corresponding clusters. Associating each clusters with e.g. an energy then
allows for predicting the total energy of the structure. Predictions of properties of
a structure, e.g. total energy, using cluster expansions are very fast. This makes
studying thermodynamics for configurational degrees of freedom feasible.

3.1 Clusters
An atomic structure is composed of a set of lattice points, a cell and occupations
𝝈 corresponding to which atomic species occupies which lattice point. A cluster is
defined as a collection of unique lattice points. The order of the cluster is given
by the number of lattice points, for example, two lattice points corresponds to
a pair. Clusters can be grouped into orbits or neighbor shells, i.e. first nearest
neighbor pair, second nearest neighbor pair and so on. This can easily be imagined
for simple lattices, such as the simple cubic one illustrated in Fig. 3.1, whereas for
more complex systems and higher order clusters it becomes more complicated to
construct orbits of clusters. The definition of an orbit used here (and in icet and
hiphive) is the collection of all symmetrically equivalent clusters. Two clusters
are thought to be equivalent if they can transformed into each other by lattice
symmetries, where a lattice symmetry consists of a rotation 𝑹 and a translation
𝒕. Applying a lattice symmetry to lattice point coordinate 𝒓 is done via

̃𝒓 = 𝑹 ⋅ 𝒓 + 𝒕

11



Chapter 3. Alloy cluster expansions

QuadrupletsTriplets

mirror plane

Pairs

rotation

translation

Figure 3.1: Illustration of a simple cubic lattice with pairs (green), triplets (or-
ange) and quadruplets (blue) highlighted. All clusters of the same order can be
transformed into each other under some lattice symmetries, a few of which are
illustrated.

where ̃𝒓 is the position of a new lattice point. Transforming all lattice points with
a lattice symmetry leaves the lattice unchanged (save a permutation of ordering of
lattice points). So if lattice points (𝑖, 𝑗) are mapped to lattice points (𝑘, 𝑙) using
lattice symmetry operation number 𝑠, e.g.

(𝑖, 𝑗)
𝑹𝑠,𝒕𝑠⟶ (𝑘, 𝑙)

then the cluster (𝑖, 𝑗) is said to be symmetry equivalent to (𝑘, 𝑙) and they therefore
belong to the same orbit. This is illustrated in Fig. 3.1, where all clusters of the
same order is symmetrically equivalent.

3.2 Cluster Expansion
Cluster expansions can describe any property 𝑄 which is a function dependent on
the occupation 𝝈 of the lattice as

𝑄(𝝈) = 𝑄0 + ∑
𝜶

⟨Π𝜶′(𝝈)⟩𝜶 𝑚𝜶𝐽𝜶 (3.1)

where Π𝜶 are basis functions, 𝑚𝜶 the multiplicity the orbit and 𝐽𝜶 are the effective
cluster interactions (ECIs). The full formalism can be found in Paper III and in
literature Ref. [27].

In order to find the unknown parameters of the model 𝐽𝜶, training structures are
required. For training structure 𝑖 with occupation 𝝈𝑖 and quantity 𝑄𝑖 the cluster

12
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−1.0 −0.5 0.0 0.5 1.0
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a) true model

OLS fit
samples

−1.0 −0.5 0.0 0.5 1.0
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0.2

0.3
b) ridge β=10−5

ridge β=1

Figure 3.2: Illustration of reconstruction of a polynomial model from data (samples)
with noise. a) The true model and model obtained from ordinary least squares
(OLS) using the shown samples as training data. The OLS model shows clear
signs of overfitting. b) Two models constructed using ridge regression with different
values of 𝛽 (see Eq. (3.2) showing how overfitting can be reduced.

vector can be constructed via

𝜫𝑖 = (1, ⟨Π𝜶′(𝝈𝑖)⟩𝜶 𝑚𝜶)
where 𝜫𝑖 refers to the cluster vector of structure 𝑖 and the starting 1 is included in
order to pick up the first term in Eq. (3.1). This yields a linear system of equations

𝑸 = 𝜫𝑱
which can be solved in order to obtain the ECIs.

3.3 Linear regression
There are many different linear regression methods available. In the overdetermined
limit the problem can be solved by ordinary least squares (OLS). Least squares
provides the solution which minimizes the root-mean-square error (RMSE) for the
training structures. RMSE is defined as

RMSE = √ 1
𝑁 ∑

𝑖
(𝑄target

𝑖 − 𝑄predicted
𝑖 )2

where 𝑁 is the number of structures. OLS tend to lead to overfitting, meaning the
model has learned too many details in the training structure, causing low predictive
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Chapter 3. Alloy cluster expansions

power for unseen structures. Overfitting can be reduced by regularization, i.e.
addition of a penalty term in the objective function

‖𝜫𝑱 − 𝑸‖2
2 + 𝛼‖𝑱‖1 + 𝛽‖𝑱‖2

2 (3.2)

where the first term is the objective function for OLS and the two last terms are
ℓ1 and ℓ2 regularization terms where 𝛼 and 𝛽 control their regularization strengths
respectively. Setting 𝛽 = 0 one obtains the objection function of least absolute
shrinkage and selection operator (LASSO) which tends to favor sparse solution
vector 𝑱 . For 𝛼 = 0 one recovers the objective function for ridge regression which
rather penalizes large elements in 𝑱 heavily and thus tries to keeps all parameters
small.

An example of the effect from regularization is shown in Fig. 3.2. Here, an eighth
order polynomial is fitted to training data generated from a polynomial with the
addition of small noise. In Fig. 3.2(a) the model trained with OLS describes all
training samples very well whereas in between training samples the model performs
poorly. This is a clear indication of overfitting. In Fig. 3.2(b) ridge regression is
used with two different values of 𝛽. Using a very small value a similar model to
OLS is obtained. For a larger value of 𝛽 a less complex model is obtained which
generalizes better to regions where no training data exists.

Compressive sampling algorithms, commonly used in signal processing, have
been proposed to be very suitable for constructing physical models [28]. In these
algorithms ℓ1 regularization is used, similar to LASSO.

A feature selection algorithm that we have found to work well for cluster ex-
pansions is the recursive feature elimination (RFE) method. It requires a linear
regression solver and then performs a series of fits. First, all parameters are in-
cluded in the training procedure, then iteratively a small percentage of the pa-
rameters is removed until the desired number of parameters 𝑛𝑓 is obtained. This
often reduces overfitting and yields very sparse models with high transferability.
The optimal value of the hyper-parameter 𝑛𝑓 is not known beforehand, similarly to
hyper-parameters 𝛼 and 𝛽 in Eq. (3.2). These can be determined by e.g. Bayesian
optimization [29] or by cross-validation (CV) analysis.

3.3.1 Cross Validation
Cross validation is a way of statistically testing the accuracy of a model. The entire
dataset is split into two parts, one used for training (training set) and one used
for validating the model (validation set) via e.g. RMSE. This is often repeated
multiple times with different splits of the dataset in order to reduce the statistical
noise. One of the more common ways of splitting the data is the k-fold method
where the dataset is split into 𝑘 equally large parts. The training is done using
𝑘 − 1 parts and the last part is used for validation, which can be repeated 𝑘 times.
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3.4. Monte Carlo simulations

3.3.2 Ensemble of models
In paper III we construct ensembles of models from different splits of the training
structures generated with replacement. This means that with 𝑁 total number of
structures a training set is generated by drawing 𝑁 structures without replacing
them, i.e. allowing for duplicates in the training set. Repeating this multiple times
to get a statistical estimate of some property is known as bootstrapping [30]. It
allows for estimating, to some extent, the variance in thermodynamic proprieties
due to variance in training structure selection. In paper III, this is demonstrated
for phase diagram construction and chemical ordering analysis.

3.4 Monte Carlo simulations
Once a cluster expansion model is constructed for the total energy of the system it
can be used to sample various thermodynamic properties. This is commonly done
via Monte Carlo (MC) simulations using the Metropolis algorithm [31].

3.4.1 Canonical Ensemble
In the canonical ensemble the number of atoms, volume and temperature (𝑁𝑉 𝑇 )
are kept fixed. For each atom type 𝛼 in a multicomponent systems the number
of atoms, 𝑁𝛼, is fixed. The MC is carried by first occupying a supercell with the
desired number of atoms of each species. Then, trial moves consisting of swap-
ping two atoms (of different species) are carried out which are accepted with a
probability

𝑃 = min (1, e−𝛽∆𝐸)
where 𝛽 = 1

𝑘𝐵𝑇 , 𝑘𝐵 is the Boltzmann constant and Δ𝐸 is the change in energy
due to the swap. This will generate configurations (microstates) according to the
probability e−𝛽𝐸𝑖/𝑍𝑁𝛼𝑉 𝑇 where the partition function 𝑍𝑁𝛼𝑉 𝑇 is defined as

𝑍𝑁𝛼𝑉 𝑇 = ∑
𝑖

e−𝛽𝐸𝑖

where 𝐸𝑖 is the energy of microstate 𝑖 and the sum extends over all possible mi-
crostates with macroscopic properties 𝑁𝛼𝑉 𝑇 [31]. This allows for thermodynamic
properties to be sampled as

⟨𝐴⟩ = ∑
𝑖

𝐴𝑖
e−𝛽𝐸𝑖

𝑍𝑁𝛼𝑉 𝑇
≈ 1

𝑁MC
∑

𝑖∈MC
𝐴𝑖

where ∑𝑖∈MC represents a sum over all configurations generated in the MC simu-
lation.
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Figure 3.3: Results from MC simulations in the canonical ensemble for the interface
denoted 𝑘4 from Paper I with 60% carbon vacancies . a) The mixing energy and
free energy as a function of temperature. b) The heat capacity as a function of
temperature. c) The obtained entropy as a function of temperature compared to
the ideal mixing limit.

3.4.1.1 Entropy integration

The canonical free energy of a system can be calculated using MC simulations in
the canonical ensemble. This is demonstrated in the Supplementary information
for paper I. The entropy, 𝑆(𝑇 ), is obtained by integrating the heat capacity 𝐶𝑣(𝑇 )
over temperature. By recording the energy 𝐸(𝑇 ) from a MC simulation the heat
capacity can be calculated as

𝐶𝑣(𝑇 ) = ⟨𝐸(𝑇 )2⟩ − ⟨𝐸(𝑇 )⟩2

𝑘𝐵𝑇 2 .

The entropy 𝑆(𝑇 ) can then calculated via

𝑆(𝑇 ) = 𝑆(∞) + ∫
𝑇

∞

1
𝑇 𝐶𝑣(𝑇 )d𝑇

where 𝑆(∞) is known from ideal mixing. The free energy can finally be obtained
by

𝐹(𝑇 ) = 𝐸(𝑇 ) − 𝑇 𝑆(𝑇 ).

In Fig. 3.3 the thermodynamic properties (𝐸, 𝐹 , 𝐶𝑣 and 𝑆) obtained from MC
simulations and integration are shown for the interface system 𝑘4 from paper I with
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3.4. Monte Carlo simulations

a vacancy concentration of 60%. As expected the entropy approaches zero for low
temperatures and the value corresponding to ideal mixing for high temperatures.
This free energy integration method is very similar to the temperature integration
carried out using molecular dynamics in paper II.

3.4.2 Grand Canonical Ensemble
In the grand canonical ensemble the chemical potentials, volume and temperature
(𝜇𝛼𝑉 𝑇 ) are kept fixed. The system is thought to be in equilibrium with reference
states with chemical potentials 𝜇𝛼. The partition function is defined as

𝑍𝜇𝛼𝑉 𝑇 = ∑
𝑖

e−𝛽(𝐸𝑖−∑𝛼 𝑁𝑖𝛼𝜇𝛼)

where 𝑁𝑖𝛼 denotes the number of atoms of type 𝛼 for microstate 𝑖 [31, 32]. Here
the summation extends over all possible microstate not limited to specific values
of 𝑁𝛼 as in the case of the canonical ensemble. In grand canonical ensemble MC
trial move consists of either inserting or removing a single atom, accepted with a
probability of

𝑃 = min (1, e−𝛽(∆𝐸−∑𝛼 ∆𝑁𝛼𝜇𝛼))

where Δ𝑁𝛼 is the change in number of atoms for species 𝛼 [31]. In paper I we
demonstrate and explain how this ensemble can be used to sample the canonical
free energy.
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4
Force constant models

Force constant models, while also based on a lattice, describes the vibrational
motion for a fixed occupation of a lattice.

4.1 Formalism
The potential energy, 𝐸, can be expressed as a Taylor expansion

𝐸 = 𝐸0 + Φ𝛼
𝑖 𝑢𝛼

𝑖 + 1
2Φ𝛼𝛽

𝑖𝑗 𝑢𝛼
𝑖 𝑢𝛽

𝑗 + 1
3!Φ

𝛼𝛽𝛾
𝑖𝑗𝑘 𝑢𝛼

𝑖 𝑢𝛽
𝑗 𝑢𝛾

𝑘 + … , (4.1)

where Φ are the force constants, Latin indices enumerates the atoms, Greek indices
enumerate the Cartesian coordinates, and the Einstein summation convention is
implied. Here, 𝑢 describes the displacements from some static positions 𝑟0, usually
chosen as an ideal lattice for which the first order term in the expansion is zero. 𝐸0
corresponds to the static energy for the static positions 𝑟0. The unknowns in this
model are the force constants, where e.g. second order force constants are defined
as

Φ𝛼𝛽
𝑖𝑗 = 𝜕𝐸

𝜕𝑢𝛼
𝑖 𝑢𝛽

𝑗
, (4.2)

and analogously for other orders. The number of force constants in the expansion
grows rapidly as the number of atoms and order is increased, however, similar to
the case of cluster expansions, symmetries can reduce the number of independent
degrees of freedom significantly. One difference compared to cluster expansion is
that terms like Φ001 shows up in Eq. (4.1) which corresponds to a third order pair
interaction. It is often useful to distinguish force constants by both order and n-
body (number of atoms in the interaction), specially since higher order pair terms
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Chapter 4. Force constant models

are often important whereas the strength of n-body interactions often decrease
rapidly with n.

Force constants can conveniently be obtained using the direct approach [33],
where the derivatives are numerically computed by calculating forces of config-
urations with single atoms being displaced. This method works very well and
is implemented in many different softwares, phonopy [33] for second-order and
phono3py[34], shengBTE[35], almabte [36], and AAFLOW [37] for third-
order force constants. However, for systems with low symmetry, e.g. defective or
interfacial systems, this method quickly becomes computational expensive due to
the large number of supercell calculations required.

4.2 Regression approach

Another approach is to extract the force constants via regression. This has been
shown to produce accurate force constants [38, 39, 40, 41, 42, 43, 44]. In paper
IV we introduced the python package hiphive for this purpose. Fitting the force
constants has the advantage of not requiring as many calculations. This is possible
since the information obtained from calculations where only one atom is displaced
is quite small whereas when fitting force constants all atoms may be displaced
giving rise to much more information.

The parametrization of the force constants, including symmetries and sum rules,
are explained in detail in paper IV. Using this parametrization and a set of super-
cells with displacements and forces, a linear problem is obtained to solve for the
independent degrees of freedom

𝑭 = 𝑨𝒙,

where 𝑭 is the forces for all supercells, 𝑨 the fitting matrix and 𝒙 the unknown
parameters. To solve this similar techniques as described in Sect. 3.3 can be used.
Although the dimensionality of the linear problem for force constants is often quite
large, up to tens of thousands rows and columns in 𝑨 making some of the compu-
tational more expensive linear regression techniques unfeasible to use. In paper V
a brief comparison of the performance of a few different linear regression methods
is carried out. In order to obtain accurate force constants the truncation of the ex-
pansion along with the linear regression method and its hyper parameters need to
be chosen careful. The method that consistently performed well for our examples
was combining RFE with OLS.
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4.3. Harmonic models

4.3 Harmonic models
The vibrational properties of a solid is fundamental in understanding many of its
properties. A force constant model can be sampled in various ways, the simplest
being a harmonic approximation. In the harmonic approximation only the second
order force constants (assuming first order are zero) are considered. The dynamical
properties of a crystal in the harmonic approximation is obtained by constructing
the dynamical matrix 𝑫(𝒒) for a reciprocal wave vector 𝒒. Following the notation
in [33] it can be calculated via

𝐷𝛼𝛽
𝜅,𝜅′ = ∑

𝑙′

Φ𝛼𝛽
0𝜅,𝑙′𝜅′

√𝑚𝜅𝑚𝜅′
e−𝑖𝒒⋅(𝒓0𝜅−𝒓𝑙′𝜅′),

where 𝑙𝜅 corresponds to basis atom 𝜅 in primitive cell 𝑙, 𝒓 the position and 𝑚 the
mass. The harmonic frequencies can then be obtained by solving the eigenvalue
problem

𝑫(𝒒)𝒆𝒒𝑗 = 𝜔2
𝒒𝑗𝒆𝒒𝑗

where 𝜔𝒒𝑗 is the harmonic frequency at 𝒒 with mode index 𝑗 and 𝒆𝒒𝑗 the cor-
responding eigenvector. Given the harmonic frequencies many other vibrational
properties can be extracted, e.g. phonon dispersion, density of states, potential
energy, heat capacity, entropy and free energy [45, 33]. The harmonic free energy,
𝐹(𝑇 ), is given by

𝐹(𝑇 ) = ∑
𝒒𝑗

𝑘𝐵𝑇 ln (1 − 𝑒− ℏ𝜔𝒒𝑗
𝑘𝐵𝑇 ) + 1

2ℏ𝜔𝒒𝑗

where the last term corresponds to the zero point motion. The static potential
energy of the lattice, 𝐸0, can be included in this equation to obtain the full free
energy of the system.

4.3.1 Quasi harmonic approximation
Phonon modes tend to soften when the volume is increased due to weaker bonds
between atoms. Lower frequencies give rise to a larger vibrational entropy meaning
volume tend to increase with temperature. Thermal expansion is an anharmonic
effect which is neglected in the harmonic approximation. This effect can be treated
using the quasi-harmonic approximation (QHA) in which harmonic models are
constructed for multiple different volumes. These models are used to extract the
harmonic free energy 𝐹(𝑉 , 𝑇 ), which allows for finding the equilibrium volume
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Figure 4.1: a) Phonon dispersion for cubic WC for a regular harmonic model (de-
noted 0 K) and an effective harmonic model computed from an ab-initio molecular
dynamics (MD) simulation at 1000 K. b) Partial density of states for the regular
harmonic approximation.

𝑉𝑒𝑞(𝑇 ) via

𝑉𝑒𝑞(𝑇 ) = argmin
𝑉

𝐹(𝑉 , 𝑇 ).

In paper II the quasi harmonic approxmiation is employed to the WC hexagonal
bulk phase which has two lattice parameters 𝑎 and 𝑐. In this case, to find the
equilibrium lattice parameters, the minimization is carried simultaneously with
respect to both lattice parameters, i.e.

(𝑎𝑒𝑞(𝑇 ), 𝑐𝑒𝑞(𝑇 )) = argmin
𝑎,𝑐

𝐹(𝑎, 𝑐, 𝑇 ).

The harmonic free energy can be expressed as a function of other geometrical pa-
rameters of your system as well. In Ref. [46] the surface layer spacing 𝑑 is computed
as a function of temperature for a Ag (111) surface by writing the harmonic free en-
ergy as 𝐹 = 𝐹(𝑑, 𝑇 ). This allows, analogously to QHA, for extraction of the layer
spacing 𝑑 corresponding to the lowest free energy as a function of temperature.

4.3.2 Effective harmonic models
One of the simpler, yet very powerful methods to account for anharmonicity is to
compute effective harmonic models from MD simulations [47, 48, 49]. The basic
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idea is that the harmonic model constructed from displacements and forces from an
MD simulation will effectively incorporate anharmonic effects. Once the effective
harmonic model is constructed it can be used as a regular harmonic model to
predict temperature dependent properties, however the accuracy of the model is
best close to the temperature from which it was constructed.

A good example where effective harmonic models (EHMs) are useful is the WC
cubic phase which is thermodynamically stable at higher temperature [23], but dy-
namically unstable at low temperature. The EHM technique is demonstrated in
figure Fig. 4.1 together with the regular harmonic approximation, denoted 0 K. The
regular harmonic model have imaginary frequencies, shown as negative, indicating
structural instabilities, whereas in the EHM these modes are stable. From the par-
tial density of states it is also clear that the high frequencies corresponds to carbon
modes and low frequencies W modes as expected due to the mass discrepancy.

4.3.2.1 Zwanzig correction

For obtaining accurate free energies using effective harmonic models free energy
perturbation can be applied [50]. It describes the free energy difference between
two Hamiltonians 𝐴 and 𝐵 as

𝐹𝐴 − 𝐹𝐵 = 1
𝛽 ln ⟨e−𝛽(𝐸𝐵−𝐸𝐴)⟩𝐴 , (4.3)

where 𝐸𝐴 and 𝐸𝐵 is the energy for Hamiltonian A and B respectively, and ⟨…⟩𝐴
denotes an ensemble average carried out in Hamiltonian 𝐴. In the case of EHMs
the EHMs correspond to Hamiltonian B and the reference potential energy surface
(often DFT) to A. Thus a correction to the effective harmonic free energy using
the free energy perturbation method is obtained providing a better estimate of the
free energy of the reference system A. This correction can conveniently be applied
as the EHM is constructed from MD and thus the ensemble average in Eq. (4.3)
can easily be evaluated. This free energy perturbation correction is similar to the
correction carried out in Ref. [49] where 𝐸0 from Eq. (4.1) is determined in order
to minimize ⟨𝐸𝐴 − 𝐸𝐵⟩𝐴.

4.4 Higher order models
Third order force constants can be used to calculate phonon lifetimes in a pertur-
bation theory [45]. Phonon lifetimes can, for example, be used to compute the
lattice thermal conductivity via Boltzmann transport theory [34].

Fourth order force constants can be used to, for example, renormalize the har-
monic frequencies via self consistent phonons[45]. This has been done successfully
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Figure 4.2: Potential energy landscape for the cubic WC phase along the imaginary
phonon mode at X, constructed using DFT, an effective harmonic model at 1000 K,
a regular harmonic model and a higher order models. The x-axis corresponds to
the average displacement of all atoms along the phonon mode.

[51, 42], and has the benefit compared to effective harmonic models that only one
force constant model needs to be constructed which can then be used for a wide
temperature range.

Higher order models can also be used more directly to map out the potential
energy surface. This is demonstrated in Fig. 4.2, where the energy landscape of
the imaginary mode of the cubic WC phase at the X point (see Fig. 4.1) is shown.
The energy landscape is constructed directly using DFT, the harmonic model, an
EHM from 1000 K and a sixth order model. The higher order model is trained from
them same data as the EHM, as well as data along the phonon mode path. This
is not meant to be optimal higher order model for the cubic WC phase but rather
illustrate that these type of anharmonic energy landscape are easily reproduced
with higher order models. Fig. 4.2 also highlights the fact that in the harmonic
approximation the mode is unstable but stabilized with an effective harmonic model
at 1000 K.

Higher order models can also be used to run MD simulations from which ther-
modynamic properties can be extracted [39]. This is illustrated in the clathrate
application in paper V, where the temperature dependency of phonon frequencies
is directly sampled from MD simulations. A problem with this approach is that, in
general, the force constant potentials are not stable when truncating the expansion
(by interaction length and order). This problem was also noted in recent work,

24



4.4. Higher order models

Ref. [40], where inclusion of short ranged strongly anharmonic pair potentials were
successfully used to stabilize the potential.

At some point, though, the anharmonic effects and tendencies for diffusion be-
comes too large to treat with force constants and one must turn to other ways to
model the potential energy surface.
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5
Interatomic potentials

Interatomic potentials are in general more flexible than cluster expansions and force
constant models. The potential energy 𝐸 is often written as

𝐸 = 𝐸(𝒓1, … , 𝒓𝑖, … , 𝒓𝑁)
where 𝒓𝒊 is the position of atom 𝑖 and 𝑁 the total number of atoms. Implied here
is also the knowledge about the atom types. Interatomic potentials are not limited
to solids or a fixed lattice but applicable also to both liquid and gas phases.

5.1 Pair potentials
The simplest form of a potential is a pair potential, in which the potential energy
is only dependent on the interatomic distances in the system. One of the more well
known pair potentials is the Lennard-Jones potential [52], which can be written as

𝐸 = ∑
𝑖<𝑗

4𝜀 [( 𝜎
𝑟𝑖𝑗

)
12

− ( 𝜎
𝑟𝑖𝑗

)
6
]

where 𝑟𝑖𝑗 is the distance between atom 𝑖 and 𝑗. 𝜀 and 𝜎 are the free parameters of
the potential which controls the energy and length scale respectively. Pair poten-
tials such as Lennard-Jones works well for systems with noble gas atoms, but fails
when many-body effects are important.

5.2 Embedded atom model
The embedded atom method (EAM) consists of a pair potential and an additional
term that represents the energy cost of embedding an atom in an electron density
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from the surrounding atoms. This works specifically well to model the many-body
effects in metallic systems. The functional form of an EAM is usually written as

𝐸 = ∑
𝑖<𝑗

𝜙(𝑟𝑖𝑗) + ∑
𝑖

𝐹 ⎛⎜
⎝

∑
𝑗≠𝑖

𝜌(𝑟𝑖𝑗)⎞⎟
⎠

where 𝜙(𝑟𝑖𝑗) is the pair potential, 𝐹 the embedding function and 𝜌𝑖 the density
function. Here, the functional forms of 𝜙, 𝐹 and 𝜌 are the free degrees of freedom
of the potential. There exists multiple variants of this potential form named EAM
[53], effective medium theory (EMT) [54] and Finnis-Sinclair [55]. While the usage
of EAM have been very successful, the potential form does not describe directional
bonding very well which is crucial for covalent systems such as WC.

5.3 Analytical bond order potentials
An effective way of dealing with strong directional bonding is to add three body
terms to the interatomic potential. An example of this is the analytical bond order
potential (ABOP)[56, 57, 58], written as

𝐸 = ∑
𝑖<𝑗

𝑓𝑐(𝑟𝑖𝑗) (𝑉 𝑅(𝑟𝑖𝑗) − 𝑏𝑖𝑗𝑉 𝐴(𝑟𝑖𝑗))

where 𝑉 𝑅 and 𝑉 𝐴 are repulsive and attractive Morse-like pair potentials respec-
tively and 𝑓𝑐 a cutoff function which decays towards zero as the interatomic dis-
tance increases. Here 𝑏𝑖𝑗 is a functional of a three-body term.

In paper II we employ a ABOP for calculating interface free energies in the WC-
Co system at finite temperatures. This potential was constructed using parameters
for C-C interactions from Ref. [58], W-C interactions from Ref. [59], C-Co and W-
Co from Ref. [60].

5.4 Molecular dynamics
Thermodynamic sampling using interatomic potentials can often be carried out
effectively via MD simulations [61]. In MD the atomic positions and velocities is
evolved in time using classical mechanics and an interatomic potential according

𝑚𝑖
𝜕2𝒓𝑖(𝑡)

𝜕𝑡2 = 𝒇𝑖(𝑡) (5.1)

𝜕𝒓𝑖(𝑡)
𝜕𝑡 = 𝒗𝑖(𝑡) (5.2)
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where 𝑚𝑖, 𝑟𝑖(𝑡), 𝑣𝑖(𝑡) and 𝑓𝑖(𝑡) is the mass, position, velocity and force for atom
𝑖 at time 𝑡. The force acting on an atom 𝒇𝑖(𝑡) is computed via the interatomic
potential as

𝒇𝑖(𝑡) = −𝜕𝐸(𝒓1(𝑡), … , 𝒓𝑁(𝑡))
𝜕𝒓𝑖

.

The integration of the equation of motions, Eq. (5.2), is carried out numerically for
discrete times, often using the Verlet algorithm [62]. This will result in sampling
in the microcanonical ensemble (NVE) since the system is isolated and, thus, the
total energy in the system is constant. The temperature, using the equipartition
theorem, is given by

𝑇 = 2
3𝑘𝐵

⟨1
2𝑚|𝒗|2⟩ ,

where ⟨…⟩ denotes the ensemble of the kinetic energy per atom [61]. If the system
is ergodic ensemble averages can be changed to time averages, which are easily
computed in MD simulations. For example, for a quantity 𝐴 the thermodynamic
average can be computed by

⟨𝐴⟩ = 1
𝑁steps

∑
𝑡

𝐴(𝑡)

where the sum ∑𝑡 is over the 𝑀𝐷 trajectory and 𝑁steps is the total number of
timesteps.

5.4.1 Thermodynamic integration
One very effective way of calculating free energies using MD is thermodynamic
integration between two Hamiltonians, 𝐻𝐴 and 𝐻𝐵. Here, A represent the system
for which the free energy is desired and B a system for which the free energy is
known. Constructing a Hamiltonian H as

𝐻(𝜆) = (1 − 𝜆)𝐻𝐴 + 𝜆𝐻𝐵 (5.3)

allows for the free energy difference between A and B to be computed via

𝐹𝐵 − 𝐹𝐴 = ∫
1

0
⟨d𝐻(𝜆)

d𝜆 ⟩
𝐻

d𝜆 (5.4)

where the integration is carried out over the Kirkwood coupling parameter 𝜆 [63].
Here the ensemble average ⟨…⟩𝐻 should be carried out using the full Hamiltonian
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𝐻. The linear mixing between 𝐻𝐴 and 𝐻𝐵 in Eq. (5.3) is not required but makes
the integral in Eq. (5.4) easy to evaluate.

The Hamiltonian 𝐻𝐵 needs to be chosen such that its the free energy is known.
One common choice of B is an Einstein solid, which is referred to as the Frenkel-
Ladd method [64]. In an Einstein solid the dynamics are described by independent
harmonic oscillator with a frequency 𝜔𝐸. The free energy of an Einstein solid, 𝐹𝐸,
is known as

𝐹𝐸 = 3𝑁𝑘𝐵𝑇 ln (ℏ𝜔𝐸
𝑘𝐵𝑇 ).

When doing this type of free energy integration it is important that the two Hamil-
tonians in questions are not too dissimilar as this will make convergence of the
method very slow. Hence, the Einstein frequency may be matched to e.g. repro-
duce the mean square displacement for system A for the desired temperature. For
multi-component system with large mass discrepancy, such as WC, it also helps to
assign different Einstein frequencies for the different components. The integration
can be done via either equilibrium sampling where a few values of 𝜆 is chosen and
then sampled carefully or nonequilibrium sampling where 𝜆 is changed continuously
through out a simulation [65].
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6
Summary of the papers

6.1 Paper I
In paper I we employ computational methods for studying the local change of the
atomic structure and composition at a phase boundary. This gives rise to interfa-
cial phases, complexions, which exists under different thermodynamic conditions.
In this paper we study the phase boundary between hexagonal WC and Co and
the possibility of a thin cubic WC film forming at the phase boundary. Many
different stacking sequences of the cubic film is considered. The cubic WC phase
favors vacancies and hence we consider the carbon lattice sites as either carbon
or vacancies. This is done using cluster expansions, see Paper III, which allows
for exploring the energy landscape as a function of both vacancy concentration
and ordering. The configurational free energy is sampled using Monte Carlo sim-
ulations. Further, we compute the vibrational properties of the thin cubic films
using harmonic force constant fitting, see Paper IV-V. This allows us to construct
the interface free energies of the cubic films as function of both carbon chemical
potential and temperature which allows for the interfacial phase diagram to be
constructed. We predict that cubic thin films are thermodynamically stable for
high temperatures and carbon chemical potentials slightly lower than obtained in
the 𝜂-phases. This is in qualitative agreement with experimental observations from
transmission electron microscopy studies.

6.2 Paper II
The interface energies of WC-Co cemented carbides are important to understand
as they help understand and predict the microstructure of the material which is
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Chapter 6. Summary of the papers

strongly related to the mechanical properties of the material. Interface in WC-Co
have been extensively studied with DFT and the ground-state 0 K interface ener-
gies have been computed. When sintering WC-Co one often reaches temperature
above 1500 K for which the Co melts and thus the interface energies can change
substantially.

In paper II the temperature dependency of interface free energies are studied for
various different interfaces in the WC-Co system using an analytical bond order
potential. This is done as a function of temperature up to and beyond the melting
point of Co. We employ a few different free energy calculation methods. The
calculations for the solid-liquid WC-Co interfaces proves rather challenging. To this
end we employ joining simulations where the two phase (WC and Co) are initially
separated and then slowly brought into contact with each other. In summary
most of the interface free energies studied decreases with about 10-20% at 2000 K
compared to 0 K. This provide a good complement to previous DFT calculations
of interface energies.

6.3 Paper III
In paper III the icet package is introduced. First the general formalism of alloy
cluster-expansions is explained. How to construct a cluster expansion model is then
discussed along with the advantages of different regression methods. The workflow
and features of icet is presented. Finally two examples, to demonstrate the usage
of icet are shown. The first one being the construction of the binary Ag-Pd FCC
phase diagram via free energy sampling using Monte Carlo simulations. In the
second example the chemical ordering of the inorganic clathrate Ba8Al𝑥Si46−𝑥 is
studied as a function of temperature.

6.4 Paper IV and V
In paper IV the hiphive package is introduced. Detailed formalism in regards to
force constants and how they can be parameterized using label symmetries, crystal
symmetries and different sum rules. The workflow of and core objects in hiphive
is explained and finally the usage of hiphive is demonstrated through two short
examples. In the first example second and third order force constants are extracted
for a monolayer of MoS2. The force constants are shown to converge very quickly
and for example accurate thermal conductivity can be obtained using only a few
tens of structures whereas using the direct approach some hundreds would’ve been
needed. In the second example we show how a fourth order model can be used to
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6.4. Paper IV and V

account for the first anharmonic effects in dynamical properties such as the mean
squared displacements.

In paper V we focus on getting a better understanding of best practices for force
constant extraction using regression techniques, how sensitive thermodynamic and
transport properties are with respect to the accuracy of the force constants and
how to to use higher models for thermodynamic sampling.
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7
Outlook

The WC-Co cemented carbide is often doped with grain growth inhibitors in order
to control the grain growth rate and thus controlling the mechanical properties of
the material. Typically dopants are V, Ti, and Cr which have all shown to form
thin films on the surface of WC grains. These interfacial structures are most likely
connected to the grain growth inhibition effect. Low dopant concentrations are
used in order to avoid the precipitation of the corresponding carbide phases, but
high enough to allow for the formation of the interfacial films.

The computational methods used in paper I shows promising results for the
modeling of cubic films in undoped WC-Co, including carbon vacancies and vibra-
tions. Going forward we aim to apply these methods to study the more complex
systems where dopants are introduced. With additional components the configura-
tional space quickly becomes very large. Therefore this may require some effective
modeling of the vibrations as computing harmonic force constants likely become
too expensive. The coupling between configurational and vibrational degrees of
freedom is also an interesting topic to investigate further.

We also aim to study of the thermodynamic stability of WC hexagonal and
cubic phases as a function of carbon content and temperature. This will provide
a good complement to the interfacial phase diagram obtained in paper I. This
will be challenging due to the anharmonic nature of the cubic phase and how the
anharmonicity may change due to the introduction of carbon vacancies.

The construction of higher order force constant models can now comfortably be
carried out using hiphive. There are still questions on how to best sample ther-
modynamic and vibrational properties using higher order models. MD have been
used for this and might be the best option, then the task is shifted to constructing
a stable higher order model. This is something that we hopefully can investigate
further in the future.
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