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a b s t r a c t

In this work, we show that uniform integrability is not a nec-
essary condition for central limit theorems (CLT) to hold for
normalized multilevel Monte Carlo (MLMC) estimators and we
provide near optimal weaker conditions under which the CLT
is achieved. In particular, if the variance decay rate dominates
the computational cost rate (i.e., β > γ ), we prove that the CLT
applies to the standard (variance minimizing) MLMC estimator.
For other settings where the CLT may not apply to the standard
MLMC estimator, we propose an alternative estimator, called the
mass-shifted MLMC estimator, to which the CLT always applies.
This comes at a small efficiency loss: the computational cost of
achieving mean square approximation error O(ϵ2) is at worst a
factor O(log(1/ϵ)) higher with the mass-shifted estimator than
with the standard one.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The multilevel Monte Carlo (MLMC) method is a hierarchical sampling method which in many
settings improves the computational efficiency of weak approximations by orders of magnitude. The
method was independently introduced in the papers [13,17] for the purpose of parametric integra-
tion and for approximations of observables of stochastic differential equations, respectively. MLMC
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methods have since been applied with considerable success in a vast range of stochastic problems,
a collection of which can be found in the overview [14]. In this work we present near optimal
conditions under which the normalized MLMC estimator converges in distribution to a standard
normal distribution. Our result has applications in settings where the MLMC approximation error
is measured in terms of probability of failure (6) rather than the classical mean square error.

1.1. Main result

We consider the probability space (Ω,F,P) and let X ∈ L2(Ω) be a scalar random variable (r. v.)
for which we seek the expectation E[X]. Let {Xℓ}

∞

ℓ=−1 ⊂ L2(Ω) be a sequence of r. v. satisfying the
following:

Assumption 1.1. There exist rate constants α, β, γ > 0 with min(β, γ ) ≤ 2α and a constant
cα > 0 such that

(i) |E[X − Xℓ]| ≤ cα2−αℓ for all ℓ ∈ N0 := N ∪ {0},
(ii) V0 > 0 and Vℓ := Var(∆ℓX) = Oℓ(2−βℓ),
(iii) Cℓ := Cost(∆ℓX) = Θℓ

(
2γ ℓ
)
,

where ∆ℓX := Xℓ − Xℓ−1 with X−1 := 0. The notation f (xℓ) = Oℓ(yℓ) means there exists a constant
C > 0 such that |f (xℓ)| < C |yℓ| for all ℓ ∈ N0 := N ∪ {0} and f (xℓ) = Θℓ(yℓ) means there exist
constants C > c > 0 such that c|yℓ| < |f (xℓ)| < C |yℓ| for all ℓ ∈ N0.

Definition 1.1 (Variance Minimizing MLMC Estimator [14,17]). The MLMC estimator AML: (0, ∞) →

L2(Ω) applied to estimate the expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω)
satisfying Assumption 1.1 is defined by

AML(ϵ) =

L(ϵ)∑
ℓ=0

Mℓ(ϵ)∑
i=1

∆ℓX i

Mℓ(ϵ)
.

Here

L2(Ω) ∋ ∆ℓX i
= X i

ℓ − X i
ℓ−1, ℓ ∈ N0, i ∈ N

denotes a sequence of independent r.v. and every subsequence {∆ℓX i
}i consists of independent and

identically distributed (i.i.d.) r.v., the number of levels is

L(ϵ) := max
(⌈

log2(cαϵ−1)
α

⌉
, 1
)

, ϵ > 0, (1)

and the number of samples per level ℓ = 0, 1, . . . is

Mℓ(ϵ) := max

(⌈
ϵ−2

√
Vℓ

Cℓ

SL(ϵ)

⌉
, 1

)
, ϵ > 0 , (2)

with the monotonically increasing sequence Sk defined as

Sk :=

k∑
ℓ=0

√
VℓCℓ, k ∈ N0 . (3)

For any fixed and sufficiently large computational budget c > 0, the sequence {Mℓ}
L
ℓ=0 in (2)

is the one in NL that minimizes Var (AML) subject the constraint Cost(AML) ≤ c , cf. [13]. We will
therefore refer to AML as the variance minimizing MLMC estimator.

It is known that MLMC estimators can offer significant complexity (i.e., cost vs. accuracy) benefits
compared to classic Monte Carlo estimators [14]. In fact, the variance minimizing estimator AML(ϵ)
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reduces the computational cost for achieving an approximation with mean square error of Oϵ

(
ϵ2
)

from Θϵ

(
ϵ−(2+ γ

α )
)
for the classic Monte Carlo method to Θϵ

(
ϵ−2S2L(ϵ)+CL(ϵ)

)
, where

SL(ϵ) =

⎧⎪⎪⎨⎪⎪⎩
Oϵ(1) if β > γ ,

Oϵ

(
log
(
ϵ−1

))
if β = γ ,

Oϵ

(
ϵ−

γ−β
2α
)

if β < γ ,

and CL(ϵ) = Θϵ(ϵ−γ /α) as functions of the rate triplet introduced in Assumption 1.1.
In this work, we address the asymptotic normality of the MLMC estimator. For convenience, we

will refer to
AML(ϵ) − E

[
XL(ϵ)

]
√
Var (AML(ϵ))

as the normalized estimator. When confusion is not possible, we will use the following shorthands,

AML := AML(ϵ) , Mℓ := Mℓ(ϵ) , L := L(ϵ).

The following conventions will be employed throughout this work:

0 · (±∞) = 0 and 0/0 = 0 .

We are ready to state the main result of this work.

Theorem 1.1 (Main Result). Let AML denote the variance minimizing MLMC estimator applied to
estimate the expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying
Assumption 1.1. Additionally, if

(i) β > γ , impose no further assumptions,
(ii) γ ≥ β and limℓ→∞ Sℓ < ∞, impose no further assumptions,
(iii) β = γ and limℓ→∞ Sℓ = ∞, assume that

lim
ℓ→∞

1{Vℓ>0}E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νS2

ℓ
exp((2α−γ )ℓ)

}
⎤⎥⎦ = 0 ∀ν > 0, (4)

(iv) γ > β and limℓ→∞ Sℓ = ∞, assume that β < 2α, equality (4) holds and that there exists an
υ ∈ [β, 2α) such that limk→∞ Sk2(υ−γ )k/2 > 1.

Then the normalized estimator satisfies the central limit theorem (CLT), in the sense that
AML − E[XL]
√
Var (AML)

d
−→ N (0, 1) as ϵ ↓ 0. (5)

The main result follows from Theorems 2.5 and 2.6. We note that Theorem 1.1 in particular
implies that the CLT always applies to the normalized variance minimizing MLMC estimator when
β > γ .

Remark 1.1. The reason why we have not included the setting γ > β and β = 2α in Theorem 1.1 is
that one cannot impose reasonable assumptions to exclude ML = Θϵ(1) and VL/Var (AML) = Θϵ(1);
cf. Example 2.1. In such cases, a non-negligible contribution to the variance of the normalized
estimator may derive from a finite number of samples on the finer levels L, L − 1, . . .. For example,
if ML = 1 and VL/Var (AML) ≥ c > 0 for all ϵ > 0 sufficiently small, then

AML − E[XL]
√
Var (AML)

=

L−1∑
ℓ=0

( Mℓ∑
i=1

∆ℓX i

√
Var (AML)Mℓ

)
+

∆LX1
−E[XL]

√
Var (AML)

,

and the CLT applies only if ∆ℓX converges in distribution to a Gaussian as ℓ → ∞.
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1.2. Probability of failure

Distributional properties of normalized sample estimators can be useful for controlling the
probability of (approximation) failure:

P(|AML − E[X]| ≥ 2ϵ) ≤ δ . (6)

Here, 2ϵ > 0 denotes the accuracy and 1 − δ > 0 the confidence. To control the probability of
failure, one may dominate the total error from above by the sum of a bias and a statistical error:

P(|AML − E[X]| ≥ 2ϵ) ≤ P(|E[XL] − E[X]| ≥ ϵ) + P(|AML − E[XL]| ≥ ϵ) . (7)

Assumption 1.1(i) and the value of L ensure that the bias constraint is met

|E[XL] − E[X]| ≤ ϵ.

Supposing next that the CLT applies, the key step in (approximately) controlling the statistical error
is the approximation

AML − E[XL]
√
Var (AML)

d
≈ N (0, 1).

The use of CLT in efficient algorithms for controlling the probability of failure is a motivation for
the goal of this work: to describe as weak as possible conditions under which the CLT applies to
the standard MLMC estimator.

Remark 1.2. Whenever β ≥ γ and α > γ /2, one may reduce the bias of the variance
minimizing MLMC estimator without affecting the asymptotic growth rate of the computational
cost by replacing the rate parameter α by γ /2 in the formula for L in (1) and updating the values
for {Mℓ}

L
ℓ=0 accordingly. This replacement leads to an asymptotically vanishing bias to standard

deviation ratio,

lim
ϵ↓0

E[XL] − E[X]
√
Var (AML)

= lim
ϵ↓0

ϵ2α/γ−1
= 0,

and it relates to an uneven splitting of the accuracy between the bias and the statistical error
constraints in (7). That is,

P(|AML − E[X]| ≥ 2ϵ) ≤ P(|E[XL] − E[X]| ≥ θ (ϵ)ϵ)
+ P(|AML − E[XL]| ≥ (2 − θ (ϵ))ϵ)

for any monotonically increasing function θ : (0, ∞) → (0, 1] satisfying θ (ϵ) ≥ (ϵ/cα)2α/γ−1, cf. [9].
We leave as a remark that by straightforward extension of Theorem 1.1, the CLT also applies to
the normalized variance minimizing MLMC estimator with θ-splitting in settings where β ≥ γ and
Theorem 1.1’s assumptions hold.

1.3. The mass-shifted MLMC estimator

In [28,31,32] Glynn et al. show that for a collection of r.v. {Xℓ}
∞

ℓ=−1 satisfying Assumption 1.1 one
can construct the following unbiased coupled sampling method for the limit r.v. X:

Z =

∞∑
ℓ=0

∆ℓX 1{N≥ℓ}

P(N ≥ ℓ)
.

Here, the r.v. N : Ω → N0 is independent of {∆ℓX}
∞

ℓ=−1 and P(N ≥ ℓ) > 0 for all ℓ ≥ 0. Provided
N is chosen such that E[|Z |] < ∞, the strong law of large numbers yields that

ZM =
1
M

M∑
i=0

Z i a.s.
→ E[X] as M → ∞,
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where Z1, Z2, . . . is an i.i.d. sequence with Z i d
= Z . Although ZM clearly is not an MLMC estimator

of the kind studied in this paper, one may view it, when the number of samples M is large, as a
randomized MLMC estimator where both L and Mℓ ≈ M × P(N ≥ ℓ) for all ℓ ≥ 0 are random
non-negative numbers, cf. [31]. By carefully choosing the distribution of N such that Var

(
Z i
)

< ∞

and exploiting that ZM is the sum of i.i.d. random variables, Glynn et al. prove that the CLT applies
to (ZM − E[X])/

√
Var

(
ZM
)
in settings where β ≥ γ .

Concerning the efficiency of the method, it can be shown that the distribution N that minimizes
the quantity Var

(
ZM
)
× Cost(ZM ), satisfies

P(N ≥ ℓ) = Θℓ(
√
Vℓ/Cℓ) (8)

(supposing, unlike our approach, that Vℓ > 0 for all ℓ). When β > γ , any distribution N satisfying (8)
induces a distribution Z that has bounded variance, and consequently, the CLT applies. When β = γ ,
however, it turns out that Var (Z) = ∞ for any N satisfying (8), so that in order to obtain the CLT one
needs to consider distributions N whose mass is shifted slightly from the efficiency optimizing (8)
to the tail:

P(N ≥ ℓ) = Θℓ((ℓ + 1) log(ℓ + 2)1+ξ
√
Vℓ/Cℓ), ξ > 0.

This shift leads to an estimator ZM with approximation error E
[(

ZM − E[Z]
)2]

= Oϵ(ϵ2) obtained at
the (random) computational cost Oϵ(ϵ−2 log(1/ϵ)2 log(log(1/ϵ))1+ξ ). In comparison, for the settings
covered by Theorem 1.1 when β = γ , the variance minimizing estimator AML(ϵ) achieves the MSE
Oϵ(ϵ2) at the slightly lower (and non-random) computational cost Θϵ(ϵ−2S2L ) = Oϵ(ϵ−2 log(1/ϵ)2).

Taking inspiration from Glynn et al.’s mass-shifting approach, we propose the following relative
shift of ‘‘sample mass’’ from the lower levels of the variance minimizing estimator’s optimal {Mℓ}

L
ℓ=0

to the higher levels:

M̃ℓ := max

(⌈
ϵ−2(Sℓ + 1) log(Sℓ + 1)1+ξ

√
Vℓ

Cℓ

S̃L

⌉
, 1

)
, (9)

where

S̃L :=

L∑
ℓ=0

√
VℓCℓ

(Sℓ + 1) log(Sℓ + 1)1+ξ
, ξ > 0,

and the resulting estimator

ÃML =

L∑
ℓ=0

M̃ℓ∑
i=1

∆ℓX i

M̃ℓ

. (10)

We will refer to ÃML as the mass-shifted MLMC estimator. The CLT applies in all relevant settings
for the normalized version of this estimator:

Theorem 1.2 (CLT for Mass-shifted MLMC). For any ξ > 0, let ÃML denote the resulting mass-
shifted MLMC estimator applied to estimate the expectation of X ∈ L2(Ω) based on the collection
of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumption 1.1. Then the normalized mass-shifted MLMC estimator
satisfies

ÃML − E[XL]√
Var

(
ÃML

) d
−→ N (0, 1) as ϵ ↓ 0 (11)
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and the approximation error E
[(

ÃML − E[X]
)2]

= O(ϵ2) is achieved at the computational cost

Θϵ(ϵ−2(SL + 1)2 log(SL + 1)1+ξ ) =

⎧⎪⎪⎨⎪⎪⎩
Oϵ(ϵ−2), β > γ

Oϵ(ϵ−2 log(1/ϵ)2 log(log(1/ϵ))1+ξ ), β = γ

Oϵ(ϵ−2− γ−β
α log(1/ϵ)1+ξ ), γ > β.

The proof of Theorem 1.2 is given in Section 2.1.

1.4. Literature review

In addition to the above mentioned contributions by Glynn et al. the CLT has been proved for
MLMC methods through assuming (or verifying for the particular sequence of r.v. considered) either
a Lyapunov condition [20], or uniform integrability [7,10,15], or a weaker higher moment decay
rate [9] for the sequence {1{Vℓ>0}|∆ℓX − E[∆ℓX]|2/Vℓ}ℓ∈N0 . To show that this work extends the
existing literature, we now provide an explicit example that is covered by Theorem 1.1 but where
uniform integrability does not hold.

Example 1.1. Consider the stochastic differential equation

dY = a(Y ) dt + b(Y ) dW (t) t ∈ [0, T ] (12)

with final time T > 0, initial condition Y (0) ∈ R, and coefficients a, b : R → R whose partial
derivatives of all orders are continuous and uniformly bounded. For a given strike K ∈ R, we seek
to approximate the expectation of the (non-discounted) digital option payoff X = 1{Y (T )≥K }. Let
Xℓ = 1{Yℓ(T )≥K } denote the ℓth resolution approximation of X where Yℓ(T ) denotes the order 1.5
strong Ito–Taylor scheme [24, Ch. 10.4] numerical solution using a uniform timestep hℓ = 2−ℓT .
In order to minimize the variance, coupled realizations Yℓ(·, ω) and Yℓ−1(·, ω) use the same Wiener
path sampled at different resolutions. Furthermore, the scheme’s fine resolution integral increments
of the form

∆zℓ
n =

∫ (n+1)hℓ

nhℓ

W (s) − W (nhℓ) dt
d
=

∆W ℓ
nhℓ

2
+

h3/2
ℓ

√
12

χn,

where χn ∼ N(0, 1) and ∆W ℓ
n = W ((n+1)hℓ)−W (nhℓ) are independent, are coupled to overlapping

coarse ones as follows:

∆zℓ−1
n = ∆zℓ

2n +

∫ 2(n+1)hℓ

(2n+1)hℓ

W (s) − W (2nhℓ) dt

= ∆zℓ
2n + hℓ∆W ℓ

2n +

∫ 2(n+1)hℓ

(2n+1)hℓ

W (s) − W ((2n + 1)hℓ) dt

= ∆zℓ
2n + hℓ∆W ℓ

2n + ∆zℓ
2n+1.

(That is, first generate (∆zℓ
2n, ∆zℓ

2n+1)(ω), ∆W ℓ
2n(ω) and ∆W ℓ

2n+1(ω), then compute the overlapping
coupled coarse increment ∆zℓ−1

n (ω) by the above formula.) Assuming that the diffusion coefficient
is strictly positive and b′

|D ̸= 0 in an open domain D ⊂ R containing Y (0) and K ,

P
(
|Yℓ(T ) − K | ≤ h3/2

ℓ

)
= Oℓ(h

3/2
ℓ ) (13)

and

lim sup
ℓ→∞

ess sup
ω∈Ω

|∆ℓX(ω) − E[∆ℓX]|2 = 1. (14)

By the order 1.5 strong order scheme, Yℓ(T ) − Yℓ−1(T ) = Oℓ(h
3/2
ℓ ), which together with (13) imply

that Vℓ = Var (∆ℓX) = Oℓ(h
3/2
ℓ ). Lastly, since Cost(Yℓ) = Θℓ(1/hℓ), the rate triplet for {Xℓ} becomes

α = 1, β = 3/2 and γ = 1.
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Note further that the sequence {1{Vℓ>0}|∆ℓX − E[∆ℓX]|2/Vℓ}ℓ∈N0 is not uniformly integrable
since by (14),

lim sup
ℓ→∞

1{Vℓ>0}
ess supω∈Ω |∆ℓX(ω) − E[∆ℓX]|2

Vℓ

2−βℓ > 0,

which implies that

lim sup
ℓ→∞

1{Vℓ>0}E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>x

}
⎤⎥⎦ = 1, for any x > 0.

Regardless of uniform integrability, however, the CLT applies according to Theorem 1.1 in the
current setting of β > γ .

Applications of MLMC

We conclude this section with a brief survey on the relationship between the rate parameters β

and γ from Assumption 1.1 for a couple of problems which have been frequently studied.
As a first example, consider the quantity of interest (QoI) X = ϕ(Y ) ∈ R with Y : [0, T ]×Ω → R

denoting the solution of an SDE of the form (12). For an approximation sequence Xℓ = φ(Yℓ),
where Yℓ is generated by a numerical method with uniform timestep hℓ = 2−ℓT , one often obtains
Cℓ = Cost(Xℓ) = O(h−1

ℓ ), yielding γ = 1 (this applies for instance to the Euler–Maruyama and the
Milstein schemes). The variance decay rate β is typically more sensitive, as it tends to depend on
both the strong order of convergence of the numerical method and the regularity of the functional
ϕ. If the SDE coefficients and the QoI are all sufficiently regular, then β = 1 for the Euler–Maruyama
scheme and β = 2 for the Milstein scheme, but low-regularity QoIs often lead to lower-valued β .
For instance, for digital and barrier options, β = 1/2 for Euler–Maruyama and β = 1 for Milstein
(provided no further smoothing is applied), cf. [14, Sec. 5]. Similar reductions in the variance decay
rate may occur if the SDE coefficients have low regularity or if its driving path has lower regularity
than a Wiener process, cf. [5,19].

As a second example, let the quantity of interest be X = ϕ(u) ∈ R, where u(ω, ·):D → R denotes
the solution of the linear elliptic partial differential equation (PDE)

− div (a(ω, x)∇u(ω, x)) = f (ω, x) , in D ⊂ Rd, ω ∈ Ω ,

with random coefficient functions a(ω, ·):D → R and f (ω, ·):D → R, equipped with suitable
boundary conditions. Similarly to the SDE problem above, the lower the regularity of the random
coefficients and/or the functional ϕ, the lower the variance decay rate β becomes, cf. [29]. Moreover,
the computational cost rate γ is typically proportional to the dimension d of the spatial domain D.

Finally, let us mention that MLMC has been successfully applied to a wide range applications,
such as seismic wave propagation [2], stochastic reaction networks [1,27], stochastic partial differ-
ential equations [3,4,26], optimal experimental design [6], Markov chain Monte Carlo simulation [11,
18], Bayesian inversion and filtering methods [8,16,21,25], and rare event estimation/importance
sampling [22,30], to name but a few. As a consequence of these applications’ diverse nature, a wide
variety of different rate triplet scenarios is commonly relevant in practice.

2. Theory

In this section we derive weak assumptions under which the normalized MLMC estimator
(AML − E[XL])/

√
Var (AML) converges in distribution to a standard normal as ϵ → 0. The main

tool used for verifying the CLT will be the Lindeberg condition, which in its classical formulation
is an integrability condition for triangular arrays of independent random variables (r.v.) Ynm, with
n ∈ N and 1 ≤ m ≤ kn; cf. [12]. However, in the multilevel setting it is more convenient to work
with generalized triangular arrays of independent r.v. of the form Yϵm, which for a fixed ϵ > 0 take
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possible non-zero elements within the set of indices 1 ≤ m ≤ n(ϵ), where n: (0, ∞) → N is a
strictly decreasing function of ϵ > 0 with limϵ↓0 n(ϵ) = ∞.

The following theorem is a trivial extension of [23] from triangular arrays to generalized
triangular arrays.

Theorem 2.1 (Lindeberg–Feller Theorem). For every ϵ > 0, let {Yϵm}, 1 ≤ m ≤ n(ϵ) with n: (0, ∞) → N
and limϵ↓0 n(ϵ) = ∞ be a generalized triangular array of independent random variables that are
centered and normalized, so that

E[Yϵm] = 0 and
n(ϵ)∑
m=1

E
[
Y 2

ϵm

]
= 1 , (15)

respectively. Then, the Lindeberg condition:

lim
ϵ↓0

n(ϵ)∑
m=1

E
[
Y 2

ϵm1{|Yϵm|>ν}

]
= 0 ∀ ν > 0 , (16)

holds, if and only if
n(ϵ)∑
m=1

Yϵm
d

−→ N (0, 1) as ϵ ↓ 0 and lim
ϵ↓0

max
m∈{1,2,...,n(ϵ)}

E
[
Y 2

ϵm

]
= 0 . (17)

We will refer to (17) as the extended CLT condition. By defining

n(ϵ) :=

L∑
ℓ=0

Mℓ, (18)

and

Yϵm :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆0Xm
− E[∆0X]

√
Var (AML)M0

m ≤ M0

∆1Xm
− E[∆1X]

√
Var (AML)M1

M0 < m ≤ M0 + M1

...

∆LXm
− E[∆LX]

√
Var (AML)ML

n(ϵ) − ML < m ≤ n(ϵ),

(19)

the normalized variance minimizing MLMC estimator can be represented by generalized triangular
arrays as follows:

AML − E[XL]
√
Var (AML)

=

n(ϵ)∑
m=1

Yϵm . (20)

We note that the telescoping property E[XL] =
∑L

ℓ=0 E[∆ℓX] was used to obtain (20). Moreover, the
representation (20) and the below corollary trivially extends to any normalized MLMC estimator.

Corollary 2.2. Let AML denote the variance minimizing MLMC estimator applied to estimate the
expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumption 1.1.
Suppose that Var (AML) > 0 for any ϵ > 0. Then the normalized estimator (20) satisfies the extended
CLT condition (17), if and only if for any ν > 0,

lim
ϵ↓0

L∑
ℓ=0

Vℓ

Var (AML)Mℓ

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

Var(AML)M2
ℓ

Vℓ
ν

}
⎤⎥⎦ = 0. (21)
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Proof. For all ϵ > 0, the triangular array representation (20) of the MLMC estimator obviously
satisfies the centering and normalization conditions (15), and its elements are centered and mutu-
ally independent. By Theorem 2.1, the extended CLT condition thus holds if and only if Lindeberg’s
condition (16) holds. For any ν > 0, here Lindeberg’s condition takes the form:

lim
ϵ→0

n(ϵ)∑
m=1

E
[
Y 2

ϵm1{|Yϵm|>ν}

]

= lim
ϵ→0

L∑
ℓ=0

Mℓ∑
i=1

E

⎡⎢⎣⏐⏐∆ℓX i
− E[∆ℓX]

⏐⏐2
M2

ℓVar (AML)
1{

|∆ℓXi−E[∆ℓX]|2
Var(AML)M2

ℓ

>ν2

}
⎤⎥⎦

= lim
ϵ↓0

L∑
ℓ=0

Vℓ

MℓVar (AML)
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

Var(AML)M2
ℓ

Vℓ
ν2

}
⎤⎥⎦. □

Assumption 1.1 does not provide any lower bound on the decay rate of the variance sequence
{Vℓ}, and therefore it alone is not sufficiently strong to ensure that Lindeberg’s condition (21) holds
in general. The problem is that without any lower bound on Vℓ, there are asymptotic settings where
a non-negligible contribution to the variance of the variance minimizing MLMC estimator derives
from a finite number of samples.

Example 2.1. Consider the setting where β ≤ 2α < γ , for some constants c2 > c1 > 0,

c12−2αℓ
≤ Vℓ ≤ c22−βℓ

∀ℓ ∈ N0,

and for an infinite subsequence {ki} ⊂ N0,

Vki = Θi(2−2αki ) and Ski = Θi(2(γ−2α)ki/2) ∀i ∈ N0.

Then Eq. (2) implies there exists c, C, c̃, ĉ ∈ R+ such that for all y ∈ {ϵ > 0 | L(ϵ) ∈ {ki}},

1 ≤ ML(y) < C,

and

ĉ ≤ max

(
VL(y)

ML(y)Var (AML(y))
,

M2
L(y)Var (AML(y))

VL(y)

)
≤ c̃.

Hence, for any ν < (2c̃)−1,

lim sup
ϵ↓0

L∑
ℓ=0

Vℓ

MℓVar (AML)
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

Var(AML)M2
ℓ

Vℓ
ν

}
⎤⎥⎦

≥ lim sup
ϵ↓0

VL

MLVar (AML)
E

⎡⎣ |∆LX − E[∆LX]|2

VL
1{

|∆LX−E[∆LX]|
2

VL
>

Var(AML)M2
L

VL
ν

}
⎤⎦

≥ lim sup
i→∞

ĉ E

⎡⎢⎢⎣
⏐⏐∆kiX − E

[
∆kiX

]⏐⏐2
Vki

1⎧⎨⎩
⏐⏐⏐∆ki

X−E
[
∆ki

X
]⏐⏐⏐2

Vki
> 1

2

⎫⎬⎭

⎤⎥⎥⎦ ≥
ĉ
2

> 0.

Example 2.1 illustrates that Assumption 1.1 is not sufficiently strong to ensure condition (21)
when γ > β . We therefore impose the following additional variance decay assumption, which can
be viewed as an implicit weak lower bound on the sequence {Vℓ}.
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Assumption 2.1. If Assumption 1.1 holds for a collection of r.v. {Xℓ} ⊂ L2(Ω) with limit X ∈ L2(Ω)
in the setting γ > β and limℓ→∞ Sℓ = ∞, then assume additionally that β < 2α and that there
exists an υ ∈ [β, 2α) such that

lim inf
ℓ→∞

Sℓ2(υ−γ )ℓ/2 > 1.

Lemma 2.3. Let AML denote the variance minimizing MLMC estimator applied to estimate the
expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumptions 1.1 and
2.1. Then

lim
ϵ↓0

Var (AML)

ϵ2 = 1 . (22)

Proof. For any ϵ > 0, it follows from Eq. (2) that

Var (AML)

ϵ2 =

L∑
ℓ=0

Vℓ

ϵ2Mℓ

≤

L∑
ℓ=0

√
VℓCℓ

SL
= 1 ,

and by the mean value theorem there exists a constant C > 0 such that
L∑

ℓ=0

Vℓ

ϵ2Mℓ

≥

L∑
ℓ=0

1{Vℓ>0}
Vℓ√

Vℓ

Cℓ
SL + ϵ2

≥ 1 −

L∑
ℓ=0

1{Vℓ>0}
Vℓϵ

2

Vℓ

Cℓ
S2L

≥ 1 − ϵ2

∑L
ℓ=0 Cℓ

S2L

≥ 1 − Cϵ2 2
γ L

S2L
.

(23)

To complete the proof, it remains to verify that

lim
ϵ↓0

ϵ22γ L

S2L
= 0 . (24)

We separate the proof into three cases:
(i): If β < γ and limℓ→∞ Sℓ = ∞, then Assumption 2.1 implies that

ϵ22γ L

S2L
= O(ϵ2−υ/α) ,

and since υ < 2α, the claim follows.
(ii): If β = γ and limℓ→∞ Sℓ = ∞, then γ ≤ 2α, cf. Assumption 1.1, implies that ϵ22γ L

= Oϵ(1)
and the claim follows.

(iii): If limℓ→∞ Sℓ =: S < ∞, then there exists a k > 1 such that γ /k < 2α and a C > 0 such
that

Var (AML)

ϵ2 ≥

⌈L/k⌉∑
ℓ=0

1{Vℓ>0}
Vℓ√

Vℓ

Cℓ
S + ϵ2

≥
S⌈L/k⌉

S
− Cϵ2 2

γ L/k

S2
,

The claim follows from limϵ↓0 ϵ22γ L/k
= 0 and limϵ↓0 S⌈L/k⌉ = S.

Case (iii) covers all settings γ ≥ β which are not covered by either (i) or (ii). Furthermore, since
Sℓ = Oℓ(2(γ−β)ℓ/2), it is clear that (iii) also covers all settings with β > γ . This shows that cases
(i)–(iii) cover all settings that are valid under Assumptions 1.1 and 2.1. □
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Lemma 2.3 implies that we can reformulate Lindeberg’s condition for the MLMC estimator as
follows:

Corollary 2.4. Let AML denote the variance minimizing MLMC estimator applied to estimate the
expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumptions 1.1 and
2.1. Then the normalized MLMC estimator satisfies the extended CLT condition (17), if and only if for
any ν > 0,

lim
ϵ↓0

L∑
ℓ=0

√
VℓCℓ

SL
1{Vℓ>0}E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦ = 0 . (25)

Proof. From the proof of Lemma 2.3 it follows that there exists an ϵ̄ > 0 such that
1
2

≤
Var (AML)

ϵ2 ≤ 1 , ∀ϵ ∈ (0, ϵ̄) .

Consequently, for any ϵ ∈ (0, ϵ̄) and any ν > 0 we have that

L∑
ℓ=0

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Var (AML)Mℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

Var(AML)M2
ℓ

Vℓ
ν

}
⎤⎥⎦

≥

L∑
ℓ=0

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

ϵ2Mℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦ ,

as well as

L∑
ℓ=0

1
Var (AML)

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Mℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

Var(AML)M2
ℓ

Vℓ
ν

}
⎤⎥⎦

≤ 2
L∑

ℓ=0

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

ϵ2Mℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

2Vℓ
ν

}
⎤⎥⎦ .

These upper and lower bounds imply that Lindeberg’s condition (21) is equivalent to the following
condition: for any ν > 0 it holds that

lim
ϵ↓0

L∑
ℓ=0

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

ϵ2Mℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦ = 0 .

Following similar steps as those leading to inequality (23), we further note that for sufficiently
small ϵ > 0,

L∑
ℓ=0

1
ϵ2Mℓ

E

⎡⎢⎣|∆ℓX − E[∆ℓX]|21{ |∆ℓX−E[∆ℓX]|2
ϵ2M2

ℓ

>ν

}
⎤⎥⎦

=

L∑
ℓ=0

⎧⎪⎨⎪⎩
√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦
⎫⎪⎬⎪⎭− ρ(ϵ) ,

(26)

where the mapping ρ:R+ → [0, ∞), satisfying limϵ↓0 ρ(ϵ) = 0, can be derived as in the proof of
Lemma 2.3. □
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In settings with limℓ→∞ Sℓ < ∞, the summability of the sequence {
√
CℓVℓ} turns out to be

sufficient to prove that the extended CLT condition holds.

Theorem 2.5. Let AML denote the variance minimizing MLMC estimator applied to estimate the
expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumption 1.1
and limℓ→∞ Sℓ < ∞. Then the extended CLT condition (17) is satisfied for the normalized
estimator.

Note that the setting β > γ is completely covered by Theorem 2.5, as then

S := lim
k→∞

Sk = lim
k→∞

k∑
ℓ=0

√
VℓCℓ ≤ c lim

k→∞

k∑
ℓ=0

2(γ−β)ℓ/2 < ∞ .

Proof. We prove this result by verifying that condition (25) holds.
As the sequence {Sℓ} is monotonically increasing, it is contained in the bounded interval [S0, S]

with S0 > 0. Consequently, Lindeberg’s condition (25) is equivalent to:

lim
ϵ↓0

L∑
ℓ=0

1{Vℓ>0}

√
Cℓ

Vℓ

E
[
|∆ℓX − E[∆ℓX]|21{

|∆ℓX−E[∆ℓX]|2>ϵ2M2
ℓ
ν

}] = 0 , ∀ ν > 0 .

Fix a ν > 0. Then for all ℓ ∈ N0,

E
[
|∆ℓX − E[∆ℓX]|21{

|∆ℓX−E[∆ℓX]|2>ϵ2M2
ℓ
ν

}] ≤ Vℓ.

By the preceding inequality and the summability of the sequence {VℓCℓ}, the dominated convergence
theorem yields that

lim
ϵ↓0

L∑
ℓ=0

1{Vℓ>0}

√
Cℓ

Vℓ

E
[
|∆ℓX − E[∆ℓX]|21{

|∆ℓX−E[∆ℓX]|2>ϵ2M2
ℓ
ν

}]

=

∞∑
ℓ=0

1{Vℓ>0}

√
Cℓ

Vℓ

lim
ϵ↓0

E
[
|∆ℓX − E[∆ℓX]|21{

|∆ℓX−E[∆ℓX]|2>ϵ2M2
ℓ
ν

}]. (27)

For all ℓ ∈ N0 such that Vℓ > 0,

lim
ϵ↓0

ϵ2M2
ℓ (ϵ) ≥ lim

ϵ↓0
ϵ−2 Vℓ

Cℓ

S2L = ∞,

and the dominated convergence theorem applies for all ℓ ∈ N0:

1{Vℓ>0}

√
Cℓ

Vℓ

lim
ϵ↓0

E
[
|∆ℓX − E[∆ℓX]|21{

|∆ℓX−E[∆ℓX]|2>ϵ2M2
ℓ
ν

}]

= 1{Vℓ>0}

√
Cℓ

Vℓ

E
[
lim
ϵ↓0

|∆ℓX − E[∆ℓX]|21{
|∆ℓX−E[∆ℓX]|2>ϵ2M2

ℓ
ν

}]
= 0.

(28)

As the above argument is valid for any fixed ν > 0, Eqs. (27) and (28) verify that Lindeberg’s
condition holds. □
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We next verify the extended CLT condition for the variance minimizing MLMC estimator in
settings with limℓ→∞ Sℓ = ∞.

Theorem 2.6. Let AML denote the variance minimizing MLMC estimator applied to estimate the
expectation of X ∈ L2(Ω) based on the collection of r.v. {Xℓ} ⊂ L2(Ω) satisfying Assumptions 1.1 and
2.1. Assume that limℓ→∞ Sℓ = ∞ and that

lim
ℓ→∞

1{Vℓ>0}E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>2(2α−γ )ℓS2

ℓ
ν

}
⎤⎥⎦ = 0

holds for any ν > 0. Then the extended CLT condition (17) is satisfied for the normalized MLMC
estimator.

Proof. From (2) and Cℓ = Θℓ(2γ ℓ) it follows that there exists a c > 0 such that

ϵ2M2
ℓ

Vℓ

≥
ϵ−2S2ℓ
Cℓ

> c2(2α−γ )ℓS2ℓ .

Consequently,

L∑
ℓ=0

√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦

≤

L∑
ℓ=0

√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νc2(2α−γ )ℓS2

ℓ

}
⎤⎥⎦.

Let L̃ : (0, ∞) → N0 be a monotonically decreasing function satisfying the constraints

lim
ϵ↓0

L̃(ϵ) = ∞ and lim
ϵ↓0

S̃L(ϵ)
SL(ϵ)

= 0.

Under the current assumption limϵ↓0 SL(ϵ) = ∞, it is always possible to construct such an L̃, e.g.,

L̃(ϵ) := min
{
ℓ ∈ N0 | Sℓ+1 ≥

√
SL(ϵ)

}
.

Provided that ϵ > 0 is sufficiently small, it holds that L̃ < L and we may write

L∑
ℓ=0

√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νc2(2α−γ )ℓS2

ℓ

}
⎤⎥⎦

≤

L̃∑
ℓ=0

√
VℓCℓ

SL
+

L∑
ℓ=̃L+1

√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νc2(2α−γ )ℓS2

ℓ

}
⎤⎥⎦

≤
S̃L
SL

+
SL − S̃L

SL
× sup

ℓ>̃L
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νc2(2α−γ )ℓS2

ℓ

}
⎤⎥⎦.
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Consequently,

lim
ϵ↓0

L∑
ℓ=0

√
VℓCℓ

SL
E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>

ϵ2M2
ℓ

Vℓ
ν

}
⎤⎥⎦

≤ lim
ϵ↓0

S̃L
SL

+ lim sup
ℓ→∞

E

⎡⎢⎣ |∆ℓX − E[∆ℓX]|2

Vℓ

1{
|∆ℓX−E[∆ℓX]|2

Vℓ
>νc2(2α−γ )ℓS2

ℓ

}
⎤⎥⎦

= 0. □

2.1. CLT for the mass-shifted MLMC estimator

The key feature of the mass-shifted MLMC estimator that is particularly handy for proving the
CLT is that irrespective of whether {Sℓ} is uniformly bounded from above or not, it will always be
the case that limℓ→∞ S̃ℓ < ∞. The CLT follows by this property and an extension of Theorem 2.5.

Proof of Theorem 1.2. Recall that the mass-shifted MLMC estimator is given by

ÃML =

L∑
ℓ=0

M̃ℓ∑
i=1

∆ℓX i

M̃ℓ

,

where M̃ℓ for a given ξ > 0 is defined in Eq. (9) and {∆ℓX} is a sequence of r.v. satisfying
Assumption 1.1 for a rate triplet α, β, γ . Let {Yℓ}

∞

ℓ=−1 ⊂ L2(Ω) denote a auxiliary sequence satisfying
Y−1 := 0 and for all ℓ ≥ 0,

Yℓ
d
= Xℓ, ∆ℓY

d
= ∆ℓX,

and

Cℓ := Cost(∆ℓY ) =
Cost(∆ℓX)

(Sℓ + 1)2 log(Sℓ + 1)2(1+ξ ) =
Cℓ

(Sℓ + 1)2 log(Sℓ + 1)2(1+ξ ) .

Let AML denote the variance minimizing MLMC estimator applied to {Yℓ}
∞

ℓ=−1, i.e.,

AML =

L∑
ℓ=0

Mℓ∑
i=1

∆ℓY i

Mℓ

, (29)

where it follows by Var (∆ℓY ) = Var (∆ℓX) = Vℓ and Eq. (2) that

Mℓ = max

(⌈
ϵ−2

√
Vℓ

Cℓ

L∑
ℓ=0

√
VℓCℓ

⌉
, 1

)
.

By construction,
L∑

ℓ=0

√
VℓCℓ = S̃L,

hence, Mℓ = M̃ℓ for all ℓ ∈ [0, L]. Consequently, AML
d
= ÃML, so the theorem follows if we can prove

the CLT for the normalized version of AML.
The collection of random variables {Yℓ} satisfies the following slightly altered version of Assump-

tion 1.1 (where Θℓ(2γ ℓ) is replaced by Oℓ(2γ̄ ℓ) in condition (iii)):

(i) for some cα > 0, |E[X − Yℓ]| ≤ cα2−αℓ for all ℓ ≥ 0,
(ii) Var(∆ℓY ) = Oℓ(2−βℓ),
(iii) Cℓ = Oℓ(2γ̄ ℓ) and infℓ∈N0 Cℓ > c > 0,
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where γ̄ ∈ (0, γ ] and α, β, γ > 0 (as everywhere else in this proof) stems from the rate triplet of
{Xℓ}. Moreover,

min(β, γ ) ≤ 2α H⇒ min(β, γ̄ ) ≤ 2α,

and since {Sℓ} is monotonically increasing,

S̃L =

L∑
ℓ=0

√
VℓCℓ

(Sℓ + 1) log(Sℓ + 1)1+ξ

=

L∑
ℓ=0

Sℓ − Sℓ−1

(Sℓ + 1) log(Sℓ + 1)1+ξ

≤

∫ SL

S0

1
(s + 1) log(s + 1)1+ξ

ds

<
1

ξ log(S0 + 1)ξ
< ∞.

This shows that S̃ℓ ∈ [̃S0, S̃] for all ℓ ≥ 0, where S̃0 = V0C0 > 0 and S̃ = limℓ→∞ S̃ℓ < ∞. Using
the uniform bounds on {̃Sℓ} and the properties of the rate triplet for {Yℓ}, the proofs of Lemma 2.3,
Corollary 2.4 and Theorem 2.5 straightforwardly extend to the current setting, verifying the CLT for
the normalized version of the estimator (29). □
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