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Direct numerical simulation data obtained from two statistically stationary, one-15

dimensional, planar, weakly turbulent, premixed flames are analyzed in order to examine16

the influence of flame-generated vorticity on the surface area of the reaction zone. The two17

flames are associated with the flamelet combustion regime and are characterized by two18

significantly different density ratios σ = 7.53 and 2.5, with all other things being roughly19

equal. The obtained results indicate that generation of vorticity due to baroclinic torque20

within flamelets can impede wrinkling the reaction surface, reduce its area, and, hence, de-21

crease the burning rate. Thus, these results call for revisiting the widely-accepted concept22

of combustion acceleration due to flame-generated turbulence. In particular, in the case of23

σ = 7.53, the local stretch rate, which quantifies the local rate of an increase or decrease in24

the surface area, is predominantly negative in regions characterized by a large magnitude25

of enstrophy or a large magnitude of the baroclinic torque term in the enstrophy transport26

equation, with the effect being more pronounced at larger values of the mean combustion27

progress variable. If the density ratio is low, e.g., σ = 2.5, the baroclinic torque weakly28

effects the vorticity field within the mean flame brush and the aforementioned effect is not29

pronounced.30

PACS numbers: 47.70.Fw, 82.33.Vx, 47.27.-i31

Keywords: premixed turbulent burning, flame-generated turbulence, thermal expansion,32

combustion acceleration, DNS33

. I. INTRODUCTION34

Interaction of a turbulent flow and an exothermic reaction wave is a highly non-linear and multi-35

scale phenomenon relevant to various processes ranging from combustion1−9 and deflagration-to-36

detonation transition10 under terrestrial conditions to evolution of thermonuclear Ia supernovae11,12
37

in the Universe. While the governing physical mechanisms of the influence of turbulence on a reac-38

tion wave are sufficiently well understood,13−19 the problem of the influence of thermal expansion39

in the wave on the incoming turbulent flow still strongly challenges the research community.40

For instance, almost seven decades ago, Karlovitz et al.20 and Scurlock and Grover21 put forward41

a seminal concept of combustion acceleration due to flame-generated turbulence in order to explain42

unexpectedly high burning rates obtained in some early experiments. For that purpose, they (i) high-43

lighted two different (in the two different papers cited above) physical mechanisms of turbulence44
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generation due to combustion-induced thermal expansion and (ii) hypothesized that such a flame-45

generated turbulence significantly increased the flame speed ST , with the influence of the flame-46

generated turbulence on ST being assumed to be basically similar to the influence of the incoming47

turbulence on ST . Since that pioneering studies, the flame-generated turbulence and other thermal48

expansion effects were in the focus of research into premixed turbulent combustion, but progress in49

understanding and modeling them has yet been rather moderate, as reviewed elsewhere.22−25 Nev-50

ertheless, to the best of the present authors’ knowledge, the classical concept20,21 of combustion51

acceleration due to flame-generated turbulence has never been disputed, at least in the case of weak52

or moderate turbulence associated with a well-pronounced increase26 in ST by the rms turbulent53

velocity u′.54

On the one hand, this concept is indirectly supported by well-documented self-acceleration55

of large-scale laminar flames,27−33 which is commonly attributed to development of the flame56

instabilities,29−33 followed by generation of turbulence due to combustion-induced thermal expansion.27,28,34
57

On the other hand, certain fundamental issues associated with that concept have not yet been58

resolved properly. In particular, first, while the physical mechanisms highlighted by Karlovitz et59

al.20 and by Scurlock and Grover21 are relevant to turbulence downstream of the instantaneous60

flame, the influence of a premixed flame on the turbulent flow upstream of the flame has yet been61

understood poorly. However, since the flame propagates into the unburned gas, perturbations of62

the incoming turbulent flow are required in order for the thermal expansion effects to cause self-63

acceleration of the flame.64

Second, in the constant-density flow of unburned reactants, combustion-induced flow perturba-65

tions can differ fundamentally from the incoming turbulence. For instance, while the rotational66

motion dominates in a typical constant-density turbulent flow, the unburned-reactant-flow pertur-67

bations that are directly caused by the flame-generated pressure perturbations are expected to be68

irrotational, because the sole term that involves the pressure gradient in the transport equation35
69

for vorticity (i.e., the baroclinic torque term) vanishes in the constant-density flow of the unburned70

reactants. Indeed, certain DNS data indicate that the irrotational velocity component is increased71

(when compared to the rotational component) upstream and in the vicinity of a premixed flame in a72

weakly turbulent flow.25
73

Third, within a flame, rotational flow perturbations generated due to thermal expansion effects,74

e.g., vorticity generation due to baroclinic torque,17,24 and the incoming turbulent eddies can affect75

the flame surface area and, hence, the burning rate in opposite directions, i.e., the former rotational76

perturbations can mitigate an increase in the area under the influence of the incoming turbulence. To77

the best of the present authors’ knowledge, such a scenario was not discussed in the turbulent com-78

bustion literature until recently.36 On the contrary, the influence of the flame-generated turbulence on79

ST is typically assumed to be basically equivalent to the influence of the incoming turbulence on ST ,80

i.e., both kinds of turbulence are often considered to increase ST in a similar manner. Nevertheless,81

there are theoretical and qualitative reasons for hypothesizing the former, commonly disregarded82

scenario, i.e., the reduction of flame-surface area, caused by the rotational motion induced due to83

thermal expansion in the flame.84

Indeed, first, the well-recognized theory of the hydrodynamic instability of a laminar premixed85

flame37−39 addresses an infinitely thin flame front in a 2D irrotational flow of unburned reactants and86

predicts generation of vorticity in the combustion products just downstream of the front if its shape87

is weakly perturbed. However, inspection of the relevant theoretical expressions, e.g., see Eq. (40)88

in a review paper,24 shows that the rotational component of the product velocity works to smooth89

out perturbations of the front shape, i.e., to mitigate the instability. Nevertheless, the hydrodynamic90

instability develops under the influence of the irrotational flow perturbations, which overwhelm the91

rotational ones (at the same time, it is worth remembering that the vorticity generation behind the92

front is the direct consequence of the momentum conservation at the front, i.e., if the flow around the93

flame is described by the continuity and Euler or Navier-Stokes equations, then, the flame instability94

is always accompanied by the generation of vorticity in the burned products). We may also note95

that, by theoretically studying an irrotational model of the hydrodynamic instability, put forward by96

Frankel40 (within the framework of this model, momentum is not conserved41 at the flame front),97

Sivashinsky and Clavin41 have found that “neglect of vorticity generation increases the perturbation98

growth rate.”99
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FIG. 1. Generation of vorticity by baroclinic torque within flamelets in the vicinity of reaction zones (a)
convex or (b) concave towards unburned gas.

Second, to illustrate that the flame-generated vorticity can impede growing the flame surface100

area and the burning rate in a turbulent flow, let us consider flow within a flamelet preheat zone in101

the vicinity of a reaction zone convex or concave towards the unburned gas, see Figs. 1a and 1b,102

respectively. Here, the cold boundary of the preheat zone and the reaction surface are shown in blue103

dashed and red solid lines, respectively. The turbulent flame is statistically 1D, planar, normal to the104

x-axis, and propagates from right to left.105

Let us consider the well-known vorticity transport equation24,35
106

∂ωi

∂ t
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where t is the time, xi are spatial coordinates, ωi and ui are components of the vorticity ω = ∇×u108

and velocity u vectors, respectively, ρ is the density, p is the pressure,109
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(2)110

is the viscous stress tensor, δi j is the Kronecker delta, εi jk is the cyclic permutation tensor, and the111

summation convention applies for the repeated indexes k and l.112

The focus of the present study is placed on the baroclinic torque term T4 or Bω = (∇ρ×∇p)/ρ2
113

and on the counterpart term Bω·ω = ω ·Bω in the following transport equation42
114
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(3)115

for enstrophy ω2 = ω ·ω/2, because these two terms directly involve the density gradient and116

control42 vorticity generation in weakly turbulent flames characterized by a large Bray23 number117

NB ∝ (σ−1)SL/u′, in particular, in flame H analyzed in Section III, see figure 9b in Ref. [42]. Here,118

SL is the laminar flame speed, σ = ρu/ρb is the density ratio, subscripts u and b designate unburned119

reactants and burned products, respectively. For the goals of the present study, the weakly turbulent120

flames are of paramount interest, because the influence of combustion-induced thermal expansion121

on the incoming turbulence is most pronounced under such conditions24,25, whereas turbulence122

is weakly affected by thermal expansion in highly turbulent flames43,44. For instance, at NB <123

1, vorticity generation is mainly controlled1,45,46 by the vortex-stretching terms T1 and T1, which124

involve neither density nor viscosity, but are indirectly affected by combustion-induced thermal125

expansion, which changes the velocity field.126

It is also worth noting that, first, the dilatation terms T3 and T3 always reduce the incoming127

vorticity. Second, while the viscous term T2 can re-distribute vorticity within weakly turbulent128

flames42, the mean viscous term T2 reduces the mean enstrophy1,42,45,46 both at large and small NB.129

Let us consider behaviour of a transverse (η = y or z) component of the vector Bω , as well as130

behaviour of the local pressure and density gradients. Note that the two gradients are not parallel131

to each other within a turbulent flame, because the local pressure is affected by the surrounding132
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velocity field. For instance, if the Mach number asymptotically vanishes, the local pressure is133

determined by the entire velocity field according to Poisson equation,35 i.e. pressure perturbations134

propagate at an infinitely high speed in this limiting case. Even under laminar-flow conditions, the135

Darrieus-Landau solution37 shows that ∇p is not normal to the instantaneous flame front, see Eq.136

(40) in a review paper.24
137

Accordingly, to simplify the following qualitative discussion, let us assume that the local pressure138

gradient is parallel to the x-axis. Indeed, in a typical premixed turbulent flame, there is always a139

significant axial pressure gradient due to the mean pressure drop from the leading to the trailing140

edge of the mean flame brush, but small transverse pressure gradients |∇y p| and |∇z p| can also play141

a role, as discussed in Section III.A. Then, the mutual orientation of ∇p (bold black arrows) and the142

projection of the vector ∇ρ (see fine black arrows) on the transverse plane shown in Fig. 1a indicates143

that the normal (to the plane) component of the vector Bω points to (from) the reader at positive144

(negative) values of the local transverse coordinate η counted from the transverse coordinate of the145

locally leading point A, see red circle. More specifically, Bω,y < 0 if the local η = z− zA > 0,146

but Bω,y > 0 if the η = z− zA < 0, whereas Bω,z > 0 if the η = y− yA > 0, but Bω,z < 0 if the147

η = y− yA < 0. Here, yA and zA are the y and z-coordinates of the locally leading point A.148

Accordingly, baroclinic torque locally works to generate a vortex pair, see violet arcs, with its149

“symmetry” axis being parallel to the x-axis, see horizontal dashed straight line. Moreover, by virtue150

of the aforementioned orientation of the normal (to the figure plane) component of Bω , the axial151

velocity component u associated with such a vortex pair is positive in the vicinity of the symmetry152

axis, see violet arrows. Therefore, the local axial velocity associated with the local flame-generated153

vorticity pushes the leading point inside the mean flame brush, thus, reducing the reaction-surface154

area and, consequently, the turbulent burning rate.155

A similar conclusion regarding reduction of the reaction-surface area due to the vorticity gener-156

ated by baroclinic torque can be drawn by considering Fig. 1b, where the behaviors of ∇ρ , ∇p, Bω ,157

ω, and u are sketched in the vicinity of a locally trailing point A on the reaction surface concave to158

the unburned reactants.159

Thus, both the theory of the hydrodynamic instability of laminar premixed flames and the physi-160

cal scenarios sketched in Fig. 1 imply that, contrary to the widely accepted concept of combustion161

acceleration due to flame-generated turbulence,20,21 the flame-generated vorticity can impede grow-162

ing the reaction-surface area, thus, reducing the turbulent burning rate. The major goal of the present163

work is to examine this hypothesis, which has yet been beyond the focus of the mainstream research164

into flame-turbulence interaction.165

To fill this gap, Direct Numerical Simulation (DNS) data generated by two of the present166

authors47,48 more than 15 years ago were analyzed. The first results of this analysis were briefly167

reported in a recent letter,36 but the present paper significantly extends discussion and assessment168

of the aforementioned hypothesis.169

The choice of this DNS database, which may appear to be outdated when compared to recent170

DNS data49−56 generated in the case of complex combustion chemistry and a high ratio of the rms171

turbulent velocity u′ to the laminar flame speed SL, requires comments. Since the focus of the172

following discussion is placed on the influence of combustion-induced thermal expansion on the173

velocity, pressure, vorticity, and enstrophy fields upstream of reaction zones, detailed description174

of complex combustion chemistry within such zones appears to be of secondary importance when175

compared to two other major requirements. First, in order to make the studied thermal expansion176

effects as strong as possible, the heat release and density drop should be localized to sufficiently177

thin zones and the velocity jumps across such zones should be sufficiently large when compared to178

the rms turbulent velocity u′. In other words, the flamelet regime13−15,18,57 of premixed turbulent179

combustion associated with u′/SL = O(1) and NB > 1 should be addressed. The selected DNS data180

are indeed associated with this regime, as discussed in detail elsewhere,58 whereas the vast majority181

of recent very advanced DNS studies attacked other combustion regimes characterized by a large182

u′/SL.183

Second, to better explore the thermal expansion effects, data obtained at significantly different184

density ratios σ = ρu/ρb are required. The selected DNS database does satisfy this requirement,185

because cases of σ = 2.5 and 7.53 were simulated, with all other things being roughly equal. As186

discussed in detail elsewhere,42 such variations in the density ratio offer an opportunity to explore187
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two opposite scenarios, which are directly relevant to the major goal of the present study. These are;188

(i) the generation of vorticity due to baroclinic torque overwhelms the dissipation of vorticity due189

to dilatation and viscous forces, thus, increasing enstrophy within the flame brush at σ = 7.53, but190

(ii) the dilatation and dissipation effects dominate and reduce the enstrophy at σ = 2.5. Therefore,191

the selected DNS data appear to be fully adequate to the major goal of the present work.192

The paper is organized as follows. In the next section, the DNS attributes are reported. Simulated193

results are discussed in Section III, followed by conclusions.194

. II. DIRECT NUMERICAL SIMULATIONS195

Since the DNS data were discussed in detail elsewhere47,48 and were already used by various196

research groups,42,58−75 let us restrict ourselves to a very brief summary of those compressible 3D197

simulations. They dealt with statistically 1D and planar, equidiffusive, adiabatic flames modeled198

by unsteady continuity, Navier-Stokes, and energy equations, supplemented with the ideal gas state199

equation and a transport equation for the mass fraction Y of a deficient reactant. Temperature-200

dependence of molecular transport coefficients was taken into account, e.g., the kinematic viscosity201

ν = νu(T/Tu)
0.7, where T is the temperature. The Lewis Le and Prandtl Pr numbers were equal to202

1.0 and 0.7, respectively. Combustion chemistry was reduced to a single reaction. Therefore, the203

mixture state was characterized with a single combustion progress variable c= (T−Tu)/(Tb−Tu) =204

1−Y/Yu.205

The computational domain was a rectangular box Λx×Λy×Λz, where Λx = 8 mm and Λy =206

Λz = 4 mm. It was resolved using a uniform rectangular (2∆x = ∆y = ∆z) mesh of 512×128×128207

points. The flow was periodic in y and z directions.208

Using an energy spectrum E(κ) proposed by Kraichnan76 and setting u′0 = 0.53 m/s and an209

integral length scale210

L =
3π

4

∫
∞

0 κ−1E(κ)dκ∫
∞

0 E(κ)dκ
(4)211

equal to 3.45 mm, homogeneous isotropic turbulence was generated47 in a separate box and was212

injected into the computational domain through the left boundary x = 0. While the used value of the213

length scale L was comparable with the width Λy = Λz of the computational domain, the velocity214

fields simulated at y = Λy/2 or z = Λz/2 did not correlate with the velocity fields simulated at215

the transverse boundaries. For instance, the second-order structure functions of the velocity field,216

reported recently,73,75 level off at transverse distances less than Λy/2 or Λz/2.217

At t = 0, a planar laminar flame was embedded into statistically the same turbulence assigned218

for the velocity field in the entire computational domain. Subsequently, the mean inflow velocity219

U was increased twice, i.e., U(0 ≤ t < t1) = SL <U(t1 ≤ t < t2) <U(t2 ≤ t). In order to keep the220

flame in the computational domain till the end t3 of the simulations, U(t2 ≤ t) was close to the mean221

turbulent flame speed ST averaged over a time interval of (t2, t3).222

Three DNS data sets H, M, and L associated with High, Medium, and Low, respectively, den-223

sity ratios σ were originally generated.47,48 Since the focus of the present study is placed on ther-224

mal expansion effects, the following discussion will be restricted to results obtained in two cases225

characterized by the highest and the lowest density ratios, i.e., flame H (σ = 7.53, SL = 0.6 m/s,226

δL = 0.217 mm) and flame L (σ = 2.5, SL = 0.416 m/s, δL = 0.158 mm). In both cases, ST/SL = 1.9.227

Here, δL = (Tb−Tu)/max{|∇T |} is the laminar flame thickness. The two flames are well associ-228

ated with the flamelet combustion regime, e.g., various Bray-Moss-Libby (BML) expressions hold229

in cases H and L, see figures 1-4 in an earlier paper.58 Since the turbulence decays along the di-230

rection x of the mean flow, the turbulence characteristics are slightly different at the leading edges231

of the H and L-flame brushes, e.g., u′ = 0.33 m/s, λ = 0.43 mm, η = 0.075 mm, Da = 17.5,232

Ka = 0.06 in case H and u′ = 0.38 m/s, λ = 0.47 mm, η = 0.084 mm, Da = 10.0, Ka = 0.10233

in case L. Here, Da = τT/τc and Ka = τcu′/λ are the Damköhler and Karlovitz numbers, respec-234

tively, τc = ν/(PrS2
L) and τT = k̄3/2/(u′ε̄) are the flame and turbulence time scales, respectively,235

λ = u′
√

15ν/ε̄ and η = (ν3/ε̄)1/4 are the Taylor and Kolmogorov length scales, respectively,236

k = (ukuk− ūkūk)/2 and ε = 2νSi jSi j are the turbulent kinetic energy and its dissipation rate, re-237

spectively, Si j = 0.5(∂ui/∂x j +∂u j/∂xi) is the rate-of-strain tensor, the rms turbulent velocity u′ is238
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equal to
√

2k̄/3, and the summation convention applies for repeated indexes.239

The DNS data were processed as follows. Mean quantities q̄ = q̄(x) were averaged over a trans-240

verse plane of x =const and over time (221 and 200 snapshots in cases H and L, respectively, stored241

during a time interval of t3− t2 ≈ 1.5L/u′0 ≈ 10 ms). Subsequently, x-dependencies were mapped to242

c̄-dependencies using the monotonic spatial profiles of the Reynolds-averaged combustion progress243

variable c̄(x).244

. III. RESULTS AND DISCUSSION245

In this section, two types of numerical results are considered. Data extracted from the entire flame246

brush are reported in Section III.B. However, before discussing such data, it is worth examining247

relevance of the qualitative scenarios, sketched in Fig. 1 and discussed in Section I, to premixed248

turbulent combustion.249

Since these scenarios deal with a single point each, they should be assessed by exploring the local250

velocity, pressure, and density fields in the vicinity of some representative points, with selection of251

such points being sufficiently arbitrary. In the next subsection, the so-called leading and trailing252

points are chosen for this purpose. This choice is based on the following three reasons. First, the253

leading (trailing) points are always convex (concave) towards the unburned gas. Second, since a254

fluid particle that comes to a leading (trailing) point has been subject to thermal expansion effects255

during a shorter (longer) travel time counted from some reference point upstream of the flame256

brush, the effect manifestations are expected to be weakest (strongest) in the vicinity of the leading257

(trailing) points. Third and the most important, there are physical,16,19,77,78 mathematical,79,80 and258

numerical81,82 arguments that imply that the leading points play the crucial role in turbulent flame259

propagation, with such a hypothesis being indirectly supported by recent experimental data.83−85
260

Accordingly, even if the hypothesis still requires further study, an investigation of the local processes261

in the vicinity of the leading points appears to be of great fundamental interest.262

. III.A. Leading and trailing points263

In order to examine the qualitative scenarios sketched in Fig. 1, behaviors of vectors ∇ρ , ∇p,264

u, ω, Bω and scalar quantities such as enstrophy ω2 and baroclinic torque term Bω·ω = ω ·Bω265

in the transport equation for ω2 were investigated in the vicinity of the leading xl p(t) and trailing266

xt p(t) points associated with an iso-surface of c(x, t) = c∗. At each instant t, such points were267

found using the following two constraints applied consecutively. First, the leading x = xl p(t) and268

trailing x = xt p(t) planes were found using constraints of c(x, t)< c∗ if x < xl p(t), but c(x, t)≥ c∗269

somewhere on the plane of x = xl p(t), and c(x, t) > c∗ if x > xt p(t), but c(x, t) ≤ c∗ somewhere270

on the plane of x = xt p(t), respectively. Second, the leading {y = yl p(t),z = zl p(t)} and trailing271

{y = yt p(t),z = zt p(t)} points, characterized by the maximal and minimal, respectively, values of272

c[xl p(t),y,z, t] and c[xt p(t),y,z, t], respectively, were selected among all points on the leading and273

trailing planes, respectively.274

Typical instantaneous flame shapes are shown in Figs. 2a and 2b in xy and xz-planes, respectively,275

where red filled circle indicates the leading point A. Instantaneous profiles of certain aforementioned276

quantities along lines {y = yl p(t),z = zl p(t)}, {x = xl p(t),z = zl p(t)}, and {x = xl p(t),y = yl p(t)},277

which are parallel to the x, y, and z-axes, respectively, are plotted in Figs. 3 and 4.278

Figure 3a indicates that Bω·ω > 0 in the leading point, see vertical dashed line, i.e., baroclinic279

torque locally increases the incoming enstrophy in this particular point. However, dashed blue line280

in Fig. 3a shows that Bω·ω < 0 within the flamelet upstream of the leading point. Therefore, at low281

c(x,y = yl p,z = zl p), an angle ϕ between the vectors Bω and ω is obtuse and the local enstrophy282

is reduced by baroclinic torque. When c(x,y = yl p,z = zl p) increases with x, |ϕ| is reduced and283

becomes equal to π/2 at certain c(x,y = yl p,z = zl p) upstream of the leading point xl p(t) on the284

reaction surface. At larger c(x,y = yl p,z = zl p), baroclinic torque increases ω2.285

Red solid line in Fig. 3b shows that Bω,y(z) changes its sign in the vicinity of the leading point286

from positive at z < zA to negative at z > zA, in line with the sketch in Fig. 1a. However, contrary287
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FIG. 2. Iso-lines of c(x,y,z, t) = 0.1 (blue dashed lines) and c(x,y,z, t) = 0.85 (red solid lines) on (a) xy and
(b) xz-planes at t = 10.5 ms. Transverse distances y and z are counted from the leading point A. Case H.

FIG. 3. Instantaneous profiles of baroclinic torque terms (a) Bω·ω and (b) Bω in the transport equations for
enstrophy and vorticity, respectively, in the vicinity of the leading point A shown in Fig. 2. The terms are
normalized using τ3

c and τ2
c , respectively, where τc = νu/(PrS2

L) is the laminar-flame time scale. Local x, y,
and z-distances are counted from the x, y, and z-coordinates, respectively, of the leading point. In panel (a),
Bω·ω(x), Bω·ω(y), and Bω·ω(z) are shown in blue dashed, black dotted-dashed, and red solid lines, respec-
tively. In panel (b), 1 - Bω,y(x), 2 - Bω,z(x), 3 - Bω,z(y), and 4 - Bω,y(z).

to the sketch, Bω,z(y) is positive in the vicinity of the leading point, see blue dashed line, probably,288

because the reaction surface shown in Fig. 2a is weakly curved in the vicinity of point A in the289

xy-plane. Nevertheless, ∂Bω,z/∂y > 0, in line with the sketch.290

Red solid line in Fig. 4a indicates that ωy(z) decreases with increasing z in the vicinity of the point291

A due to the decrease in Bω,y(z) shown in red solid line in Fig. 3b. However, ωy(z) does not change292

its sign in the point A, because the incoming ωy > 0, see black dashed line in Fig. 4a. Therefore,293

counter-rotating vortex pair is not generated by Bω,y in the xz-plane in this case. Nevertheless, such294

a vortex pair is observed in the xy-plane, as ωz < 0 at y < yA, but ωz > 0 at y > yA, see red solid line295

in Fig. 4b. Since the magnitude of the incoming ωz is small, see black dashed line in Fig. 4b, the296

observed increase in ωz with y appears to be controlled by the aforementioned increase in Bω,z with297

y, which is consistent with the physical scenario sketched in Fig. 1.298

Thus, the single-point, single-instant DNS data plotted in Figs. 3 and 4 are only partially con-299

sistent with that physical scenario. More specifically, the signs of ∂Bω,z/∂y, ∂Bω,y/∂ z, ∂ωz/∂y,300

and ∂ωy/∂ z are consistent with the sketch, but the sign of (i) Bω,z(y) or (ii) ωy(z) is not changed301

in the vicinity of the leading point. The matter is that, respectively, (i) the local ∇y p multiplied302

with ∇xρ , which magnitude |∇xρ| � |∇yρ|, can also contribute to Bω,z even if |∇y p| � |∇x p| and303
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FIG. 4. Instantaneous profiles of (a) τcωy and (b) τcωz in the vicinity of the leading point A shown in Fig. 2.
Local x, y, and z-distances are counted from the x, y, and z-coordinates, respectively, of the leading point.

(ii) ωy(z) depends not only on Bω,y(z), but also on the incoming vorticity. Nevertheless, even in304

this partially consistent case, Fig. 4b indicates generation of the counter-rotating vortex pair in the305

xy-plane, with this vortex pair pushing the leading point inside the mean flame brush, thus, reducing306

the reaction-surface area.307

In order to statistically assess consistency of the physical scenario sketched in Fig. 1 with the308

DNS data computed in the vicinity of the leading and trailing points, the maximal and minimal309

values of ωy(xA,yA,z) or ωz(xA,y,zA) and Bω,y(xA,yA,z) or Bω,z(xA,y,zA) were found within an310

interval of (xA,yA, |z− zA| < δL) or (xA, |y− yA| < δL,zA), respectively, at each time instant (221311

and 200 instants in cases H and L, respectively). Here, A designates a leading or trailing point.312

Subsequent analysis of the obtained time series yielded the probabilities of various events that were313

directly associated with the physical scenario sketched in Fig. 1.314

For the goals of the present work, the following four probabilities are of the most interest:315

(i) the probability Pω that a product of either max{ωy(xA,yA,z)} and min{ωy(xA,yA,z)} or max{ωz(xA,y,zA)}316

and min{ωz(xA,y,zA)} is negative, i.e., the probability that a transverse component of the vorticity317

vector changes its sign in the vicinity of the point A;318

(ii) the probability PB that a product of either max{Bω,y(xA,yA,z)} and min{Bω,y(xA,yA,z)} or319

max{Bω,z(xA,y,zA)} and min{Bω,z(xA,y,zA)} is negative, i.e., the probability that a transverse com-320

ponent of the baroclinic torque vector-term Bω in Eq. (1) changes its sign in the vicinity of the321

point A;322

(iii) the probability Pyorz that (iii.a) either the z-coordinate zmax of max{ωy(xA,yA,z)} is smaller323

(larger) than the z-coordinate zmin of min{ωy(xA,yA,z)} in the vicinity of the leading (trailing) point324

or (iii.b) the y-coordinate ymax of max{ωz(xA,y,zA)} is larger (smaller) than the y-coordinate ymin325

of min{ωz(xA,y,zA)} in the vicinity of the leading (trailing) point, as such events are necessary in326

order for the counter-rotating vortex pairs sketched in Fig. 1 to reduce the reaction-surface area;327

and328

(iv) the probability Pyandz that both events (iii.a) and (iii.b) occur simultaneously.329

Probabilities calculated for an iso-surface of c(x, t) = c∗ = 0.85, associated with the peak local330

reaction rate, are reported in Table I. Note that the trends shown in Table I and discussed in the331

following are less pronounced if c∗ is decreased and the trends vanish if c∗ = 0.1.332

Table I shows that, first, the probability Pω is equal or very close to unity, i.e., at least one of333

the transverse components of the vorticity vector changes its sign in the vicinity of the leading (or334

trailing) points. Second, the probability Pyorz is equal to unity for both leading and trailing points335

in cases H and L, i.e. the local direction of an increase in either ωz(xA,y,zA) or ωy(xA,yA,z) is336

consistent with appearance of a vortex pair that pushes the leading (or trailing) point inside the337

mean flame brush. Even the probability Pyandz is close to or equal to unity in the leading or trailing338

points in case H. These features imply that the local vorticity field in the vicinity of the leading or339

trailing points works to smooth out the local reaction surface, thus, reducing its area.340
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TABLE I. Probabilities of various events.
Probability leading point trailing point

case H case L case H case L
(i) Pω 1.0 0.985 1.0 0.950
(ii) PB 0.629 0.705 1.0 0.980

(iii) Pyorz 1.0 1.0 1.0 1.0
(iv) Pyandz 0.937 0.690 1.0 0.980

FIG. 5. Axial pressure gradient in the leading (solid lines) and trailing (dashed lines) points of the reaction
surface of c(x, t) = 0.85 in cases H (red curves) and L (blue curves). The gradient is normalized using its value
ρu(σ −1)S2

L/δL associated with the unperturbed laminar premixed flame.

It is worth noting, however, that the probability PB is substantially less than unity at the leading341

points, thus, indicating that components Bz(xA,y,zA) and By(xA,yA,z) can retain the same sign for342

the entire intervals of |y−yA|< δL and |z−zA|< δL, respectively. Typically, max{Bω,y(xA,yA,z)}<343

0 or min{Bω,y(xA,yA,z)}> 0 when a product of ∇xρ and ∇z p overwhelms a product of ∇zρ and ∇x p344

by virtue of |∇xρ| � |∇zρ|. Similarly, max{Bω,z(xA,y,zA)}< 0 or min{Bω,z(xA,y,zA)}> 0 when a345

product of ∇xρ and ∇y p overwhelms a product of ∇yρ and ∇x p by virtue of |∇xρ| � |∇yρ|. At the346

trailing points, the probability PB is equal or close to unity in case H or L, respectively, because (i)347

the local pressure gradient in the vicinity of the trailing points is more affected by the combustion-348

induced thermal expansion when compared to the leading points, e.g. see Fig. 5, and (ii) baroclinic349

torque has directly and indirectly (due to viscous diffusion of vorticity generated within neighboring350

flamelet preheat zones) affected the local fluid particles during a longer time interval required for351

the particles to reach the trailing point.352

The difference between the values of Pω and PB , reported in Table I, is associated with the in-353

fluence of baroclinic torque on the vorticity field upstream of the leading points on the reaction354

surface of c(x, t) = 0.85. Indeed, while the probabilities PB are almost the same (0.58, 0.58, 0.56,355

and 0.58) for c∗ = 0.1, 0.25, 0.50, and 0.75, respectively, in case H, the probabilities Pω are signifi-356

cantly different, i.e., 0.69, 0.96, 1.0, and 1.0, respectively, thus, indicating that the evolution of the357

local vorticity field from the flamelet cold edges to the reaction zones facilitates appearance of the358

aforementioned counter-rotating vortex pair upstream of the leading point on the reaction surface.359

On the contrary, in case L, the probabilities Pω are almost the same for c∗ = 0.1, 0.25, 0.50,360

and 0.75, respectively, i.e., the probability does not change within flamelets. The point is that the361

magnitude of baroclinic torque is much less in this case, cf. figures 9 and 10 in an earlier paper,42
362

due to a significantly lower density ratio. Accordingly, the influence of the baroclinic torque on363

the vorticity field is much weaker pronounced in case L when compared to case H, as discussed in364

detail elsewhere.42
365

Finally, to estimate the order of magnitude of the axial velocity urot induced by the aforemen-366
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FIG. 6. Axial velocity estimated using Eq. (5) in the leading (solid lines) and trailing (dashed lines) points on
the reaction surface of c(x, t) = 0.85 in cases H (red curves) and L (blue curves).

tioned counter-rotating vortex pair, the following quantity367

urot =−max{ωy(xA,yA,z)}(zmax− zA)+min{ωy(xA,yA,z)}(zA− zmin)368

+max{ωz(xA,y,zA)}(ymax− yA)−min{ωz(xA,y,zA)}(yA− ymin) (5)369

was evaluated in the leading and trailing points. Four terms in this equation are associated with the370

axial velocity differences (i) u(xA,yA,zA)− u(xA,yA,zmax) due to vorticity ωy(xA,yA,zmax), which371

involves ∂u/∂ z, (ii) u(xA,yA,zA)−u(xA,yA,zmin) due to vorticity ωy(xA,yA,zmin), (iii) u(xA,yA,zA)−372

u(xA,ymax,zA) due to vorticity ωz(xA,ymax,zA), which involves −∂u/∂y, and (iv) u(xA,yA,zA)−373

u(xA,ymin,zA) due to vorticity ωz(xA,ymin,zA). In sketches shown in Fig. 1a (1b), each of these four374

terms should be positive (negative, respectively).375

The results obtained for the reaction surface of c(x, t) = 0.85 and plotted in Fig. 6 show that this376

velocity works to move the leading and trailing points inward the mean flame brush in case H, i.e.,377

urot > 0 in the leading points and urot < 0 in the trailing points, with the magnitude of urot being378

comparable with SL, u′, and ST in the leading points and being much larger than SL, u′, and ST in379

the trailing points. In case L associated with a low density ratio and a weak influence of baroclinic380

torque on the vorticity field, the magnitude of urot is much less, there is a significant probability of381

urot < 0 in the leading point, but urot is predominantly positive in the trailing point, thus, implying382

some weak influence of baroclinic torque.383

Thus, the above analysis of statistical characteristics of the flow field within flamelets in the vicin-384

ity of the leading and trailing points on the reaction surface indicates that, in case H characterized385

by a large density ratio, baroclinic torque works to push these points inward the mean flame brush,386

thus, reducing the reaction-surface area, with the effect being significantly more pronounced in the387

vicinity of the trailing points. In case L characterized by a low density ratio, baroclinic torque plays388

a less important role. In the next subsection, statistical results extracted from the entire flame brush389

are considered.390

. III.B. Conditioned statistics of stretch rate391

Since the rate of an increase (or decrease) in the local area A∗ of an iso-scalar surface of c(x, t) =392

c∗ is well known38,86−88 to be controlled by the local stretch rate ṡ = ∇ ·u−nn : u+ Sd∇n, i.e.,393

d lnA∗/dt = ṡ, the focus of the following discussion will be placed on the joint statistics of ṡ and394

ω, ω2, Bω , or Bω·ω . Here, n = −∇c/|∇c| is the unit vector normal to the iso-scalar surface,395

Sd = [∇ · (ρD∇c)+W ]/(ρ|∇c|) is the local displacement speed, D is the molecular diffusivity of c,396

and W is the mass rate of product creation.397

Figure 7 shows that the probability of negative (black solid lines) stretch rates is higher than398

the probability of ṡ > 0 (red dashed lines) in regions characterized by a large magnitude of the399

baroclinic torque term Bω·ω(x, t) in the ω2-transport Eq. (3). On the contrary, relation between the400
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FIG. 7. Probabilities of positive (red dashed lines) and negative (black solid lines) stretch rates conditioned
to the local value of baroclinic torque term Bω·ω(x, t) in the transport equation for enstrophy. (a) case H, (b)
case L.

FIG. 8. Probabilities of positive (red dashed lines) and negative (black solid lines) stretch rates doubly
conditioned to (i) the local value of baroclinic torque term Bω·ω(x, t) in the transport equation for enstrophy
and (ii) the local value of the combustion progress variable. (a) 0.20< c(x, t)< 0.30, (b) 0.65< c(x, t)< 0.75.
Case H. Results obtained in case L are qualitatively similar.

two computed probabilities is well known to be opposite if they are extracted from the entire flame401

brush and the present DNS data do show that opposite relation, e.g., see Fig. 10 discussed later.402

Since d lnA∗/dt = ṡ, Fig. 7 indicates that the area of a surface of c(x, t) = c∗ is statistically reduced403

in regions associated with the strongest generation of enstrophy due to baroclinic torque.404

Such a trend is not observed within flamelet preheat zone (c < 0.65), where the local stretch rates405

are predominantly positive, e.g., see Fig. 8a, but is well pronounced in the vicinity of the reaction406

zone (c > 0.65), where ṡ(x, t) is predominantly negative provided that Bω·ω(x, t) is sufficiently407

large, e.g., see Fig. 8b. Even at the reaction zone, the trend is not pronounced at the leading edge408

of the mean flame brush, e.g., see Fig. 9a, but is well pronounced in the middle of the flame brush,409

e.g., see Fig. 9b, or at larger c̄(x).410

On the contrary, the same DNS data conditioned solely (independently of Bω·ω) to various local411

c(x, t), see Fig. 10, show well-known predominance of positive stretch rates in the middle of the412

flame brush, i.e., at c̄ = 0.5. Moreover, in case H, Fig. 10a indicates an increase in the probability413

of finding ṡ(x, t)< 0 with increasing the local c(x, t), which the data are conditioned to, but such a414

trend is not observed in case L, see Fig. 10b. This difference between results computed in the two415

cases is consistent with significant (negligible) generation of vorticity by large (small, respectively,416

cf. abscissa coordinates in Figs. 7a and 7b, respectively) baroclinic torque term in case H (L,417
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FIG. 9. Probabilities of positive (red dashed lines) and negative (black solid lines) stretch rates doubly condi-
tioned to (i) the local value of baroclinic torque term Bω·ω(x, t) in the transport equation for enstrophy and (ii)
the local value of the combustion progress variable 0.65 < c(x, t) < 0.75. The probabilities are evaluated in
two different regions of the mean flame brush. (a) 0.05 < c̄(x)< 0.15, (b) 0.45 < c̄(x)< 0.55. Case H. Results
obtained in case L are qualitatively similar.

FIG. 10. Probabilities of positive (red lines) and negative (black lines) stretch rates conditioned to five different
intervals of the local value of the combustion progress variable c(x, t), specified in legends. (a) case H, (b)
case L.

respectively), as the vorticity generated by Bω·ω(x, t) works to generate negative stretch rates.418

At first glance, the results plotted in Fig. 9a may appear to be inconsistent with the contents of419

Section III.A, where reduction of the reaction-surface area due to the flame-generated vorticity was420

discussed by analyzing the DNS data obtained at the leading edge, i.e., at a low c̄(x). However, it is421

worth remembering that the local stretch rate is affected not only by the local vorticity and baroclinic422

torque, but also by the potential component of the local velocity field. Accordingly, even if the423

flame-generated vorticity works to reduce the local reaction-surface area, such a reduction effect424

can be overwhelmed due to stretching of the surface by the potential component of the velocity425

field. Only if the former (reduction) effect is sufficiently strong, it can locally overwhelm the latter426

effect, but a sufficiently large c̄ is required in order for this to occur.427

Thus, the discussed reduction effect of baroclinic torque on the rate d lnA∗/dt of an increase in428

the area of an iso-scalar surface of c(x, t) = c∗ is enhanced both by c∗ and by c̄(x). The former trend429

can be attributed to shortage of time during that the baroclinic torque has affected fluid particles that430

reach an iso-scalar surface characterized by a low c∗. The letter trend can be attributed to an increase431

in the magnitude of Bω·ω with increasing c̄(x), e.g., cf. abscissa coordinates in Figs. 9a and 9b.432

Figure 11a shows that, in case H, the probability of negative (black solid line) stretch rates is433
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FIG. 11. Probabilities of positive (red dotted-dashed lines 2 and 3) and negative (black solid and dashed lines
1 and 4) stretch rates conditioned to the local value of enstrophy ω2(x, t). Curves 1-2 and 3-4 are associated
with the positive and negative, respectively, baroclinic torque term Bω·ω(x, t). (a) case H, (b) case L.

FIG. 12. Probabilities of positive (red dotted-dashed lines 2 and 3) and negative (black solid and dashed lines
1 and 4) stretch rates doubly conditioned to (i) the local value of enstrophy ω2(x, t) and (ii) the local value of
the combustion progress variable. (a) 0.05 < c(x, t)< 0.15, (b) 0.20 < c(x, t)< 0.30. Curves 1-2 and 3-4 are
associated with the positive and negative, respectively, baroclinic torque term Bω·ω(x, t). Case H.

higher than the probability of ṡ(x, t) > 0 (red dotted-dashed lines) in regions characterized by a434

large enstrophy ω2(x, t). A similar trend was already discussed for regions characterized by a large435

magnitude of the baroclinic torque term Bω·ω(x, t) in the ω2-transport Eq. (3), see Fig. 7a.436

However, in case L, the results plotted in Fig. 11b differ significantly from the results shown in437

Fig. 7b, i.e., the former figure shows that the stretch rates are predominately positive independently438

on ω2. Predominance of positive stretch rates is also observed for data conditioned solely (indepen-439

dently of ω2) to various local c(x, t) and extracted from various regions of the mean flame brush,440

with exception of its trailing zone (c̄ > 0.7), where the flame surface area is consumed, see Fig. 10b.441

The difference between the results plotted in Figs. 7b and 11b is associated with the fact that the442

magnitude of Bω·ω is much less in case L when compared to case H, cf. abscissa coordinates in443

Figs. 7a and 7b. Accordingly, baroclinic torque barely affects the vorticity field in case L and the444

enstrophy decays within the mean flame brush.42 Thus, the flame-generated vorticity is weak and445

plays a minor role in case L. This explanation is consistent with Fig. 10b, which does not reveal any446

dependence of the probability of finding ṡ(x, t)< 0 on the local c(x, t) in case L.447

On the contrary, in case H, the flame-generated vorticity can play a substantial role and, in partic-448

ular, (i) is associated with a well pronounced increase in the probability of finding ṡ(x, t)< 0 with449

increasing the local c(x, t), see Fig. 10a, and (ii) yields negative stretch rates in regions character-450

13

http://dx.doi.org/10.1063/1.5094976


FIG. 13. Probabilities of positive (red dotted-dashed lines 2 and 3) and negative (black solid and dashed lines
1 and 4) stretch rates doubly conditioned to (i) the local value of enstrophy ω2(x, t) and (ii) the local value of
the combustion progress variable 0.65 < c(x, t)< 0.75. The probabilities are evaluated in two different regions
of the mean flame brush. (a) 0.05 < c̄(x) < 0.15, (b) 0.45 < c̄(x) < 0.55. Curves 1-2 and 3-4 are associated
with the positive and negative, respectively, baroclinic torque term Bω·ω(x, t). Case H.

ized by a large ω2(x, t), as indicated in Fig. 11a. Figures 12 and 13 show that the trend is more451

pronounced at larger c∗ and larger c̄(x), similarly to the already discussed correlation between the452

sign of ṡ(x, t) and the magnitude of Bω·ω(x, t). Note that, in the case of enstrophy, the stretch rate453

is predominantly negative at large ω2 not only in the reaction zone, but also in the preheat zone, see454

Fig. 12b.455

To evaluate the contribution of regions characterized by a large magnitude of ω2(x, t) or456

Bω·ω(x, t) to the evolution of the local areas of various iso-scalar surfaces of c(x, t) = c∗, the457

following two quantities were computed when processing the DNS data. First, the mean rate of an458

increase in the surface area, conditioned to c1 < c(x, t)< c2 and conditionally averaged in volumes459

characterized by q1 < q(x, t)< q2, was calculated as follows460 〈
dΣ

dt

∣∣∣∣c1 < c < c2,q1 < q < q2

〉
=

∫ t3
t2

∫∫∫
ṡ|∇c|Π(c1 < c < c2)Π(q1 < q < q2)dxdt∫ t3

t2

∫∫∫
Π(c1 < c < c2)Π(q1 < q < q2)dxdt

. (6)461

Here, q designates either enstrophy ω2 or baroclinic torque Bω·ω , the difference Π(q1 < q < q2)≡462

H(q− q2)−H(q− q1) between Heaviside functions H(q) is equal to unity if q1 < q < q2 and463

vanishes otherwise, Σ = |∇c| is the flame surface density,57 t2 and t3 are boundaries of the time464

interval during that the mean inlet velocity is constant and the DNS data are analyzed, see Section465

II, and the integral in the numerator characterizes the rate of an increase in the surface area, because,466

for an infinitesimal volume dV , the local area δA∗ = Σ∗dV and d(δA∗)/dt = ṡδA∗ = ṡ|∇c|c=c∗dV .467

Figures 14a and 15a show that, both in the reaction zone (see red solid lines) and in the middle468

of flamelets (orange dotted-dashed lines) in case H, the doubly conditioned rate given by Eq. (6)469

is negative in regions characterized by a large Bω·ω(x, t) or a large ω2(x, t), respectively. Thus,470

Figs. 14a and 15a further support the finding that the flame-generated vorticity can work to im-471

pede increasing the flame-surface area. The same trend is observed for the reaction zone and large472

Bω·ω(x, t) in case L, see red solid line in Fig. 14b, but the discussed rate is positive in regions473

characterized by a large enstrophy ω2(x, t) in case L, see Fig. 15b. The latter trend is associated474

with a weak influence of baroclinic torque on the enstrophy in case L, as discussed earlier.475

Second, a relative mean bulk rate of an increase in the surface area in volumes characterized by476

q1 < q(x, t)< q2 when compared to the entire flame brush was evaluated as follows477

〈δAF |c1 < c < c2,q1 < q < q2〉=
∫ t3

t2

∫∫∫
ṡ|∇c|Π(c1 < c < c2)Π(q1 < q < q2)dxdt∫ t3

t2

∫∫∫
ṡ|∇c|Π(c1 < c < c2)dxdt

. (7)478

Figures 16a and 17a show that, both in the reaction zone (see red solid lines) and in the middle479

of flamelets (orange dotted-dashed lines) in case H, the relative mean bulk rate given by Eq. (7)480

is negative in regions characterized by a large Bω·ω(x, t) or a large ω2(x, t), respectively, with481
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FIG. 14. Doubly conditioned rate of an increase in flame surface area, given by Eq. (6) and normalized using
τcδL, vs. the baroclinic torque term Bω·ω in the enstrophy transport equation. Intervals c1 < c(x, t)< c2 that
the rate is conditioned to are specified in the legends. (a) case H, (b) case L.

FIG. 15. Doubly conditioned rate of an increase in flame surface area, given by Eq. (6) and normalized using
τcδL, vs. enstrophy ω2. Intervals c1 < c(x, t) < c2 that the rate is conditioned to are specified in the legends.
(a) case H, (b) case L.

the magnitude of this negative rate being substantial. Thus, the reduction of the reaction-surface482

area (see red solid lines) by the flame-generated vorticity plays a substantial role in case H. On483

the contrary, in case L characterized by a low density ratio, this physical mechanism is of minor484

importance, see Figs. 16b and 17b. Even if the relative mean bulk rate conditioned to the reaction485

zone is negative in regions characterized by a large Bω·ω(x, t) in case L (see red solid line in Fig.486

16b), the magnitude of this rate is very low due to a weak influence of baroclinic torque on the487

velocity field in case L, as discussed earlier.488

It is of interest to note that the rates given by Eqs. (6) and (7) and conditioned to the cold regions489

of flamelet preheat zones are statistically negative if the local magnitude of Bω·ω(x, t) or ω2(x, t)490

is small, see dashed violet lines in Figs. 14-17. This effect is beyond the scope of the present study491

and will be examined in a future paper.492

. III.C. Vorticity transformation upstream of flamelets493

In the constant-density flow of the unburned reactants upstream of flamelets, the baroclinic torque494

terms T4 and T4 vanish in Eqs. (1) and (3), respectively, as well as the dilatation terms T3 and T3, re-495

spectively. Nevertheless, thermal expansion in a flame could indirectly affect vorticity in the incom-496
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FIG. 16. Doubly conditioned relative mean bulk rate of an increase in flame surface area, given by Eq. (7), vs.
the baroclinic torque term Bω·ω in the enstrophy transport equation. Intervals c1 < c(x, t)< c2 that the rate is
conditioned to are specified in the legends. (a) case H, (b) case L.

FIG. 17. Doubly conditioned relative mean bulk rate of an increase in flame surface area, given by Eq. (7), vs.
enstrophy ω2. Intervals c1 < c(x, t)< c2 that the rate is conditioned to are specified in the legends. (a) case H,
(b) case L.

ing turbulent flow of the unburned reactants, because combustion-induced pressure perturbations497

cause potential velocity perturbations in the incoming flow, thus, changing the vortex-stretching498

terms T1 and T1 and the dissipation terms T2 and T2.499

Some effects due to such pressure and potential velocity perturbations in the unburned reactants500

are well known. For instance, the Darrieus-Landau (DL) physical mechanism, i.e., acceleration501

of the constant-density flow of the unburned reactants by the combustion-induced pressure pertur-502

bations, causes the hydrodynamic instability of laminar premixed flames37 or growth of unburned503

mixture fingers in turbulent premixed flames, with the latter phenomenon being revealed65,71 by an-504

alyzing the present DNS data. However, the DL mechanism and the phenomena governed by it are505

fundamentally different from the physical mechanisms and phenomena studied in the present paper.506

Indeed, the latter are governed by baroclinic torque, which vanishes in the constant-density flow of507

the unburned reactants. We may also note that the flame-generated vorticity works to smooth out508

the surface of an unstable laminar premixed flame, as discussed in Section I. In a turbulent flame,509

the decrease in the flame-surface area by the flame-generated vorticity can counteract the DL mech-510

anism. Such a counteraction can, in part, explain why the ratio of ST/SL is almost the same in cases511

H and L, see Section II, in spite of the fact that the large-scale unburned mixture fingers are more512

pronounced in the former case.65,71 Furthermore, a laminar premixed flame can be hydrodynami-513

cally unstable only if the perturbation length scale is larger than the so-called neutral length scale,514
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FIG. 18. Vortex stretching (dotted-dashed and solid lines) and dissipation (double-dashed-dotted and dashed
lines) terms conditioned to unburned gas (c(x, t) ≤ 0.001, blue lines) and cold edges of flamelets (0.001 <
c(x, t)≤ 0.01, red lines) vs. distance from the inlet boundary. (a) case H, (b) case L.

which is much larger than the flame thickness.38,39 Accordingly, the DL instability is a large-scale515

phenomenon, whereas vorticity ω ≡ ∇×u characterizes the small-scale spatial variability of the516

velocity field by definition.517

As far as the vorticity field in the incoming constant-density turbulent flow of the unburned reac-518

tants, the present authors are not aware of any investigation of the influence of the aforementioned519

pressure and potential velocity perturbations on the ω-field. Accordingly, to gain insight into such520

eventual effects, each term in Eq. (3) was averaged (over transverse plane and time) and condi-521

tioned either to the unburned reactants, i.e., c(x, t) ≤ 0.001, or to the cold edges of flamelets, i.e.,522

0.001 < c(x, t) ≤ 0.01. As expected, the magnitudes of the conditioned dilatation and baroclinic523

torque terms were negligible when compared to the magnitudes of (i) the vortex-stretching terms524

T 1,u and T 1, f conditioned to c(x, t) ≤ 0.01 and 0.001 < c(x, t) ≤ 0.01, respectively, or (ii) the525

conditioned dilatation terms T 2,u and T 2, f , respectively. Therefore, solely the conditioned vortex-526

stretching terms T 1,u[c̄(x)] and T 1, f [c̄(x)] (dotted-dashed and solid lines, respectively) and the con-527

ditioned dissipation terms T 2,u[c̄(x)] and T 2, f [c̄(x)] (double-dashed-dotted and dashed lines, respec-528

tively) are plotted in Fig. 18.529

These results show a minor difference between terms T 1,u[c̄(x)] and T 1, f [c̄(x)] or between530

T 2,u[c̄(x)] and T 2, f [c̄(x)] in the largest part of the mean flame brushes, i.e., at x > 1.5 mm or531

at c̄(x) > 0.25 in case H and c̄(x) > 0.1 in case L. However, at smaller c̄(x), the magnitudes of532

the terms conditioned to the cold edges of flamelets are lower than the magnitudes of the terms533

conditioned to the unburned reactants. For instance, at x = 0.66 mm or c̄(x) = 6 · 10−5 in case534

H, |T 1, f + T 2, f | = 0.83 ms−3, whereas |T 1,u + T 2,u| = 2.45 ms−3 is larger by a factor of about535

three. Such results imply that combustion-induced potential perturbations of the velocity field in536

the unburned gas in the vicinity of the cold edges of flamelets can locally slow down the spatial537

decay of vorticity in these regions (the turbulence decays in the x-direction in the present DNS and538

T 1,u +T 2,u < 0), but further research into the issue is definitely required using a larger set of DNS539

data.540

For this purpose, at each instant t, the vortex-stretching and dilatation terms, T̂1,u(t) and T̂2,u(t),541

respectively, were averaged over the leading zone of the mean flame brush, i.e., over a volume542

bounded by planes 〈c〉(x, t) = 10−6 and 〈c〉(x, t) = 10−4, whereas their conditioned counterparts543

T̂1, f (t) and T̂2, f (t), respectively, were averaged over a sub-volume where not only 10−6 ≤ 〈c〉(x, t)≤544

10−4, but also 0.001 < c(x, t) ≤ 0.01. Here, 〈q〉(x, t) and q̂(t) designate values of an arbitrary545

quantity q, averaged over a transverse plane x =const and a volume bounded by two transverse546

planes, respectively, at a single instant t.547

The obtained results are reported in Fig. 19. A comparison of T̂1,u(t) and T̂1, f (t) (dotted-dashed548

and solid lines) or T̂2,u(t) and T̂2, f (t) (double-dashed-dotted and dashed lines) shows a decrease in549

the magnitudes of both terms conditioned to the flamelet cold edges when compared to the counter-550
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FIG. 19. Vortex stretching (dotted-dashed and solid lines) and dissipation (double-dashed-dotted and dashed
lines) terms averaged over the leading zone (blue lines) of the mean flame brush and cold edges of flamelets
(0.001 < c(x, t)≤ 0.01, red lines) within the leading zone at various instants. (a) case H, (b) case L.

part terms averaged over the entire volume of the leading zone of the flame brush. Accordingly, the551

net rate of the decay of enstrophy is reduced in the vicinity of the flamelet cold edges. However, a552

correlation of the effect magnitude with the density ratio is not observed.553

. IV. CONCLUSIONS554

DNS data analyzed in the present paper indicate that vorticity generated by baroclinic torque in a555

weakly turbulent premixed flame can impede increasing the reaction-zone-surface area, contrary to556

the common concept of combustion acceleration due to flame-generated turbulence. Such a small-557

scale effect is more pronounced at larger values of the mean combustion progress variable c̄ and at558

larger density ratios. If the density ratio is low, e.g., σ = 2.5, baroclinic torque weakly affects the559

vorticity field within the mean flame brush and the aforementioned effect is not pronounced.560

It is worth stressing that the present work does not aim at claiming that the influence of561

combustion-induced thermal expansion on turbulence reduces the reaction-surface area and, hence,562

the burning rate. The potential velocity perturbations of larger scales can overwhelm the small-563

scale rotational perturbations and can result in increasing the burning rate, as occurs in the case of564

a hydrodynamically unstable laminar premixed flame.37 For instance, large-scale unburned mixture565

fingers discussed in detail elsewhere65,71 imply an increase in flame surface area and turbulent566

burning rate due to combustion-induced thermal expansion.567

However, if turbulence is considered to be the inherently rotational flow, then, the influence of568

the flame-generated turbulence on the burning rate appears to be fundamentally different from the569

influence of the turbulence in the incoming reactants on the rate. Accordingly, the concept of com-570

bustion acceleration due to flame-generated turbulence should be revisited and models developed571

for predicting an increase in the burning rate by the vorticity in the incoming turbulent flow are un-572

likely to be useful for describing a decrease in the reaction-surface area and, hence, the burning rate573

due to the flame-generated vorticity. In other words, the influence of the incoming turbulence on the574

burning rate should clearly be distinguished from the influence of the flame-generated vorticity on575

the rate and the two effects can be opposite.576
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