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Abstract—For critical vehicular communication services, such
as traffic safety and traffic efficiency, it is advisable to design
systems with robustness as the main criteria, possibly at the
price of reduced peak performance and efficiency. We describe a
simple, low-cost method for combining the output of L nonideal
(i.e., nonisotropic) antennas to the input signal to a single-
port receiver with the aim to guarantee robustness, i.e., to
minimize the probability that K consecutive packets arriving
from the worst-case angle-of-arrival are decoded incorrectly. To
minimize complexity, the combining network does not estimate
or use channel state information (complex channel gains, noise
levels, etc.). The combining network consists of L − 1 analog
phase shifters whose phases are affine functions of time. For a
general L and the case when the packet error probability decays
exponentially with the received SNR, the optimum slopes of the
affine functions can be computed by solving an optimization
problem that depends on the antenna far field functions. We
provide an analytical solution for the special case of L = 2
antennas, which turns out to be independent of the antenna
patterns. In an experimental setup consisting of two monopole
antennas mounted on the roof of a Volvo XC90, the proposed
combining method is shown to give significant performance gains
compared to using just one of the antennas.

I. INTRODUCTION

Vehicular traffic safety and traffic efficiency applications
demand robust (reliable) communication between vehicles.
Many of these applications rely on that vehicles transmits
periodic status messages containing current position, speed,
heading, etc. These packets are referred to as cooperative
awareness messages (CAMs) in Europe and basic safety mes-
sages (BSMs) in the US [1], [2]. The time between packets,
T , is typically in the order of 100 ms, but can vary due
to vehicle dynamics and application requirements. Occasional
packet losses are normally not problematic, since the CAMs
contain information of physical quantities that vary slowly over
the time duration of a few packets. However, if a number of
consecutive packets from a vehicle are lost, this might lead to
an application failure. It is therefore reasonable to design the
communication system to minimize the burst error probability
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(BrEP), i.e., the probability of losing K > 1 consecutive
packets, where K depends on the application and T . This is
in contrast to the more common design goal to minimize the
packet error probability (PEP).

A shark fin antenna module located on top of a vehicle’s
roof is the standard method for housing the antennas used for
vehicular communications today. However, conformal/hidden
antennas are also being considered for the reasons of safety
of the antennas, exterior appearance of the vehicle, and aero-
dynamics. Radiation patterns of hidden antennas are typically
far from isotropic due to the vehicle components that closely
surround them. In fact, the antenna patterns might have very
low, or even zero gain in certain directions, and packets
arriving from an unfavorable angle of arrival (AOA) might be
lost due to poor signal-to-noise ratio (SNR). Moreover, since
the vehicle positions varies slowly over the time duration of
a few consecutive packets, we can expect the AOA of the
signal from a certain vehicle to remain approximately the same
over this duration, and there is a risk of losing a number of
consecutive packets from the same vehicle.

The problems due to nonideal antenna patterns can be
remedied by using multiple antennas with complementing
radiation patterns. Combining the outputs of the multiple
antennas is a well studied topic and methods such as selection
combining (SC), equal gain combining (EGC), and maximal
ratio combining (MRC) have been investigated thoroughly [3].
These methods either require the knowledge of the instan-
taneous channel amplitude and phase, or the SNR of the
output signal on each antenna. Schemes that do not require
the aforementioned information for combining have also been
studied. A scheme called random beamforming has been
explored in [4], where the antenna pattern is randomized
over several time-frequency blocks to achieve omnidirectional
coverage on average.

Typically, the combining methods described above require
a multiport receiver (RX) to combine the signals digitally. An
alternative to this approach is to use an analog combining
network (ACN) consisting of analog phase shifters, variable
gain amplifiers, and combiners to obtain a single combined
signal that requires only a single-port RX [5], [6]. When the
antennas and the RX are co-located, it is convenient to use
a closed loop system where the information from the RX is
used to control the analog combining network. However, from
a modularity and implementation complexity point of view, it
would be beneficial to devise an ACN that does not require
RX feedback or knowledge of the SNR or other channel state



information (CSI).
In this paper, we will present a general framework for

designing an ACN to combine the outputs of L antennas to
a signal that is fed to a single-port receiver. The ACN is
optimized to minimize the BrEP from the worst-case AOA
without requiring RX feedback or channel state information.
Interestingly enough, it turns out that the design does not
require knowledge of the individual antenna patterns. For the
special case of L = 2, we present close-form results for the
ACN design and compare the proposed method with standard
combining methods for a setup with two monopole antennas
placed on roof of a Volvo XC90. The proposed combining
method gives significant performance gain compared to using
just one of the antennas. However, SC, EGC, and MRC per-
form even better, but at the price of higher receiver complexity.

II. SYSTEM MODEL

Consider L ≥ 2 antennas located on a vehicle at the
same height over ground. For simplicity, we assume that the
antennas are vertically polarized and that the incident electrical
field is also vertically polarized and arriving in the azimuth
plane. We can then characterize the lth antenna with its far-
field function gl(φ), l = 1, 2, . . . , L, where φ is the azimuth
angle. The far-field function is normalized such that |gl(φ)|2
represents the relative directive gain of the lth antenna with
respect to an isotropic antenna.

We assume that a single multipath component is impinging
on the antenna configuration and that the delay spread is negli-
gible1. This is a reasonable model for highway environments,
which typically have a dominating line-of-sight component
or a few strong scatterers. Hence, relatively few multipath
components contribute to the received power. Considering the
l = 0 antenna as the reference, the complex channel gain at
the lth antenna can be written as [7, Eqn. 8]

hl(t) = a(t)gl(φ)e−Ωl ,

where a(t) is the complex gain to antenna 0 and Ωl is the
relative phase difference experienced by lth antenna with re-
spect to the reference antenna (which depends on the physical
placement of the antennas and the angle-of-arrival). Note that
φ and Ωl can be considered to be time-invariant as long as
changes in vehicle positions and propagation environment can
be neglected. In fact, we assume that this will be the case for
the time it takes to transmit K packets, i.e., for KT seconds,
where T is the time between consecutive packets.

The signal at the output of the lth antenna is given by

rl(t) = s(t)hl(t) + nl(t), (1)

where s(t) is the transmitted signal and nl(t) for l =
0, 1, . . . , L−1 are independent identically distributed complex
additive white Gaussian noise (AWGN) processes with power
E{|nl(t)|2} = Pn over the bandwidth of the signal s(t). We
restrict the ACN to consist of analog phase shifters and an

1The delay spread assumption can be relaxed without invalidating the
derivation—we simply interpret s(t) in (1) as the convolution of the trans-
mitted signal and the channel impulse response to the reference antenna.
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Fig. 1. The analog combining network with L antennas.

adder as seen in Fig. 1. The outputs of the L−1 antennas are
phase rotated and added to the output of the reference antenna.
The output of the combiner r(t) is given by

r(t) =

L−1∑
l=0

rl(t)e
ϕl(t),

where ϕl(t) is the time-varying phase shift applied to the lth
antenna output and ϕ0(t) = 0. For simplicity, we let

ϕl(t) = αlt+ βl, l = 0, 1, . . . , L− 1.

Hence, αl is the phase slope and βl is the phase offset of the
lth phase shifter, and α0 = β0 = 0 (since ϕ0(t) = 0). The
output of the ACN is

r(t) = s(t)a(t)

L−1∑
l=0

gl(φ)e−(Ωl−αlt−βl)

︸ ︷︷ ︸
g(φ,α,β,t)

+

L−1∑
l=0

ñl(t),

where g(φ,α,β, t) is the effective time-varying antenna far-
field function, α = [α1, . . . , αL−1]

T, β = [β1, . . . , βL−1]
T,

and ñl(t) = nl(t)e
φl(t) has the same distribution as nl(t)

since nl(t) is circularly symmetric.
When the phase shift, ϕl(t), over a packet duration is neg-

ligible, g(φ,α,β, t) remains approximately constant over the
duration of a packet, and the effective far-field function during
the kth packet can be approximated to be g(φ,α,β, kT ).
Consequently, the average SNR of the kth packet is given
by

γ̄(φ,α,β, k)=
E
{
|a(t)s(t)|2

}
|g(φ,α,β, kT )|2

E
{∣∣∣∑L−1

l=0 ñl(t)
∣∣∣2}

=
Pr

LPn
|g(φ,α,β, kT )|2,

where Pr is the received signal power from an ideal isotropic
antenna.

The packet error probability Pe(γ̄) is a function of the
average SNR that depends on modulation, coding, packet



length, and channel characteristics. For simplicity, we model
the PEP function as

Pe(γ̄) = a exp(−bγ̄), (2)

where a, b > 0 are constants. As mentioned earlier, we intend
to minimize the probability of having a burst of K consecutive
packet errors. Assuming that packet error events are statistical
independent2, the BrEP is

PB(φ,α,β,K) =

K−1∏
k=0

Pe(γ̄(φ,α,β, k))

=

K−1∏
k=0

ae−bγ̄(φ,α,β,k).

Since we want to determine the optimum α that minimizes
the BrEP for the worst-case AOA φ ∈ [0, 2π) and worst-case
initial offset βl ∈ [0, 2π), the optimum α is found as

α? = arg inf
{αl}∈R

sup
φ,{βl}∈[0,2π)

PB(φ,α,β,K)

= arg inf
{αl}∈R

sup
φ,{βl}∈[0,2π)

lnPB(φ,α,β,K)

= arg sup
{αl}∈R

inf
φ,{βl}∈[0,2π)

K−1∑
k=0

γ̄(φ,α,β, k)

= arg sup
{αl}∈R

inf
φ,{βl}∈[0,2π)

K−1∑
k=0

Pr

LPn
|g(φ,α,β, kT )|2

= arg sup
{αl}∈R

inf
φ,{βl}∈[0,2π)

K−1∑
k=0

∣∣∣∣∣
L−1∑
l=0

gl(φ)e−(Ωl−αlkT−βl)

∣∣∣∣∣
2

.

Let ψl = mod (Ωl − βl − ∠gl(φ), 2π), where mod (u, v) is
the remainder after dividing u by v. Now, varying βl in the
interval [0, 2π) for fixed Ωl and ∠gl(φ) implies that ψl takes
on all values in [0, 2π). Hence, the optimization problem can
be rewritten as

α? = arg sup
{αl}∈R

inf
φ,{ψl}∈[0,2π)

K−1∑
k=0

∣∣∣∣∣
L−1∑
l=0

|gl(φ)| e−(ψl−αlkT )

∣∣∣∣∣
2

︸ ︷︷ ︸
J(φ,α,ψ,K)

.

(3)
For L = 2, a closed-form solution to (3) is given by

Theorem 1 below. Due to space constraints, we postpone a
treatment of the general case, L > 2, to an upcoming journal
paper.
Theorem 1. Let J(φ,α,ψ,K) be defined as in (3). Then, for
an arbitrary φ and for K ≥ L = 2,

J?(φ) , sup
α1

inf
ψ1

J(φ, α1, ψ1,K) = K(|g0(φ)|2 + |g1(φ)|2)

Moreover, the optimum is obtained for

α1 = α?1 ,
2π

KT
.

2Error events are independent if noise is independent from packet to
packet, which is a standard assumption, and if any small-scale fading is also
independent from packet to packet, i.e., when the coherence time is small
compared to T , which typically is the case for highway mobility.

Proof: See Appendix.

We note, somewhat surprising, that α?1 does not depend on
the antenna patterns. Moreover, as shown in the appendix,
J(φ, α?1, ψ1) = K(|g0(φ)|2 + |g1(φ)|2), which is independent
of ψ1 and, therefore, independent of β1. Hence, for any initial
offset β1, the worst-case AOA φ, i.e., the AOA that results in
the highest BrEP is given by

φ? = arg min
φ∈[0,2π)

|g0(φ)|2 + |g1(φ)|2 .

As a consequence, when the proposed combining scheme is
used, the antennas should be designed and oriented such that
|g0(φ?)|2 + |g1(φ?)|2 is maximized.

III. COMPARISON WITH STANDARD SCHEMES

In this section, the performance of the proposed combining
scheme is compared with a few standard combining schemes.
In the case when the PEP function is exponential as in (2),
minimizing the BrEP is equivalent to maximizing the sum
of the average SNRs of the K packets. Therefore, the sum
of SNRs is used as a performance criterion to compare the
performance of the combining schemes.
1) Single antenna: the sum of average SNRs at the output of

the lth antenna is given by

ρl(φ) =

K−1∑
k=0

γ̄l(φ, k) =
KPr

Pn
|gl(φ)|2 .

For an ideal isotropic antenna, the sum of average SNRs
is given by ρISO(φ) = KPr/Pn.

2) MRC: this scheme requires L RF-chains, L analog to
digital converters (ADCs), and a multi-port receiver that
estimates the complex-valued channel gains and performs
combining digitally. The sum of average SNRs is given by

ρMRC(φ)=

K−1∑
k=0

γ̄MRC(φ, k)=
KPr

Pn

(
L−1∑
l=0

|gl(φ)|2
)
.

3) EGC: this scheme requires L RF-chains, L ADCs, and a
multi-port receiver that estimates the channel phases and
performs combining digitally. The sum of average SNRs is
given by

ρEGC(φ)=

K−1∑
k=0

γ̄EGC(φ, k)=
KPr

LPn

(
L−1∑
l=0

|gl(φ)|
)2

.

4) SC: this scheme requires L RF-chains and circuitry to
measure the SNRs on each antenna and to select an
antenna. The sum of average SNRs is given by

ρSC(φ)=

K−1∑
k=0

γ̄SC(φ, k)=
KPr

Pn
max
l
|gl(φ)|2 .

5) ACN: the proposed scheme requires analog phase shifters
on L−1 branches operating independently and a combiner.
For L = 2 and α1 = α?1, the sum of average SNRs is

ρACN(φ) =
KPr

2Pn
(|g0(φ)|2 + |g1(φ)|2).



Fig. 2. Antenna placement on the roof of a Volvo XC90.
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Fig. 3. ρ(φ) of the two monopoles mounted on the roof of a vehicle and
the ACN. The monopoles exhibit nonisotropic power gains. Pr/Pn = 1 and
K = 5.

We note that the sum of average SNRs for MRC and ACN
for L = 2 are related as ρMRC(φ) = 2ρACN(φ).

The MRC scheme outperforms EGC, SC, and ACN for any
far-field functions gl(φ). The relative performance of SC and
EGC for an AOA φ depends on the far-field functions gl(φ).
The sum of average SNRs of MRC, EGC, and SC schemes is
higher compared to the ACN scheme, implying lower BrEP.
However, these gains come at a cost of additional hardware
and/or signal processing as mentioned above.
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IV. NUMERICAL RESULTS

In this section, the performance of the ACN is studied
by using the measured antenna far-field functions of two
monopole antennas placed 0.8 m from each other on the roof
of a Volvo XC90, see Fig. 2. The sum SNRs ρ0(φ) and
ρ1(φ) for Pr/Pn = 1 and K = 5 are shown in Fig. 3.
As seen in the figure, both antennas exhibit very low ρ(φ)
at certain, but different, AOAs. Clearly, if only one of the
two antennas is used, the packets arriving in the AOAs of
low ρ(φ) will have high BrEP. However, by combining the
output of the antennas with the proposed ACN, the BrEP is
reduced compared to using the antenna with the lowest gain
(since ρACN(φ) ≥ minl ρl(φ)). The sum of average SNRs in
the case of a single isotropic antenna and in the case of the
measured antennas combined using EGC are also shown in
the figure. The plots corresponding to MRC and SC have been
omitted. However, they are related to the plots in the figure
as ρMRC(φ) = 2ρACN(φ) and ρSC(φ) = max {ρ0(φ), ρ1(φ)}.
As expected, the more advanced combining methods perform
better than the proposed ACN.

Fig. 4 shows the BrEP as a function of AOA for the indi-
vidual antennas and the ACN. The exponential PEP function
Pe(γ̄) = exp(−γ̄/5) is considered and Pr/Pn = 10 dB is
used. It is seen that the BrEP in the case of the individual
antennas is very close to 1 for the AOAs that have very low
ρl(φ) (see Fig. 3). The BrEP for the AOAs corresponding to
low gains in one of the two antennas is reduced by the ACN.
The BrEP for certain AOAs when using the ACN is higher in
comparison to one of the individual antennas, this is expected
as the ACN operates without the knowledge of branch SNRs
and the complex-valued channel gains. The figure also shows
the BrEP in the case of a single isotropic antenna and in the
case of the measured antennas combined using EGC, the BrEP
in these cases is in agreement with their ρ(φ) in Fig. 3.



V. CONCLUSIONS

In this paper, we have proposed to use a simple analog
combining network consisting of L − 1 phase shifters to
combine the outputs of L nonisotropic antennas to the input of
a single-port receiver with the goal to minimize the burst-error
probability, i.e., the probability of K consecutive packet errors,
for the worst-case angle of arrival. The combining network
is defined by the offset and slope of the phase shifters and
does not require knowledge of the channel state (SNR, fading
statistics, etc.). For a general L and when the PEP decays ex-
ponentially with the received SNR, the optimum phase slopes
can be found by solving the optimization problem (3). For
L = 2, the combining network contains a single phase shifter,
and the optimum phase slope is proven to be α?1 = 2π/(KT ),
where T is the time between consecutive packets. Somewhat
surprising, this result is valid for all initial phase offsets and
antenna patterns and will improve the BrEP for all AOAs
compared to using the worst antenna. Hence, we cannot further
improve performance by optimizing the initial phase offset β1.
However, the BrEP for AOA φ is minimized by maximizing
|g0(φ)|2 + |g1(φ)|2.

The proposed scheme was evaluated using the measured far-
field functions of two monopole antennas placed on the roof
of a Volvo XC90. It was shown that the proposed scheme
gives significant performance gains by combining the antenna
outputs compared to just using one of the antennas. The
standard MRC, EGC, and SC combining schemes perform
even better, but will also require channel state information
and more complex receiver circuitry.

APPENDIX

To set up the proof for Theorem 1, we start by proving two
lemmas. Define the function f : R2 → R as

f(x, y) ,
K−1∑
k=0

cos(y − k2x), (4)

where K > 1 is a positive integer. It can be shown that

f(x, y) =

K cos(y), x ∈ X
sin(Kx)

sin(x)
cos(y − (K − 1)x), x /∈ X (5)

where
X , {qπ : q ∈ Z}. (6)

Lemma 1. Let f and X be as defined in (4) and (6),
respectively. Then,

f(x, y) = 0, x ∈ X ?, y ∈ R,

where
X ? , {qπ/K : q ∈ Z} \ X . (7)

Proof: If x ∈ X ? then x /∈ X , then (5) implies that

f(x, y) =
sin(Kx)

sin(x)
cos(y − (K − 1)x), x ∈ X ?.

The lemma follows since sin(Kx)/ sin(x) = 0 iff x ∈ X ?.

Lemma 2. Let f and X ? be as defined in (4) and (7),
respectively. Then,

inf
y∈R

f(x, y) ≤ 0

where equality is achieved iff x ∈ X ?.
Proof: From Lemma 1, we know that f(x, y) = 0 for

x ∈ X ? and all y ∈ R. To show the lemma, it is therefore
sufficient to show that infy f(x, y) < 0 for x /∈ X ?. We split
up the condition x /∈ X ? into two cases, (a) x ∈ X and (b)
x ∈ X ′ , {R⋂X ⋂X ?}. For case (a): f(x, y) = K cos(y)
and infy f(x, y) = −K < 0. For case (b):

f(x, y) =
sin(Kx)

sin(x)︸ ︷︷ ︸
6=0,∀x∈X ′

cos(y − (K − 1)x).

Clearly, there exist a y such that cos(y − (K − 1)x) =
− sgn[sin(Kx)/ sin(x)], which implies that infy f(x, y) =
−| sin(Kx)/ sin(x)| < 0. Hence, the lemma follows.

We are now ready to prove Theorem 1.
Proof: It is easily shown that the objective in (3) for

L = 2 can be written as

J(φ, α1, ψs,K) = K(|g0(φ)|2 + |g1(φ)|2)

+ 2|g0(φ)||g1(φ)|f(x, y),

where x = α1T/2 and y = ψ0−ψ1. From Lemma 2, we have
that supx infy f(x, y) = 0. Hence,

J?(φ) = sup
x

inf
y

{
K(|g0(φ)|2 + |g1(φ)|2)

+ 2|g0(φ)||g1(φ)|f(x, y)
}

= K(|g0(φ)|2 + |g1(φ)|2).

Moreover, from Lemma 2, we know that the supremum is
achieved for x ∈ X ?, i.e., for α1 ∈ {2x/T : x ∈ X ?}.
The smallest nonzero optimum phase slope is therefore α?1 =
2π/(KT ), and the theorem follows.
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C. Mecklenbräuker, and A. Molisch, “A geometry-based stochastic MIMO
model for vehicle-to-vehicle communications,” IEEE Transactions on
Wireless Communications, vol. 8, no. 7, pp. 3646–3657, July 2009.


