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Abstract—We study low-complexity iterative decoding algo-
rithms for product codes. We revisit two algorithms recently
proposed by the authors based on bounded distance decoding
(BDD) of the component codes that improve the performance
of conventional iterative BDD (iBDD). We then propose a novel
decoding algorithm that is based on generalized minimum dis-
tance decoding of the component codes. The proposed algorithm
closes over 50% of the performance gap between iBDD and
turbo product decoding (TPD) based on the Chase–Pyndiah
algorithm at a bit error rate of 10−5. Moreover, the algorithm
only leads to a limited increase in complexity with respect to iBDD
and has significantly lower complexity than TPD. The studied
algorithms are particularly interesting for high-throughput fiber-
optic communications.

I. INTRODUCTION

The advent of codes-on-graphs and advances in digital
electronics have spurred a great deal of research on soft-
decision forward error correction (SD-FEC) for fiber-optic
communications in the last decade, see, e.g., [1]–[5] and refer-
ences therein. Contrary to other applications such as wireless
communications—where SD-FEC is the de-facto standard—
research on SD-FEC in fiber-optic communications has been
paralleled by a revival of research on hard-decision FEC (HD-
FEC). The reason is that SD-FEC entails a significantly higher
decoding complexity and data flow compared to HD-FEC.
Thus, for applications where very high throughputs and low
power consumption are required, HD-FEC is still an appealing
alternative. HD-FEC can also be combined with multilevel
modulation formats to achieve high spectral efficiency [6]–[8].

Recent research on HD-FEC for fiber-optic communications
has been largely fuelled by the proposal of several new
classes of product-like codes, such as staircase codes [9] and
braided codes [10], [11], which we refer to as generalized
product codes (GPCs). Similar to the original product codes
(PCs) [12], GPCs are built from smaller component codes,
typically Reed–Solomon or Bose–Chaudhuri–Hocquenghem
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(BCH) codes, which can be efficiently decoded via algebraic
bounded distance decoding (BDD). The overall GPC can then
be decoded by iteratively applying BDD to the component
codes. This algorithm is referred here to as iterative BDD
(iBDD). Code designs that employ iBDD can achieve an
excellent performance-complexity trade-off.

GPCs can also be decoded iteratively by employing soft-
input soft-output (SISO) component decoding. This is referred
to as turbo product decoding (TPD) and typically imple-
mented in practice via the Chase–Pyndiah algorithm [13].1

TPD yields larger net coding gains than iBDD but it has a
significantly higher decoding complexity. In order to (roughly)
quantify the complexity increase, one may rely, for example,
on decoder data flow considerations [9] or compare existing
implementations (e.g., [14], [15]) in terms of gate counts. Both
approaches reveal that the complexity and potential power
consumption increases by around 1–2 orders of magnitude
when switching from iBDD to TPD. Given that commercially
available implementations of TPD already consume around
8 W to achieve a throughput of 100 Gb/s [15], it remains
a significant challenge to scale such high net coding gain
implementations to even higher throughputs. On the other
hand, staircase decoders based on iBDD remain feasible for
throughputs as large as 1 Tb/s [16].

The recent years have seen an increasing interest in the
research community in closing the gap between the perfor-
mance of HD-FEC and SD-FEC, while keeping the decoding
complexity low. An interesting line of research is to concate-
nate an inner SD-FEC code, e.g., a low-density parity-check
(LDPC) code decoded via belief propagation, with an outer
staircase code [4], [5]. Another alternative, investigated by the
authors in [17] and [18], is to improve the performance of
iBDD. In [17], a new anchor decoding (AD) algorithm that
exploits conflicts between component codes in order to assess
their reliabilities, even when no channel reliability information
is available, is proposed. The algorithm in [18] improves
performance by exploiting channel reliabilities, while still

1TPD can also be based on other component decoders, e.g., the forward-
backward algorithm applied to the component code trellis. In this paper, we
use the term TPD to refer to the iterative SISO decoding based on the Chase–
Pyndiah algorithm.
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Fig. 1. Code array (left) and simplified Tanner graph (right) for a PC assuming
a component code of length n = 6. In the simplified Tanner graph, degree-2
VNs are omitted and instead represented as simple edges.

only exchanging binary (hard-decision) messages between
component codes, similar to iBDD.2

In this paper, we study and compare several decoding
algorithms for PCs based on algebraic decoding of the com-
ponent codes. While our focus is on PCs, the considered
algorithms can also be applied to GPCs such as staircase
and braided codes. We start by reviewing the two decoding
algorithms that were proposed in [17] and [18], respectively.
It is shown that for the considered scenario, both algorithms
offer sizable net coding gain improvements of 0.18 dB and
0.25 dB, respectively, at a bit error rate (BER) of 10−5,
with only a small complexity increase compared to iBDD.
We then propose a novel iterative decoding algorithm based
on generalized minimum distance (GMD) decoding of the
component codes, which we refer to as iterative GMD de-
coding with scaled reliability (iGMDD-SR). Using iGMDD-
SR, a significant coding gain improvement of around 0.60 dB
can be achieved compared to iBDD. This closes over 50% of
the performance gap to TPD, while maintaining significantly
lower complexity.

Notation: We use boldface letters to denote vectors and
matrices, e.g., x and X = [xi,j ]. The i-th row and j-th column
of X are denoted by Xi,: and X :,j , respectively. |a| denotes
the absolute value of a, and bac the maximum integer value
less than or equal to a. A Gaussian distribution with mean
µ and variance σ2 is denoted by N (µ, σ2). The Hamming
distance between vectors a and b is denoted by dH(a, b).

II. PRELIMINARIES

Let C be a binary linear (n, k, dmin) code, where n, k,
and dmin are the code length, dimension, and minimum dis-
tance, respectively. A (two-dimensional) PC with parameters
(n2, k2, d2

min) and rate R = k2/n2 is defined as the set of
all n × n arrays such that each row and column of the array
is a codeword of C. A codeword of the product code can be
represented as a binary matrix C = [ci,j ] of size n2 × n2.
Alternatively, a PC can be defined via a Tanner graph with
2n constraint nodes (CNs), where n CNs correspond to the
row codes and n CNs correspond to the column codes. The
graph has n2 variable nodes (VNs) corresponding to the n2

code bits. The code array and (simplified) Tanner graph of a
PC with n = 6 is shown in Fig. 1.

2A similar approach was analyzed in the context of low-complexity
decoding algorithms for LDPC codes in [19].

We assume transmission over the binary-input additive
white Gaussian noise channel. In particular, the channel ob-
servation corresponding to code bit ci,j is given by

yi,j = xi,j + zi,j , (1)

where xi,j = (−1)ci,j , zi,j ∼ N (0, (2REb/N0)−1), and
Eb/N0 is the signal to noise ratio. Let L = [Li,j ] be the
matrix of channel log-likelihood ratios (LLRs) and R = [ri,j ]
the matrix of hard decisions at the channel output, where ri,j is
obtained by mapping the sign of Li,j according to −1 7→ 0 and
+1 7→ 1. This mapping is denoted by B(·), i.e., ri,j = B(Li,j).
With some abuse of notation, we also write R = B(L).

A. Bounded Distance Decoding

Consider now the decoding of an arbitrary row or column
component code, assuming that the codeword c = (c1, . . . , cn)
is transmitted and only hard-detected channel observations
r = (r1, . . . , rn) are available. BDD corrects all error patterns
with Hamming weight up to the error-correcting capability of
the code, t =

⌊
dmin−1

2

⌋
. If the weight of the error pattern is

larger than t and there exists another codeword c̃ ∈ C with
dH(c̃, r) ≤ t, then BDD maps r to c̃ and thus introduces a
miscorrection. Otherwise, if no such codeword exists, BDD
fails and we use the convention that the decoder outputs r.
Thus, the decoded vector r̂ for BDD can be written as

r̂ =


c if dH(c, r) ≤ t
c̃ ∈ C if dH(c, r) > t and ∃c̃ such that dH(c̃, r) ≤ t
r otherwise

. (2)

B. Generalized Minimum Distance Decoding

Consider again the component decoding but now assume
that the vector of channel LLRs l = (L1, . . . , Ln) is available.
In that case, GMD decoding, which is based on multiple alge-
braic error-erasure decoding attempts [20], can be employed.
In particular, the decoder ranks the coded bits in terms of their
reliabilities |L1|, . . . , |Ln|. Then, the m least reliable bits in r
are erased, where m ∈ {dmin−1, dmin−3, ..., 2} if dmin is odd
and m ∈ {dmin − 1, dmin − 3, ..., 3} if dmin is even. Together
with r, this gives a list of t+1 trial vectors r̃i, i = 1, . . . , t+1,
out of which t vectors contain both erasures and (possibly)
errors. Finally, algebraic error-erasure decoding [21, Sec. 6.6]
is applied to each r̃i. If error-erasure decoding fails for all
t + 1 vectors in the list, an overall failure is declared for the
GMD decoding. On the other hand, if some of the error-erasure
decoding attempts did not fail, the decoder picks among all
decoded candidate codewords r̂ the one that minimizes the
generalized distance [20]

dGD(r, r̂) =
∑

i:ri=r̂i

(1− αi) +
∑

i:ri 6=r̂i

(1 + αi), (3)

where αi
∆
= |Li|/ max

1≤j≤n
|Lj |. Note that if all input LLRs Lj

have the same magnitude, we have αi = 1 for all i = 1, . . . , n
and (3) reverts to 2dH(r, r̂).



III. ITERATIVE DECODING OF PRODUCT CODES

A. Anchor Decoding

When a miscorrection occurs during iBDD, it is possible
that two component codes disagree on the value of a particular
bit, leading to a conflict. Conflicts are conventionally ignored
in the sense that row and column codes are decoded sequen-
tially and previous decoding decisions are simply overridden.
The main idea in AD is to introduce status information for each
component code and designate certain “reliable” component
codes as anchors. Then, no further additional corrections from
other component codes are allowed if this would lead to a
conflict and overturn the decision of an anchor. Since some
anchors may actually be miscorrected, AD also allows for
the backtracking of the decoding decisions of anchors. This
happens whenever too many other component codes are in
conflict with a particular anchor. Pseudocode for AD can be
found in [17, Alg. 2].

B. Iterative Bounded Distance Decoding With Scaled Relia-
bility

Both iBDD and AD do not take potentially available channel
reliability information into account. In [18], we proposed a
modification of iBDD where channel reliabilities are exploited,
while only binary messages between component decoders are
exchanged. This algorithm is referred to as iBDD with scaled
reliability (iBDD-SR). In particular, assume that the i-th row
code has been decoded via BDD. In order to combine the BDD
output with the channel LLRs, the decoded bits are mapped
according to 0 → +1 and 1 → −1 if BDD is successful and
mapped to 0 if a decoding failure occurs. Let µ̄r,(`)

i,j ∈ {±1, 0}
be the result of this mapping for the decoded bit corresponding
to code bit ci,j in iteration `. Then, we compute

ψ
r,(`)
i,j = B(w` · µ̄r,(`)

i,j + Li,j), (4)

where w` > 0 is a scaling parameter. ψr,(`)
i,j can be interpreted

as the message passed from the i-th row code to the j-th
column code. In particular, after applying this procedure to all
row codes, the matrix Ψr,(`) = [ψ

r,(`)
i,j ] is used as the input for

the column codes, where BDD based on Ψr,(`) is performed.
The binary output messages for the column codes are then
formed in a similar fashion as for the row codes. Intuitively,
the mapping (4) helps to alleviate the effect of miscorrections
by allowing the outcome of BDD at certain bit positions to
be overturned if the corresponding channel observation is very
reliable (i.e., |Li,j | is large).

IV. ITERATIVE GENERALIZED MINIMUM DISTANCE
DECODING WITH SCALED RELIABILITY

In this section, we propose a novel iterative decoding
algorithm for PCs based on GMD decoding of the component
codes and the exchange of soft information between compo-
nent codes, which we refer to as iGMDD-SR. The algorithm
works as follows. Without loss of generality, assume that the
decoding starts with the row codes and let us consider the
decoding of the i-th row code at iteration `. Let µ̃r,(`)

i be

i-th row j-th column

code bit ci,j

µ̃
r,(ℓ)
i GMDD GMDD

wℓ Li,j

µ̄
r,(ℓ)
i,j ∈{±1, 0} µ

r,(ℓ)
i,j

Fig. 2. Block diagram showing the information flow from the i-th row to the
j-th column code in iGMDD-SR.

the vector of soft information corresponding to Ci,: at the
input of the i-th row decoder at iteration `, resulting from the
decoding of the n column codes at decoding iteration ` − 1,
where, initially, µ̃r,(1)

i = Li,:. Also, let R(`)
i,: = B(µ̃

r,(`)
i ) be

the corresponding hard-decoded vector. Then, GMD decoding
of the i-th row code is performed as explained in Section II-B
based on R(`)

i,: and the reliabilities |µ̃r,(`)
i |. Note that GMD

decoding does not provide reliability information about the
decoded bits, i.e., it is “soft-input, hard-output”. In order to
provide reliability information to the column decoders, we
resort to a heuristic approach that is similar to the approach
used for iBDD-SR. In particular, the output bits of GMD
decoding are mapped according to 0 → +1 and 1 → −1
if GMD decoding is successful and mapped to 0 if GMD
decoding fails. Let µ̄r,(`)

i,j ∈ {±1, 0} be the result of this
mapping for the decoded bit corresponding to code bit ci,j .
The reliability information is then formed according to

µ
r,(`)
i,j = w` · µ̄r,(`)

i,j + Li,j , (5)

where w` > 0 is a scaling parameter. We let µr,(`)
i =

(µ
r,(`)
i,1 , . . . , µ

r,(`)
i,n ) denote the entire soft-output vector of the

i-th row decoder.
Visualizing the decoding over the Tanner graph of the

code, µr,(`)
i,j corresponds to the message from row CN i to

column CN j. Now assume that all row codes have been
decoded. The vector of soft information corresponding to
C :,j at the input of the j-th column decoder at decoding
iteration ` is then defined as µ̃c,(`)

j = (µ̃
c,(`)
j,1 , . . . , µ̃

c,(`)
j,n ) =

(µ
r,(`)
1,j , . . . , µ

r,(`)
n,j ). GMD decoding is then performed using

R
(`)
:,j = B(µ̃

c,(`)
j ) and |µ̃c,(`)

j |. The soft output of the j-th
column decoder is formed similar to (5) and the resulting soft
output vector is denoted by µc,(`)

j = (µ
c,(`)
j,1 , . . . , µ

c,(`)
j,n ), where

µc,`
j,i corresponds to the message from column CN j to row

CN i. After decoding all column component codes, we set
µ̃

r,(`+1)
i = (µ̃

r,(`+1)
i,1 , . . . , µ̃

r,(`+1)
i,n ) = (µ

c,(`)
1,i , . . . , µ

c,(`)
n,i ) and

the iterative process continues until a maximum number of
iterations is reached. The information flow from the row to
column codes in iGMDD-SR is schematically illustrated in
Fig. 2.

V. DECODING COMPLEXITY DISCUSSION

A thorough complexity analysis of the different decoding
algorithms presented in Sections II-A, III-B, and IV is a
formidable task that should include, besides the pure algo-
rithmic aspects, the implications in terms of internal data



flow. A complete analysis is therefore out of the scope of
this paper. We however provide a high-level discussion of
complexity aspects associated with the different choices of
the component code decoders, focusing on the complexity
per decoding iteration. Additional remarks on the decoding
complexity of AD and iBDD-SR can be found in the respective
papers [17] and [18].

The use of BDD to decode the component codes represents
the simplest approach among those considered. From this
viewpoint, iBDD, AD, and iBDD-SR are characterized by
a similar complexity. For iBDD-SR, the combination of the
BDD output and the channel LLRs in (4) yields a small
complexity increase with respect to iBDD and AD. With
respect to BDD of the component codes, GMD decoding
entails more substantial changes in the decoder. In this case,
the component decoder has to be provided with soft decisions
by the previous decoding step. Finally, t error-erasure decoding
attempts and one BDD attempt are required. Each error-erasure
decoding attempt has a cost close to a run of BDD. Each
decoding attempt may result in a candidate codeword that is
used to form a list of size up to t+1. The minimization of the
distance in (3) has a negligible cost with respect to the t+ 1
decoding attempts.

The decoding complexity of TPD exceeds the complexity
of AD, iBDD-SR, and iGMDD-SR. In particular, the Chase–
Pyndiah algorithm requires the construction of a list of binary
test sequences for each component decoding, where the list
size depends on a design parameter. Typically, the list size
is set to at least 16 [13], and BDD is applied to each test
sequence. Thus, for component codes where t is small (e.g.,
2, 3, or 4), as the ones considered in this paper and of
practical use for high-throughput fiber-optic communications,
the list size and corresponding cost per component decoding
in GMD decoding is only a fraction of that of TPD. Moreover,
iGMDD-SR also relaxes the computational requirements when
computing the extrinsic soft-output information for each code
bit compared to TPD by using the heuristic update equation
in (5).

VI. SIMULATION RESULTS

In this section, we compare the product decoding algorithms
in terms of their performance. For the simulations, we consider
double-error-correcting extended BCH (eBCH) codes with
parameters (256, 239, 6) as component codes. The resulting
PC has rate R = 2392/2562 ≈ 0.8716, corresponding to
an FEC overhead of 1/R − 1 ≈ 15%. For all algorithms,
a maximum of `max = 10 decoding iterations is performed.

Both iBDD-SR and iGMDD-SR require a proper choice for
the scaling factors w` in each iteration. We jointly optimize
all scaling factors w = (w1, . . . , w`max) by using Monte–Carlo
estimates of the bit error rate (BER) for a fixed Eb/N0 as the
optimization criterion. Intuitively, one would expect that the
decisions of the component decoders become more reliable
with iterations, whereas the channel observations become less
informative. Therefore, in order to reduce the optimization
search space, we only consider vectors w with monotonically
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Fig. 3. Performance of different product decoding algorithms for (256,239, 6)
eBCH component codes and 10 iterations. The PC rate is 0.8716 correspond-
ing to 15% FEC overhead. For TPD (Viasat), results are taken from [15] for
the same overhead, but different component codes may be employed.

increasing entries. For iBDD-SR, we found that the optimized
vector w is relatively insensitive to the targeted Eb/N0. On
the other hand, iGMDD-SR is more sensitive to a mismatch
between the optimized and actual Eb/N0 and the optimization
is thus performed for each value of Eb/N0 separately.

In Fig. 3, the performance of iBDD, AD, iGMDD-SR, and
iBDD-SR is shown. We also plot the performance of TPD via
off-the-shelf Matlab toolbox functions and compare to a com-
mercially available 100 Gb/s SD-FEC solution implementing
TPD for the same overhead [15]. The data points are directly
extracted from [15], but we remark that the component code
details are not disclosed in [15]. Thus, a different PC may be
used. Moreover, pre- and post-processing steps are employed,
which may also explain the performance difference.

AD and iBDD-SR outperform the conventional iBDD by
0.18 dB and 0.25 dB, respectively, at a BER of 10−5. As
a reference, we show the performance of idealized iBDD,
where a genie prevents all miscorrections. The asymptotic
performance of idealized iBDD can be analytically predicted
by using density evolution [22], [23], which is shown by
the dotted line. It can be seen that both AD and iBDD-SR
are effective algorithms to combat miscorrections. The per-
formance degradation of iBDD-SR compared to ideal iBDD
is very small (< 0.01 dB), implying that by properly tuning
the scaling parameters w, iBDD-SR can alleviate the effect of
miscorrections to a large extent.

One can also see that iGMDD-SR outperforms iBDD, AD,
and iBDD-SR. In particular, the performance gain of iGMDD-
SR over iBDD is 0.60 dB at a BER of 10−5. The observed
additional coding gain is expected, since GMD decoding can
decode beyond half the minimum distance by introducing
erasures and performing multiple error-erasure component
decoding attempts. Furthermore, iGMDD-SR performs 0.52



Table I
COMPARISON OF DIFFERENT PRODUCT DECODING ALGORITHMS. CODING GAINS AND CAPACITY GAPS ARE MEASURED AT BER = 10−5 .

acronym decoding algorithm channel
reliabilities

exchanged
messages

gain over
iBDD [dB]

gap from
capacity [dB]

iBDD iterative bounded distance decoding no hard - 0.98 (HD)
AD anchor decoding [17] no hard 0.18 0.80 (HD)

iBDD-SR iterative bounded distance decoding with scaled reliability [18] yes hard 0.25 2.00 (SD)
iBDD (ideal) iterative bounded distance decoding without miscorrections no hard 0.28 0.70 (HD)
iGMDD-SR iterative generalized minimum distance decoding with scaled reliability yes soft 0.60 1.66 (SD)

TPD turbo product decoding (Chase–Pyndiah) [13] yes soft 1.08 1.18 (SD)
TPD (Viasat) commercially available decoder (undisclosed component code details) [15] yes soft 1.26 1.00 (SD)

dB away from TPD, i.e., it closes over 50% of the performance
gap between iBDD and TPD.

The net coding gain improvements of all considered de-
coding algorithms over iBDD are summarized in Table I. We
also indicate the gap to capacity for all schemes. Note that
the performance of iBDD and AD should be compared to the
HD capacity, whereas the performance of iBDD-SR, iGMDD-
SR, and TPD should be compared to the SD capacity since
channel LLRs are exploited during decoding. Overall, one can
see a clear trade-off between performance and complexity for
the different algorithms, e.g., using iGMDD-SR, with higher
complexity than iBDD, yet less complexity than TPD, the gap
between iBDD and TPD is approximately halved.

VII. CONCLUSION

We studied several low-complexity iterative decoding al-
gorithms for PCs that outperform the conventional iBDD. In
particular, we reviewed two previously proposed algorithms,
AD and iBDD-SR, and we proposed a novel algorithm called
iterative GMD decoding with scaled reliability (iGMDD-SR).
For the considered scenario based on double-error-correcting
eBCH component codes, AD and iBDD-SR outperform iBDD
by 0.18 dB and 0.25 dB, respectively, with only a small
increase in complexity. The complexity increase for iGMDD-
SR is larger, but the algorithm achieves a more significant
performance gain of 0.60 dB over iBDD. This closes over
50% of the performance gap to TPD, at a significantly lower
complexity.
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