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The yeast Saccharomyces cerevisiae is a widely used cell factory for the pro-

duction of fuels and chemicals, in particular ethanol, a biofuel produced in

large quantities. With a need for high-energy-density fuels for jets and

heavy trucks, there is, however, much interest in the biobased production

of hydrocarbons that can be derived from fatty acids. Fatty acids also serve

as precursors to a number of oleochemicals and hence provide interesting

platform chemicals. Here, we review the recent strategies applied to metabolic

engineering of S. cerevisiae for the production of fatty acid-derived biofuels

and for improvement of the titre, rate and yield (TRY). This includes, for

instance, redirection of the flux towards fatty acids through engineering of

the central carbon metabolism, balancing the redox power and varying the

chain length of fatty acids by enzyme engineering. We also discuss the chal-

lenges that currently hinder further TRY improvements and the potential

solutions in order to meet the requirements for commercial application.
1. Introduction
The growing demand for liquid transport fuels alongside concerns about cli-

mate change caused by greenhouse gas emissions from the use of fossil fuels

has become one of the greatest challenges for modern society. The generation

of biofuels from biomass is a sustainable solution that could substantially

decrease the usage of fossil fuels. In past decades, various policies have been

established to stimulate global biofuel production [1]. Ethanol is the predomi-

nant biofuel and has been used in Europe and the USA since the 1900s [2],

and global ethanol production is expected to expand from 120 billion litres in

2017 to 131 billion litres by 2027 [3]. Even though the use of ethanol allows a

reduction in CO2 emissions of up to 80% compared with using petrol, its low

energy density and hygroscopicity have become an obstacle for its wider appli-

cation [4,5]. Fatty acid-derived biofuels, such as fatty alcohols and

hydrocarbons, have been proposed as an option for use within transport sectors

where there is a need for high-density fuels, e.g. aviation and heavy trucks [6].

Fatty acids are naturally produced by cells for both chemical and energy storage

functions. Therefore, producing fatty acid-derived biofuels by microorganisms

as an alternative biofuel production method has drawn more and more atten-

tion, and significant progress has been achieved owing to the dramatic

advances in biotechnology.

The diversity of microorganisms, such as fungi, bacteria and algae, allows

for the usage of a wider range of substrates, which enables expansion from

the use of solely starch-based agricultural products to lignocellulosic biomass

waste, CO2, methane, etc. [7]. Bioethanol is currently mainly derived from

corn starch or cane sugar, which are fermented by microorganisms, such as
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yeast [7–9]. Yarrowia lipolytica, a model oleaginous yeast,

and other oleaginous yeasts are being established as promis-

ing platforms for biofuel generation [10]. However, owing to

its essential role in bioethanol production, the yeast

Saccharomyces cerevisiae has become one of the most inten-

sively industrially applied cell factories, offering the

possibility of alternative advanced biofuel production based

on existing infrastructures and assets without any extra

facility costs. Furthermore, the ease of genetic manipulation

and its robustness and tolerance towards harsh conditions

in industrial production also contribute to the popularity of

yeast as a platform to generate various chemicals [11,12].

We will therefore focus on S. cerevisiae in this review.

As the major component of cell membranes, fatty acids

and their metabolism have been comprehensively studied

in yeast [13]. Metabolic engineering strategies, such as

blocking competing pathways, increasing precursor

supply and balancing cofactor regeneration in the cell,

have been applied to establish optimal native and heter-

ologous pathways for sustainable production of fatty

acids [14,15]. In addition, several advanced biofuels

including alkanes, fatty alcohols and fatty acid ethyl

esters (FAEEs), for which fatty acids serve as precursors,

were successfully generated in yeast [16–19]. Progress in

synthetic and systems biology has also enabled the con-

struction of yeast strains that produce fatty acids and

fatty alcohols with a chain length that cells lack the

capacity to generate naturally. Here, we will highlight

the major contributions to the production of fatty

acid-derived biofuels and chemicals through different

metabolic engineering strategies in yeast, and point to

the major challenges and directions for future laboratory-scale

studies and industrial applications.
2. Engineering of central carbon
metabolism

2.1. Enhancing the precursor supply for fatty acid
synthesis

Fatty acids with a long aliphatic chain are naturally produced

by yeast in either their saturated or monounsaturated form.

Acetyl-coenzyme A (acetyl-CoA) as the main C2 metabolite

is the essential building block for fatty acid synthesis (FAS).

Although acetyl-CoA is involved in the metabolic network

of S. cerevisiae in the cytosol, nucleus, peroxisome and mito-

chondrion, it is not transported freely across membranes in

the absence of the carrier carnitine. However, different shuttle

mechanisms exist. The major substrate for de novo FAS

in yeast is cytosolic acetyl-CoA, which is generated from

pyruvate via three reactions catalysed by pyruvate decar-

boxylase (Pdc), acetaldehyde dehydrogenase (ALD) and

acetyl-CoA synthetase (ACS) (figure 1). Acetaldehyde, as

the intermediate generated from pyruvate, is also the precur-

sor for ethanol production, which is an undesired by-product

when aiming for high-yield fatty acid production. Thus,

many efforts have been directed towards improving the cyto-

solic acetyl-CoA pool. Alcohol dehydrogenase (ADH) genes

were deleted to prevent the conversion from acetaldehyde

to ethanol and/or ALD and endogenous or heterologous

ACS were overexpressed to enhance the carbon flux to
acetyl-CoA [20]. However, ethanol production is hard to

eliminate in yeast by simply deleting ADH genes, as there

is a large number of promiscuous ADHs that could catalyse

the reaction to generate ethanol and many of these are also

involved in other important reactions within the cell [21,22].

In order to overcome this problem, ethanol formation was

inhibited by the elimination of all three Pdc enzymes (Pdc1,

Pdc5 and Pdc6) [23]. Nevertheless, such a Pdc-negative

strain is unable to grow in excess glucose possibly because

of repression of the respiratory metabolism and a deficiency

in cytosolic C2 supply. Pronk and co-workers [23] solved

this problem by evolving the Pdc-deficient strain and suc-

ceeded in obtaining a C2-independent Pdc-negative strain

which could also grow in excess glucose. Later studies

revealed that the adaptation mechanism was associated

with an internal deletion in a transcriptional regulator,

Mth1, which is involved in glucose sensing in yeast. Such a

mutated version of Mth1 reduced the glucose influx and

thus resulted in decreased repression of respiration in the

evolved strain [24,25].

Although ethanol synthesis is blocked in a Pdc-negative

strain, this also decreases the amount of cytosolic acetyl

units that serve as precursors for various downstream

products including fatty acids. A route relying on mitochon-

drial Ach1, the CoA transferase hydrolysing mitochondrial

acetyl-CoA to acetate that enters the cytosol to provide the

C2 unit for cytoplasmic acetyl-CoA synthesis, was shown to

compensate for the lack of cytosolic acetyl-CoA synthesis

[26]. However, this strategy is restricted by the limited mito-

chondrial acetyl-CoA supply owing to the stringent

regulation of the pyruvate dehydrogenase (PDH) complex

and this route cannot function under glucose-repressed con-

ditions (figure 1). Alternatively, a heterologous PDH

complex from Enterococcus faecalis was expressed in an

ACS-deficient yeast strain and shown to fully complement

the cytosolic acetyl-CoA supply [27]. Other attempts

implemented in yeast to benefit cytosolic acetyl-CoA supply

as well include introducing heterologous acetylating ALD

(A-Ald), pyruvate-formate lyase (PFL), a phosphoketolase

(PHK) pathway or pyruvate oxidase (figure 1) [27–30].

Recently, our group reprogrammed the yeast central metab-

olism to demonstrate a feasible strategy for industrial

production of fatty acids with high titre and yield [31]. A het-

erologous ATP citrate lyase (ACL) was overexpressed to

provide cytosolic acetyl-CoA in an engineered fatty acid over-

producing strain (figure 1). Based on that, the three Pdc genes

were deleted to abolish ethanol production. After adaptive

laboratory evolution (ALE) in glucose, the evolved strain

exhibited a pure lipogenesis metabolism, resulting in a

great improvement in fatty acid production. Using a similar

strategy, expression of ACL from Y. lipolytica, downregulation

of malate synthase (Mls1) and deletion of glycerol-3-phos-

phate dehydrogenase (Gpd1) were carried out in S.
cerevisiae—the latter two being key enzymes involved in com-

peting with FAS for carbon flux—leading to a 70%

improvement in free fatty acid production [32].

The conversion of acetyl-CoA to malonyl-CoA via

acetyl-coenzyme A carboxylase (ACCase) encoded by ACC1
is the first committed and rate-limiting step in de novo FAS

in yeast. Increasing malonyl-CoA supply is a promising strat-

egy that benefits fatty acid production. In order to break

through the limitation of low efficiency of this reaction, the

Snf1-dependent phosphorylation of ACCase was—at least
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partially—abolished by introducing two mutations corre-

sponding to Ser1157 and Ser659 of ACC1 (ACC1S1157A,S659A)

[33]. An even more efficient catalytic activity was observed

when S686A was introduced into the double mutant ACC1
(ACC1S1157A,S659A,S686A) [34]. The resulting higher ratio of

malonyl-CoA/acetyl-CoA shifts production towards C18

fatty acids, and the overexpression of either wild-type ACC1
or mutant ACC1 can lead to an improvement in fatty acid

production [16,35].

2.2. Balancing cofactor supply and reducing power
Reducing power is an essential element involved in many

metabolite conversions. NADH and NADPH, the two

major reducing equivalents in yeast, play distinct functions

in the cell, i.e. NADH predominantly participates in catabolic

reactions and NADPH is mainly required for anabolic reactions

[36]. The ratios of the two pyridine nucleotide cofactor systems

NADH/NADþ and NADPH/NADPþ are vital for the deter-

mination of the cellular redox status and the formation of

various metabolites.

Cellular NADPH, the essential reducing equivalent for

fatty acid formation and other metabolic conversions in

yeast, is predominantly generated from the pentose

phosphate (PP) pathway (figure 1). D-Glucose-6-phosphate

(G6P) is oxidized through D-glucose-6-phosphate de-

hydrogenase (G6PDH) encoded by ZWF1, which is the first

rate-limiting step in the PP pathway. Then, ribulose-5-phosphate

is generated through 6-phosphogluconate dehydrogenase
(6PGDH), encoded by GND1 and GND2, thereby yielding

two molecules of NADPH. For de novo FAS in yeast, two

molecules of NADPH are required as cofactors for each

cycle of elongation. Since yeast cells naturally produce

excess NADH as the electron carrier, the NADPH supply is

often limiting for anabolic reactions. Thus, attempts at meta-

bolic engineering have been made to increase the NADPH

supply in the cytosol. To facilitate NADPH regeneration

and reduce loss of the carbon source, a non-phosphorylating

NADPþ-dependent glyceraldehyde-3-phosphate dehydro-

genase (GAPN) from Bacillus cereus was expressed in a

yeast strain carrying a deletion in the GPD1 gene encoding

NADþ-dependent glycerol-3-phosphate dehydrogenase [37]

(figure 1). Extra NADPH can also be produced by overex-

pression of the otherwise mitochondrial malic enzyme

(ME), which converts malate into pyruvate in the cytosol

[19,38]. The PHK pathway, which uses xylulose-5-phosphate

as a precursor, was introduced into S. cerevisiae to increase the

NADPH supply in the cytosol. The combination of the PP

pathway and PHK pathway as an interesting alternative for

fatty acid derivative production resulted in improved

production of FAEEs [39]. Fine tuning the flux distribution

between the PP pathway and glycolysis by overexpression

of phosphogluconate dehydrogenase (encoded by GND1),

transketolase (encoded by TKL1) and transaldolase

(encoded by TAL1) together with downregulation of

phosphoglucose isomerase (encoded by PGI1) in yeast to

provide additional NADPH led to a 28% increase in free

fatty acid production [29].
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3. De novo fatty acid synthesis in yeast
The biosynthesis of fatty acids in yeast can take place in the

cytosol and the mitochondria, where it is carried out by a

type I FAS and a type II FAS, respectively. Experimental

results suggested that the mitochondrial FAS II pathway is

the sole source of the octanoic acid required for lipoic acid

production. Lipoic acid serves as an essential cofactor for

PDH, a-ketoglutarate dehydrogenase and the glycine clea-

vage system [40,41]. However, the range of fatty acids

produced by the mitochondrial FAS II pathway and other

potential roles in cellular metabolism are still uncertain [41].

As a type I FAS is responsible for the cytosolic de novo

FAS, we will mainly focus on it in this review. The type I

FAS in yeast comprises two subunits, a-subunit Fas2 and

b-subunit Fas1. Six copies of eight independent functional

domains are assembled into an a6b6 molecular complex of

2.6 MDa [42] (figure 1). The yeast FAS is activated by its

phosphopantetheinyl transferase domain located at the C-ter-

minus of the a-subunit, and all the reactions occur in the

limited space of the a6b6 complex [42]. The yeast FAS initiates

the reaction by transferring acetyl primer and malonyl

elongation substrate from acetyl-CoA/malonyl-CoA to the

acyl carrier protein (ACP) pantetheine arm by the acetyl

transferase (AT) and malonyl/palmitoyl transferase (MPT),

respectively. The ketoacyl synthase (KS) condenses them to

acetoacetyl-ACP in a malonyl decarboxylation reaction,

which is considered the first step of the elongation cycle. Sub-

sequently, the b-ketoacyl-ACP is reduced by the ketoacyl

reductase (KR) in the a-subunit, followed by a dehydration

reaction catalysed by the dehydratase (DH) and the second

reduction reaction catalysed by the enoyl reductase (ER) in

the b-subunit yielding acyl-ACP [43] (figure 1). The ACP

domain, which plays the central role in shuttling intermedi-

ates between the active sites in the complex, brings the

processed acyl chain back to the KS domain for the next

elongation cycle [44]. This repetitive process occurs using

malonyl-CoA as the provider of 2C units until the carbon

chain length of the fatty acid reaches 16 or 18. The end pro-

duct will be shuttled by ACP from ER to MPT, where it is

transferred to CoA and then released. Previous results

showed that the overexpression of native FAS1 and FAS2 in

S. cerevisiae could contribute to the fatty acid production as

well as introducing heterologous type I or type II FASs

[16,19,45,46]. Additionally, in order to overproduce fatty

acids in yeast, a common strategy is to overexpress heter-

ologous acyl-ACP or acyl-CoA thioesterases, which can

relieve feedback inhibition and increase the fatty acid release

[16]. Moreover, the engineering of type I FAS towards short/

medium-chain fatty acid (S/MCFA) production has recently

attracted attention. A thioesterase from Acinetobacter baylyi
(‘AcTesA) that has a substrate preference for short/

medium-chain acyl-ACP/CoA was embedded into the type

I FAS, which benefitted S/MCFA production significantly

and led to a 5- to 13-fold increase in S/MCFA production

compared with wild-type FAS [47]. Rational modification of

(i) the KS domain to restrict chain length elongation, (ii) the

MPT domain to reduce the affinity to its substrate malonyl-

CoA, and (iii) the AT domain to increase its affinity to

acetyl-CoA has succeeded in altering the chain length of

fatty acid products resulting in production of extracellular

S/MCFAs, mainly hexanoic acid and octanoic acid, of

464 mg l21 in total [48]. Very-long-chain fatty acids
(VLCFAs) are the precursors for various valuable chemicals

and the essential components for yeast cell membrane struc-

tures. VLCFA synthesis occurs at the endoplasmic reticulum

membrane with distinct enzymes similar to the domains in

the FAS system [49]. Of the three fatty acid elongases (equiv-

alent to the KS domain in FAS), Elo1 is responsible for

elongation of C12–16 fatty acids to C16–18 fatty acids,

while Elo2 and Elo3 are more specifically responsible for

the synthesis of up to C22 fatty acid and C26 fatty acid,

respectively [50,51] (figure 1). Yeast was successfully engin-

eered for the production of VLCFAs and derived products

by the selective modification of the endogenous yeast fatty

acid elongation system together with the expression of a

heterologous FAS I system from Mycobacterium vaccae [52].
4. Fatty acid-derived biofuels and
chemicals

4.1. Fatty alcohols
Fatty alcohols are important oleochemicals with wide indus-

trial applications ranging from cosmetics to substitutes for

petroleum-derived compounds such as biofuels [53]. Fatty

alcohols can be generated from fatty acyl-CoAs, fatty

acyl-ACPs and fatty acids with fatty aldehydes as the inter-

mediates via the corresponding enzymes fatty acyl-CoA

reductase, fatty acyl-ACP reductase and carboxylic acid

reductase, respectively [54–56]. These enzymes usually cata-

lyse the first step of the two consecutive reduction steps, i.e.

fatty aldehyde formation, followed by the second reaction

towards fatty alcohol production via aldehyde reductases/

alcohol dehydrogenases (ALRs/ADHs) (figure 2). However,

some fatty acyl-CoA/ACP reductases can catalyse the entire

four-electron reduction step to generate fatty alcohols

directly, for example the well-known FACoAR enzymes

from jojoba plant and Arabidopsis thaliana [57]. The heter-

ologous pathways including these enzymes have been

successfully introduced into yeast. The production of fatty

alcohols in S. cerevisiae was drastically improved by rewiring

central metabolic pathways. The production of free fatty acids

which served as the precursors for fatty alcohol formation in

this strain was improved significantly by deleting fatty

acyl-CoA oxidase (encoded by POX1) and fatty acyl-CoA

synthetases (encoded by FAA1 and FAA4) (figure 2). Reversal

of aldehyde formation was abolished by deleting aldehyde

dehydrogenase (encoded by HFD1) [19] (figure 2). Combined

with (over)expression of the genes involved in fatty alcohol

synthesis, which were in this case fatty acyl-CoA reductase

FaCoAR from Marinobacter aquaeolei VT8, carboxylic acid

reductase (CAR) from Mycobacterium marinum and native

alcohol dehydrogenase Adh5 (figure 2), this led to pro-

duction of up to 120 mg l21 fatty alcohols in shake flasks

[19]. In another study, after expression of a high-activity het-

erologous fatty acid reductase (FAR) (figure 2), blocking

competing pathways by deletion of DGH1, HFD1 and

ADH6 together with limiting NADPH and carbon usage by

deleting glutamate dehydrogenase encoded by GDH1, a

strain producing 1.2 g l21 fatty alcohols in shake flasks was

obtained [58]. However, impaired growth occurred due to

intracellular fatty alcohol accumulation. The expression of

the multi-functional transporter FATP1 from human in a

fatty alcohol producing yeast strain was shown to facilitate
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fatty alcohol export (figure 2), which benefited production

levels as well as the cell fitness, and resulted in 4.5-fold

more extracellular fatty alcohols than the control strain [59].

Based on a yeast strain producing S/MCFAs, 1-octanol was

successfully generated with the two-step pathway via M.
marinum CAR and aldehyde reductase Ahr from Escherichia
coli, demonstrating that the chain length specificity of FAS

is the decisive factor for producing fatty alcohols of a specific

chain length [60].

4.2. Alka(e)nes
Alkenes and alkanes serve as the major constituents of

gasoline, diesel and jet fuel. Several alka(e)ne biosynthesis

pathways have been successfully demonstrated in microbes

in recent years [18,61–63]. Fatty acids, fatty acyl-CoA/ACP

and fatty aldehydes are the major precursors that can be

used to generate alka(e)nes via corresponding enzymes. Both

aldehyde deformylating oxygenase (ADO) and aldehyde

decarbonylase (AD) use fatty aldehydes as substrate to facili-

tate the formation of alkanes (figure 2). ADO is a non-haem

di-iron oxygenase requiring molecular oxygen and an external

reducing system to provide four electrons, yielding hydrogen

peroxide (H2O2) and formate as by-products [64] (figure 2).

The well-known ADs, Drosophila melanogaster CYP4G1 and

Arabidopsis CER1, are naturally involved in long-chain alkane

biosynthesis and have been successfully expressed in

S. cerevisiae to generate Cn21 alkanes from Cn fatty aldehydes

[62]. Fatty acid decarboxylases can catalyse the one-step decar-

boxylation from Cn fatty acids to Cn21 1-alkenes in a process

that avoids the formation of fatty aldehydes as intermediates.

OleT was reported as a cytochrome P450 enzyme that is

responsible for the conversion of C12–C20 fatty acids to corre-

sponding 1-alkenes using H2O2 as the sole electron and

oxygen donor [65] (figure 2). In addition, UndA and UndB

were identified as fatty acid decarboxylases for medium-

chain 1-alkene synthesis that specifically convert C10–C14
fatty acids and C10–C16 fatty acids, respectively (figure 2).

Fatty acyl-CoA/ACPs as substrates can be used to synthesize

long-chain alkenes by olefin synthase, a multi-domain polyke-

tide synthase (PKS) from cyanobacteria, through an

elongation/sulfonation/decarboxylation mechanism [66]. Fur-

thermore, an algal fatty acid photodecarboxylase (FAP) driven

by light was recently found which can convert fatty acids to

corresponding alka(e)nes, and it was successfully expressed

in E. coli to generate hydrocarbons in the presence of visible

light [67] (figure 2).

The implementation of alka(e)ne biosynthesis in yeast has

made significant progress during recent years. However, the

low efficiency of pathway enzymes and the strong compe-

tition of fatty alcohol accumulation for metabolic precursors

and intermediates are considered the major obstacles of

further alka(e)ne production improvement in S. cerevisiae
[14,68]. Therefore, compartmentalization in yeast organelles

turned out to be a promising strategy that provides a suitable

environment for alka(e)ne production via isolating the

synthesis pathway from the competing pathways in the cyto-

sol. Peroxisomes represent a suitable location for alka(e)ne

synthesis not only because of the absence of ALRs/ADHs,

but also because of the potential NADPH supply from the

peroxisomal NADP-dependent isocitrate dehydrogenase iso-

enzyme Idp3 [69]. Recently, the alkane synthesis pathway

consisting of Synechococcus elongatus ADO (SeADO) together

with Mycobacterium marinum CAR (MmCAR) was targeted to

the peroxisomes in yeast, yielding around 0.12 mg l21

alkanes, which was a 90% higher alkane titre than that

yielded by the cytosolic pathway [14]. After further increas-

ing the precursor supply in the peroxisomes and deleting

the cytosolic ALR/ADH genes ADH5 and SFA1, alkane pro-

duction reached 1.2 mg l21 with significantly decreased fatty

alcohol accumulation. Moreover, an additional study focusing

on medium-chain alkane synthesis in yeast indicates that the

compartmentalization in peroxisomes could work as an

efficient strategy in this context as well [70].
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The toxicity caused by the accumulation of alka(e)nes

negatively affects the cell growth and limits the production

yield. Consequently, some studies towards improving solvent

tolerance were conducted in yeast. The native plasma mem-

brane efflux pumps Snq2 and Pdr5 were identified in

S. cerevisiae as contributing to alkane export and tolerance

by reducing intracellular levels, specifically for C10 and

C11 alkanes [71]. The heterologous transporters Abc2 and

Abc3 from Yarrowia lipolytica significantly increased tolerance

against decane and undecane in S. cerevisiae through main-

taining lower intracellular alkane levels [72] (figure 2).

Furthermore, mammalian FATP1 previously identified as a

fatty alcohol exporter was expressed in yeast to benefit

1-alkene secretion. The implementation of dynamic regu-

lation, through expressing PfUndB under the control of the

GAL7 promoter with deletion of GAL80 to separate the cell

growth and production process and replacing the electron

transfer system by the NADH-based putidaredoxin reductase

system, finally enabled a yeast cell factory to produce

35.3 mg l21 1-alkenes with more than 80% being secreted,

which is a 10-fold improvement compared with earlier

reported hydrocarbon production by S. cerevisiae [63,73].

4.3. Fatty acid ethyl esters
The biosynthesis of FAEEs, considered as potential diesel fuel

replacement, was demonstrated in yeast. Ethanol and acyl-

CoAs are the essential precursors involved in FAEE synthesis

that can be catalysed by a wax ester synthase/acyl-CoA:

diacylglycerol acyltransferase (WS/DGAT) (figure 2).

Generally, most WSs naturally accept acyl groups with a

chain length of C16 or C18 and linear alcohols with a chain

length ranging from C12 to C20, and various WSs have

different substrate chain length preferences [17]. Five heter-

ologous WSs from bacteria and mammals were expressed

and evaluated in S. cerevisiae to investigate their substrate

preferences [17]. The results showed that the WS from

Marinobacter hydrocarbonoclasticus had the best performance

using ethanol as the substrate in vitro compared with the

other enzymes, and enabled a titre of 6.3 mg l21 FAEEs

after expressing it in the engineered yeast strain.

In order to establish a stable expression system, the heter-

ologous wax ester synthase gene (ws2) was integrated into

the yeast chromosomes in multiple copies, resulting in an

increase in FAEE production of up to 34 mg l21 [74]. Sub-

sequently, the endogenous acyl-CoA binding protein and a

bacterial NADPþ-dependent GAPN were overexpressed in

the integration strain to enhance the precursor and cofactor

supply, which enabled a further 40% increase in FAEE pro-

duction. During the synthesis of FAEEs in yeast, the

concentrations of ethanol and acyl-CoA influence the yield of

the final product. Thus, the carbon flux was redirected towards

acetyl-CoA, the precursor of acyl-CoA, by overexpressing the

alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase

(ALD6) and ACS encoded by heterologous gene acsSE
L641P,

together with the integrated ws2, resulting in a threefold

improvement [39]. Then, the PHK pathway was introduced

to enhance acetyl-CoA supply by heterologous expression of

xpkA and either ack from Aspergillus nidulans or pta from Bacillus
subtilis. Both PHK pathways helped to generate around

5.0 mg g21 cell dry weight FAEEs, an up to a 1.7-fold improve-

ment. Besides, reducing the competition of other pathways for

acyl-CoA also permits an overproduction of FAEEs. Therefore,
by eliminating the formation of steryl esters (SEs) and triacylgly-

cerols (TAGs), a threefold increase in FAEE production was

achieved [75]. The heterologous expression of a type I FAS from

Brevibacterium ammoniagenes coupled with WS/DGAT yielded a

6.3-fold increase in FAEE production compared with a strain

not containing the heterologous FAS [45]. Additionally, the

alternative carbon source, glycerol, with the advantage of

being a low-price and highly reduced substrate was used to

produce FAEEs in S. cerevisiae [76]. The titre of FAEEs reached

0.52 g l21 after increasing the ethanol formation from glycerol,

blocking the glycerol export route and adding exogenous fatty

acids, which is the highest reported FAEE production to date

in yeast.
5. Perspectives
Progress in developing more advanced biotechnology tools has

led to more efficient engineering of microbes. An example is the

clustered regularly interspaced short palindromic repeats

(CRISPR)/Cas technology, which allows fast multiplex

genome editing and has significantly shortened the time

required for strain construction. Even though there has been

much progress on engineering yeast for production of

advanced biofuels in the laboratory, it is still challenging to

meet the titre, rate and yield (TRY) requirements for commercial

production of low-value fatty acid-derived products (table 1). In

order to meet the commercial requirements, the yields and pro-

ductivities of laboratory-scale processes need to approach

around 85% of the theoretically possible yield and the

fermentation has to be scaled up drastically [82]. The scientific

progress, however, lays the basis for further development in

case some of the key barriers can be passed [5].

Owing to the relatively low value of many fatty acid-

derived chemicals, improving the utilization of the carbon

source is a promising strategy that contributes to high TRY

metrics. Therefore, attempts towards the utilization of single

carbon feedstock such as CO2 and methane have attracted

much attention, and were shown to be a feasible alternative

with high carbon- and energy-conversion efficiency [83].

However, there are many challenges that need to be con-

quered before the application of this concept in industrial

production can be realized. For example, the carbon atom

from CO2 possesses a high oxidation state that requires

large amounts of reducing power in microbes to efficiently

remove the oxygen atoms for it to be used for hydrocarbon

synthesis. When considering methane-based metabolism,

the activation of the C–H bond in methane is a costly

and extremely inefficient process, which indicates that a

more feasible and efficient design is needed for methane

utilization by microorganisms [84].

In many cases, the poor performance of the key enzymes

involved in the different biosynthetic pathways is the major

obstacle for improving product formation. This is, for example,

the case for ADO, which has low catalytic activity even in its

native host [85]. In addition, expression of heterologous mem-

brane proteins is usually challenging owing to the distinct

membrane structures between organisms [86,87], and poor

expression is often observed for the members of the superfam-

ily of cytochrome P450 enzymes such as OleT with one of

potential reasons being cofactor (haem) deficiency [65]. Protein

engineering of these enzymes can serve as a feasible strategy to

enable further enhancement of final product levels through a



Table 1. Comparison of biofuel production from different organisms. FAAs, free fatty acids; OCFAs, odd chain fatty acids; FOHs, fatty alcohols; SCAs, short chain
alkanes; FAEEs, fatty acid ethyl esters; VLCFOHs, very-long-chain fatty alcohols; YNB, yeast nitrogen base; SD, synthetic defined.

microorganisms product titre (g l21) yielda (g g21) medium cultivation condition reference

S. cerevisiae FAAs 1.0 0.05 MMb shake flask [19]

E. coli FAAs 3.9 N.C.c MKd fed-batch [77]

E. coli FAAs 1.2 0.06 MM shake flask [53]

Y. lipolytica OCFAs 0.75 N.C. YNB fed-batch [78]

S. cerevisiae FOHs 0.12 0.004 MM shake flask [19]

S. cerevisiae VLCFOHs 0.084 0.0028 MM shake flask [52]

S. cerevisiae FOHs 0.1 0.005 MM shake flask [16]

E. coli FOHs 1.7 0.028 MM batch [79]

S. cerevisiae 1-alkenes 0.035 0.0011 MM shake flask [63]

Y. lipolytica alkanes 0.023 N.C. YNB shake flask [80]

E. coli SCAs 0.58 N.C. MRd fed-batch [81]

S. cerevisiae FAEEs 0.034 N.C. SD medium shake flask [74]

Y. lipolytica FAEEs 0.14 N.C. YNB shake flask [80]
aYield was defined as carbon source conversion rate to biofuel production.
bMM, minimal medium.
cUnable to calculate because of the complex composition of the medium.
dMinimal medium with extra yeast extract.
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more efficient metabolite conversion. Thus, with protein engin-

eering strategies such as rational design based on known or

simulated protein structures or random approaches through

directed evolution, the cofactor, substrate or product specificity

can be altered and benefit the overall improvement of enzyme

activities. A successful example is the engineering of a type I

FAS to generate more S/MCFAs in yeast, which offers the

possibility to alter the fatty acid chain length and enables a

larger diversity of biofuels produced by engineered strains

[47]. However, gaining additional knowledge on enzymes

and their structures as well as the development of advanced

tools used for in silico analysis of proteins require more effort

and attention in future studies.

With still relatively low yields and rates in biofuel

production, the tolerance against toxic chemicals and

fermentation processes needs to be further improved in

order to achieve high TRY metrics to meet the requirements

of commercial application [82,88]. Several successful attempts

have shown that identifying respective transporters can be a

feasible approach to releasing growth inhibition in microbial

cell factories [59,63,72]. In addition, ALE towards toxic

chemicals and inhibitory conditions has proven to be a prom-

ising method that can benefit the production of biofuels and

other molecules, for instance resistance against high tempera-

ture or oxidative stress could be obtained by ALE [89,90]. If

product formation can be linked to cell growth or survival,

it is also possible to evolve strains for increased production.

In this way, carotenoid production was improved by

hydrogen peroxide-challenged adaptive evolution [91].
In addition, a number of biosensors have been developed

to detect specific molecules and have been recently employed

to facilitate the production of some valuable compounds,

such as using a malonyl-CoA sensor to improve the pro-

duction of 3-hydroxypropionic acid and fatty acids [77,92–

94]. Nevertheless, the number of metabolites detectable as

well as the properties (e.g. specificity) of existing biosensors

need to be improved for additional applications [95].

Recently, the concept of synthetic product addiction facili-

tated by biosensors was proposed as a promising solution

that would benefit high-yield bio-manufacturing [96].

Through linking production of the desired metabolite to the

expression of non-conditionally essential genes, the pro-

duct-addicted strains with biosynthetic capacity in the

population will be selected without constraining the

medium, thus providing production stability over many gen-

erations. With the help of such advanced biotechnology tools,

efforts in the coming years will focus on how to improve the

TRY metrics in order to meet the commercial requirement for

lower value products and the production of higher value

molecules using microorganisms.
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