
Nanomedical Relevance of the Intermolecular Interaction
Dynamics-Examples from Lysozymes and Insulins

Downloaded from: https://research.chalmers.se, 2024-03-13 08:52 UTC

Citation for the original published paper (version of record):
Zhang, R., Zhang, N., Mohri, M. et al (2019). Nanomedical Relevance of the Intermolecular
Interaction Dynamics-Examples from Lysozymes and
Insulins. ACS Omega, 4(2): 4206-4220. http://dx.doi.org/10.1021/acsomega.8b02471

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Nanomedical Relevance of the Intermolecular Interaction
DynamicsExamples from Lysozymes and Insulins
Ruiyan Zhang,†,‡,§ Ning Zhang,† Marzieh Mohri,‡ Lisha Wu,∥ Thomas Eckert,⊥,# Vadim B. Krylov,∇

Andrea Antosova,○ Slavomira Ponikova,○ Zuzana Bednarikova,○ Philipp Markart,◆,¶

Andreas Günther,◆ Bengt Norden,∥ Martin Billeter,⋈ Roland Schauer,⧓ Axel J. Scheidig,§

Bhisma N. Ratha,⧖ Anirban Bhunia,⧖ Karsten Hesse,● Mushira Abdelaziz Enani,¤ Jürgen Steinmeyer,☼

Athanasios K. Petridis,◎ Tibor Kozar,◑ Zuzana Gazova,○ Nikolay E. Nifantiev,∇

and Hans-Christian Siebert*,‡

†Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
‡RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
§Institute of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel,
Germany
∥Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
⊥Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
#Institut für Veterinar̈physiolgie und Biochemie, Fachbereich Veterinar̈medizin, Justus-Liebig-Universitaẗ Gießen, Frankfurter Str.
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◎Neurochirurgische Klinik, Universitaẗ Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
◑Center for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia

*S Supporting Information

ABSTRACT: Insulin and lysozyme share the common features of
being prone to aggregate and having biomedical importance.
Encapsulating lysozyme and insulin in micellar nanoparticles
probably would prevent aggregation and facilitate oral drug delivery.
Despite the vivid structural knowledge of lysozyme and insulin, the
environment-dependent oligomerization (dimer, trimer, and multi-
mer) and associated structural dynamics remain elusive. The
knowledge of the intra- and intermolecular interaction profiles has
cardinal importance for the design of encapsulation protocols. We
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have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and
atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during
homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained
depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to
form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and
production with insulin or lysozyme-related protein encapsulation.

■ INTRODUCTION

Several natural and synthetic proteins of pharmacological
importance (including, but not limited to, lysozyme and insulin)
are prone to aggregation into insoluble polymeric fibrils, a
biologically and industrially unwanted feature. To extend the
long-term usability of pharmacologically significant proteins,
their inactivation caused by unfolding and/or aggregation needs
to be minimized. As lysozyme and insulin are well-established
protein drugs, these can serve as model components to study
conditions that could help stabilize proteins and prevent them
from aggregation. Formation of lysozyme (muramidase)1−3 or
insulin complexes4−6 into higher aggregates or fibrils, but also
their occurrence in native states, needs to be studied by a
combination of biochemical and biophysical techniques to shed
light into the mechanism of amyloid formation. Protein
misfolding and consequent aggregation are associated with
more than 20 diseases.7 Although a significant amount of work
has been conducted to study the amyloid-related problems of
living organisms, neither the mechanisms of fibril creation nor
some ways of their disruption are fully understood yet. What is
assumed nowadays is that inter- and intramolecular interactions
could play the decisive role for amyloidogenic processes. Both
insulin and lysozyme belong to the group of amyloidogenic
proteins. There are currently several commercial variations of
insulin available: synthetic human insulin (e.g., Actrapid,
Lispro), porcine insulin (Caninsulin), and glargine insulins
(Lantus, Abasaglar, Glaritus, and Basalog) in which one amino
acid is replaced and two Arg residues are added. Beside these
variations, in the case of the glargine insulins, different
expression vectors (Escherichia coli for Lantus and Abasaglar,
and yeast for Glaritus and Basalog) are used and lead to minor
conformational differences. This fact has to be carefully
considered when insulin structural data sets are compared.
Variations in the production and formulation processes can be
correlated with alterations in structure and dynamics of the
proteins under study. Glycosylation impurities have been
described for the glargine insulins (Glaritus and Basalog) that
are expressed in yeasts.4−6,8 Such kind of glycosylation that does
not occur in standard insulins may influence their structural
properties, for example, the aggregation behavior of these
glargine biosimilars, but could also enhance their lifetime as it is
in the case of naturally occurring glycosylated hormones such as
erythropoietin.9 However, this kind of insulin glycosylation has
to be considered as impurity since it does not occur at all in
glargine insulin (Glaritus and Basalog) molecules in a
homogenous way. Glargine insulin is a human insulin analog,
with three amino acid difference. In the A-chain of glargine
insulin, Asn at position 21 is mutated to Gly. In the B-chain of
glargine insulin, two Arg residues at positions 31 and 32 are
added. Recently, Hermanns et al.10 discussed the clinical impact
of such modifications on diabetes therapies. In the synthetic
insulin Lispro (marketed by Eli Lilly as Humalog), the
penultimate lysine and proline residues on the C-terminal end
of the B-chain are reversed in comparison to human insulin. This

small modification in the primary sequence does not influence
the receptor binding but blocks the formation of dimers and
hexamers.11,12 This has a significant impact on bioavailability
since Lispro is active immediately. In comparison to our
biophysical studies on insulin variants (human or porcine insulin
vs the long-acting synthetic glargine insulin Lantus, Abasaglar,
Glaritus, or Basalog), the corresponding physical parameters for
larger proteins with similar clinical relevance, that is, lysozyme
(here human lysozyme (HL) and hen egg white lysozyme
(HEWL)), could be obtained.
Lysozyme has been used for years as a model for amyloid

aggregation.13 Recently, we have reported the ability of
lysozymes to specifically bind certain sections from the
carbohydrate part of lipopolysaccharide (LPS) from Klebsiella
pneumoniae.14 Nonionic detergents can also easily interact with
amino acids of the amyloidogenic region of HEWL of the
lysozyme,15 affecting thus the amyloid fibrillization that can also
be inhibited by phospholipids.16 Furthermore, the effects of
detergents17 and natural products18,19 on insulin and lysozyme
aggregation and lysozyme and insulin antiamyloid structure−
function screening of small libraries20 have been reported
recently.
Analysis of the corresponding intermolecular interactions is of

importance also for the design of target-directed nanoparticles
because the carbohydrate recognition part of the protein can be
regarded as an intrinsic anchor unit for cell-surface-exposed
contact structures. The surface properties (e.g., the electrostatic
surface potentials) of the two lysozymes under study (HL and
HEWL) due to several variances in the amino acid sequences
differ from each other. These differences can be correlated with
the aggregation/fibrillization behavior of the two lysozyme
speciesHL and HEWL. It has to be emphasized that for both
classes of biomolecules (insulins and lysozymes), new data with
respect to the aggregation dynamics can be achieved when the
arsenal of biophysical techniques is applied in a way that all
processes on the submolecular and in the case of ion
involvement are considered. Similar to the aggregation behavior
of glargine insulins also in the case of the lysozymes under study
Arg residues and the corresponding charges play a crucial role in
both dimer and multimer formations. Knowledge about all
crucial details in relation to the structural stability under
different physical and chemical conditions is essential for the
optimal clinical application of encapsulated protein drugs. In the
case of the encapsulation of small organic compounds that are
used, for example, as antipsychotic drugs, it is of relevance to
analyze their structural behavior at a high precision level using ab
initio calculations.21−23 The requirements to utilize quantum
chemical approaches relate to hindered rotations in partial
double bonds that are often occurring in medications that are
used as therapeutics against schizophrenia and other psychotic
diseases.24 Also in the case of larger drugs, one has to proceed in
a similar way when these compounds have to be encapsulated in
target-directed nanoparticles.25−27 Accordingly, we centered
our attention on studies of the structure, aggregation, and
intermolecular interaction profiles of these proteins and on
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possibilities to encapsulate them into lipid nanoparticle carriers.
In the case of an effective oral peptide/protein drug delivery, it is
essential that so-called absorption enhancers enable an efficient
transfer from the gastrointestinal tract to the bloodstream.
Therefore, the drug-containing nanoparticles and the target cell
in the intestine have to interact in a specific way. As the target
molecules of these nanoparticles, cell-surface-exposed carbohy-
drate structures such as sialic acids14,27−31 will be our main
focus. We selected insulin and lysozyme as two well-
characterized proteins in combination with a set of biophysical
techniques to perform an exemplary study for protein stability
and optional forms of drug delivery.

■ RESULTS AND DISCUSSION
X-ray Crystallography Assay and Molecular Modeling

Analysis. By variation of crystallization conditions for the
structure determination of HL in complex with a tetrasacchar-

ide,14 we have obtained crystals of HL with one lysozyme
molecule per asymmetric unit (monomeric form) and crystals
with two lysozyme molecules per asymmetric unit (dimeric
form), as shown in Table 1 (Hlys #1 and Hlys #2, respectively).
The arrangement of the two lysozyme molecules within this
dimeric form differs significantly from the dimeric arrangement
as predicted based on monomeric lysozyme by molecular
modeling approaches as described before (Figure 1a−c). In
addition, we have not found further evidence for these in silico
results when human lysozyme has been analyzed with NMR
methods at different pH values since monomers seem to be the
preferred state.
Ten different insulin clusters resulted from Haddock 2.2

dimer simulation. Energy optimization was carried out on all of
these dimers using the Hyperchem 8.0 program to assess the
energetically most favorable structure. Table 2 summarizes the
results from this minimization.

Table 1. Different Crystal Forms of Human Lysozyme under Different Crystallization Conditions

crystallization condition unit cell dimension

a b c (Å)

crystal ID pH buffer temperature (K) α β γ space group subunit number/asymmeric unit

Hlys #1 4.4 25 mM NaOAc 291 33.22 56.12 60.95 P212121 1
0.8 M NaCl 90.00 90.00 90.00

Hlys #2 5.8 50 mM Na citrate 291 42.84 63.93 109.81 P212121 2
0.8 M NaCl 90.00 90.00 90.00

ref #1 (PBD:1LZS) 4.0 30 mM sodium phosphate 277 32.53 46.99 162.25 P212121 2
1.8 M NaCl 90.00 90.00 90.00

ref #2 (PBD:1LZR) 6.0 30 mM sodium phosphate 286 34.01 56.51 60.91 P212121 1
2.5 M NaCl 90.00 90.00 90.00

Figure 1. Superposition of (a) HL structure frommolecular modeling (modeled dimeric arrangement, cyan) and crystal structure of HL, crystallized at
pH 4 (obtained from PDB1lzs.pdb;32 purple). (b) Homodimeric model structure of HL, crystallized at a pH value of 5.8 (yellow) and the
1lzs.pdbcrystal structure (purple). (c) Homodimeric model structure of HL (yellow) and modeled dimeric arrangement of HL (cyan). (d) Crucial
arginine residues at the interfaces of both monomers (Arg21, Arg107) are highlighted by a licorice presentation.
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Protein dimer 1 corresponds to the crystal structure 1lzs.pdb.
The other dimeric structures exhibit only a few kcal/mol higher
energy. Molecular dynamics (MD) simulations were performed
to evaluate the possible existence of the dimeric forms under
physiological conditions. Protein dimer 1 as well as the protein
dimer from the crystal structure 1lzs.pdb were stable at pH = 7.4
at 298 K in physiological saline solution for 10 ns and showed
only little fluctuations during the simulation. Accordingly, we
can assume that the human lysozyme may exist in dimeric form
under physiological conditions.
In the case of the insulins under study (human insulin,

Actrapid/Lispro; porcine insulin, Caninsulin; and the synthetic
long-acting glargine insulins), higher aggregates were not
detected by NMR under the chosen measurement conditions.
However, structural data sets based on X-ray or neutron
diffraction experiments are available in the protein data bank:
3w7y.pdb, 1mso.pdb, and 3fhp.pdb.
Thioflavin T (ThT) Fluorescence Assay and Atomic

Force Microscopy (AFM) Analysis. Comparing fibril
formations of HL and HEWL using ThT assay, significant
differences were observed in kinetics of fibrillization and amount
of amyloid fibril aggregates (Figure 2). The time dependences of
amyloid fibril formation determined for hen (red circles,

HEWL) and human (blue triangles, HL) lysozymes (10 μM)
differ in the lag phase, slope of the elongation phase, and value of
plateau phase corresponding to the fibril mass. The formation of
non-native states of lysozyme required for amyloid fibrillization
that is occurring during lag phase was significantly prolonged in
the case of human lysozyme with lag phase about 28 min. Hen
egg white lysozyme form these species under 10min. The overall
time for formation of mature fibrils was also differentabout 50
min for HL and 20 min for HEWL to achieve plateau for the
fluorescence intensities. The observed kinetic characteristics of
HL and HEWL fibrillization are summarized in Table 3. The
lower fluorescence intensities of the plateau phase (10 000 au)
for HL compare to HEWL (70 000 au), suggesting formation of
a lower amount of fibrillar structure or their association to bigger
clusters.
Atomic Force Microscopy (AFM) is an important technique

for visualization of amyloid aggregates. The obtained AFM
images of lysozyme aggregates (Figure 3 a,b) confirmed the ThT
results.
These two complementary methods were also used for a

detailed analysis of insulin fibril formation. Differences between
fibril formation of human insulin and glargine insulin using ThT
assay are still detectable (Figure 4) but not so obvious as in the
case of lysozymes (Figure 2). Fibril formation of both types of
insulin follows the nucleation polymerization model. The
modified amino acid chain of the glargine insulin does not
lead to stronger alterations when comparing glargine with
human insulin during the fibril-formation process; however,
insulin Basalog (blue triangles) has a longer lag phase (4.5 min)
when compared to human insulin tlag equal to 1.5 min (green
triangles). The differences in other kinetic parameters (t1/2,
tplateau, and Ifluomax) are not so significant and are presented in
Table 3.
After 2 h, the morphologies of human insulin and glargine

insulin fibrils visualized using the AFM technique show small but
characteristic differences (Figure 5a,b). Glargine insulin (Figure
5b) forms unbranched fibrils that are thinner than fibrils of
human insulin (Figure 5a).
Next, we tested with NMR methods whether critical

parameters of the insulins and lysozyme for further structural
comparison can be obtained under physiological conditions.

NMR ResultsAnalyses of Human, Porcine, and
Glargine Insulins as well as Human Lysozyme from
Transgenic Cow. We have found that it is possible to record
NMR spectra of insulin drugs taken directly from the injection
pen (Figure 6a,b). Large excipient signals were detected, but
they do not disturb our structural analysis of the compounds
itself in a significant way. The two one-dimensional (1D) NMR
spectra Figure 6a (top, bottom) show Abasaglar glargine probes
from two different charges, which were stored in a slightly
different way. One probe was stored permanently in the
refrigerator; the other one was stored for one night outside the
refrigerator at room temperature. The 1D spectra of the two
probes are completely identical and can therefore not be
discriminated although the injection pens have been treated
under different cooling conditions. Also in the corresponding
nuclear Overhauser enhancement (NOESY) spectra (Figure
6b), no differences were detected. It turned out that especially
the NOESY spectra of Abasaglar glargine insulin can be
evaluated despite the strong excipient signals in a sufficient way.
Contrary to the Abasaglar insulin probes that were taken

directly from the injection pen, all signals of the human lysozyme
extracted from the milk of transgenic cow belong to the protein

Table 2. Hyperchem Energy Evaluation of the Insulin
Dimeric Clusters

cluster energy in kcal/mol

1 1467.3
2 1478.6
3 1481.0
4 1481.7
5 1488.1
6 1491.7
7 1493.0
8 1500.2
9 1502.9
10 1506.7

Figure 2.Time dependences of amyloid fibril formation determined for
hen egg white (red circles) and human (blue triangles) lysozyme (10
μM). The aliquots were selected at given time intervals, and the extent
of lysozyme fibrillization was monitored by Thioflavin T (ThT)
fluorescence assay (20 μM, ThT). The error bars represent the average
deviation for repeated measurements of three separate samples. The
curves were obtained by fitting of the average values by a nonlinear
least-square method using Sigmoidal curve-parameter 4 in SigmaPlot
software. The times of about 50 min (HL) and 20 min (HEWL)
correspond to the plateau for the fluorescence intensities.
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(Figure 7a). The NOESY (Figure 7b) and total correlation
spectroscopy (TOCSY) (Figure 7c) were used to confirm that
the human lysozyme analyzed from another source in a former
study14 and the human lysozyme extracted from the milk of
transgenic cow do not differ from each other. With these data, it
is now possible to discuss the intermolecular interaction
dynamics for various insulins and lysozymes in detail.
An overlay of the 1D NMR spectrum glargine insulin Lantus

(blue) with that of Glaritus (red) confirms the detected
differences over the whole spectral range (Figure S1). An
overlay of the two-dimensional (2D) NMR spectra of the

glargine insulin Lantus (blue) with the glargine insulin Glaritus
(red) shows differences, which concern the Asn18 residue in a
certain spectral region (Figure S2). Furthermore, an extra peak
has been detected in the case of the glargine insulin Glaritus
(red) (Figure S2). It has to be emphasized here that the
corresponding ligand−receptor complex does not show any
involvement of Asn18 in receptor binding (Figure S3).
Therefore, any potential modification at this position (e.g.,
glycosylation) will not have a significant impact on receptor
binding.
The 1D NMR spectrum of the porcine insulin Caninsulin

(MSD), which is presented in Figure S4, is a medication used for
diabetes treatment in dogs. The amino acid sequence of
Caninsulin is identical to pig (porcine) insulin. The Thr residue
at position 30 in the B-chain is replaced by Ala in porcine insulin
in comparison to human insulin. The sharp signals point to
monomeric states of this insulin in the NMR tube.

Molecular Modeling Supported NMR Analyses of HL
and HEWL Lysozymes in Comparison to Insulins. Owing
to the complexity and robustness of nanoparticle delivery
systems of protein drugs, it is essential to consider the
complementarity of experimental and modeling data in the
development of optimal encapsulation strategies. We combined
at first the experimental and molecular modeling data that were
obtained for lysozyme (HL andHEWL) (Figure 8a−f) and then
compared them with the corresponding experimental and
theoretical data gained for insulins (Figure 9a−e). The relation
between pH values and lysozyme (HL and HEWL) structures is
indicated by the overlay presentations shown in Figure 8c,d.
When human lysozyme is encapsulated in nanoparticles for a
therapeutic use, precise knowledge of the submolecular details

Table 3. Kinetic Parameters of Insulin and Lysozyme Amyloid Fibrillization

kinetic parameters HL HEWL human insulin glargine insulin

lag-time (tlag) (min) 28 ± 0.4 10 ± 0.3 1.5 ± 0.1 4.5 ± 0.2
half-time (t1/2) (min) 29 ± 0.6 13 ± 0.2 6.2 ± 0.3 8.2 ± 0.2
Ifluomax (au) 10 000 ± 100 70 000 ± 200 47 000 ± 150 55 000 ± 200
tplateau (min) 50 ± 0.2 20 ± 0.1 6.8 ± 0.2 11.4 ± 0.6

Figure 3. AFM images of (a) human lysozyme (HL) and (b) hen egg white lysozyme (HEWL) amyloid fibrils confirm the (ThT) fluorescence assay
results by another biophysical technique in an independent way.

Figure 4.Time dependences of amyloid fibril formation determined for
glargine insulin Basalog (blue triangles) and human insulin (green
triangles) (10 μM). Left side, complete time period. Inset, time period
of fibril formation between 1 and 15 min. The data were fitted with
sigmoidal curve-parameter 4 with the equation: y0 + a/(1 + exp(−(x −
x0)/b)).
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about its carbohydrate affinity14 is of importance because this
part of the molecule can be considered as a vital target unit.
Three essential amino acidsTyr63 (yellow), Arg98 (red), and
Trp109 (blue)are stabilizing the complex (5lsh.pdb), high-
lighted in Figure 8e. The surface presentation of the same
complex shown in Figure 8f visualizes the shape of the
carbohydrate recognition part of human lysozyme. The human
lysozyme (Figure 8a−f) and insulin (Figure 9a−e) data are
valuable references when MD simulations in micelles are
considered and were performed for nanoparticles as indicated in
Figure 10. The surface presentations of the glargine insulin
Lantus (Figure 9a, monomer) and the porcine insulin
Caninsulin (Figure 9b, monomer) including their electrostatic
surface potentials can be compared with each other and taken as
starting structures in our MD simulations. It is necessary to
correlate the data sets describing dimeric forms of human insulin
(3w7y.pdb, 1mso.pdb) and porcine insulin (3fhp.pdb) as
presented in Figure 9c−e illustrating structural data of
lysozymes.
Encapsulation of insulin into adequately sized liposome

nanoparticles could facilitate optimal oral delivery of insulin
while eliminating possible fibrillation processes in tissue around
the injection areas. In silico methodologies were utilized to
assess the nanoparticle size−insulin saturation relationships.
Several differently sized liposome nanoparticles with diameters
from around 35 nm up to approaching 120 nmwere constructed
using the PACKMOL37 program. The number of non-hydrogen
atoms of insulin needed for molecular dynamics (MD)
simulations can be decreased by three quarters when employing
the coarse-grained (CG) approach/representation of atoms.
Several observations employing different-level CG modeling
(both Monte Carlo and MD simulations) for insulins and
lysozymes38−47 were published recently. The total number of
CG atoms in our case of glargine insulin is reduced to 95.
Consequently, hundreds of insulin molecules can be easily
modeled and encapsulated into differently sized liposomal
nanoparticles. Figure 10 represents nine such models sized from
35 to 120 nm.
The structure of the 65 nm liposomal nanoparticle with

embedded glargine insulins, as shown in Figure 11, was

generated using the PACKMOL37 program. All-atom approach
for insulins was used in original building step, as seen in Figure
11c,d. In the geometry-optimized spherical model, as seen from
the highlighted insulin−insulin intermolecular distance, the
molecules are far away from each other to allow aggregation. The
lipid molecules (CG models of dipalmitoylphosphatidylcholine
(DPPC) and dilauroylphosphatidylcholine (DLPC) used in this
particular model; Figure 11e and 11f), restrict the motion of the
insulins reducing thus their possibility to aggregate. As expected,
specific intermolecular interaction processes are also dependent
on certain ions in the protein environment. Figure 11a shows the
ribbon presentation of porcine insulin in the presence of a
trimethylamine N-oxide molecule (similar to the Abasaglar
formulation of glargine insulin) based on the X-ray structure
3t2a.pdb. Figure 11b displays the same presentation of an X-ray
structure of porcine insulin without the trimethylamine N-oxide
(4a7e.pdb).
The combined molecular analysis methodologies, presented

and applied here as the inaugural part for drug encapsulation
strategy, have wide application options in addition to our tests
on lysozyme and insulin. The strategy could also be applied for
example to antimicrobial defensins and neuraminidases in
cancer therapy. In any case, it is essential that the nanoparticles
have a target function with respect to contact structures on the
corresponding cell surfaces. The MARCKS-ED peptide with its
polysialic acid affinity28 is a good candidate to become a suitable
targeting peptide on the nanoparticle surface. The data
presented in this publication have to be considered as essential
information for better understanding of the submolecular
interactions in relation to the aggregation dynamics of protein
drugs. Encapsulation into liposome nanoparticles could improve
the delivery strategies for these therapeutics. The molecular
surface properties of the protein drugs were studied with a
combination of biophysical and biochemical methods including
sophisticated analytical techniques and newly developed
concepts.49−54 Large-scale production of insulin53 and the
status quo of opportunities of insulin treatment53 as described in
the corresponding articles might initialize the distinct need for
better understanding of the aggregation behavior of insulins
(human, porcine, and synthetic glargine variants). This is valid

Figure 5. AFM images of 10 μM glargine insulin Basalog (a) and human insulin (b) after 2 h incubation at 65 °C with constant stirring (1200 rpm).
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also in a similar way for lysozymes (HL and HEWL), especially
specific intermolecular interactions in order to proceed toward
potential applications in the framework of innovative nano-
medical therapies. In the case of lysozymes, the results on
specific interactions with the carbohydrate part of the LPS
chains on pathogen surfaces have just been published.14 The
findings with respect to an intrinsic molecular target function
can be combined with the concept of targeting peptides on the
surfaces of nanoparticles. When protein drugs are delivered by
nanoparticles with target-directed absorption enhancers (e.g.,
certain collagen fragments) on their surfaces, the molecular fine-
tuning of all components of the delivery system is the crucial step
for a therapeutic success. Therefore, it is of highest importance
to carefully evaluate the data concerning the structure−function
relationship of the aggregation dynamics of lysozymes and

insulins as described here. Certain parameters such as pH values,
temperature, and electrostatic potentials have to be correlated
with excipient and specific receptor interactions as obtained by a
combination of biophysical techniques and molecular modeling
methods. Consequently, the structural and physiological
properties (adjusted or personalized) of insulin or lysozyme
embedded into a delivery nanoparticle could be directly
correlated with the functional effects in the patient’s organism
after their release.

■ CONCLUSIONS

Liposomal encapsulation for drug delivery is a significant
technique as it provides an alternative to injections, and
currently many research groups around the world are carrying
out research55−57 to develop needle-free drug delivery

Figure 6. (a) Abasaglar glargine insulin spectra taken from different charges of insulin pens, which were stored under slightly different cooling
conditions. The 1D NMR spectra of the two charges in top and bottom show identical signals. (b) NOESY NMR spectrum of the Abasaglar glargine
insulin sample. Although the excipients produce strong disturbing signals, it is possible to structurally analyze the protein drug in its solution taken
directly from the injection pen.
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techniques, which will improve patient compliance. The current
study is focused on understanding the homo-oligomerization of

the important amyloidogenic proteins lysozyme and insulin.
Both are well-established amyloidogenic proteins, and both are

Figure 7. a) One-dimensional proton NMR spectrum of human lysozyme extracted from the milk of clone cows. The corresponding NOESY (b) and
TOCSY (c) spectra are also shown. The evaluation of these spectra have led to the conclusion that no significant differences exist between the
structures of the human lysozyme analyzed in a former study14 and human lysozyme extracted from the milk of clone cows.
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therapeutic agents. Clinical cases show that insulin can form
amyloid particles at the site of injection known as insulin
balls.58−61 To prevent such undesired amyloidosis, it is
necessary to develop advanced drug delivery systems,62 in
conjunction with insulin manufacture and treatment.63−65

Liposomal encapsulation of insulin can be a convenient
alternative drug delivery strategy. The association state of the
proteins is an important determinant factor of protein
encapsulation into lipid-based colloidal carriers66 along with
lipid−protein interaction.67 Furthermore, one needs to consider
the interaction of the protein with the chosen lipid model as it is
another important determinant factor, which can be studied in
silico prior to wet lab experiments.
Our results show that under the different molecular

environmental conditions, the association state of lysozyme

and insulin varies. The variability in the molecular association
governs the amyloid kinetics and the final aggregation state, as
conferred from the amyloid kinetic studies of lysozyme and
insulin variants. These results can help device encapsulation
strategies for different lysozymes and insulins. Several other
peptide-based therapeutics can be further studied as discussed in
an earlier section for designing the liposomal protein
encapsulation.

■ EXPERIMENTAL SECTION

NMR Sample Preparation. All samples were prepared by
dissolving lyophilized human lysozyme (HL) or hen egg white
lysozyme (HEWL) in 0.3 mL of H2O containing 20mM sodium
phosphate buffer and 10% D2O. Final concentrations of all
samples were 0.5 mM protein as determined by measurement of

Figure 8. Surface representations of (a)HL and (b)HEWLwith electrostatic surface potential. Electrostatic potentials were calculated with PyMOL.33

Red and blue colors represent the negative and positive electrostatic potentials, respectively. (c) Overlay of structures for a comparison of pH-
dependent effects in human (HL) and chicken (HEWL) lysozymes. (d) Overlay of two human lysozyme (HL) structures for a comparison of pH-
dependent effects. (e) Backbone and (f) surface representation of human lysozyme in complex with the tetrasaccharide O-antigen LPS fragment from
K. pneumoniae (5lsh.pdb14). Crucial amino acids that are stabilizing the complex are highlighted on the left side by the following color code: Tyr63
(yellow), Arg98 (red), and Trp109 (blue).
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the molar extinction coefficient, using E1% (w/v) = 25.5 for HL
and 26.4 for HEWL. The following samples were prepared: pure
HL and HEWL at pH 3.8 and 5.5, respectively. Additional
samples for HL were prepared in a similar manner for the pH
titrations described below.
NMR spectroscopy including pH adjustments and pKa

measurements of HL: All NMR spectra were obtained using a
Varian Unity INOVA 800 MHz spectrometer at 35 °C. The 1H
chemical shifts were referenced to 4,4-dimethyl-4-silapentane-1-
sulfonic acid. All experiments were run with 3 mm Shigemi
tubes. Homonuclear two-dimensional (2D) NOESY and
TOCSY (64 transients for each) with spectral width 11204 Hz
for both dimensions were acquired with 512 increments in the

indirect dimension and 4096 data points in the direct dimension
using Watergate solvent suppression and a pulse sequence
repetition delay of 1.5 s. The NMRPipe68 software package was
used to process all NMRdata by zero-filling to 1024 points in the
indirect dimension and ending with either a Gaussian or a
shifted sine-bell function. The digital resolution was 0.0015 and
0.014 ppm for the direct and indirect dimensions, respectively,
after zero-filling. The following mixing times were used: 150 ms
for the NOESYs and 50 ms for the TOCSYs. Ten NOESY
spectra were recorded at different pH values between the range
3.8 and 8.1 (3.8, 4.2, 4.6, 5.0, 5.5, 6.2, 6.8, 7.4, 7.7, and 8.1) for
pKa determination of HL. A separate set of HL samples was used
to record 1D spectra at 22 different pH conditions in between

Figure 9. (a) Electrostatic surface potential of the glargine insulin monomer (4iyd.pdb). (b) Electrostatic surface presentation of the porcine insulin
Caninsulin monomer (3t2a.pdb).34 Surface representations of human insulin dimeric form (c) 3w7y.pdb and (d) 1mso.pdb35 in comparison to (e)
dimeric porcine insulin 3fhp.pdb.36 The electrostatic potentials were calculated with PyMOL.33 Red and blue colors represent negative and positive
electrostatic potentials, respectively.
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3.17 and 8.13 in step increment of ∼0.2 units. All 1D data sets
were defined by 4096 complex points and consisted of 256
transients. The digital resolution of the 1D spectra was 0.0024
ppm after zero-filling. XEASY,69 MNova,70 and CCPNmr71

were used for analysis and resonance assignment. Line widths
are defined as half-width at half-height of a peak; for most peaks,
the line width was estimated to be 0.01 ppm. NMR-derived
models are displayed with the MOLMOL program.72

For adjusting pH values, either H3PO4 or NaOH was used by
addition of small aliquots. The standard solutions (from Sigma)
at pH 4 and 7 were used to calibrate the pH meter. The
temperature dependence of the pH reading for HL was checked
by recalibrating the pH meter at 35 °C: the difference between
an incubated lysozyme sample at 35 °C and at room temperature

was less than 0.1 pH unit. Before and after each experiment, the
pH for each sample was measured to warrant constant
conditions.
The list of excipients in Abasaglar insulin is as follows: zinc

oxide, metacresol, glycerol, hydrochloric acid (for pH adjust-
ment), sodium hydroxide (for pH adjustment), and water for
injections. Therefore, strong signals from metacresol and
glycerol occur in the spectra beside the protein signals.
In the case of human lysozyme, which was isolated from the

milk of cloned transgenic cows, only the pure protein was
extracted and therefore no disturbing signals were occurring in
the corresponding spectra.53

Molecular Modeling. The structure of human lysozyme
was investigated for its dimerization potential with the web
server Haddock 2.2.73 For this purpose, the respective monomer
proteins from 1lzs.pdb32 were used. The different protein−
protein docking results were subjected to an energy
minimization with the program Hyperchem 8.074 using the
CHARMM27 force field75 in an aqueous environment. To test
the stability of the dimeric proteins, an MD simulation over 10
ns at 298 K was carried out with the dimer from 1lzs.pdb, as well
as with themost energetically favorable dimer from theHaddock
2.2 experiment at pH = 7.4 in physiological saline. For this, the
program YASARA v.12.11.2576 with the NOVA force field was
used. The PyMOL33 software package was applied for
visualization of the monomers and dimers.
The PACKMOL37 program was used to build the liposome

structures containing the embedded insulin molecules. The
combination of NAMD/VMD77,78 programs was used for
further structural modeling and visualization. Coarse-grained
models of modeling dilauroylphosphatidylcholine (DLPC) and
modeling dipalmitoylphosphatidylcholine (DPPC) were used in
liposome generation, whereas both all-atom and CG models of
insulin were applied for the protein embedment. The
PACKMOL37-created structures were then transformed into
formats suitable for MD programs for CG simulations
(GROMACS79−84 and LAMMPS85) with the help of Top-
oTools (https://sites.google.com/site/akohlmey/software/
topotools), VMD plugin, and Moltemplate (https://www.
moltemplate.org/). The Martini force field86−88 was used for
CG simulations. Finally, the OVITO89 program was used for
structure control and trajectory analysis.

Figure 10. Structure−volume correlations of glargine insulin in “coarse-grained” (CG) presentation encapsulated into nine differently sized
nanoparticles. The central pie chart illustrates the increase of the particle volumes. The insulin color coding (chain A red, chain B green) and the CG to
all-atoms reverse engineering are shown in the right part of the figure (in CPK, ribbon and surface presentation). Particle sizes (radius): (1) 18 nm; (2)
23 nm; (3) 28 nm; (4) 33 nm; (5) 38 nm; (6) 43 nm; (7) 48 nm; (8) 53 nm; and (9) 58 nm.

Figure 11. (a) 4a7e.pdb, porcine insulin without trimethylamine N-
oxide;48 (b) 3t2a.pdb, porcine insulin with trimethylamine N-oxide;34

(c) all-atom molecular surface representation of glargine insulins
embedded into the globular (∼65 nm) nanoparticle; (d) zoomed
ribbon representation of insulin with CPK highlighting of the
amyloidogenic segment; (e) and (f) insulin structures (shown in all-
atom CPK representation) embedded into the lipid bilayer (coarse-
grained modeling of DPPC and DLPC with different coloring schemes
for the inner (orange and yellow) and outer (green and white) layers).
The insulin molecules loaded into the liposome are protected from
solvent and other environmental effects.
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X-ray Crystallography. The crystallization and structure
determination of human lysozyme were performed as described
previously.14 In brief, human lysozyme crystals were obtained at
18 °C using the hanging drop vapor diffusion method. Crystals
were grown in 0.8 M NaCl, 25 mMNaOAc buffer (pH 4.4), 0.8
M NaCl, and 50 mM NaCitrate buffer (pH 5.8). All data
collections were performed at 100 K and were processed with
the XDS/XSCALE90 program package. The human lysozyme
structure (PDB id: 1rex)91 was used as the search model for
molecular replacement with the MOLREP program.92 The
Refmac5 program as implemented in the CCP4 suite93,94 and
PHENIX95 was used for model building and refinement.
Amyloid Fibrillization of Hen and Human Lysozymes,

Glargine, and Human Insulin. Hen egg white (HEWL) and
human (HL) lysozyme amyloid fibrils were prepared through
the incubation of 10 μM lysozyme at 65 °Cwith constant stirring
(1200 rpm) in 70 mM glycine buffer containing 80 mM NaCl,
pH 2.7. Human and glargine insulin solutions at 10 μM final
concentration prepared in 100 mM NaCl−HCl buffer, pH1.6,
were incubated at 65 °C, 1200 rpm for 2 h. To study kinetics of
fibrillization processes, aliquots of lysozymes/insulins were
withdrawn at varying times. Formation of amyloid aggregates
was observed using the ThT assay. All experiments were
performed in triplicate, and the presented data represent average
values with standard deviations. The data were fitted with
sigmoidal curve-parameter 4 with the equation: y0 + a/(1 +
exp(−(x − x0)/b)) using SigmaPlot software. The presence of
lysozyme/insulin amyloid fibrils was confirmed by atomic force
microscopy.
Thioflavin T Fluorescence Assay. The amyloid aggrega-

tion of lysozymes and insulins was assayed by a significant
enhancement of Thioflavin T (ThT) fluorescence in the
presence of amyloid fibrils. Thioflavin T was added to
lysozyme/insulin samples (10 μM) to a final concentration of
20 μM.Measurements were performed in a 96-well plate using a
Synergy MX (BioTek) spectrofluorimeter. The excitation
wavelength was set at 440 nm and the emission recorded at
485 nm. The excitation and emission slits were adjusted to 9.0/
9.0 nm, and the top probe vertical offset was 6 mm.96−100

Atomic Force Microscopy. Samples were deposited by
drop casting on the freshly cleaved mica surface. After 5 min
adsorption, the samples were washed with ultrapure water and
left to dry. The protein concentration of 10 μM was used. AFM
images were taken by a Scanning Probe Microscope (Veeco di
Innova, Bruker AXS Inc., Madison) in a tapping mode using
uncoated silicon cantilevers TESPA, unmounted with force
constant 42 N/m and nominal resonance frequency ν = 320
kHz, with Al reflective coating (Bruker AFMProbes, Camarillo).
The resolution of the image was 512 pixels per line (512 × 512
pixels/image) with a scan rate of 0.5 kHz. All the images are
unfiltered.96−100
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(30) Eckert, T.; Stötzel, S.; Burg-Roderfeld, M.; Sewing, J.; Lütteke,
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