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a b s t r a c t

We construct KMS-states from Li1-summable semifinite spectral triples and show that in
several important examples the construction coincides with well-known direct construc-
tions of KMS-states for naturally defined flows. Under further summability assumptions
the constructed KMS-state can be computed in terms of Dixmier traces. For closed
manifolds, we recover the ordinary Lebesgue integral. For Cuntz–Pimsner algebras with
their gauge flow, the construction produces KMS-states from traces on the coefficient
algebra and recovers the Laca–Neshveyev correspondence. For a discrete group acting on
its Stone–Čech boundary, we recover the Patterson–Sullivan measures on the Stone-Čech
boundary for a flow defined from the Radon–Nikodym cocycle.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The construction of the JLO cocycle [25,35,36] from θ-summable spectral triples [12] has from the start been closely
linked with the idea of KMS states. A θ-summable spectral triple (A,H,D) on a C∗-algebra A gives rise to a state
φ(a) := Tr(ae−D2

) on A and under suitable conditions this is a KMS-state on the saturation of A by the R-action defined
from the wave operators eitD

2
. By [36] the JLO-cocycle can be defined starting from this KMS-state. On the other hand, [12]

shows that a finitely summable spectral triple (A,H,D) on a C∗-algebra A defines a tracial state on A. Similar constructions
were studied in [61].

The idea since then has been to understand the measure theory associated to θ-summable spectral triples in terms
of ‘twisted traces’, and more specifically KMS states. Indeed this idea was present early in the development, [36]. Two
viewpoints make it interesting to study states associated with spectral triples having specified summability degrees: the
associated states obstruct summability degrees, and the states provide a notion of measure theory.

In this paper we present a construction of KMS states from Li1-summable spectral triples. By definition, a spectral
triple (A,H,D) is Li1-summable if and only if e−t|D| is trace class for t large enough — a slight strengthening of being
θ-summable.

It is an important observation that large classes of examples of θ-summable spectral triples are also Li1-summable.
For the spectral triple defined from a Dirac operator on a closed manifold, our construction recovers the Lebesgue

integral. For Cuntz–Pimsner algebras we also relate our construction to previous work of Laca and Neshveyev [45], and
the authors [30,54]. We also examine spectral triples arising from certain Hilbert space valued cocycles on discrete groups.

In the examples we consider, the KMS-states are associated to flows that are well-suited to the geometries. This is
usually not the case for the KMS-state φ(a) = Tr(ae−D2

) associated with a θ-summable spectral triple. It is our hope that
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our construction provides a more natural approach to the KMS-states appearing in the JLO-cocycle and that in the future
it will have a bearing on the index theory of Li1-summable spectral triples.

1.1. Main results

We now state our main results. All our results make sense for general semifinite spectral triples, and so we fix a
semifinite trace T for this discussion.

First, we state the main technical construction of KMS-states from Li1-summable spectral triples. After that, we state
the implications of this construction to more specific examples. We use the notation PD for the non-negative spectral
projection of D, i.e. PD := χ[0,∞)(D). If for some βD ≥ 0, T(PDe−tD) is finite for t > βD and diverges as t ↘ βD, we
say that D has positive T-essential spectrum. We define the C∗-algebra AD as the saturation of A under the action of the
wave group eitD, that is

AD := C∗ (∪t∈Rσt (A)) , where σt (a) := eitDae−itD.

At this stage, we formulate our results in terms of AD. In Section 3.2 we refine the construction to a smaller C∗-algebra. In
examples, the construction often applies to A directly. Recall from [3, Definition 5.3.1] that a state φ on an R-C∗-algebra
σ : R ↷ A is said to be KMS at inverse temperature β if φ(ab) = φ(σ−iβ (b)a) for a, b from an R-invariant norm dense
∗-subalgebra of A. If φ is a state on an R-von Neumann algebra σ : R ↷ A we say that it is KMS if the same condition
holds on an R-invariant σ -weakly dense ∗-subalgebra of A.

The following theorem is the main result of the paper.

Theorem 1. Let (A,H,D,N, T) be a unital Li1-summable semifinite spectral triple such that D has positive T-essential
spectrum (see Definition 3.1) and is β-analytic (see Definition 3.18). Define

βD := inf{t > 0 : T(PDe−tD) < ∞}.

For any extended limit ω ∈ L∞(βD,∞)∗ as t → βD (see Definition 3.14), we define the state φω on AD as

φω(a) := ω-lim
t→β

T(PDae−tD)
T(PDe−tD)

.

Then φω is a KMS-state at inverse temperature βD for the R-action defined from σt . In particular, if βD = 0 then φω is a
tracial state on A.

If βD = 0, and there is a decreasing function ψ : [0,∞) → (0,∞) with regular variation of index −1, satisfying the
conditions (4.2) and (4.3), and for some d > 0 we have that µT(t, PDD) ∼ ψ(t)−1/d as t → ∞, then for any exponentiation
invariant extended limit ω as t → ∞,

φω̃(a) = Tω,ψ (PDa(1 + D
2)−d/2),

where ω̃ is an extended limit as t → 0 defined in Theorem 4.9, and Tω,ψ is the Dixmier trace defined from T and ω on the
weak ideal Lψ (N) := {T ∈ KN : µT(t, T ) = O(ψ(t))}.

The first part of this result can be found as Corollary 3.21 in the body of the text and the second part as Corollary 4.10.

Remark 1.1. If βD = 0, any unital Li1-summable semifinite spectral triple with T(PD) = ∞ has positive
T-essential spectrum and is β-analytic. Therefore, Theorem 1 shows that any unital Li1-summable semifinite spectral
triple (A,H,D,N, T) with T(PDe−tD) < ∞ for t > 0 and T(PD) = ∞ gives rise to a tracial state on A. This extends a
result of Voiculescu [61, Proposition 4.6]. For details on this case, see Theorem 3.22.

The following three results compute the KMS-state in specific examples.

Theorem 2. Let M be a closed Riemannian manifold, A := C∞(M), D be a Dirac operator on a Clifford bundle S → M and
H := L2(M, S). Then the KMS-state φω constructed in Theorem 1 is independent of ω and is a tracial state on C(M) that takes
the form

φω(a) =

∫
M

− a dV ,

where dV denotes the volume measure defined from the Riemannian metric on M and
∫
− the normalized integral.

This result appears as Theorem 5.1 in the body of the text.

Theorem 3. Let A be a unital C∗-algebra, E be a strictly W-regular fgp bi-Hilbertian bimodule (see Definitions 2.21 and 2.25)
and (OE,ΞA,D) the associated unbounded (OE, A)-cycle as in [30]. If τ is a positive trace on A, then the semifinite spectral
triple (OE,ΞA ⊗A L2(A, τ ),D ⊗ 1A, (End∗

A(ΞA) ⊗ 1)′′, Trτ ) is Li1-summable.
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Moreover, if τ is critical for E (see Definition 6.2), the assumptions in Theorem 1 are satisfied and the state φω is KMS for
the gauge action on OE . If τ satisfies the Laca–Neshveyev condition for α ≥ 0 (see Definition 6.7), then φω is independent of ω
and takes the form φω = φLN,τ where φLN,τ is the KMS-state defined from τ via the Laca–Neshveyev correspondence.

This result is found in Section 6. We also discuss extensions of these results to more general A–A-correspondences in
Section 6.3 dispensing the assumption of strict W-regularity.

Theorem 4. Let Γ be a discrete group and c : Γ → H0 a Hilbert space valued proper 1-cocycle defining a length function of at
most exponential growth. The semifinite spectral triple (A,H,D,N, T) constructed from c in Section 2.2.4 is an Li1-summable
semifinite spectral triple on Cb(Γ )⋊Γ . Moreover, if c is critical (see Definition 3.10) the assumptions of Theorem 1 are satisfied
and the associated KMS-state φω on C(∂SCΓ ) ⋊ Γ is given by

φω

(∑
g∈Γ

agλg

)
=

∫
∂Γ

ae dµω,

where µω is a quasi-invariant Patterson–Sullivan measure on the Stone–Cech boundary ∂SCΓ . The state φω extends to a KMS-
state on the von Neumann algebra L∞(∂SCΓ , µω)⋊Γ where it is KMS with inverse temperature 1 for the R-action defined from
the Radon–Nikodym cocycle

σt

(∑
g∈Γ

agλg

)
:=

∑
g∈Γ

(
dg∗µ

dµ

)it

agλg .

This result appears as Theorem 5.10. Our method extends to proper quasi-cocycles, and as such would allow for the
construction of KMS-states from semifinite spectral triples with possible K -homological content on a-TT-menable groups.

Remark 1.2. We will prove that the spectral triple of a length function (which is K -homologically trivial) gives rise to
the same KMS state as that appearing in Theorem 4.

1.2. Connection to some earlier work

Here we show how our approach relates to some results obtained by Connes in [13, Section IV.8.α, Theorem 4]. Connes
proves that θ-summable Fredholm modules can be lifted to θ-summable spectral triples. We show that Connes’ result can
be extended to Lis-summability for 0 < s ≤ 1, and discuss obstructions to summability properties of K -homology classes.
For terminology and notations concerning summability and operator ideals, the reader is referred forward to Section 2.1.

Recall [5,15] that a semifinite Fredholm module is a collection (A,H, F ,N, T) where A acts on the Hilbert space H by
operators from N and F ∈ N is an operator with a(F − F∗), a(F 2

− 1), [F , a] ∈ KT for all a ∈ A. We say that (A,H, F ,N, T)
is unital if A acts unitally. A unital semifinite Fredholm is said to be Lis-summable if [F , a] ∈ Lis(T) for all a ∈ A and
F 2

− 1, F − F∗
∈ Li2s(T). If the same conditions holds with Lis(T) replaced by Lp(T), and Li2s(T) by Lp/2(T), we say that

(A,H, F ,N, T) is p-summable. If (A,H, F ,N, T) is a semifinite Fredholm module we say that a semifinite spectral triple
(A,H,D,N, T) is a lift if F − sign(D) ∈ KT .

Theorem 5. Let s ∈ (0, 1] and (A,H, F ,N, T) be a unital semifinite Lis-summable Fredholm module with F 2
= 1 and F = F∗.

Assume that A is countably generated. Then there is a self-adjoint operator D affiliated with N making (A,H,D,N, T) into a
unital semifinite Lis-summable spectral triple with

F = FD := D|D|
−1.

Moreover, (A,H,D,N, T) satisfies that aDom(|D|
1/s) ⊆ Dom(|D|

1/s) and [|D|
1/s, a] has a bounded extension for all a ∈ A.

This theorem is found in [13, Section IV.8.α, Theorem 4] in the special case s = 1/2 and N = B(H). We will not give the
full details of the proof in the general case, but merely indicate how Connes’ proof extends. The starting point of Connes’
proof is a reduction to the case that A contains F and is generated by a countable group of unitaries Γ generated by a
countable set of unitaries (uµ)µ∈N. This argument extends to a general von Neumann algebra N. Connes introduces the
operator

G :=

∑
µ∈N

[F , uµ]∗[F , uµ]
2µ∥[F , uµ]∗[F , uµ]∥Li1

.

Since [F , uµ] ∈ Li1/2 for all µ, the series converges in Li1. The proof proceeds by using an average procedure Θ over the
group Γ applied to G and Connes proves that D := FΘ(G)−1/2 fulfils the statement of the theorem. For general s ∈ (0, 1],
the proof goes mutatis mutandis using the operator

Gs :=

∑
µ∈N

([F , uµ]∗[F , uµ])2s

2µ∥([F , uµ]∗[F , uµ])2s∥Li1
∈ Li1(T),

and setting D := FΘ(G)−s.



110 M. Goffeng, A. Rennie and A. Usachev / Journal of Geometry and Physics 143 (2019) 107–149

In the special case s = 1, we obtain that (A,H, F ,N, T) lifts to a unital semifinite Lis-summable spectral triple
(A,H,D,N, T) which is Lipschitz regular, i.e. for all a ∈ A the commutator [|D|, a] is bounded.

The lifting theorem for Lis-summable spectral triples (Theorem 5) stands in sharp contrast to the finitely summable
setup, or even the Li(0),s-summable setup. The two upcoming theorems show that a statement as in Theorem 5 could not
extend to the ideal Li(0),1.

Theorem 6. Let A be a unital C∗-algebra with no tracial states and (A,H,D,N, T) be a unital semifinite spectral triple on A
defining a non-trivial class in KK1(A,KT). Then PD(i ± D)−1 /∈ Li(0),1(T).

Proof. Consider a unital C∗-algebra A and an Li(0),1-summable unital semifinite spectral triple (A,H,D,N, T) on A defining
a non-trivial class in KK1(A,KT). In particular, T(PD) = ∞; otherwise PD ∈ KT which contradicts the non-triviality of the
KK1(A,KT)-class defined by (A,H,D,N, T). By Remark 1.1 all assumptions of Theorem 1 reduces to T(PD) = ∞ in the
Li(0),1-summable case. Therefore, the existence of Li(0),1-summable unital semifinite spectral triples on A being non-trivial
in KK implies that A admits a tracial state. This argument shows that if A admits no tracial states, it admits no Li(0),1-
summable unital semifinite spectral triple. In fact, a careful inspection of the results used show that as soon as there is a
unital semifinite spectral triple on A with PD(i ± D)−1

∈ Li(0),1(T), there is an associated tracial state on A. The theorem
follows. □

There are several C∗-algebras carrying no traces, for instance any purely infinite C∗-algebra. Using Theorems 1 and 6, we
will give an example of a finitely summable Fredholm module that can not lift to an Li(0),s-summable spectral triple. In
particular, lifting of finite summability and Li(0),s-summability fails in general.

Theorem 7. There is a C∗-algebra A with K 1(A) ̸= 0, such that for a dense ∗-subalgebra A ⊆ A we can represent any
x ∈ K 1(A) by a Fredholm module (A,Hx, Fx) with F 2

x = 1, F∗
x = Fx and for any a ∈ A, [Fx, a] is of finite rank. Moreover, any

lift (A,Hx,Dx) of (A,Hx, Fx) will satisfy that (1 + D2
x )

−1/2 /∈ Li(0),1(H).

Proof. Consider the Cuntz algebra A = ON and A the ∗-algebra generated by isometries S1, S2, . . . , SN ∈ ON with
orthogonal ranges. It is a well known fact that K 1(ON ) ∼= Z/(N − 1)Z ̸= 0. By [29], we can represent the generator
of K 1(ON ) ∼= Z/(N − 1)Z by the Fredholm module (A, L2(ON , φ), 2P − 1) where φ is the KMS-state on ON and P is the
orthogonal projection onto the closed linear span of Sµ, where µ ranges over all finite words on the alphabet {1, . . . ,N}.
By the results of [29, Section 2.2], [2P − 1, a] = 2[P, a] is finite rank for all a ∈ A. The first statement of the theorem
follows.

There are no tracial states on ON since

1ON =
1

N − 1
(N − 1)1ON =

1
N − 1

⎛⎝ N∑
j=1

S∗

j Sj −
N∑
j=1

SjS∗

j

⎞⎠ =
1

N − 1

N∑
j=1

[S∗

j , Sj].

We can now deduce the second statement of the theorem from Theorem 6. □

Remark 1.3. It is not of importance that K 1(ON ) is torsion for the argument in Theorem 7 to work. In [29], non-torsion
examples satisfying the conclusions of Theorem 7 can be found. The reader should also note that the proof of Theorem 7
obstructs all lifts (A,Hx,Dx) of (A,Hx, Fx) with PDx (1 + D2

x )
−1/2

∈ Li(0),1(H).

In the nonunital case, the techniques of [4] will likely be required. The substantial technical considerations in the nonunital
case goes beyond this paper, and is left to future work.

1.3. Structure of the paper

Section 2 recalls the basics of (unital) semifinite spectral triples and their summability. We also recall our main
examples from the literature in this section for later use.

Section 3 presents our construction of KMS states from Li1-summable spectral triples. We close the section by
discussing connections to modular spectral triples. We consider the case βD = 0 in Section 4 and compute the tracial
states constructed in Section 3 by means of Dixmier traces. In Section 5 we apply the techniques of Section 3 to the
examples.

The final Section 6 examines the construction of KMS states for Cuntz–Pimsner algebras. In this case we apply our
ideas to derive obstructions to the existence of fgp bi-Hilbertian bimodule structures compatible with the underlying
correspondence of the Cuntz–Pimsner algebra.
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1.4. Notations

N semifinite von Neumann algebra
T positive, faithful, normal, semifinite trace on N

KN ideal of T-compact operators
End∗

A(X) C∗-algebra of adjointable endomorphisms of an A-Hilbert C∗-module X
KA(X) C∗-algebra of compact endomorphisms of an A-Hilbert C∗-module X
A ∗-algebra
A′ the commutant of an algebra A

A C∗-closure of an algebra A

PD := χ[0,∞)(D) non-negative spectral projection of an operator D

AD saturation of A/{a ∈ A : PDaPD ∈ KN} under the action of the wave group eitD
FD := 2PD − 1
µT(·, T ) singular values function of an operator T affiliated with N

nT(·, T ) distribution function of an operator T affiliated with N

Lis(T), Li(0),s(T) ideals of compact operators in Definition 2.6
Lψ (T),L(0),ψ (T) ideals of compact operators in Definition 2.6
Tω,ψ (T ) Dixmier trace on Lψ (T)
T(A) set of positive traces on a unital C∗-algebra A
L∞(a,∞), a ≥ 0 space of essentially bounded functions on (a,∞) equipped with

the essential supremum norm
C0(a,∞), a ≥ 0 subspace of L∞(a,∞) of all continuous functions vanishing at infinity
ω-limt→∞ f (t) value of an extended limit ω on a function f
ℓ∞(N) space of bounded sequences equipped with the supremum norm
ω-limk→∞ xk value of an extended limit ω on a sequence x
Lg transfer operator defined by formula (2.13)
f ∼ g for two functions or sequences f and g if f = g + o(f ) and g = f + o(g)

2. Preliminaries

Before entering into the body of the paper, we recall some basic definitions that we will require and provide some
examples that motivated this work. These examples will be studied further in the later sections of the paper. The results
will be formulated for semifinite spectral triples. We do however remark that there are several examples of ‘vanilla’
spectral triples that will be used throughout the paper.

2.1. Semifinite spectral triples and summability

To set the stage for the paper, we summarize the basic definitions and properties of semifinite spectral triples. The
reader familiar with semifinite spectral triples and symmetrically normed operator ideals can skip this subsection.

We let N denote a semifinite von Neumann algebra and we fix a positive, faithful, normal, semifinite trace T on N. The
T-compact operators are denoted by KN . The C∗-algebra KN can be defined as the norm closed ideal generated by the
projections E ∈ N with T(E) < ∞. Equivalently, one can define KN := {T ∈ N : µT(t, T ) = o(1) as t → ∞} where the
singular value function µT(t, T ) is defined as

µT(t, T ) := inf
{
∥T (1 − E)∥N : where E ∈ N is a projection with T(E) ≤ t

}
. (2.1)

Definition 2.1. A semifinite spectral triple (A,H,D,N, T) consists of

• A ∗-algebra A represented on a Hilbert space H as operators in N ⊆ B(H), that is, we have a specified
∗-homomorphism π : A → N. D : dom D ⊂ H → H which is affiliated with N such that for all a ∈ A we
have a · domD ⊂ domD and

1. [D, π (a)] := Dπ (a) − π (a)D initially defined on dom(D) is bounded in operator norm.
2. π (a)(1 + D2)−1/2

∈ KN .

Remark 2.2. Sometimes we write a spectral triple as a collection of three objects (A,H,D). In this case, it is implicitly
assumed that N = B(L2(M, S)) and T is the standard trace.

Remark 2.3. If in addition to the data (A,H,D,N, T) we have specified an operator γ ∈ B(H) with γ = γ ∗, γ 2
= 1,

Dγ + γD = 0 on Dom(D), and for all a ∈ A we have γπ (a) = π (a)γ , we call the semifinite spectral triple even,
or sometimes graded. If γ has not been specified, we say that the semifinite spectral triple is odd, or ungraded. This
distinction plays an important role in the topological properties of the spectral triple, but since this paper deals with
measure theory it will not play a role in this paper.
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Remark 2.4. We will nearly always dispense with the representation π , treating A as a subalgebra of N ⊆ B(H).

Remark 2.5. In the sequel we assume that the algebra A is unital and that 1 ∈ A acts as the identity of the Hilbert
space. In particular, the operator (1 + D2)−1/2 is a T-compact operator. To emphasize this assumption, we refer to the
data (A,H,D,N, T) as a unital semifinite spectral triple.

Examples of semifinite spectral triples often satisfy a finer summability structure, i.e. a refinement of the condition
(1 + D2)−1/2

∈ KN . We formulate such conditions in terms of symmetrically quasi-normed operator ideals. We will
use the Schatten ideals, the Li-ideals and more generally weak ideals.

Definition 2.6. Let N denote a semifinite von Neumann algebra and T a positive, faithful, normal, semifinite trace on N.
For parameters p, d ∈ [1,∞) and s > 0 we define the following operator ideals.

• Lp(T) := {T ∈ KN : µT(·, T ) ∈ Lp(0,∞)}.
• L(d,∞)(T) := {T ∈ KN : µT(·, T ) = O(t−1/d) as t → ∞}.
• Lis(T) := {T ∈ KN : µT(t, T ) = O((log(t))−s) as t → ∞}.
• Li(0),s(T) := {T ∈ KN : µT(t, T ) = o((log(t))−s) as t → ∞}.
• If ψ : [0,∞) → (0,∞) is a decreasing function satisfying that supt>0

ψ(t)
ψ(2t) < ∞, we define the associated weak

ideal

Lψ (T) := {T ∈ KN : µT(t, T ) = O(ψ(t))},

and its separable subspace

L(0),ψ (T) := {T ∈ KN : µT(t, T ) = o(ψ(t))},

The condition supt>0
ψ(t)
ψ(2t) < ∞ guarantees that Lψ (T) is a vector space, and in fact even a quasi-Banach space in the

quasi-norm ∥ · ∥N + ∥ · ∥Lψ
, where

∥T∥Lψ
:= sup

t>0

µT(t, T )
ψ(t)

.

Note that Lis(T) = Lψ (T) and Li(0),s(T) = L(0),ψ (T) for ψ(t) := (log(2 + t))−s. It is immediate from the definition that
Lp(T) ⊆ Li(0),s(T) for any p and s. More generally, if ψ1, ψ2 : [0,∞) → (0,∞) are two decreasing functions satisfying that
supt>0

ψj(t)
ψj(2t)

< ∞, then Lψ1 (T) ⊆ Lψ2 (T) as soon as ψ1 = O(ψ2).

Remark 2.7. Our definition of symmetrically normed operator ideals in the semifinite setting differs slightly from the
standard definition unless N is atomic. In the usual definition, the symmetrically normed operator ideals are defined from
operators affiliated with N that potentially are unbounded. Since we only use bounded operators from these ideals, we
have incorporated this fact in our definition.

Definition 2.8. Let (A,H,D,N, T) be a unital semifinite spectral triple.

• (A,H,D,N, T) is said to be p-summable if (1 + D2)−1/2
∈ Lp(T).

• (A,H,D,N, T) is said to be (d,∞)-summable if (1 + D2)−1/2
∈ L(d,∞)(T).

• (A,H,D,N, T) is said to be Lis-summable if (1 + D2)−1/2
∈ Lis(T).

• (A,H,D,N, T) is said to be Li(0),s-summable if (1 + D2)−1/2
∈ Li(0),s(T).

• (A,H,D,N, T) is said to be ψ-summable if (1 + D2)−1/2
∈ Lψ (T).

The standard terminology in the literature for the special case s = 1/2 is to refer to Li1/2-summability as weak
θ-summability and to Li(0),1/2-summability as θ-summability. Since L(d,∞)(T) ⊆ Lp(T) for all p > d, (d,∞)-summability
refines p-summability.

The notion of (d,∞)-summability is a noncommutative generalization of being d-dimensional as the spectral triple
defined from a Dirac operator on a closed d-dimensional manifold (as in Section 2.2.1) is (d,∞)-summable. We shall see
an abundance of Li1-summable, truly noncommutative, examples where p-summability and (d,∞)-summability fails for
all p and d.

The notion of ψ-summability generalizes both (d,∞)-summability and Li1-summability, and appears naturally in
examples of (semi-) group actions on manifolds (see Section 5.1 and [17,31]). We will make use of this notion in Section 4
where certain conditions on ψ allow one to compute the tracial state defined from a ψ-summable unital semifinite
spectral triples in terms of Dixmier traces on Lψ (T).



M. Goffeng, A. Rennie and A. Usachev / Journal of Geometry and Physics 143 (2019) 107–149 113

Remark 2.9. It is readily verified that Lis-summability is equivalent to

T(e−t|D|
1/s

) < ∞, for t > t0 for some critical value t0,

and that Li(0),s-summability is equivalent to

T(e−t|D|
1/s

) < ∞, for t > 0.

In particular, (A,H,D,N, T) is θ-summable if and only if

T(e−tD2
) < ∞, for all t > 0.

Historically, θ-summability has been studied more in depth than Li1-summability. This can in part be explained from the
two facts that the JLO-cocycle only requires θ-summability and classically, the heat operator e−tD2

is geometrically more
interesting than e−t|D| to study on a manifold. The two operators e−tD2

and e−t|D| can be compared by explicit integral
formulas, see [27, Chapter 4]. We will exploit the observation that large classes of examples of θ-summable spectral triples
are also Li1-summable.

In the bulk of the paper, we are interested in computing asymptotics of heat traces of the form T(Be−t|D|
1/s

) for B ∈ N

as t approaches a critical value. When (A,H,D,N, T) is Li(0),s-summable, the critical value of t is 0, and in several classical
examples (e.g. on closed manifolds) the heat trace T(Be−t|D|

1/s
) admits an asymptotic expansion. The following result is

useful for relating heat trace asymptotics to zeta function asymptotics in the case of the nice behaviour appearing when
t0 = 0.

Theorem 2.10. Let s ∈ (0, 1]. Let (A,H,D,N, T) be an Li(0),s-summable semifinite spectral triple and B ∈ N. The following
are equivalent.

1. There are constants pheat > 0, ϵ > 0 and cheatB ∈ C such that

T(Be−t|D|
1/s

) = cheatB t−spheat
+ O(t−spheat+ϵ), as t → 0.

2. The ζ -function ζ (z; B, |D|
1/s) := T(B|D|

−z/s) is well-defined for large Re(z) and there are constants pζ > 0, ϵ′ > 0,
cζB ∈ C and a function f = f (z) holomorphic in the region Re(z) > spζ − ϵ′ such that

ζ (z; B, |D|
1/s) =

1
Γ (spζ )

cζB
z − spζ

+ f (z).

In this case, pheat = pζ and cheatB = cζB . Moreover, if the conditions above hold for one s ∈ (0, 1], it holds for all s ∈ (0, 1].
If B = 1 and either of the conditions above hold, then (A,H,D,N, T) is pζ -summable.

The proof of Theorem 2.10 follows by noting that Γ (z)ζ (z; B, |D|
1/s) is the Mellin transform of T(Be−t|D|

1/s
) and using

[32, Proposition 5.1].
Recall that we use the notation PD := χ[0,∞)(D) for the non-negative spectral projection ofD. Let us state a fundamental

lemma on the commutators of A with the function of D defined by

FD := 2PD − 1.

Note that FD differs from the phase D|D|
−1 by the T-finite kernel projection of D.

Lemma 2.11. Let (A,H,D,N, T) be a semifinite spectral triple. Then for any a ∈ A

[FD, a] ∈ KN.

Moreover if (A,H,D,N, T) is unital, then if (A,H,D,N, T) is p-summable, then [FD, a] ∈ Lp(T) for all a ∈ A, and if
(A,H,D,N, T) is Lis-summable, then [FD, a] ∈ Lis(T) for all a ∈ A. More generally, if (A,H,D,N, T) is ψ-summable then
[FD, a] ∈ Lψ (T) for all a ∈ A.

Proof. The proof of the operator inequality −∥[D, a]|||D|
−1

≤ [FD, a] ≤ ∥[D, a]|||D|
−1 for invertible D and a = −a∗ is

found in the proof of [57, Proposition 1]. The assertion follows from the definition of p-, Lis- and ψ-summability, resp.
In the non-invertible case we replace (A,H,D,N, T) by((

A 0
0 0

)
,H ⊕ H,Dµ =

(
D µ

µ −D

)
,M2(N), T ⊗ TrM2

)
, (2.2)

for µ ∈ [0, 1]. When µ > 0 we are back in the invertible case. Let Q be the strong limit limµ→0 PDµ . The proof of
[5, Proposition 2.25] shows that for any a ∈ A and all µ ∈ [0, 1] we have

[PDµ − Q , a] ∈ Lψ (T)
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whenever (µ2
+ D2)−1/2a ∈ Lψ (T). Hence [Q , a] ∈ Lψ (T) as well. Writing P0 for the projection onto ker(D), whenever

(µ2
+ D2)−1/2a ∈ Lψ (T) we necessarily have P0a ∈ Lψ (T). Finally, the equality

2Q − 1 =

(
FD 0
0 −FD

)
+

(
−P0 P0
P0 P0

)
,

shows that [FD, a] ∈ Lψ (T). □

2.1.1. Semifinite spectral triples from unbounded Kasparov modules
For several kinds of C∗-algebras one can capture the noncommutative geometry through an unbounded Kasparov

module. This is a bivariant generalization of spectral triples. Localizing an unbounded Kasparov module in a positive
trace gives rise to a semifinite spectral triple as in Theorem 2.12. Several of the examples in this paper arises in this way.
We briefly recall this construction, which has been informally used for some years.

Let A and B be unital C∗-algebras. A unital unbounded (B, A)-Kasparov module is a collection (B, X,D) where

• B ⊆ B is a dense ∗-subalgebra,
• X is an A-Hilbert C∗-module carrying a left action of B as adjointable operators,
• D is an A-linear, densely defined, self-adjoint, regular operator on X with A-compact resolvent (i ± D)−1

∈ KA(X)
and

• for a ∈ B the operator [D, a] is defined on dom(D) and is bounded in the norm on X .

If τ is a positive trace on A, we write L2(X, τ ) := X ⊗A L2(A, τ ) where L2(A, τ ) is the GNS-representation associated
with τ .

For ξ, η ∈ X , we write Θξ,η for the rank one operator Θξ,η(ν) = ξ (η|ν)A. The von Neumann algebra Nτ (X) :=

(End∗

A(X)⊗1A)′′ ⊆ B(L2(X, τ )) coincides with the weak closure of the set of operator spanned by {Θξ,η⊗1A : ξ, η ∈ X} and
carries a positive, normal, semifinite, faithful trace Trτ characterized by Trτ (Θξ,η ⊗ 1A) := τ ((η|ξ )A), see [45, Section 3].
The following theorem also appears in [48].

Theorem 2.12. Let (B, XA,D) be a unital unbounded (B, A)-Kasparov module and τ : A → C a faithful norm densely defined
norm lower semicontinuous tracial weight. Then the data (B, L2(X, τ ),D ⊗ 1,Nτ (X), Trτ ) defines a semifinite spectral triple.
The von Neumann algebra is Nτ (X) = (End∗

A(X) ⊗ 1)′′ and Trτ : Nτ (X) → C is the (positive faithful semifinite normal) trace
dual to the normal extension of τ to A′′

⊆ B(L2(A, τ )).

Proof. The operator D⊗1 is self-adjoint by [46, Proposition 9.10]. The commutant of Nτ (X) in X ⊗A L2(A, τ ) is the algebra
A′′ (acting by right multiplication). Every unitary in A′′ thus preserves the domain of D ⊗ 1 and so D ⊗ 1 is affiliated to
Nτ (X). Plainly commutators of D ⊗ 1 with B remain bounded. Since we start with an unbounded Kasparov module, the
operator (1 + D2)−1/2

∈ KA(X). So we can approximate (1 + D2)−1/2 in norm by finite rank operators
∑

jΘxj,yj and we
can take the xj, yj ∈ X . Hence (1 + (D ⊗ 1)2)−1/2

= (1 + D2)−1/2
⊗ 1 is in the norm closure of the finite trace operators

in Nτ (X), and so T-compact. □

A conceptual viewpoint is that (B, L2(X, τ ),D ⊗ 1A, (End∗

A(X) ⊗ 1A)′′, Trτ ) is a semi-finite refinement of the unbounded
Kasparov product of (B, X,D) with the Morita morphism A → KA(X) and the ∗-homomorphism KA(X) → K(End∗

A(X)⊗1A)′′ .
There is a close relationship between the semifinite index and the Kasparov product, described in [5,38].

We remark at this stage that there is to date no general theory of symmetrically quasi-normed operator ideals in
Hilbert C∗-modules, and, as such, no satisfactory way of describing summability. In concrete applications, it is possible
to circumvent this problem by choosing a frame on X , implicitly using the machinery of [51]. In the examples of most
relevance to this paper the spectrum of D is discrete, and we can use the following proposition to study summability.

Proposition 2.13. Let (B, X,D) be a unital unbounded (B, A)-Kasparov module, where D has discrete spectrum σ (D) ⊆ R,
and τ be a positive trace on A. Set Pλ := χ{λ}(D) ∈ KA(X) for λ ∈ σ (D). Then it holds that

1. (B, L2(X, τ ),D ⊗ 1A,Nτ (X), Trτ ) is Lis-summable if and only if∑
λ∈σ (D)

e−t|λ|1/s Trτ (Pλ) < ∞,

for t large enough.
2. (B, L2(X, τ ),D ⊗ 1A,Nτ (X), Trτ ) is p-summable if and only if∑

λ∈σ (D)

(1 + λ2)−p/2 Trτ (Pλ) < ∞.

The proof follows from the following formula:

Trτ (f (D)) =

∑
λ∈σ (D)

f (λ) Trτ (Pλ),

which holds for every positive Borel function f .
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2.2. Examples

To give some further context before entering into the main construction of this paper, let us recall some well known
examples that we will further explore later on in the paper. The focus in our presentation is on Li1-summability and heat
traces. We remark that the constructions in this subsection are rather lengthy, and the reader familiar with the literature
can at a first read restrict themself to glancing through this subsection.

2.2.1. Dirac Operators on closed manifolds
The prototypical example of a spectral triple arises from Dirac operators on a closed Riemannian manifold M . We can

work with a rather general type of Dirac operators: if S → M is a Clifford module on M and /D is a first order elliptic
operator acting on C∞(M, S) being symmetric in the L2-inner product and /D2 is a Laplacian type operator,1 we say that
/D is a Dirac operator. In this case, the closure of /D in its graph norm defines a self-adjoint operator on L2(M, S) that we
by an abuse of notation also denote by /D. It is well-known that (C∞(M), L2(M, S), /D) is a spectral triple on C∞(M). We
summarize the main properties of its heat traces in the following proposition.

Proposition 2.14. Let M be an n-dimensional Riemannian closed manifold, /D a Dirac operator on M, and (C∞(M), L2(M, S), /D)
the associated spectral triple. This spectral triple is (n,∞)-summable and for any classical zero-th order pseudo-differential
operator A on S with principal symbol a ∈ C∞(S∗M, End(S)) and every s ∈ (0, 1] we have

TrL2(M,S)(Ae
−t|/D|

1/s
) = Γ (sn + 1)csnt

−sn
∫
S∗M

TrS(a) dV + O(t−sn+ϵ), as t → 0,

for some dimensional constant cn > 0 and ϵ > 0. Here TrS(a) ∈ C∞(S∗M) denotes the fibrewise trace of a.

The dimensional constant cn is determined by the Weyl law for |/D| describing the ordered sequence (λk(|/D|))k∈N of
eigenvalues as

λk(|/D|) =
1

cnvol(M)1/nrank(S)1/n
k1/n + O(k1/n−ϵ0 ),

for some ϵ0 > 0. The Weyl law is proven in many places, for instance [26]. The general heat trace asymptotics follows
from Theorem 2.10 and [26]. We return to this example below in Example 3.5 and Section 5.1 .

Later on in the paper, we will make use of a modification of the spectral triple coming from a Dirac operator that is
also compatible with non-isometric semigroup actions. Similar constructions were previously considered in [17,31].

Definition 2.15. Let ψ : [0,∞) → (0,∞) be a positive measurable function.

• We say that ψ is regularly varying of index ρ if for all λ > 0

lim
t→∞

ψ(λt)
ψ(t)

= λρ . (2.3)

• We say that ψ is smoothly regularly varying of index ρ if ψ ∈ C∞ and for any k ∈ N,

lim
t→∞

tkψ (k)(t)
ψ(t)

= ρ(ρ − 1) · · · (ρ − k + 1). (2.4)

A regularly varying function satisfies supt>0
ψ(t)
ψ(2t) < ∞ and there is an associated weak ideal Lψ as in Definition 2.6. By

[31, Lemma 7.1], any smoothly regularly varying function ψ satisfies that ∂kt ψ(t) = O(ψ(t)(1+t2)−k/2) so if ψ additionally
is bounded, ψ belongs to the Hörmander class S0.

Smooth regular variation is a strengthening of having regular variation — a condition used below in Section 4 in the
context of defining and computing Dixmier traces. See more also in [31]. By [2, Theorem 1.8.2], any regularly varying
function asymptotically behaves like a smoothly regularly varying function. Smooth regular variation allows for defining
associated classes of pseudo-differential operators and computing Dixmier traces of geometric operators by means of a
Connes trace theorem, see [31, Section 7 and 9].

For a decreasing smoothly varying function ψ : [0,∞) → (0,∞) with limt→0 ψ(t) = 0, we define the self-adjoint
operator

/Dψ := F/Dψ(|/D|
n)−1.

It follows from [31, Proposition 10.1] that /Dψ ∈ L0
ψ−1 (M, S) (see [31] for the meaning of this symbol) and its ψ-principal

symbol is cS(ξ )|ξ |−1ψ(|ξ |)−1, where cS : T ∗M → End(S) denotes Clifford multiplication. The next result follows from
[31, Proposition 10.3].

1 I.e. the symbol of /D2 coincides with the Riemannian metric as a function on T ∗M .
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Proposition 2.16. Let M be an n-dimensional Riemannian closed manifold, /D a Dirac operator on M, and ψ as above with

ψ(t)−1
= O(t1/n), as t → ∞.

Then (C∞(M), L2(M, S), /Dψ ) is a ψ-summable spectral triple whose associated K-homology class coincides with that of
(C∞(M), L2(M, S), /D). If ψ(t)−1

= o(t1/n), then for any a ∈ C∞(M), the operator [/Dψ , a] is compact with

µ(t, [/Dψ , a]) = O(t−1/nψ(t)−1), as t → ∞.

We return to the problem of computing heat traces involving /Dψ below in Section 4 and Section 5.1.
The spectral triple (C∞(M), L2(M, S), /Dψ ) does in some cases extend to a crossed product by a semigroup action. For

simplicity, we consider an action of N by a local diffeomorphism g : M → M . Following [31], we say that g acts conformally
if there is a function cg ∈ C∞(M,R>0) such that g∗gM = cggM where gM denotes the Riemannian metric on M . We say
that g lifts to the Clifford bundle S → M if there is a unitary Clifford linear morphism ug : g∗S → S. For simplicity,
we assume M to be connected and define N := #g−1({x}) for some x ∈ M . Since g is a local diffeomorphism and M is
connected, N is independent of the choice of x.

If g : M → M is a surjective local diffeomorphism, acting conformally and lifting to S, we can define the isometry

Vg : L2(M, S) → L2(M, S), Vgξ := cn/4g N−1/2ug (ξ ◦ g). (2.5)

The isometry Vg satisfies the following for a ∈ C(M):

VgaV ∗

g = (a ◦ g)VgV ∗

g , and V ∗

g aVg = Lg (a),

where Lg (a)(x) :=
∑

g(y)=x a(y). See more in [17, Proposition 8.3]. Define A as the ∗-algebra generated by C∞(M) and Vg .
By [17, Proposition 8.6], the C∗-closure of A is the image in a representation on L2(M, S) of the Cuntz–Pimsner algebra
OEg defined from Eg := C(M)Vg (see more in Examples 2.30 and 6.6). The space Eg = C(M)Vg ⊆ B(L2(M, S)) is considered
as a bimodule over C(M) and is an fgp bi-Hilbertian C(M)-bimodule because Eg can be identified with C(M) with the
bimodule structure (afb)(x) = a(x)f (x)b(g(x)) for a, b, f ∈ C(M), for details, see Example 2.30 or [17, Section 8].

Definition 2.17. Let ψ : [0,∞) → (0,∞) be a decreasing function and g : M → M a local diffeomorphism of a
Riemannian manifold.

• We say that ψ and g are compatible if there is a constant C ≥ 0 such that for all x ∈ M and ξ ∈ T ∗
x M , the differential

Dg satisfies⏐⏐ψ(|(Dg)Tx ξ |) − ψ(|ξ |)
⏐⏐ ≤ Cψ(|ξ |)2.

• We say that g acts isometrically if Dg acts isometrically on each fibre.

The following results pose restrictions on a function ψ compatible with a local diffeomorphism which acts non-
isometrically.

Proposition 2.18. Let ψ : [0,∞) → (0,∞) be a decreasing function with limt→∞ ψ(t) = 0 and g : M → M a compatible
local diffeomorphism of a Riemannian manifold. If ψ has regular variation, then either g acts isometrically or ψ has regular
variation of index 0.

Proof. Assume that g acts non-isometrically, we shall prove that in this case ψ has regular variation of index 0. Since ψ is
decreasing, it suffices to show that limt→∞

ψ(rt)
ψ(t) = 1 for some r ̸= 1 by [31, Proposition 2.15]. If g acts non-isometrically,

there is a point x ∈ M and a unit vector ξ0 ∈ T ∗
x M such that |(Dg)Tx ξ0|g(x) ̸= 1. Set

r := |(Dg)Tx ξ0|g(x) ̸= 1.

Since ψ is compatible with g , there is a constant C ≥ 0 such that⏐⏐ψ(|(Dg)Tx ξ |) − ψ(|ξ |)
⏐⏐ ≤ Cψ(|ξ |)2

and by setting ξ = tξ0, we arrive at the inequality

|ψ(rt) − ψ(t)| ≤ Cψ(t)2.

After dividing by ψ(t), taking the limit t → ∞ and using that limt→∞ ψ(t) = 0 we arrive at the desired equality
limt→∞

ψ(rt)
ψ(t) = 1. □

A prototypical example of a function with regular variation of index 0 is ψ(t) := logk(2 + t), for k ∈ Z. This
function satisfies the condition limt→∞ ψ(t) = 0 appearing in Proposition 2.18 if k < 0. This function is compatible
with any conformal local diffeomorphism and has been considered in the context of constructing spectral triples
in [17,28,29,31,49].
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Proposition 2.19. Let M be an n-dimensional Riemannian closed manifold, /D a Dirac operator on S → M, g : M → M a
surjective local diffeomorphism acting conformally and lifting to S and ψ : [0,∞) → (0,∞) a decreasing function compatible
with g, having smooth regular variation and satisfying limt→∞ ψ(t) = 0 and ψ(t)−1

= O(t1/n) as t → ∞. Let A denote the
∗-algebra generated by C∞(M) and the isometry Vg from Eq. (2.5) . Then (A, L2(M, S), /Dψ ) is a unital ψ-summable spectral
triple.

This result follows in the same manner as in [17, Section 8] and [31, Theorem 10.6]. Clearly, if ψ(t)−1
= O(log(t)) as

t → ∞, then (A, L2(M, S), /Dψ ) is Li1-summable. The reader should note that the K -homology class [(A, L2(M, S), /Dψ )] ∈

K ∗(OEg ), where OEg is the Cuntz–Pimsner algebra of the module Eg = C(M)Vg , discussed later. The class [(A, L2(M, S), /Dψ )]
restricts to [(C∞(M), L2(M, S), /D)] ∈ K ∗(C(M)). Thus the class [(C∞(M), L2(M, S), /D)] ∈ K ∗(C(M)) obstructs [(A, L2(M, S),
/Dψ )] ∈ K ∗(OEg ) being a Kasparov product with the Cuntz–Pimsner boundary extension in KK 1(OEg , C(M)) — we will return
to study this boundary extension and its associated semifinite spectral triples below in Section 2.2.3.

2.2.2. Graph C∗-algebras
A class of examples carrying interesting noncommutative geometries with a well-studied set of KMS-states is that of

graph C∗-algebras. With a finite directed graph G = (V , E), with edge set E and vertex set V , one associates a C∗-algebra
C∗(G) [53]. For simplicity we suppose that we have no sources nor sinks. The C∗-algebra C∗(G) is generated by partial
isometries (Se)e∈E and projections (pv)v∈V satisfying the relations

S∗

e Se = pr(e), and pv =

∑
s(e)=v

SeS∗

e ,

where r(e) denotes the range of the vertex e and s(e) its source. The C∗-algebra C∗(G) can be described as a Cuntz–
Pimsner algebra in several ways, a class of C∗-algebras carrying noncommutative geometries that we will study in the
next subsection. In this subsection, we focus on a construction of noncommutative geometries along an orbit in the infinite
path space of G — a construction based in the model of C∗(G) as a groupoid C∗-algebra. The associated noncommutative
geometries come from [29]. As explained in [30] the groupoid model can be seen as a Cuntz–Pimsner model of C∗(G)
using the one-sided infinite path space

ΩG := {x = e1e2 · · · ∈ EN
: s(ej) = r(ej+1) ∀j}.

The path space ΩG is a compact Hausdorff space in the subspace topology ΩG ⊆ EN. It carries a shift mapping σG : ΩG →

ΩG, σG(e1e2e3 · · ·) := e2e3 · · ·. The shift mapping is a surjective local homeomorphism. We can define an étale groupoid
GG over ΩG by

GG :=
{
(x, n, y) ∈ ΩG × Z ×ΩG : ∃k ≥ max(0,−n) such that σ n+k

G (x) = σ k
G(y)

}
.

The range mapping is defined by r(x, n, y) = x, the source mapping as s(x, n, y) := y and the product by

(x, n, y)(y,m, z) := (x, n + m, z).

The topology of GG is uniquely determined by declaring the groupoid to be étale and the mappings (x, n, y) ↦→ n and

κG(x, n, y) := min{k ≥ max(0,−n) : σ n+k
G (x) = σ k

G(y)},

to be continuous. There is an isomorphism πG : C∗(G) → C∗(GG) determined by defining πG(Se) to be the characteristic
function of the set {(x, 1, σG(x)) : x ∈ Ce} where Ce := {e1e2 · · · ∈ ΩG : e1 = e}. See [16].

Define the function α0 : {(n, k) ∈ Z × N : n + k ≥ 0} → Z by

α0(n, k) :=

{
n, k = 0
−|n|−k, k > 0.

For a point y ∈ ΩG, we define the discrete set

Vy := d−1({y}) = {(x, n) : (x, n, y) ∈ GG}.

The set Vy is the union of all forward orbits of all backward orbits of y under σG where we keep track of the lag n. Since Vy
is a fibre of the domain mapping, point evaluation in y induces a representation πy : C∗(G) → B(ℓ2(Vy)). If G is primitive
C∗(G) is simple and πy is faithful. At the level of the generators,

πy(Se)δ(x,n) =

{
δ(ex,n+1), r(x) = s(e),
0, r(x) ̸= s(e).

Proposition 2.20. Define the operator Dy densely on ℓ2(Vy) as the self-adjoint operator with

Dyδ(x,n) := α0(n, κ(x, n, y))δ(x,n).

The triple (Cc(GG), ℓ2(Vy),Dy) is an Li1-summable spectral triple. Moreover, under the isomorphism K 1(C∗(G)) ∼= ZE/(1 −

Aedge)ZE , of odd K-homology with the cokernel of the edge adjacency matrix, the class [(Cc(GG), ℓ2(Vy),Dy)] is mapped to the
element δe mod (1 − Aedge)ZE where δe ∈ ZE denotes the basis element corresponding to e ∈ E.
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Proof. It is proven in [29, Theorem 5.2.3] that (Cc(GG), ℓ2(Vy),Dy) is a spectral triple whose K -homology class corresponds
to the element δe mod (1 − Aedge)ZE under K 1(C∗(G)) ∼= ZE/(1 − Aedge)ZE . It remains to prove that (Cc(GG), ℓ2(Vy),Dy) is
Li1-summable. We compute that

Tr(e−t|Dy|) =

∑
(x,n)∈Vy

e−t(|n|+κG(x,n,y)) =

∑
n∈Z

∞∑
k=max(0,−n)

#{(x, n) : κG(x, n, y) = k}e−t(|n|+k).

However, if (x, n) is such that κG(x, n, y) = k the path x is determined by y except for its first n + k steps so #{(x, n) :

κG(x, n, y) = k} ≤ |E|
n+k

≤ elog(|E|)(|n|+k). We conclude that

Tr(e−t|Dy|) < ∞ if t > log(|E|). □

We return to this example below in Example 3.6 and Section 5.2 .

2.2.3. Cuntz–Pimsner algebras
In this subsection we consider the construction of semi-finite spectral triples on Cuntz–Pimsner algebras – a broad

class of examples which include both Cuntz–Krieger algebras and crossed products by Z. Quite general techniques for
constructing spectral triples for these algebras were developed in a series of papers (in rough chronological order)
[28–30,54,55]. We consider the set up of [54] and [30], which provide a means of lifting data from the (unital) coefficient
algebra of a bi-Hilbertian bimodule to its Cuntz–Pimsner algebra.

We start with a unital, separable C∗-algebra A, and a finitely generated projective (fgp) bi-Hilbertian bimodule E over
A, i.e. a module fulfilling the conditions of the following definition.

Definition 2.21. An fgp bi-Hilbertian bimodule E over A is an A-bimodule equipped with the following structures:

• E has both left and right A-valued inner products which induce equivalent norms on E.
• The left and right actions are both injective and adjointable.
• E is finitely generated and projective as both a left and a right module.

To separate the left and the right structures, we write EA when we want to emphasize the right module structure and
(·|·)A for the right inner product. Similarly, AE denotes the left module defined from E and A(·|·) the left inner product.

The algebraic Fock space F
alg
E is the algebraic direct sum of the A-modules E⊗Ak. The Fock space FE is defined as the

right A-Hilbert C∗-module completion of Falg
E . The Cuntz–Toeplitz algebra TE ⊆ End∗

A(FE) is the C∗-algebra generated by
the creation operators Tµξ := µ⊗ ξ for µ ∈ F

alg
E . The Cuntz–Pimsner algebra OE is defined from the short exact sequence

0 → KA(FE) → TE → OE → 0.

We call this short exact sequence the defining extension of OE .
A set (ej)Nj=1 ⊂ E of vectors is a frame for the right module EA if for all e ∈ E we have e =

∑
j ej(ej|e)A, and similarly for

a left frame (fk)Nk=1. Since E is finitely generated and projective, there exist left and right frames and we can for simplicity
assume that they have the same cardinality. For e and f in the right Hilbert module EA, we denote the associated rank-one
operator by Θe,f := e(f |·). Then the frame condition can be expressed as

N∑
j=1

Θej,ej = IdE

and similarly for fσ . The frame (ej)Nj=1 induces a frame for E⊗k
A , namely (eρ)|ρ|=k where ρ is a multi-index and eρ =

eρ1 ⊗ · · · ⊗ eρk .
We define the right Watatani index of E⊗k as the element of A given by

eβk =

∑
|ρ|=k

A(eρ |eρ) =

∑
|ρ′|=k−1

A(eρ′eβ |eρ′ ). (2.6)

The right Watatani index is positive, central and since the left action is injective, also invertible. Therefore βk is a well
defined self-adjoint central element in A. The key assumptions we make concern the asymptotic behaviour of the right
Watatani indices. In [54, Section 3.2] we define an A-bilinear functional Φ∞ : OE → A. This functional gives us an A-valued
inner product on OE . The construction of Φ∞ begins by defining

Φk : End∗

A(E
⊗k) → A, Φk(T ) :=

∑
|ρ|=k

A(Teρ |eρ). (2.7)

Here we use the notation End∗

A(E
⊗k) for the C∗-algebra of A-linear adjointable operators on E⊗k. It follows from

[40, Lemma 2.16] that Φk does not depend on the choice of frame. We note that eβk = Φk(IdE⊗k ). Since Φk is independent
of the choice of frame, so is eβk . We extend the functional Φk to a mapping End∗

A(FE) → A by compressing along the
orthogonally complemented submodule E⊗k

⊆ FE . To obtain a good ‘‘limiting functional" Φ∞(T ) := limk→∞Φk(T )e−βk on
the Cuntz–Toeplitz algebra, we impose the following condition on the Watatani indices.
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Definition 2.22. Let E be an fgp bi-Hilbertian bimodule over the unital C∗-algebra A. We say that E is W-regular if for
every k ∈ N and ν ∈ E⊗k there exists a ν̃ ∈ E⊗k satisfying

∥e−βnνeβn−k − ν̃∥E⊗k → 0 as n → ∞.

In [54] the reader can find several examples of Cuntz–Pimsner algebras for which a stronger version of W-regularity
as defined in Definition 2.22 holds. There are no known examples of modules that are not W-regular. When E is
W-regular, [54, Proposition 3.5] guarantees that limk→∞Φk(T )e−βk is well defined for T from the ∗-algebra generated
by the set of creation operators {Tν : ν ∈ F

alg
E } and is continuous in the C∗-norm. In Section 6.3 we shall see that there

are ways around W-regularity, and even the existence of an A-valued left inner product, when constructing semifinite
spectral triples giving rise to KMS-states.

We thus obtain a unital positive A-bilinear functional Φ∞ : TE → A. The functional Φ∞ annihilates the compact
endomorphisms, and descends to a well-defined functional on the Cuntz–Pimsner algebra OE . By an abuse of notation,
we also denote this functional by Φ∞ : OE → A. Since Φk and eβk do not depend on the choice of frame, neither does
Φ∞. We define the inner product

(S1|S2)A := Φ∞(S∗

1S2), S1, S2 ∈ OE .

When computing these inner products, the following fact is useful.

Lemma 2.23. Let E be a W-regular fgp bi-Hilbertian bimodule. For homogeneous elements µ, ν ∈ F
alg
E we have

Φ∞(SµS∗

ν ) = lim
k→∞

A(µ|e−βkνeβk−|ν| ) = A(µ|ν̃). (2.8)

In particular, if S ∈ OE is homogeneous of degree n ̸= 0, then Φ∞(S) = 0.

Completing OE modulo the vectors of zero length (with respect to Φ∞) yields a right A-Hilbert C∗-module that we denote
by ΞA. The module ΞA carries a left action of OE given by extending the multiplication action of OE on itself. By considering
the linear span of the image of the generators Sν , ν ∈ F

alg
E , inside the module ΞA, we obtain an isometrically embedded

and complemented copy of the Fock space. We let Q be the projection on this copy of the Fock space.

Theorem 2.24 (Proposition 3.14 of [54]). Let E be a W-regular fgp bi-Hilbertian bimodule over a unital C∗-algebra A. The tuple
(OE,ΞA, 2Q − 1) is an odd Kasparov module representing the class of the defining extension

0 → KA(FE) → TE → OE → 0. (2.9)

To construct an unbounded representative of (OE,ΞA, 2Q − 1), we will add an additional assumption regarding the fine
structure of the operation ν ↦→ ν̃ in the definition of W-regularity (see Definition 2.22). Assuming W-regularity, we can
define the operator qk : E⊗k

→ E⊗k by

qkν := ν̃ = lim
n→∞

e−βnνeβn−k .

Definition 2.25. Let E be an fpg bi-Hilbertian bimodule over the unital C∗-algebra A. We say that E is strictly W-regular if
it is W-regular and for any k, we can write qk = ckPk = Pkck where Pk ∈ End∗

A(E
⊗k) is a (necessarily A-bilinear) projection

and ck is given by left-multiplication by an element in A.

Remark 2.26. As with W-regularity, the reader can in [54] find several examples of Cuntz–Pimsner algebras for which
strict W-regularity holds. There are no known examples of modules that are not strictly W-regular.

Remark 2.27. If there is a decomposition qk = ckPk as in the definition of strict W-regularity, [30, Lemma 3.8] shows that
it is unique and of a very specific form. Indeed, each ck is central, invertible and ck = Φk(Pk)−1. Strict W-regularity is readily
verified in practice using [30, Lemma 3.8]. For instance, if β1 is central for the module action on E, ck = e−βk = e−kβ1 is
central for the module action on E and Pk = 1E⊗k .

When E is strictly W-regular, an unbounded self-adjoint regular operator Dα on ΞA is constructed in [30] making
(OE,ΞA,Dα) into an unbounded Kasparov module representing the KK -class of the defining extension (2.9). The operator
Dα is of the form

Dα =

∑
n∈Z

∑
r≥max{0,n}

α(n, r)Pn,r

where α : Z × N → [0,∞) is a function with certain Lipschitz properties (see [30, Remark 3.20]), and the Pn,r are
projections on finitely generated projective subspaces, [30]. While the particular choice of function α does not matter
much, we will take the function

α(n, r) =

{
n n = r
−(2r − n) otherwise .
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The projections Pn,r form a sequence of mutually orthogonal projections satisfying that the direct sum ⊕
r0
r=max(0,n)Pn,r is

the projection onto the A-linear span of {SµS∗
ν : |µ|−|ν|= n,max(0, n) ≤ r ≤ r0}. In particular, Pn,n is the projection onto

E⊗n for n ∈ N. More precisely, the projections are defined by

Pn,r :=

{
Qn,r − Qn,r−1, r > max{0, n}
Qn,r , r = max{0, n}

(2.10)

where the projections Qn,r are defined in terms of the right frame (ej)Nj=1 and the left frame (fj)Nj=1 as

Qn,r :=

∑
|ρ|−|σ |=n, |ρ|=r

ΘW
eρ ,c

−1/2
|σ |

PF fσ
,W

eρ ,c
−1/2
|σ |

PF fσ
(2.11)

where PF = ⊕Pk is the projection on the Fock module coming from Definition 2.25. Here we have written Wξ,η ∈ ΞA for
the element defined from Sξ S∗

η ∈ OE where ξ ∈ E⊗r and η ∈ E⊗k. For details, see [30, Lemma 3.10 and Proposition 3.11].
To obtain a semifinite spectral triple, we localize (OE,ΞA,Dα) in a positive trace on A. Following Theorem 2.12, we

consider the semifinite spectral triple

(OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ).

Here L2(ΞA, τ ) := ΞA ⊗A L2(A, τ ) and Trτ is the dual trace on Nτ (ΞA) := (End∗

A(ΞA) ⊗ 1)′′ which satisfies Trτ (Θe,f ) =

τ ((f |e)A), [45,60].

Lemma 2.28. Assume that the fgp bi-Hilbertian bimodule E is strictly W-regular and that τ is a positive trace on A. Then the
semifinite spectral triple

(OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ )

is Li1-summable.

Remark 2.29. The assumptions on the existence of limiting behaviour for the Watatani indices are really just for
convenience here. These assumptions relate to existence and behaviour of norm limits, but we have passed to the
‘measurable setting’ and so really only need weak limits. We will explore this point of view in Section 6.3.

Proof. We need to prove that the following expression is finite for t large enough:

Trτ (e−t|Dα |) =

∑
n∈Z

∑
r≥max{0,n}

e−t|α(n,r)| Trτ (Pn,r ).

By definition (see (2.10)), Pn,r = Qn,r −Qn,r−1 when r > max(0, n) and Pn,r = Qn,r when r = max(0, n) and Qn,r is defined
as in (2.11). Using the computations of [30, Lemma 2.8], we see that

Trτ (Qn,r ) =

∑
|ρ|−|σ |=n, |ρ|=r

τ

(
(Weρ ,c

−1/2
|σ |

PF fσ
|Weρ ,c

−1/2
|σ |

PF fσ
)A

)
(2.12)

=

∑
|ρ|−|σ |=n, |ρ|=r

τ ◦Φ∞

(
Sc−1/2

|σ |
PF fσ

S∗

eρ Seρ S
∗

c−1/2
|σ |

PF fσ

)
=

∑
|ρ|−|σ |=n, |ρ|=r

τ
(

A(PF fσ |PF fσ (eρ |eρ)A)
)
.

Using the fact that the elements of the frame have norm bounded by 1, we see that

|Trτ (Qn,r )| ≤

∑
|ρ|−|σ |=n, |ρ|=r

|τ
(

A(PF fσ |PF fσ (eρ |eρ)A)
)
|

≤

∑
|ρ|−|σ |=n, |ρ|=r

∥A(PF fσ |PF fσ (eρ |eρ)A)∥ ≤ N2r−n
≤ elog(N)|α(n,r)|,

where N is the number of elements in the left frame and the right frame. We can now estimate

⏐⏐Trτ (e−t|Dα |)
⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑
n∈Z

∑
r>max{0,n}

e−t|α(n,r)| Trτ (Qn,r − Qn,r−1)

⏐⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐⏐
∑
n∈Z

∑
r=max{0,n}

e−t|α(n,r)| Trτ (Qn,r )

⏐⏐⏐⏐⏐⏐
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≤2
∑
n∈Z

∑
r≥max{0,n}

e−t|α(n,r)|
|Trτ (Qn,r )|

≤2
∑
n∈Z

∑
r≥max{0,n}

e−(t−log(N))|α(n,r)| < ∞,

if t > log(N). □

We return to Cuntz–Pimsner algebras below in Example 3.7 and Section 6 . Let us discuss a special case of Cuntz–Pimsner
algebras arising on a commutative coefficient algebra.

Example 2.30. Let Y be a compact Hausdorff space and g : Y → Y a surjective local homeomorphism. We consider the
module Eg = C(Y ) with the bimodule action

(afb)(x) = a(x)f (x)b(g(x)), a, b ∈ C(Y ), f ∈ Eg .

This is an fgp bi-Hilbertian bimodule in the inner products

C(Y )(f1, f2) = f1f2 and (f1|f2)C(Y ) := Lg (f1f2),

where Lg : C(Y ) → C(Y ) is the transfer operator

Lg (f )(x) :=

∑
y∈g−1(x)

f (y). (2.13)

The Cuntz–Pimsner algebra OEg can be realized as a groupoid C∗-algebra as in [16] (see also [17, Theorem 3.2]) over Y .
The solenoid

X = {x = y1y2 · · · ∈ YN
: g(yk+1) = yk ∀k},

equipped with the shift mapping is a Smale space under suitable assumptions on g . For its relation to OEg see [17].
The module Eg has a right frame (ej)Nj=1 where ej =

√
χj for a partition of unity (χj)Nj=1 subordinate to an open covering

(Uj)Nj=1 of Y such that g|Uj is injective for all j. Using this partition of unity, one sees that βk = 0 for all k. It follows that
Eg is a strictly W-regular module.

The case that g : M → M was a surjective local diffeomorphism acting conformally was considered in Section 2.2.1.
However, the spectral triple considered Proposition 2.19 on OEg differs greatly from the semifinite spectral triples
considered in Lemma 2.28 — the latter are in the image of the boundary mapping in KK1(OEg , C(M)) defined from Eq. (2.9)
while the former is not if [/D] ̸= 0 ∈ K ∗(C(M)).

Another class of examples already considered arises from a finite graph G as in Section 2.2.2 where the shift mapping
σG : ΩG → ΩG is a surjective local homeomorphism and C∗(G) ∼= OEσG

. The spectral triples in Proposition 2.20 arise from
the construction of Lemma 2.28 by taking the trace τ : C(ΩG) → C to be defined from point evaluation in y.

2.2.4. Group C∗-algebras
We now turn our attention to examples coming from the reduced group C∗-algebra of a discrete group. A well known

construction associates a spectral triple with a length function on the group, we consider this example and a semifinite
modification thereof which is possible for a-T-menable groups, i.e. groups with the Haagerup property. The methods
extend to a-TT-menable groups, a class of groups containing all hyperbolic groups, see more in [50, Chapter 7.2].

Let Γ denote a countable discrete group. Recall that a length function ℓ : Γ → R≥0 is a function satisfying ℓ(e) = 0
for e ∈ Γ the identity, ℓ(γ ) = ℓ(γ−1) and ℓ(γ γ ′) ≤ ℓ(γ ) + ℓ(γ ′) for all group elements γ , γ ′

∈ Γ . We say that ℓ is a
proper length function if ℓ is a proper function, i.e. the set {γ ∈ Γ : ℓ(γ ) ≤ R} is finite for any R ≥ 0. If there exists a
constant β ≥ 0 such that #{γ ∈ Γ : ℓ(γ ) ≤ R} = O(eβR) as R → ∞ we say that (Γ , ℓ) has at most exponential growth.

Define the operator Dℓ densely on ℓ2(Γ ) as the self-adjoint operator with

Dℓδγ := ℓ(γ )δγ .

The space of compactly supported functions cc(Γ ) is a core for Dℓ. We define the ∗-algebra cb(Γ )⋊alg Γ as the ∗-algebra
generated by multiplication operators (by bounded functions on Γ ) cb(Γ ) ⊆ B(ℓ2(Γ )) and all left translation operators.

Proposition 2.31. Let ℓ be a proper length function on Γ . The triple (cb(Γ )⋊alg Γ , ℓ2(Γ ),Dℓ) is a spectral triple defining the
trivial class in the K-homology of the C∗-algebra cb(Γ ) ⋊r Γ . Moreover, if (Γ , ℓ) has at most exponential growth the spectral
triple (cb(Γ ) ⋊alg Γ , ℓ2(Γ ),Dℓ) is Li1-summable.

Proof. Since ℓ is proper, it is clear that Dℓ has compact resolvent and if (Γ , ℓ) has at most exponential growth, then there
is C > 0 such that

Tr(e−t|Dℓ|) =

∑
γ∈Γ

e−tℓ(γ )
=

∞∑
n=0

#{γ ∈ Γ : ℓ(γ ) = n}e−tn
≤ C

∞∑
n=0

e−(t−β)n
=

C
1 − eβ−t < ∞.
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To show that (cb(Γ )⋊algΓ , ℓ2(Γ ),Dℓ) is a spectral triple, it remains to show that cb(Γ )⋊algΓ preserves the domain of Dℓ
and has bounded commutators with Dℓ. Domain preservation is clear. For an element aλγ ∈ cb(Γ )⋊alg Γ and a function
f ∈ cc(Γ ) we compute that

[Dℓ, aλγ ]f (g) = a(g)(ℓ(g) − ℓ(γ−1g))f (γ−1g).

It follows that

∥[Dℓ, aλγ ]∥B(ℓ2(Γ )) ≤ ∥a∥cb(Γ ) sup
g∈Γ

|ℓ(g) − ℓ(γ−1g)|≤ ∥a∥cb(Γ )ℓ(γ ). □

The K -homology class of (cb(Γ ) ⋊alg Γ , ℓ2(Γ ),Dℓ) is trivial. We shall now consider a topologically more interesting
semifinite spectral triple that can be constructed on groups with the Haagerup property. We are grateful to Branimir
Ćaćić for sharing this construction with us. Similar ideas appeared in [37, Appendix B].

Let Γ be a discrete group with the Haagerup property. Then there is a proper isometric action of Γ on a real Hilbert
space HΓ . By the Mazur–Ulam theorem there exists an orthogonal representation

πΓ : Γ → O(HΓ )

on the Hilbert space HΓ and a proper cocycle cΓ for πΓ , meaning that cΓ : Γ → H is a proper function satisfying the
cocycle identity

cΓ (γ1γ2) = cΓ (γ1) − πΓ (γ1)cΓ (γ2). (2.14)

The cocycle identity allows us to define a length function on Γ by

ℓ(γ ) := ∥cΓ (γ )∥HΓ
.

Since cΓ is proper, so is ℓ.

Remark 2.32. The existence of a proper isometric action of a group Γ on a Hilbert space is equivalent to Γ having the
Haagerup property, also known as a-T-menability. Our construction extends to the case when there exists an orthogonal
representation πΓ : Γ → O(HΓ ) and a proper quasi-cocycle cΓ : Γ → HΓ . That is, when

Q (cΓ ) := sup
γ1,γ2

∥cΓ (γ1γ2) − cΓ (γ1) + πΓ (γ1)cΓ (γ2)∥HΓ
< ∞.

In this case, ℓ(γ ) := ∥cΓ (γ )∥HΓ
could fail to be a length function but still satisfies ℓ(γ γ ′) ≤ ℓ(γ ) + ℓ(γ ′) + Q (cΓ ) which

suffices for our purposes. The existence of a proper quasi-cocycle on a Hilbert space is equivalent to Γ being a-TT-menable.
Hyperbolic groups are a-TT-menable. For notational simplicity, we restrict our attention to cocycles.

Definition 2.33. Let Cℓ(HΓ ) denote the complex Clifford algebra of HΓ and assume that cS : Cℓ(H) → B(SH) is a
representation of Cℓ(H). We say that a unitary representation πS : Γ → U(SH) is a lift of πΓ to SH if for all v ∈ H and
g ∈ Γ we have

πS(g)cS(v)πS(g−1) = cS(πΓ (g)v). (2.15)

When H is finite dimensional this is just the well-known Clifford algebra, but when H is infinite dimensional we refer
to [7,63] for a description of this algebra.

For a representation SH of Cℓ(H) we consider the new Hilbert space ℓ2(Γ , SH). Assuming that πS lifts πΓ to SH the
Hilbert space ℓ2(Γ , SH) carries a representation of Γ defined by

π̃ : Γ → U(ℓ2(Γ , SH)),
(
π̃ (g)f

)
(γ ) = πS(g)f (g−1γ ). (2.16)

On the Hilbert space ℓ2(Γ , SH) define a self-adjoint operator Dc by declaring

(Dc f )(γ ) := cS(cΓ (γ ))f (γ ), f ∈ cc(Γ , SH). (2.17)

Since cS(v)2 = ∥v∥2
H for all v ∈ H, the domain for Dc can be deduced from

(D2
c f )(γ ) = ℓ(γ )2f (γ ).

The compatibility requirement Equation (2.15) and cocycle property Equation (2.14) imply that for g, γ ∈ Γ we have

πS(g)cS(cΓ (γ )) = cS(π (g)cΓ (γ ))πS(g) = cS(cΓ (g))πS(g) + cS(cΓ (gγ ))πS(g).

Then the commutator of Dc and a group element is

([Dc, π̃ (g)]f )(γ ) = cS(cΓ (γ ))πS(g)f (g−1γ ) − πS(g)cS(cΓ (g−1γ ))f (g−1γ )

= cS(cΓ (g))πS(g)f (g−1γ ) = (cS(cΓ (g))π̃ (g))(f )(γ ).



M. Goffeng, A. Rennie and A. Usachev / Journal of Geometry and Physics 143 (2019) 107–149 123

Hence the commutators between Dc and group elements are bounded. It is moreover clear that these commutators lie in
N0 ⋊ Γ where N0 = cS(Cℓ(H))′′. We define N as the von Neumann algebraic tensor product B(ℓ2(Γ ))⊗̄N0.

Finally,

(1 + D
2
c )

−1
∈ K(ℓ2(Γ )) ⊗ 1 ⊂ K(ℓ2(Γ )) ⊗ Kτ

where Kτ is the compacts in N0 for a choice of normalized positive trace τ . Let Trτ be the trace on N defined from the
trace τ on N0. We conclude that (1 + D2

c )
−1

∈ KTrτ . Finally, if ℓ has at most exponential growth then Trτ (e−t|Dc |) =∑
γ∈Γ e−tℓ(γ ) < ∞ for t large enough. As such, (i ± Dc)−1

∈ Li1 if ℓ has at most exponential growth. We conclude the
following result.

Proposition 2.34. Assume that cS : Cℓ(H) → B(SH) is a representation of Cℓ(H) and that the unitary representation
πS : Γ → U(SH) lifts πΓ to SH . Let cb(Γ ) be the (continuous) bounded functions on Γ , and define a representation of
cb(Γ ) ⋊ Γ on ℓ2(Γ , SH) by

π̂S(aλg )f (γ ) = a(γ )[π̃ (g)f ](γ ),

where π̃ is as in (2.16). Then the triple (cb(Γ )⋊algΓ , ℓ2(Γ , SH),Dc,N, Trτ ) is a semifinite spectral triple which is Li1-summable
if ℓ has at most exponential growth.

We return to the example of this subsubsection in Example 3.9 and Section 5.3 .

Example 2.35. The following example of a proper group cocycle shows the construction’s geometric advantage compared
to only using a length function. Consider the trivial action of the discrete group Γ = Zn on HΓ = Rn. The inclusion
Zn ↪→ Rn is additive and proper, and therefore a proper group cocycle for the trivial action. The semifinite spectral triple
associated with a finite dimensional Clifford representation cS : Rn

→ EndC(S) can when restricted to C∗(Zn) ∼= C(Tn)
be identified with the semifinite spectral triple (C∞(Tn), L2(Tn, S), /DTn ⊗ 1S,B(L2(Tn)) ⊗ Cℓn, Trτ ) using Fourier theory
on the dual torus Tn

= Ẑn. We observe that to extract K -homological content from this construction we need to specify
a grading if n is even. In particular, it is unclear how to interpret the construction above in K -homology when HΓ is
infinite-dimensional.

3. KMS States constructed from Li1-summable spectral triples

This section contains the fundamental technical construction of the paper. Starting from a semifinite Li1-summable
spectral triple, we use the associated algebra of Toeplitz operators to construct an action from the operator D and a
KMS-state from the operator |D|.

3.1. The positive part of the spectrum and heat traces

Throughout this section we suppose that (A,H,D,N, T) is a unital semifinite spectral triple. The spectral triple can be
semifinite, in which case we let T denote the given positive faithful normal semifinite trace. In general T is not unique,
and coincides with a non-zero multiple of the operator trace in the ‘‘usual" non-semifinite case N = B(H). We write KN

for the compacts for T. Again, KN coincides with the usual compacts in the case of the type I factor N = B(H).
We write N+ for the von Neumann algebra PDNPD. By an abuse of notation, we write T also for the induced faithful

normal semifinite trace on N+. The T-compacts on N+ will be denoted by K+

N .

Definition 3.1. The operator D is said to have positive T-essential spectrum if for some β ∈ [0,∞), we have
T(PDe−tD) < ∞ for t > β and T(PDe−tD) ↗ ∞ as t ↘ β .

Proposition 3.2. Let D be a self-adjoint densely defined operator affiliated with N satisfying that (1 + D2)−1/2
∈ Li1(T). We

define the number

βD := inf{t > 0 : T(PDe−tD) < ∞}. (3.1)

Then βD ∈ [0,∞) and D has positive T-essential spectrum if and only if

lim
t↘βD

T(PDe−tD) = ∞.

In particular, if βD = 0 then D has positive T-essential spectrum if and only if T(PD) = ∞.

Proof. By definition, if (1+D2)−1/2
∈ Li1 then T(e−t|D|) < ∞ for t large enough. Therefore, T(PDe−tD) = T(PDe−t|D|) <

∞ for t large enough and βD := inf{t > 0 : T(PDe−tD) < ∞} will be a number in [0,∞). By definition, T(PDe−tD) < ∞

for t > βD and if limt↘βD T(PDe−tD) = ∞ then D has positive T-essential spectrum with β = βD. Conversely, if D has
positive T-essential spectrum there is a β ∈ [0,∞) with T(PDe−tD) < ∞ for t > β and T(PDe−tD) ↗ ∞ as t ↘ β , and
in this case it is clear that β = βD. □
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Remark 3.3. We will often impose the assumption of positive T-essential spectrum. If for some β ∈ [0,∞), T((1 −

PD)etD) < ∞ for t > β and T((1 − PD)etD) ↗ ∞ as t ↘ β , we can equally well use −D in our construction.

Proposition 3.4. Let D be a self-adjoint densely defined operator affiliated with N satisfying that (1+D2)−1/2
∈ Li1(T). Then

D has positive T-essential spectrum if and only if both of the following conditions fail:

1. PD has finite T-trace.
2. There exists a p > 0 such that PDe−|D|

∈ Lp(T) \ ∩q>pL
q(T).

The reader should note that conditions 1. and 2. are mutually exclusive.

Proof. If D has positive T-essential spectrum, then clearly 1. fails. Also 2. fails if D has positive T-essential spectrum
because condition 2. is equivalent to βD = p and limt↘p T(PDe−tD) being finite.

Conversely, if Conditions 1. and 2. fail, then either βD = 0 and limt↘0 T(PDe−tD) must be infinite not to violate T(PD)
being infinite or βD > 0 and the set {p > 0 : PDe−|D|

∈ Lp(T)} is open (due to condition 2. failing) showing that
T(PDe−tD) ↗ ∞ as t ↘ βD. □

Example 3.5. Dirac operators on closed manifolds, as considered in Section 2.2.1 , have positive essential spectrum.
In this case, we can compute βD = 0 and the leading term in the heat trace asymptotics using Proposition 2.14. If
(C∞(M), L2(M, S), /D) is the spectral triple associated with a Dirac operator, Proposition 2.14 implies that

TrL2(M,S)(PDe−t|/D|) = n!cnt−n
∫
S∗M

TrS(p/D)dV + O(t−n+ϵ), as t → 0,

where p/D is the principal symbol of the zeroth order pseudo-differential operator P/D. A direct computation shows that
p/D(x, ξ ) =

1
2 (cS(ξ ) + 1) for x ∈ M and ξ ∈ S∗

xM . Here cS : T ∗M → End(S) denotes Clifford multiplication. More generally,
Proposition 2.14 allows us to conclude that for a ∈ C∞(M),

TrL2(M,S)(PDae−t|/D|) = n!cnt−n
∫
S∗M

TrS(p/D)a dV + O(t−n+ϵ) =

= n!cnt−n
∫
M

∫
S∗
x M

a(x)TrS(p/D(x, ξ )) dVS∗
x M (ξ )dV (x) + O(t−n+ϵ) =

= c̃nt−n
∫
M
a dV + O(t−n+ϵ), as t → 0,

for a new constant c̃n > 0, depending only on the dimension of M and the rank of S. In the last equality we used that
p/D − 1/2 is an antisymmetric function under the involution (x, ξ ) ↦→ (x,−ξ ) of S∗M and therefore∫

S∗
x M

TrS(p/D(x, ξ )) dVS∗
x M =

∫
S∗
x M

TrS(p/D(x,−ξ )) dVS∗
x M =

=
rank(S)

2

∫
S∗
x M

dVS∗
x M =

rank(S)πdim(M)/2

Γ (dim(M)/2)
.

Example 3.6. The spectral triples for graph C∗-algebras from Proposition 2.20 also have positive essential spectrum. We
compute βD and the heat trace asymptotics assuming that G is primitive. In this example, PDy is the projection onto the
subspace ℓ2(Vy ∩ κ−1

G (0)). We use the notation

V
+

y := Vy ∩ κ−1
G (0) = {(x, n) ∈ Vy : n ≥ 0, σ n

G (x) = y}. (3.2)

The space PDyℓ
2(Vy) is therefore spanned by the orthonormal basis (δ(x,n))(x,n)∈V

+
y
. Note that if σ n

G (x) = y then x is uniquely
determined by y and a finite path σ = σ1σ2 · · · σn with x = σy. Note that paths of the form x = σy, with s(σn) = r(y),
exhaust all possible x ∈ σ−n

G ({y}). Using that PDyDyδ(x,n) = nδ(x,n) for (x, n) ∈ V+
y , we compute that

Tr(PDye
−t|Dy|) =

∞∑
n=0

∑
x∈σ−n

G ({y})

e−tn
=

∞∑
n=0

#{σ ∈ En : s(σn) = r(y)}e−tn.

Let A denote the edge adjacency matrix of G and rσ (A) its spectral radius. If G is primitive, (i.e. all entries of Ak are positive
for some integer k > 0) we let w ∈ CE its ℓ2-normalized Perron–Frobenius vector. It follows from [54, Lemma 3.7] that
there is an α0 ∈ [0, 1) such that

#{σ ∈ En : s(σn) = r(y)} = ∥w∥ℓ1wr(y)rσ (A)n + O((α0rσ (A))n),
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as n → ∞. We can conclude that there is a function f holomorphic in Re(t) > log rσ (A) + logα0 such that

Tr(PDye
−t|Dy|) =

∥w∥ℓ1wr(y)

1 − rσ (A)e−t + f (t).

Therefore, Tr(PDye
−t|Dy|) −

∥w∥
ℓ1wr(y)

t−log(rσ (A))
has a holomorphic extension to Re(t) > log rσ (A) + logα0 whenever G is

primitive.
More generally, if G is primitive, the method above shows that for two finite paths µ and ν we can compute

that

Tr(PDySµS
∗

ν e
−t|Dy|) =δµ,ν

∞∑
n=0

∑
x∈σ−n

G ({y})

∥S∗

µδ(x,n)∥
2
ℓ2
e−tn

=

∞∑
n=|µ|

#
{
σ ∈ En−|µ| : r(σ1) = s(µ), s(σn−|µ|) = r(y)

}
e−tn

+ δµ,ν

|µ|−1∑
n=0

∑
x∈σ−n

G ({y})

∥S∗

µδ(x,n)∥
2
ℓ2
e−tn

=δµ,νws(µ)wr(y)
e−t|µ|

1 − rσ (A)e−t + δµ,ν fµ,y(t),

for a function fµ,y holomorphic in Re(t) > log rσ (A) + logα0. We conclude that

Tr(PDySµS
∗

ν e
−t|Dy|) − δµ,νwd(µ)wr(y)

rσ (A)−|µ|

t − log(rσ (A))
,

has a holomorphic extension to Re(t) > log rσ (A)+ logα0 whenever G is primitive. As such, βDy = log(rσ (A)) and Dy has
positive essential spectrum.

Example 3.7. Let OE be a Cuntz–Pimsner algebra defined from a strictly W-regular (recall Definition 2.25) finitely
generated and projective bi-Hilbertian bimodule EA and a positive trace τ on the coefficient algebra A. The semifinite
spectral triple considered in Lemma 2.28 also has positive Trτ -essential spectrum assuming a criticality condition on τ
that we formulate below (see Definition 6.2). The heat trace asymptotics are slightly more involved, and we compute these
explicitly in Section 6.2 under a condition on τ previously studied by Laca–Neshveyev [45] in the context of KMS-states.
However, for a general τ we can proceed as in the proof of Lemma 2.28 to deduce the following.

Proposition 3.8. For any strictly W-regular fgp bi-Hilbertian bimodule E over the unital C∗-algebra and a positive trace τ
on A,

Trτ (PDαe
−tDα ) =

∞∑
n=0

e−tnτ∗(E⊗An),

where τ∗ : K0(A) → R denotes the map induced by τ on K-theory. In particular, Trτ (PDαe
−tDα ) does not depend on the choice

of inner products on E but only on τ and the bimodule structure on E.

Proof. We compute that

Trτ (PDe−t|Dα |) =

∞∑
n=0

e−t|ψ(n,n)| Trτ (Pn,n) =

∞∑
n=0

e−tn Trτ (Qn,n) =

∞∑
n=0

∑
|ρ|=n

e−tnτ ((eρ |eρ)A).

On the other hand, τ∗(E⊗An) = (τ ⊗ TrMN(n) )(pE⊗An ) where pE⊗An ∈ MN(n)(A) is a projection representing E⊗An. Using the
choice of frame (ej)Nj=1, we can take N(n) := Nn and pE⊗An := ((eµ|eν)A)|µ|=|ν|=n. In this choice of representing projection,

τ∗(E⊗An) = (τ ⊗ TrMN(n) )(pE⊗An ) = TrMN(n) ((τ ((eµ|eν)A)|µ|=|ν|=n)) =

∑
|ρ|=n

τ ((eρ |eρ)A). □

This computation shows that it is in general difficult to compute βD. In this case βD depends on the asymptotic properties
of the sequence (τ∗(E⊗An))n∈N as n → ∞.

For a simple tensor σ ∈ E⊗m write σ = σσ , where the initial segment σ will be of a length understood from context
(|σ |= |µ| in the next computation). With this notation, we can compute our functional on a typical SµS∗

ν ∈ OE , where
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µ ∈ E⊗k, ν ∈ E⊗l are simple tensors. We find

Trτ (PDSµS∗

ν e
−t|Dα |) = δ|µ|,|ν|

∞∑
n=0

e−tn Trτ (SµS∗

νQn,n) (3.3)

= δ|µ|,|ν|

∞∑
n=|µ|

∑
|σ |=n

e−tnτ ((S∗

µeσ |S
∗

ν eσ )E⊗(n−|µ|) )

= δ|µ|,|ν|

∞∑
n=|µ|

∑
|σ |=n

e−tnτ ( ( (µ|eσ )E|µ|eσ | (ν|eσ )E|µ|eσ )E⊗(n−|µ|) ).

Example 3.9. Consider a length function ℓ on a countable group Γ as in Section 2.2.4.

Definition 3.10. We define the critical value of (Γ , ℓ) as

β(Γ , ℓ) := inf{t ≥ 0 :

∑
γ∈Γ

e−tℓ(γ ) < ∞}.

If
∑

γ∈Γ e−tℓ(γ )
↗ ∞ as t ↘ β(Γ , ℓ), we say that ℓ is critical.

It follows directly from Definition 3.1 that the operator Dℓ appearing in Proposition 2.31 has positive essential spectrum
as long as ℓ is critical. The heat trace of an element aλg ∈ cb(Γ ) ⋊alg Γ is given by

Tr(PDℓ
aλge−t|Dℓ|) = Tr(aλge−t|Dℓ|) = δe,g

∑
γ∈Γ

a(γ )e−tℓ(γ ).

Similar computations can be carried out for the semifinite spectral triple constructed in Proposition 2.34 using a Hilbert
space valued cocycle cΓ . Note that

PDc f (g) =
1
2

(
cS(cΓ (g))

∥cΓ (g)∥HΓ

+ 1
)
.

Therefore, the heat trace of an element aλg ∈ cb(Γ ) ⋊alg Γ is given by

Trτ (PDc aλge
−t|Dc |) =

1
2

∑
γ∈Γ

⟨
δγ , τ

(
cS(cΓ (g))

∥cΓ (g)∥HΓ

+ 1
)
a(g−1γ )δgγ

⟩
e−tℓ(γ )

=

=
1
2
δe,g

∑
γ∈Γ

a(γ )e−tℓ(γ )
=

1
2
Tr(PDℓ

aλge−t|Dℓ|).

Here we use that τ (cS(v)) = 0 for any v ∈ HΓ which holds due to the fact that we can pick a w ∈ HΓ orthogonal to v
and compute that

τ (cS(v)) = τ (cS(w)cS(v)cS(w)) = −τ (cS(w)2cS(v)) = −τ (cS(v)).

If the length function ℓ(γ ) := ∥cΓ (γ )∥HΓ
associated with cΓ is critical, we say that cΓ is critical. We conclude that the

semifinite spectral triple from Proposition 2.34 has positive essential spectrum if cΓ is critical.

3.2. To-plitz or not To-plitz

We proceed under the same working conditions as in the previous section to construct states from spectral triples.
Recall that N+

= PDNPD and that K+

N = PDKNPD.

Definition 3.11. Let (A,H,D,N, T) be a semifinite spectral triple. We define the Toeplitz algebra of (A,H,D,N, T) as

TA := PDAPD + K+

N ⊆ N
+.

The saturated Toeplitz algebra of (A,H,D,N, T) is defined by

TA,D := C∗

(⋃
s∈R

eisDTAe−isD

)
= C∗

(⋃
s∈R

eisDPDAPDe−isD
+ K+

N

)
⊆ N

+.

Proposition 3.12. The Toeplitz algebra TA of a unital semifinite spectral triple (A,H,D,N, T) is a C∗-algebra.
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Proof. It follows from Lemma 2.11 that [PD, a] ∈ KN for all a ∈ A. Therefore, the mapping

βD : A → N
+/K+

N, a ↦→ PDaPD mod K+

N,

is a ∗-homomorphism and βD(A) ⊆ N+/K+

N is a closed C∗-subalgebra. By definition, TA is the preimage of βD(A) under
the quotient mapping N+

→ N+/K+

N and is therefore a C∗-algebra. □

The reader should note that Proposition 3.12 also holds in the non-unital setting because it only relies on Lemma 2.11
which holds non-unitally.

Proposition 3.13. The saturated Toeplitz algebra of (A,H,D,N, T) carries an R-action σ+
: R → Aut(TA,D) defined by

σ+

s (T ) := PDeisDTe−isDPD = PDeis|D|Te−is|D|PD, s ∈ R, T ∈ TA,D.

This proposition is a consequence of that TA,D is constructed as the saturation of TA under the action σ+ extended to N+.
We note that if we identify TA,D with a subalgebra of N, we can also write σ+

s (T ) := eisDTe−isD
= eis|D|Te−is|D|.

Define a one-parameter family of states (φt,0)t>β on TA,D by

φt,0(T ) :=
T(PDTe−tD)
T(PDe−tD)

.

We shall compose the family (φt,0)t>β with an ‘‘extended limit" as t → β:

Definition 3.14. An extended limit as t → β is a state ω ∈ L∞(β,∞)∗ such that ω(f ) = 0 whenever limt→β f (t) = 0.
For an extended limit ω and f ∈ L∞(β,∞), we write

ω-lim
t→β

f (t) := ω(f ).

Let ω be any extended limit and define

φω,0 : TA,D → C, φω,0(T ) := ω ◦ φt,0(T ) = ω-lim
t→β

φt,0(T ).

Lemma 3.15. Let (A,H,D,N, T) be a semifinite Li1-summable spectral triple with positive T-essential spectrum (see
Definition 3.1). For any extended limit ω, the functional φω,0 is a state on TA,D. Moreover φω,0(T ) = 0 for all T ∈ K+

N .

Proof. It is immediate that φω,0 is a state. For the statement that φω,0(T ) = 0 for all T ∈ K+

N , we observe that since
φω,0 is a state, it is also norm-continuous. It therefore suffices to prove that φω,0(T ) = 0 for all projections T ∈ N+ with
T(T ) < ∞. For such T , we can estimate that

φt,0(T ) =
T(PDTe−tD)
T(PDe−tD)

≤
T(T )

T(PDe−tD)
.

Since, T(PDe−tD) ↗ ∞ as t ↘ β , it follows that limt→β φt,0(T ) = 0. We conclude that for all projections T ∈ N+, with
T(T ) < ∞, and any extended limit ω as t → β , ω ◦ φt,0(T ) = 0. □

Due to Lemma 3.15, we can make the following definition.

Definition 3.16. Define the C∗-algebra AD := TA,D/K+

N and the state φω on AD as

φω(T mod K+

N) := φω,0(T ).

The state φω,0 also restricts to a state on TA, and Lemma 3.15 implies that φω,0|TA descends to a state on A via the
∗-epimorphism βD : A → TA/K+

N (see the proof of Proposition 3.12). To analyse the situation of the state on AD versus
that on A, we consider the following ideal

I := {a ∈ A : PDaPD ∈ K+

N}

so that PDIPD = PDAPD ∩ K+

N . Since TA ⊆ TA,D, we obtain a commuting diagram

0 →→ K+

N
→→

=

↓↓

TA →→
↙ ↖

↓↓

A/I↙ ↖

↓↓

→→ 0

0 →→ K+

N
→→ TA,D →→ AD

→→ 0,

with exact rows. The mapping A/I → AD is indeed injective by the four lemma. We identify A/I with a subalgebra of AD.
The induced mapping γ : A → AD is compatible with the states φω and φω,0 in the sense that φω,0(PDaPD) = φω(γ (a))
for a ∈ A.

The R-action σ+
s (T ) := eisDTe−isD on TA,D induces an R-action on A/I . The following proposition follows from the

construction of TA,D as the saturation of TA under σ+.



128 M. Goffeng, A. Rennie and A. Usachev / Journal of Geometry and Physics 143 (2019) 107–149

Proposition 3.17. Let β ∈ R. The algebra AD carries an R-action σ : R → Aut(AD) defined by declaring the quotient
mapping TA,D → AD to be equivariant. The C∗-algebra AD is the saturation of A/I under the action σ , i.e. AD is generated in
N+/K+

N by ∪s∈Rσs(A/I).

The aim of our construction is to obtain a KMS state on A, or, failing that, on A/I . As a first step we introduce conditions
ensuring that we at least get a KMS state on TA,D, and so on AD. To this end we make the following assumption

Definition 3.18. Let (A,H,D,N, T) be a semifinite spectral triple. We say that a subset S ⊂ A is analytically generating
at β if the set PDSPD + K+ generates the Toeplitz algebra TA as a C∗-algebra and if β ̸= 0, then for each a ∈ S there is
an ϵ ̸= 0 with ϵβ > 0 satisfying that e(β+ϵ)DPDaPDe−(β+ϵ)D

∈ N+.
We say that the semifinite spectral triple (A,H,D,N, T) is β-analytic if it admits an analytically generating set at β .

We note that this condition is empty if β = 0. The condition of being β-analytic is just requiring that we have enough
analytic elements in TA,D to verify the KMS condition. Indeed we have the following.

Proposition 3.19. Let (A,H,D,N, T) be a semifinite spectral triple and β ∈ R \ {0}. Consider the following statements:

(i) The semifinite spectral triple (A,H,D,N, T) is β-analytic.
(ii) There is a dense σ+-invariant subspace T 0

A,D ⊆ TA,D of elements satisfying that for any T ∈ T 0
A,D there is an ϵ ̸= 0

with ϵβ > 0 such that the function fT : R → N, fT (t) := σ+

t (T ) has a bounded holomorphic extension to the strip
{z ∈ C : Im(z) ∈ (−β − ϵ, 0)}.

(iii) There is a dense σ -invariant subspace A0
D ⊆ AD of elements satisfying that for any a ∈ AD there is an ϵ ̸= 0

with ϵβ > 0 such that the function fa : R → N, fa(t) := σt (a) has a bounded holomorphic extension to the strip
{z ∈ C : Im(z) ∈ (−β − ϵ, 0)}.

It holds that (i) implies (ii) which implies (iii). If I := {a ∈ A : PDaPD ∈ K+

N} = 0, (iii) implies (i).

Proof. It is clear that (i) implies (ii) since for an analytically generating set S at β we can take T 0
A,D to be the σ+-invariant

∗-algebra generated by PDSPD ∪ FD, where FD ⊆ K+

N is the dense two sided ideal in N generated by the spectral
projections of D over compact intervals in R. The implication (ii)⇒(iii) is seen from taking A0

D := T 0
A,D/(T

0
A,D ∩ K+

N).
If I = 0, the set S = A0

D ∩ A is dense in A, and for every s ∈ S we find that there is an ϵ ̸= 0 with ϵβ > 0 such that
e(β+ϵ)|D|se−(β+ϵ)|D| is a bounded operator in N. Thus PDSPD + K+

N plainly generates TA and for each a ∈ S there is an
ϵ ̸= 0 with ϵβ > 0 satisfying that e(β+ϵ)DPDaPDe−(β+ϵ)D

∈ N+. We conclude that S is analytically generating at β and
that (iii) implies (i) if I = 0. □

Proposition 3.20. Let (A,H,D,N, T) be a βD-analytic Li1-summable spectral triple with positive T-essential spectrum. For
any extended limit ω as t → βD, the state φω,0 is a βD-KMS state on TA,D for the one-parameter group σ+.

Proof. It follows from Proposition 3.19 that the dense subalgebra T 0
A,D ⊆ TA,D consists of βD-analytic elements of

TA,D. The twisted trace property relative to the one-parameter group σ+ holds on T 0
A,D by direct computation: for all

T1, T2 ∈ T 0
A,D

φω(T1T2) = ω- lim
t→βD

T(T1T2e−t|D|)
T(PDe−t|D|)

= ω- lim
t→βD

T(et|D|T2e−t|D|T1e−t|D|)
T(PDe−t|D|)

= φω(σ−iβ (T2)T1).

By definition, φω,0 is a βD-KMS-state for σ+. □

Corollary 3.21. Let (A,H,D,N, T) be a βD-analytic Li1-summable spectral triple with positive T-essential spectrum. For any
extended limit ω as t → βD, the state φω is a βD-KMS state on AD for the one-parameter group σ , defined in Proposition 3.17.

Proof. This follows from Proposition 3.19 and Proposition 3.20 because φω,0 vanishes on the compacts and the fact that
φω is induced from φω,0. □

In practice, for a βD-analytic Li1-summable spectral triple with positive T-essential spectrum, we will want to check
that in fact TA,D = TA. In this case AD = A/I and φω induces a KMS-state on A/I . In the often occurring special case
PDAPD ∩ K+

N = 0, we obtain a KMS state on the algebra A. In practice, these things are all checkable and we will do so
in several examples in the subsequent sections.

The special case β = 0 has been addressed by Voiculescu, [61, Proposition 4.6] under the assumption that D is positive.
When βD = 0, β-analyticity is superfluous. By Proposition 3.2, when βD = 0, positive T-essential spectrum is equivalent
to T(PD) = ∞.
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Theorem 3.22. Let (A,H,D,N, T) be a unital Li1-summable semifinite spectral triple with βD = 0 and T(PD) = ∞. Then
A has a tracial state. Indeed, for any extended limit ω as t → 0,

φω(a) := ω-lim
t→0

T(PDae−tD)
T(PDe−tD)

is a tracial state.

Theorem 3.22 applies to unital Li(0),1-summable semifinite spectral triples with T(PD) = ∞ since Li(0),1-summability
implies βD = 0.

Remark 3.23. If the heat trace has an asymptotic expansion as in Theorem 2.10, then Theorem 3.22 can be further
simplified. Assume that there is a p > 0 and that for any a ∈ A, there is a φ0(a) ∈ C such that φ0(1) ̸= 0 and

T(PDae−t|D|) = φ0(a)t−p
+ O(t−p+ϵ), as t → 0,

for some ϵ > 0 (which can depend on a). Since φ0(1) ̸= 0, it follows that φ0 is continuous in the C∗-norm on A and
φω(a) =

φ0(a)
φ0(1)

for all a ∈ A. In fact, φ0(a) = Γ (p)Resz=pζ (z; PDa, |D|).

The construction of the state φω in Corollary 3.21 involves the operator PD. We shall now provide a result allowing us to
remove PD from the definition of φω in the presence of certain symmetries on the spectral triple. The result provides a
checkable set of conditions to compute φω by means of asymptotics of e−t|D|.

Lemma 3.24. Let (A,H,D,N, T) be a unital Li1-summable semifinite spectral triple and β ≥ 0 a number such that
T(e−t|D|) < ∞ for t > β and T(e−t|D|) ↗ ∞ as t ↘ β . Assume that there exist self-adjoint operators γ1, . . . , γN ∈ N ∩ A′

such that

1.
∑N

j=1 γ
2
j = 1;

2. γj Dom(D) ⊆ Dom(D) and [D, γj]+ := Dγj + γjD has a bounded extension to H;
3. For j = 1, . . . ,N and some ϵ > 0, the function t ↦→ e−t|D|γjet|D| extends to a norm continuous function from the

interval [β, β + ϵ) to N with

lim
t→β

e−t|D|γjet|D|
= γj.

Then βD = β and D has positive T-essential spectrum. Moreover, for any extended limit ω as t → βD,

φω(a) = ω- lim
t→βD

T(ae−t|D|)
T(e−t|D|)

.

Example 3.25. Before proceeding with the proof of the lemma, we give some examples of how the operators γ1, . . . , γN ∈

N ∩ A′ can arise. The most trivial instance is when (A,H,D,N, T) is even, in which case the grading γ will satisfy the
conditions of Lemma 3.24.

Here is a more geometric example. Let (C∞(M), L2(M, S), /D) denote the spectral triple defined from a Dirac operator
on a closed Riemannian manifold M as in Proposition 2.14 . If we take a collection X1, . . . , XN ∈ C∞(M, TM) of vector
fields spanning the tangent bundle TM in all points, the collection of Clifford multiplication operators

γj := cS(Xj)

(
N∑

k=1

cS(Xk)2
)−1/2

, j = 1, . . . ,N,

is readily verified to satisfy the conditions of Lemma 3.24. This construction extends to semi-finite spectral triples defined
from the fibrewise Dirac operator of a Riemannian spinc submersion π : M → B (see more in [39]) and a measure on B
by taking X1, . . . , XN to be vertical vector fields spanning the vertical tangent bundle ker dπ in all points of M .

Proof. Recall that FD := D|D|
−1 modulo a finite trace projection. For any self-adjoint a ∈ A, we write

T(FDae−t|D|) =
1
2
T
(
(FDa + aFD)e−t|D|

)
=

1
2
T

⎛⎝ N∑
j=1

γj(FDa + aFD)e−t|D|γj

⎞⎠ =

=
1
2
T

⎛⎝ N∑
j=1

γj(FDa + aFD)γje−t|D|

⎞⎠+

+
1
2
T

⎛⎝ N∑
j=1

γj(FDa + aFD)(e−t|D|γjet|D|
− γj)e−t|D|

⎞⎠ =
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= −
1
2
T

⎛⎝ N∑
j=1

γ 2
j (FDa + aFD)e−t|D|

⎞⎠+

−
1
2
T

⎛⎝ N∑
j=1

γj([FD, γj]+a + a[FD, γj]+)γje−t|D|

⎞⎠
+

1
2
T

⎛⎝ N∑
j=1

γj(FDa + aFD)(e−t|D|γjet|D|
− γj)e−t|D|

⎞⎠ =

= − T
(
FDae−t|D|

)
−

1
2
T

⎛⎝ N∑
j=1

γj([FD, γj]+a + a[FD, γj]+)γje−t|D|

⎞⎠
+

1
2
T

⎛⎝ N∑
j=1

γj(FDa + aFD)(e−t|D|γjet|D|
− γj)e−t|D|

⎞⎠ .
Since [D, γj]+ is bounded, [FD, γj]+ is compact and an approximation argument by finite T-rank operators shows that

τ

⎛⎝ N∑
j=1

γj([FD, γj]+a + a[FD, γj]+)γje−t|D|

⎞⎠ = o(T(e−t|D|)),

as t ↘ β . By norm continuity of t ↦→ e−t|D|γjet|D| we can also deduce that

τ

⎛⎝ N∑
j=1

γj(FDa + aFD)(e−t|D|γjet|D|
− γj)e−t|D|

⎞⎠ = o(T(e−t|D|)),

as t ↘ β . In conclusion, for a self-adjoint a,

T(FDae−t|D|) = −T(FDae−t|D|) + o(T(e−t|D|)).

We can conclude that τ (FDae−t|D|) = o(T(e−t|D|)) as t ↘ β . Since 2PD = FD + 1, we have for any a ∈ A that

T(ae−t|D|) = 2T(PDae−t|D|) + o(T(e−t|D|)), as t ↘ β .

In particular β = βD and T(PDe−t|D|) ↗ ∞ as t ↘ β . We compute that

T(ae−t|D|)
T(e−t|D|)

=
T(PDae−t|D|)
T(PDe−t|D|)

+ o(1), as t ↘ β .

In particular, for any extended limit ω as t → β ,

ω-lim
t→β

T(ae−t|D|)
T(e−t|D|)

= ω-lim
t→β

T(PDae−t|D|)
T(PDe−t|D|)

.

This concludes the proof of the lemma. □

3.3. Modular spectral triples and modular index theory

Modular spectral triples and their (equivariant) index theory were considered in [6,8,10], with the definition laid out
most clearly in [56, Definition 2.1]. These were defined in order to study the (equivariant) index theory of KMS weights
associated to periodic flows, so one might wonder how modular spectral triples fit into our scheme.

Given a KMS state ψ : B → C with inverse temperature β for a one-parameter group σ : R → Aut(B) on a unital
C∗-algebra and a faithful expectation onto the fixed point algebra Φ : B → Bσ , we can emulate the constructions that
inspired the definition of modular spectral triples.

First we construct the right C∗-module X over Bσ by completing B in the norm coming from the inner product

(x|y)Bσ = Φ(x∗y).

Then we can use [45] to construct Trψ : KBσ (X) → C the trace dual to ψ |Bσ . The action σ induces a one parameter unitary
group on L2(X, ψ), and we let D be the generator of this one parameter group. By [6], when the action σ is periodic, the
data

(B, L2(X, ψ),D,KBσ (X)′′, φD),
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where φD(a) := Trψ (e−βD/2ae−βD/2), gives us a modular spectral triple. The operator D is affiliated to the semifinite
algebra (K(X)σ

φD )′′

Proposition 3.26. Let (A,H,D,N, T) be a semifinite spectral triple such that for all t > β

T(PDe−t|D|) < ∞

and limt↘β T(PDe−tD) = ∞. Assume that PDAPD ∩ KN = {0} and the spectral triple is β-analytic. Then we obtain the KMS
state φω : AD → C, and provided that D has discrete spectrum we obtain an expectation Φ : AD → AσD onto the fixed point
subalgebra.

Provided that the group σ is periodic we then obtain a finitely summable modular spectral triple

(AD, L2(AD, φω),D, (KAσD (AD))′′, φD),

where the operator D generates the one-parameter group induced by σ on L2(AD, φω) and φD := Trφω (e
−βD/2

· e−βD/2). The
spectral dimension is 1.

Proof. The existence of the KMS state φω comes from Corollary 3.21.
In general the action σ is real, but assuming that the operator D has discrete spectrum, the action will factor through a

(compact) torus. To see this, one takes a rational basis of the eigenvalues (possibly an infinite basis), and takes a product
over the circles corresponding to these individual actions.

Consequently, by averaging over this torus, there is an expectation Φ : N → Nσ onto the fixed point algebra for
t ↦→ (T ↦→ eitDTe−itD). Of course D is affiliated to the fixed-point algebra.

Finally if the action σ is periodic then [6] proves that we have a modular spectral triple, and that φD((1+D2)−s/2) < ∞

for s > 1. □

For circle actions there is a local index formula in twisted cyclic theory, but for real actions factoring through a torus
there is not.

One serious issue that comes up in this more general setting is the compactness of the resolvent of D, and determining
summability. We leave this issue to another place.

4. The KMS-state φω and Dixmier traces

In the present section we discuss a relation between the trace φω from Theorem 3.22 and Dixmier traces. For a
decreasing function ψ : [0,∞) → (0,∞) we denote Ψ (t) :=

∫ t
0 ψ(s)ds. Let Lψ (T) be the principal ideal defined as

in Definition 2.6 . Let ET be the spectral projection of an operator T affiliated with N and let nT(s, T ) := T(E|T |(s,∞)) be
its distribution function.

The following result extends [47, Lemma 12.6.3].

Lemma 4.1. Let ψ be a regularly varying function of index −1. Let T ∈ Lψ (T) be strictly positive and µT(t, T ) ∼ ψ(t),
t → ∞. For every q > 0 we have

T(e−T−q/t ) ∼ Γ (1 +
1
q
)ψ−1(t−

1
q ), t → ∞.

Proof. The assumption µT(t, T ) ∼ ψ(t) implies µT(t, T q) ∼ [ψ(t)]q, t → ∞. Since the distribution function is an inverse
of the singular values function, it follows that nT(s, T q) ∼ ψ−1(s

1
q ), s → 0+. Next we have T(ET−q (t)) ∼ nT(1/t, T q),

t → ∞. Thus,

T(ET−q (t)) ∼ ψ−1(t−
1
q ), t → ∞.

Since ψ is varying regularly with index −1, [2, Theorem 1.5.12] implies that ψ−1 varies regularly with index −1, too.
Thus, T(ET−q ) varies regularly with index 1

q . Writing the heat trace as a Laplace transform

T(e−T−q/t ) =

∫
∞

0
e−z/t dT(ET−q (z))

and using the Karamata theorem [44, Chapter IV, Theorem 8.1] we obtain

T(e−T−q/t ) ∼ Γ (1 +
1
q
)ψ−1(t−

1
q ), t → ∞. □

Let Pa : L∞(0,∞) → L∞(0,∞) be the exponentiation operator defined by (Paf )(t) := f (ta), t > 0.
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Definition 4.2 ([9]). An extended limit ω as t → ∞ on L∞(0,∞) is said to be exponentiation invariant if

ω- lim
t→∞

(Paf )(t) = ω- lim
t→∞

f (t)

for every f ∈ L∞(0,∞) and every a > 0.

Definition 4.3. Let ψ : [0,∞) → (0,∞) be a regularly varying function of index −1. For any extended limit ω as t → ∞

on L∞(0,∞) a linear extension of the weight

Tω,ψ (T ) := ω- lim
t→∞

1
Ψ (t)

∫ t

0
µT(s, T ) ds, 0 ≤ T ∈ Lψ (T)

is said to be a Dixmier trace on Lψ (T).

Remark 4.4. Usually Dixmier traces are defined on Lorentz ideals corresponding to the function Ψ (which are strictly
larger than Lψ (T)) by exactly the same formula as in Definition 4.3 (see e.g. [13,18,47]). Then, Dixmier traces on Lψ (T) are
restrictions of those on Lorentz ideal to Lψ (T). Since we do not deal with Lorentz ideals here, it is convenient to define
Dixmier traces directly on Lψ (T).

It should be pointed out that on Lorentz ideals to define Dixmier traces one needs an additional assumption on ω:
either dilation invariance [18,47] or exponentiation invariance [24,59]. As it was shown in [58, Lemma 16 and Theorem
17] these requirements are redundant on Lψ (T).

Also note that the condition of the regular variation of ψ is not optimal. The existence of Dixmier traces was proved
in [19] under the milder assumption that

lim inf
t→∞

Ψ (2t)
Ψ (t)

= 1.

However, in this setting one needs an additional assumption on ω that ω-limt→∞
Ψ (2t)
Ψ (t) = 1, termed Ψ -compatibility

in [43]. Since we assume ψ to be a regularly varying function of index −1, it follows that

lim
t→∞

Ψ (2t)
Ψ (t)

= 1.

Thus, every extended limit is Ψ -compatible.

The proof of the following theorem is the same as that of [47, Theorem 8.5.1] and thus omitted. Note however, that in [47]
the result was proved for Lorentz ideals and required dilation invariance of the extended limit ω. For the case of Lψ (T)
one can refer to [58, Lemma 15] to remove this assumption.

Theorem 4.5. Let f ∈ C2
[0,∞) be a bounded function such that f (0) = f ′(0) = 0. Let T ∈ Lψ (T) be positive and let B ∈ N.

For every extended limit ω as t → ∞ on L∞(0,∞) we have

ω- lim
t→∞

(
1
Ψ (t)

∫ t

1
T(f (sT )B)

ds
s2

)
=

∫
∞

0
f (s)

ds
s2

· ω- lim
t→∞

(
1
Ψ (t)

∫ t

1
T(e−(sTB)−1

)
ds
s2

)
.

Below we will need the relation between generalized heat kernels and Dixmier traces on Lψ (T), which was proved in [24]
under the additional assumption that

AΨ (α) := lim
t→∞

Ψ (tα)
Ψ (t)

exists for every α > 0. (4.1)

Recall the notation Ψ (t) =
∫ t
0 ψ(s)ds. The corresponding (natural) assumption on ψ is that

α · lim
t→∞

ψ(tα)tα−1

ψ(t)
exists for every α > 0. (4.2)

Note that condition (4.2) implies the condition (4.1) [24, Proposition 1.7]. By the L’Hôpital rule, the number appearing
in Eq. (4.2) equals AΨ (α).

Let H : L∞(0,∞) → L∞(0,∞) be the Cesaro mean defined as follows:

(Hf )(t) :=
1
t

∫ t

0
f (s) ds, t > 0.

Let MΨ : L∞(0,∞) → L∞(0,∞) be the Cesaro mean twisted by Ψ , that is

(MΨ f )(t) := [(H(f ◦ Ψ −1)) ◦ Ψ ](t) =
1
Ψ (t)

∫ t

0
f (s)ψ(s) ds, t > 0.
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Lemma 4.6. If ψ satisfies condition (4.2), then

MΨ ◦ Pa − Pa ◦ MΨ : L∞(0,∞) → C0(0,∞)

for every a > 0.

Proof. For f ∈ L∞(0,∞) we have

(MΨ ◦ Paf )(t) =
1
Ψ (t)

∫ t

0
f (sa)ψ(s) ds =

1
Ψ (t)

∫ ta

0
f (s)ψ(s1/a)

s1/a−1

a
ds.

Using conditions (4.1) and (4.2) we obtain

(MΨ ◦ Paf )(t) ∈ AΨ (a)AΨ (
1
a
)

1
Ψ (ta)

∫ ta

0
f (s)ψ(s) ds + C0.

Direct calculations show that AΨ (a)AΨ ( 1a ) = 1. Thus,

(MΨ ◦ Pa − Pa ◦ MΨ )f ∈ C0. □

Lemma 4.7. If ψ : [0,∞) → (0,∞) is a decreasing function with regular variation of index −1, then for any d > 0, as
t → ∞,

ψ(t) = o((log(t))−d).

Proof. Since ψ is decreasing and limt→∞
ψ(2t)
ψ(t) = 2−1, we can for any ϵ ∈ (0, 1) find a constant Cϵ > 0 such that for

t ∈ (2k, 2k+1
],

ψ(t) ≤ Cϵ(2 − ϵ)−k
= Cϵ2− log2(2−ϵ)k ≤ Cϵt− log2(2−ϵ).

For details, see [31, Proposition 2.21]. Therefore, by taking ϵ < 2 −
√
2 we see that ψ(t) = o(t−1/2) which implies

ψ(t) = o((log(t))−d). □

For the next result we need to assume the (stronger) condition, that the function ψ satisfies

lim
t→∞

t2ψ(t)
ψ−1(1/t)

= c, (4.3)

for some constant c > 0.

Remark 4.8. For every k ∈ Z, the functions ψ(t) =
logk t

t and ψ(t) =
logk(log t)
t·log t satisfy condition (4.3). The functions ψ = Ψ ′

with Ψ (t) = elog
β t do not satisfy (4.3) for any β > 0.

In the following result we use a singular values function of an unbounded operator affiliated with N. For such operators
the formula (2.1) cannot be used. The singular values function of an operator T affiliated with N is defined [23] as follows:

µT(t, T ) := inf{s ≥ 0 : nT(s, T ) ≤ t}.

Theorem 4.9. Let d > 0 and ψ : [0,∞) → (0,∞) be a decreasing function with regular variation of index −1, satisfying
conditions (4.2) and (4.3). Assume that (A,H,D,N, T) is a unital semifinite spectral triple such that

1. T is infinite;
2. D is positive;
3. µT(t,D) ∼ ψ(t)−1/d.

Then (A,H,D,N, T) is Li(0),1-summable with positive T-essential spectrum. Moreover, for every a ∈ AD and every exponenti-
ation invariant extended limit ω as t → ∞ we have

φω̃(a) = Tω,ψ (a(1 + D
2)−d/2),

where ω̃ := ω ◦ (JMΨ J) and J : L∞(0,∞) → L∞(0,∞) is defined as the pullback along t ↦→ t−1.

Proof. By Lemma 4.7 ψ(t) = o((log(t))−d). Therefore, µT(t,D) = o(log(t)) and the semifinite spectral triple (A,H,D,N, T)
is Li(0),1-summable. Since T is infinite, T(e−tD) ↗ ∞ as t ↘ 0. The operator D therefore has positive T-essential spectrum.
Thus,

φω̃(a) = ω̃-limt→0
T(ae−tD)
T(e−tD)
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is a trace on A by Theorem 3.22. The assumption on D implies that µT(t, (1 + D2)−d/2) ∼ ψ(t), t → ∞. Applying
Lemma 4.1 with T = (1 + D2)−d/2 and q = 1/d yields

T(e−D/t ) ∼ Γ (1 + d)ψ−1(t−d), t → ∞.

Using the properties of extended limits, the definitions of Pa and J and Lemma 4.6, we obtain

φω̃(a) =
1

Γ (1 + d)
· ω- lim

t→∞
(J ◦ MΨ )

(
T(ae−D/t )
ψ−1(t−d)

)
=

1
Γ (1 + d)

· ω- lim
t→∞

(J ◦ MΨ ◦ Pd)

(
T(ae−(tD−d)−1/d

)
ψ−1(1/t)

)

=
1

Γ (1 + d)
· ω- lim

t→∞
(J ◦ Pd ◦ MΨ )

(
T(ae−(tD−d)−1/d

)
ψ−1(1/t)

)
. (4.4)

Using the definition of MΨ and assumption (4.3) we obtain

MΨ

(
T(ae−(tD−d)−1/d

)
ψ−1(1/t)

)
=

1
Ψ (t)

∫ t

0

T(ae−(sD−d)−1/d
)

ψ−1(1/s)
ψ(s) ds

∈
1
Ψ (t)

∫ t

0
T(ae−(sD−d)−1/d

)
ds
s2

+ C0(0,∞). (4.5)

Since ω is exponentiation invariant extended limit, combining (4.4) and (4.5) we obtain

φω̃(a) =
1

Γ (1 + d)
· ω- lim

t→∞

(
1

Ψ (1/t)

∫ 1/t

1
T(ae−(sD−d)−1/d

)
ds
s2

)
.

Now we apply Theorem 4.5 twice with T = D−d, f (x) = e−x−1/d
and then with f (x) = e−x−1

. Since∫
∞

0
e−x−q dx

x
= Γ (1 +

1
q
),

we obtain

φω̃(a) = ω- lim
t→∞

J
(

1
Ψ (t)

∫ t

1
T(ae−(sD−d)−1

)
ds
s2

)
= Tω,ψ

(
a(1 + D

2)−d/2) ,
where the last equality follows from [24, Theorem 4.7]. □

We can now provide sufficient conditions on a general Li(0),1-summable unital semifinite spectral triples ensuring a
relation between the trace φω of Theorem 3.22 and Dixmier traces.

Corollary 4.10. Let (A,H,D,N, T) be a unital semifinite spectral triple with T(PD) = ∞. Assume that there is a number
d > 0 and a decreasing function ψ : [0,∞) → (0,∞) with regular variation of index −1 satisfying conditions (4.2) and (4.3)
and

µ(t, PDD) ∼ ψ(t)−1/d.

Then, βD = 0 and for any exponentiation invariant extended limit ω as t → ∞ and a ∈ AD,

φω̃(a) = Tω,ψ (PDa(1 + D
2)−d/2),

where ω̃ is as in Theorem 4.9.

The corollary follows immediately from Theorem 4.9 applied to the unital semifinite spectral triple (T, PDH, PDD,N+, T)
where T is the ∗-algebra generated by PDAPD.

Example 4.11. Let us revisit the spectral triple constructed in Proposition 2.16 . If ψ : [0,∞) → (0,∞) is a smoothly
varying function with limt→0 ψ(t) = 0 and ψ(t)−1

= O(t1/n) as t → ∞, and /D a Dirac operator on a Riemannian closed
n-dimensional manifold M , a ψ-summable spectral triple (C∞(M), L2(M, S), /Dψ ) was constructed in Proposition 2.16,
where /Dψ := F/Dψ(|/D|

n)−1. The Weyl law for |/D| and Theorem 2.10 applied to B = P/D shows that the order of the spectral
asymptotics of |/D| coincides with the order of the spectral asymptotics of P/D /D so µ(t, P/D /Dψ ) ∼ cψ(t)−1 for some constant
c > 0.

If ψ has regular variation of index −d for a d > 0, Corollary 4.10 shows that the tracial state on C(M) defined from
the spectral triple (C∞(M), L2(M, S), /Dψ ) takes the form

φω(a) = c ′ Trω,ψ (P/Daψ(|/D|
n)1/d),
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for some proportionality constant c ′. Applying Connes’ trace theorem as in [31, Theorem 9.1], it follows that

φω(a) =

∫
M

− adV ,

where dV denotes the Riemannian volume measure on M and
∫
M

− the normalized integral.

The computation above requires ψ to have strictly negative index of regular variation. We note that by Proposition 2.18,
the computation above can only extend to the spectral triple from Proposition 2.19 on a crossed product by a local
diffeomorphism if the local diffeomorphism acts isometrically.

5. The KMS-state φω in examples

We are now in a state where we can compute the KMS-states associated with the spectral triples considered in
Section 2.2 . The computations for the KMS-states associated with the unbounded Kasparov cycle on Cuntz–Pimsner
algebras considered in Section 2.2.3 are more involved and dedicated a separate section, Section 6 .

5.1. Dirac operators on closed manifolds

For a closed manifold M with a Dirac operator /D acting on a Clifford bundle S → M , we consider the spectral triple
(C∞(M), L2(M, S), /D) as in Proposition 2.14 . The following theorem can be deduced immediately from Example 3.5 or
from Corollary 4.10 and Connes’ trace theorem for pseudo-differential operators.

Theorem 5.1. Let (C∞(M), L2(M, S), /D) be the spectral triple associated with a Dirac operator on a closed manifold, ω an
extended limit as t → 0 and φω the associated tracial state from Theorem 3.22 . The trace φω is the normalized volume integral
on M, i.e. for a ∈ C(M),

φω(a) =

∫
M

− a dV .

For completeness, let us describe the Toeplitz algebras TC(M), TC(M), /D and the flow σ on C(M)/D in this example. We remark
that since φω is a trace in this case, the flow induced from our construction is irrelevant for the study of φω but it could
nevertheless serve to clarify the constructions of Section 3.2. The relevant algebras are all contained in the C∗-algebra
Ψ 0

C∗ (M, S) defined as the C∗-closure of the ∗-algebra Ψ 0
cl(M, S) of zeroth order classical pseudo-differential operators acting

on L2(M, S). It is well known that Ψ 0
C∗ (M, S) fits into a short exact sequence

0 → K(L2(M, S)) → Ψ 0
C∗ (M, S)

symb
−−→ C(S∗M, End(S)) → 0,

where symb denotes the continuous extension of the principal symbol mapping Ψ 0
cl(M, S) → C∞(S∗M, End(S)). Since P/D

is a projection in Ψ 0
cl(M, S), we can consider the C∗-algebra Ψ 0

C∗,+(M, S) := P/DΨ 0
C∗ (M, S)P/D and we obtain a short exact

sequence

0 → K(P/DL2(M, S)) → Ψ 0
C∗,+(M, S)

symb
−−→ C(S∗M, End(p/DS)) → 0,

where p/D ∈ C∞(S∗M, End(S)) denotes the principal symbol of P/D. The algebras TC(M) and TC(M), /D are characterized by the
following commuting diagram with exact rows

0 →→ K(P/DL2(M, S)) →→

=

↓↓

TC(M)
symb →→

↙ ↖

↓↓

C(M)↙ ↖

↓↓

→→ 0

0 →→ K(P/DL2(M, S)) →→

=

↓↓

TC(M), /D
symb →→

↙ ↖

↓↓

C(M)/D↙ ↖

↓↓

→→ 0

0 →→ K(P/DL2(M, S)) →→ Ψ 0
C∗,+(M, S)

symb →→ C(S∗M, End(p/DS)) →→ 0,

The composition of the mappings in the right most column coincides with the pull back homomorphism C(M) → C(S∗M)
composed with the inclusion C(S∗M) ⊆ C(S∗M, End(p/DS)).

To describe the flow σ on C(M)/D, we describe it on C∞(S∗M, End(p/DS)). Surjectivity of the principal symbol mapping
implies that any a ∈ C∞(S∗M, End(p/DS)) is the symbol of an operator A ∈ P/DΨ 0

cl(M, S)P/D. By Egorov’s theorem [21] (see
also [33, Section IV] and [20]), eis/DAe−is/D is again an element of P/DΨ 0

cl(M, S)P/D and the expression σs(a) := symb(eis/DAe−is/D)
gives a well defined flow on C∞(S∗M, End(p/DS)). Again by Egorov’s theorem, using that σs(a) = symb(eis|/D|Ae−is|/D|) for
A ∈ P/DΨ 0

cl(M, S)P/D, we have that σs(a) = g∗
s (a) where gs : S∗M → S∗M is the Hamiltonian flow associated with the
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symbol |ξ | of |/D|. On the cosphere bundle, this Hamiltonian flow coincides with the geodesic flow. We conclude that
the flow σ is induced by geodesic flow and C(M)/D ⊆ C(S∗M) is a closed subalgebra invariant under geodesic flow. This
discussion should be compared with that in [14].

As in Section 2.2.1, we consider a local diffeomorphism g : M → M . We assume that g acts conformally and lifts
to S → M . Since g acts conformally, |(Dg)Tx ξ |= c1/2g |ξ | and it is readily verified that g is compatible with the decreasing
function ψ(t) :=

1
log(1+t2/n)

from the mean value theorem and ψ ′(t) = O
(
ψ(t)2

)
. We use the notation /Dlog := /Dψ for this

particular choice of ψ . Note that

/Dlog = F/D log(1 + /D2) and e−t|/Dlog| = (1 + /D2)−t .

By Proposition 2.19, we arrive at a spectral triple (A, L2(M, S), /Dlog) where A is the ∗-algebra generated by C∞(M) and an
isometry Vg . Let us compute KMS-state constructed from (A, L2(M, S), /Dlog). Before diverting into this computation, we
recall that the C∗-closure of A coincides with the image of a representation of OEg . As such, we can write elements of A
as linear span of elements of the form SµS∗

ν where µ = a1Vg · · · akVg and ν = b1Vg · · · blVg , where a1, . . . , ak, b1, . . . , bl ∈

C∞(M).

Proposition 5.2. Set S := C∞(M) ∪ C∞(M)Vg ⊆ A. For any β ∈ R, the set S is an analytically generating set at β for
(A, L2(M, S), /Dlog).

Proof. For notational convenience, write D = /Dlog. The set S generates A, so PDSPD + K generates TA. For any β ∈ R,
and a ∈ S

e−βDPDaPDeβD = (1 + /D2)−βP/DaP/D(1 + /D2)β .

The proposition follows from that Dom((1 + /D2)β ) = H2β (M, S) as Banach spaces and any a ∈ S extends to a continuous
operator on the Sobolev spaces H2β (M, S) for all β . □

Theorem 5.3. Let M be a connected n-dimensional Riemannian manifold, /D a Dirac operator on S → M, and g : M → M
a local diffeomorphism acting conformally and lifting to S. Then the spectral triple (A, L2(M, S), /Dlog) is Li1-summable, has
positive essential spectrum with βD = n/2 and is n/2-analytic.

Assume for all m ∈ N+, that the set of fixed points

{x ∈ M : gm(x) = x},

has measure zero with respect to the volume measure. Then the state φω on A constructed from Corollary 3.21 is independent
of ω and takes the form

φω(SµS∗

ν ) = δ|µ|,|ν|

∫
M

− Lg (cn/2g b∗

kLg (cn/2g b∗

k−1Lg (· · ·Lg (cn/2g b∗

1a1)a2) · · · ak−1)ak) dV , (5.1)

For µ = a1Vg · · · akVg and ν = b1Vg · · · blVg . Here dV denotes the Riemannian volume form.
The state φω viewed as a state on OEg via its representation on L2(M, S) is KMS for the action defined by γt (aVg ) := c itn/2g aVg

with inverse temperature 1.

We note that the state Theorem 5.3 is a KMS-state on a Cuntz–Pimsner algebra, but not for its gauge action. If cg (x) < 1
for some x ∈ M , the generator of γ is not positive on Eg and the Laca–Neshveyev correspondence [45] does not apply in
the context of OEg with the action γ .

In the case k = l = 0, the formula (5.1) should be interpreted as φω(a) =

∫
M

− a dV for a ∈ C∞(M). This special case

follows from Connes’ trace theorem.

Proof. For t > n/2, standard techniques of pseudo-differential operators show that the integral kernel Kt of the trace
class operator P/D(1 + /D2)−t belongs to C(M × M, END(S)) ∩ C∞(M × M \ ∆M , END(S)). Here ∆M ⊆ M × M denotes the
diagonal and END(S) denotes the big endomorphism bundle defined by END(S)(x,y) := Hom(Sx, Sy) for (x, y) ∈ M × M .
By [17, Proposition 8.3], V ∗

g takes the form

V ∗

g = N1/2LS,gc−n/4
g ,

where LS,g is the L2-extension of the operator

LS,g : C(M, S) → C(M, S), LS,gξ (x) :=

∑
g(y)=x

ug (y)−1ξ (y).



M. Goffeng, A. Rennie and A. Usachev / Journal of Geometry and Physics 143 (2019) 107–149 137

Take a1, . . . , ak, b1, . . . , bl ∈ C∞(M) and write µ = a1Vg · · · akVg and ν = b1Vg · · · blVg . We introduce the notation
ãj := ajc

n/4
g and b̃j = bjc

−n/4
g . We can compute for t > n/2 that

TrL2(M,S)(P/DSµS
∗

ν e
−t|/Dlog|) = TrL2(M,S)(a1Vg · · · akVgV ∗

g b
∗

l V
∗

g · · · V ∗

g b
∗

1P/D(1 + /D2)
−t
)

= N−(k−l)/2 TrL2(M,S)(a1c
n/4
g ugg∗

· · · akcn/4g ugg∗LS,gc−n/4
g b∗

l · · · c−n/4
g LS,gb∗

1P/D(1 + /D2)−t )

= N−(k−l)/2
∫
M

∑
(x1,...,xk+l)∈M(x,k,l)

⎛⎝ k∏
j=1

ãj(xj)

⎞⎠⎛⎝ k+l∏
j=k+1

b̃j−k(xj)∗

⎞⎠ Kt (xk+1, x1)dV (x),

where M(x, k, l) ⊆ Mk+l is defined as the k + l-tuples (x1, . . . , xk+l) such that for j = 1, . . . , k, xj = g j−1(x), xk = g(xk+l)
and for j = k + 1, . . . , k + l − 1, g(xj) = xj+1. Note that M(x, k, l) is finite for all x, because g is a local homeomorphism,
and that x1 = x for (x1, . . . , xk+l) ∈ M(x, k, l).

Define M0(x, k, l) ⊆ M(x, k, l) as the k+ l-tuples (x1, . . . , xk+l) where xk+1 = x1. The set M0(x, k, l) can be characterized
as the k + l-tuples (x1, . . . , xk+l) with x = x1 = xk+1 and xk = g l(xk+l) such that for j = 1, . . . , k, xj = g j−1(x), and
for j = k + 1, . . . , k + l − 1, xj+1 = g(xj). In particular, if M0(x, k, l) is non-empty then gk(x) = g l(x). In other words,
(x1, . . . , xk+l) ∈ M0(x, k, l) if and only if gk(x) = g l(x), and xj = g j−1(x) for j = 1, . . . , k and xk+j = g j−1(x) for j = 1, . . . , l.
Therefore, M0(x, k, l) contains at most one element. In particular, since M0(x, k, l) is non-empty then gk(x) = g l(x) and the
set of fixed points {x ∈ M : gm(x) = x} has measure zero for all m ∈ N+ by assumptions, then

M0(x, k, l) = ∅ if k ̸= l a.e. in x.

As t approaches n/2, the integral kernel Kt localizes (up to lower order term) to the diagonal and the leading order terms
come from the sum over M0(x, k, l). The Weyl law for /D2 and an explicit pseudo-differential computation of the principal
symbol of P/D(1 + /D2)−t imply that there are a constant c and an ϵ > 0 only depending on /D such that

TrL2(M,S)(P/DSµS
∗

ν e
−t|/Dlog|) =

=cδk,l(t − n/2)−1
∫
M

∑
(x1,...,xk+l)∈M0(x,k,l)

⎛⎝ k∏
j=1

ãj(xj)

⎞⎠⎛⎝ k+l∏
j=k+1

b̃j−k(xj)∗

⎞⎠ dV (x) + fµ,ν(t),

where fµ,ν is holomorphic on a neighbourhood of the interval [n/2 − ϵ, n/2].
Recall the notation ãj := ajc

n/4
g and b̃j := bjc

−n/4
g . For k = l and (x1, . . . , xk+l) ∈ M0(x, k, k) we write( k∏

j=1

ãj(xj)
)⎛⎝ 2k∏

j=k+1

b̃j−k(xj)∗

⎞⎠ =

k∏
j=1

ãj(g j−1(x))b̃∗

j (g
j−1(x)) =

=

k∏
j=1

aj(g j−1(x))b∗

j (g
j−1(x)) =

(
[a1b∗

1][g
∗(a2b∗

2)][(g
2)∗(a2b∗

2)] · · · [(gk)∗(akb∗

k)]
)
(x).

By the same argument that V ∗
g = N−1/2LS,gc

−n/4
g , we can partially integrate

∫
M ag∗(b)dV =

∫
M Lg (c

n/2
g a)bdV for a, b ∈

C(M). By partially integrating k − 1 times we deduce that for some function fµ,ν holomorphic on a neighbourhood of the
interval [n/2 − ϵ, n/2].

TrL2(M,S)(P/DSµS
∗

ν e
−t|/Dlog|) =

=cδk,l(t − n/2)−1
∫
M
[a1b∗

1][g
∗(a2b∗

2)][(g
2)∗(a2b∗

2)] · · · [(gk)∗(akb∗

k)]dV + fµ,ν(t) =

= cδk,l(t − n/2)−1
∫
M
Lg (cn/2g b∗

kLg (cn/2g b∗

k−1Lg (· · ·Lg (cn/2g b∗

1a1)a2) · · · ak−1)ak)dV + fµ,ν(t)

We conclude that formula (5.1) holds.
It remains to show that φω defines a KMS-state on OEg for the action defined by γt (aVg ) := c itn/2g aVg . Let τ denote

the tracial state on C(M) defined from integrating against the volume form and L ∈ End∗

C(M)(Eg ) the generator of γt ,
i.e. L =

n
2 log(cg ). Some yoga with inner products shows that for µ = a1Vg ⊗ · · · ⊗ akVg , ν = b1Vg ⊗ · · · ⊗ bkVg ∈ E

⊗C(M)k
g ,

we have the computation

φω(SµS∗

ν ) =

∫
M
Lg (cn/2g b∗

kLg (cn/2g b∗

k−1Lg (· · ·Lg (cn/2g b∗

1a1)a2) · · · ak−1)ak)dV =

= τ
(
b1Vg ⊗ · · · ⊗ bkVg |e−L(a1Vg ) ⊗ · · · ⊗ e−L(akVg )

)
E
⊗C(M)k
g

= φω(S∗

νγi(Sµ)).

We conclude that φω(ab) = φω(bγi(a)) for a, b ∈ A and φω is a KMS-state on OEg in the action γ . □
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5.2. Graph C∗-algebras

For a finite graph G we consider the spectral triple on C∗(G) constructed in Proposition 2.20 from the choice of a point
y ∈ ΩG in the infinite path space. We will assume that G is primitive, in which case C∗(G) is simple. For an element
(x, n) ∈ Vy and a finite path µ, we compute that

eisDyPDySµPDye
−isDyδ(x,n) = eis|µ|PDySµPDyδ(x,n).

It follows that σt (SµS∗
ν ) = eis(|µ|−|ν|)SµS∗

ν and σ coincides with the gauge action on the graph C∗-algebra C∗(G). We can
conclude that C∗(G) = C∗(G)Dy is closed under the flow σ . The reader can recall from Example 3.6 that PDyℓ

2(Vy) = ℓ2(V+
y )

where V+
y is defined in Eq. (3.2). Moreover, TC∗(G) ⊆ B(ℓ2(V+

y )) is the C∗-algebra generated by the creation operators

Teδ(x,n) :=

{
δ(ex,n), r(e) = s(x),
0, r(e) ̸= s(x).

Proposition 5.4. Let β ∈ R. The set S = {Se : e ∈ E} ⊆ Cc(GG) is an analytically generating set at β for (Cc(GG), ℓ2(Vy),Dy).

Proof. Since PDySePDy = Te, it is clear that S satisfies that PDySPDy + K(ℓ2(V+
y )) generates the Toeplitz algebra TC∗(G) as

a C∗-algebra. Moreover, eβDyPDSePDe−βDy = eβPDSePD is bounded and the proposition follows. □

We conclude the following theorem from Example 3.6.

Theorem 5.5. Let G be a finite primitive graph with edge adjacency matrix A and y ∈ ΩG. For any extended limit ω as
t → log rσ (A), the KMS-state φω on C∗(G) associated with the spectral triple (Cc(GG), ℓ2(Vy),Dy) (see Proposition 2.20) as in
Corollary 3.21 is given by

φω(SµS∗

ν ) = δµ,ν
ws(µ)

∥w∥ℓ1
rσ (A)−|µ|,

where ν and µ are finite paths and w ∈ CE is the ℓ2-normalized Perron–Frobenius vector. The state φω is KMS for the gauge
action and its inverse temperature is log(rσ (A)).

The KMS-state φω on C∗(G) in Theorem 5.5 is the unique KMS-state by [22]. Numerous authors present constructions of
this state and for more general graphs, eg. [1,11,34,42].

5.3. Group C∗-algebras

For the reduced group C∗-algebra of a countable discrete group we considered two types of (semifinite) spectral triples
in Section 2.2.4 . We now compute the associated KMS-states.

We fix a length function ℓ on the discrete countable group Γ . For technical simplicity, we assume that Γ is an
exact group ensuring that Γ acts amenably on its Stone–Cech boundary ∂SCΓ (see [52]). We assume that (Γ , ℓ) is of
at most exponential growth and that ℓ is critical (see Definition 3.10). Let (cb(Γ )⋊alg Γ , ℓ2(Γ ),Dℓ) denote the associated
Li1-summable spectral triple as in Proposition 2.31. Since Dℓ ≥ 0, we have that

Tcb(Γ )⋊rΓ = cb(Γ ) ⋊r Γ + K(ℓ2(Γ )) = cb(Γ ) ⋊r Γ .

The last equality follows from that c0(Γ ) ⋊r Γ = K(ℓ2(Γ )). We conclude that we have a short exact sequence

0 → K(ℓ2(Γ )) → Tcb(Γ )⋊rΓ → C(∂SCΓ ) ⋊r Γ → 0.

The flow σ+ on Tcb(Γ )⋊rΓ = cb(Γ ) ⋊r Γ is given on an element aλg ∈ cb(Γ ) ⋊ Γ by

σ+

s (aλg ) = eis(ℓ(·)−ℓ(g
−1

·))aλg , (5.2)

and we conclude that Tcb(Γ )⋊rΓ is invariant under σ+. Therefore Tcb(Γ )⋊rΓ = Tcb(Γ )⋊rΓ ,Dℓ
.

Proposition 5.6. Let β ∈ R. The ∗-algebra cb(Γ ) ⋊alg Γ is an analytically generating set at β for (cb(Γ ) ⋊alg Γ , ℓ2(Γ ),Dℓ).

Proof. Note that PDℓ
= 1 because Dℓ is positive. For aλg ∈ cb(Γ ) ⋊alg Γ , we compute that

eβDℓaλge−βDℓ = e−β(ℓ(·)−ℓ(g−1
·))aλg .

Since ℓ(γ−1) = ℓ(γ ) we have that ∥e−β(ℓ(·)−ℓ(g−1
·))a∥cb(Γ ) ≤ e|β|ℓ(g−1)

∥a∥cb(Γ ), and it holds that eβDℓaλge−βDℓ ∈ cb(Γ )⋊algΓ .
The proposition follows. □

Proposition 5.7. Let β ∈ R. The ∗-algebra cb(Γ ) ⋊alg Γ is an analytically generating set at β for (cb(Γ ) ⋊alg Γ , ℓ2(Γ , SH),
Dc,N, Trτ ).
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Proof. For aλg ∈ cb(Γ ) ⋊alg Γ , we compute for f ∈ ℓ2(Γ , SH) that

eβ|Dc |π̂S(aλg )e−β|Dc |f (γ ) = e−β(ℓ(γ )−ℓ(g−1γ ))a(γ )[π̃ (g)f ](γ ).

The estimate ∥e−β(ℓ(·)−ℓ(g−1
·))a∥cb(Γ ) ≤ e|β|ℓ(g−1)

∥a∥cb(Γ ) shows that eβ|Dc |π̂S(aλg )e−β|Dc | ∈ π̂
(
cb(Γ ) ⋊alg Γ

)
. Therefore,

eβDc PDc (cb(Γ ) ⋊alg Γ )PDc e
−βDc

= PDc e
β|Dc |(cb(Γ ) ⋊alg Γ )e−β|Dc |PDc ⊆ PDc (cb(Γ ) ⋊alg Γ )PDc ⊆ N

+,

and the proposition follows. □

Definition 5.8. If ω is an extended limit as t → β(Γ , ℓ), and ℓ is critical, we define the Patterson–Sullivan measure µω
on the Stone-Čech boundary ∂SCΓ as∫

∂SCΓ

a dµω := ω- lim
t→β(Γ ,ℓ)

∑
γ∈Γ ã(γ )e−tℓ(γ )∑
γ∈Γ e−tℓ(γ ) ,

for a function a ∈ C(∂SCΓ ) and where ã ∈ cb(Γ ) is any function with a = ã mod c0(Γ ).

Remark 5.9. It is possible to define the Patterson–Sullivan measure µω as an extended weak*-limit of the family of
probability measures on Γ

µt =

∑
γ∈Γ δγ e

−tℓ(γ )∑
γ∈Γ e−tℓ(γ ) .

In the literature, Patterson–Sullivan measures are usually defined as weak* accumulation points of (µt )t>β(Γ ,ℓ) but we
allow for a slightly more general construction with extended limits. A priori, µω is a probability measure on the Stone-
Čech compactification of Γ . Since the support of µω is contained in the closed subspace ∂SCΓ we consider µω as a measure
on ∂SCΓ .

Theorem 5.10. Let Γ be a discrete group and φω the KMS-state on C(∂SCΓ ) ⋊r Γ constructed as in Corollary 3.21 using an
extended limit ω as t → β(Γ , ℓ) and either of the following two semifinite spectral triples:

• The spectral triple

(cb(Γ ) ⋊alg Γ , ℓ2(Γ ),Dℓ)

associated with a critical length function of at most exponential growth as in Proposition 2.31 .
• The semifinite spectral triple (cb(Γ ) ⋊alg Γ , ℓ2(Γ , SH),Dc,N, Trτ ) associated with a critical proper Hilbert space valued

cocycle of at most exponential growth as in Proposition 2.34 .

Then φω is given in terms of the Patterson–Sullivan measure µω by

φω(aλg ) = δe,g

∫
∂SCΓ

a dµω.

The state φω is KMS at inverse temperature β(Γ , ℓ) for the flow on C(∂SCΓ )⋊r Γ induced by the action σ+ on cb(Γ )⋊r Γ given
in Eq. (5.2). Moreover, φω extends to a KMS-state at inverse temperature 1 on the von Neumann algebra L∞(∂SCΓ , µω)⋊Γ
with its Radon–Nikodym flow

σ RN
s (aλg ) =

(
dg∗µω

dµω

)is

aλg .

Proof. By the computations of Example 3.9 , the spectral triple associated with a length function as in Proposition 2.31
have the same heat traces as the semifinite spectral triple associated with a proper Hilbert space valued cocycle as in
Proposition 2.34. In both cases, Example 3.9 shows that for ãλg ∈ cb(Γ ) ⋊alg Γ we have

φt,0(ãλg ) = δe,g

∑
γ∈Γ ã(γ )e−tℓ(γ )∑
γ∈Γ e−tℓ(γ ) .

It follows that φω(aλg ) = δe,g
∫
∂SCΓ

a dµω in both cases.
To relate φω to the Radon–Nikodym flow, we first show that µω is strictly positive, i.e. that µω(U) > 0 for any open

set U ⊂ ∂SCΓ . For any open set U ⊂ ∂SCΓ , the translates (γU)γ∈Γ cover ∂SCΓ . If µω(U) = 0, then by quasi-invariance
µω(γU) = 0 which contradicts µω being a probability measure.
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The fact that µω is strictly positive ensures that the Radon–Nikodym derivatives dg∗µω
dµω

are well defined and strictly
positive. The mapping g ↦→

dg∗µω
dµω

is a cocycle, i.e. for h, g ∈ Γ ,

d(gh)∗µω
dµω

=
dg∗µω

dµω
(g−1)∗

[
dh∗µω

dµω

]
.

The proof is completed by computing that for aλg , bλh ∈ C(∂SCΓ ) ⋊alg Γ , we have the identity

φω(aλgbλh) = δh,g−1φω(ah∗(b)) = δh,g−1

∫
∂SCΓ

ah∗(b)dµω =

= δh,g−1

∫
∂SCΓ

h∗
(
g∗(a)b

)
dµω = δh,g−1

∫
∂SCΓ

g∗(a)bd(h∗µω) =

= δh,g−1

∫
∂SCΓ

bg∗(a)
dh∗µω

dµω
dµω =

= δh,g−1

∫
∂SCΓ

b(h−1)∗
(
a
(
dg∗µω

dµω

)−1
)
dµω =

= φω

(
bλh

(
dg∗µω

dµω

)−1

aλg

)
= φω

(
bλhσ RN

s=i(aλg )
)

In the third last identity we used the cocycle identity implying that if hg = e, then

(h−1)∗
(
dg∗µω

dµω

)
dh∗µω

dµω
= 1. □

Remark 5.11. The reader should note that φω|C∗
r (Γ ) coincides with the ℓ2-trace.

6. KMS-states on Cuntz–Pimsner algebras with their gauge action

In this section we consider the constructions of Corollary 3.21 in a broad class of examples which include both Cuntz–
Krieger algebras and crossed products by Z. Here we use the techniques from Section 3 in conjunction with those
from Section 2.2.3 to analyse the KMS states on Cuntz–Pimsner algebras, and compare them to the Laca–Neshveyev
correspondence establishing a bijection between KMS-states on Cuntz–Pimsner algebras and tracial states on its coefficient
algebra.

6.1. KMS-States on Cuntz–Pimsner algebras from traces on the coefficient algebra

Firstly, we shall show that a critical positive trace on A (see Definition 6.2) gives rise to a KMS-state on the Cuntz–
Pimsner algebra OE assuming that E is strictly W-regular. Recall Lemma 2.28 giving the construction of the Li1-summable
semifinite spectral triple (OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ), where Nτ (ΞA) := (End∗

A(ΞA) ⊗A 1)′′.

Lemma 6.1. Let E be a strictly W-regular fgp bi-Hilbertian bimodule over A, β ∈ R and τ a positive trace on A. The set
S = {Se : e ∈ E} ⊂ OE is an analytically generating set at β for (OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ).

Proof. Since TOE ,D is precisely the Toeplitz algebra TE , it is immediate that the set of operators {PSeP : e ∈ E} generates
TOE ,D. The analyticity condition on the Fock space is likewise obvious from the computation

eβDαPDα SePDαe
−βDα = eβPDα SePDα . □

Definition 6.2. Let E be an A-bimodule which is fgp from the right and τ a positive trace on A. We define the critical
value of (E, τ ) as

β(E, τ ) := inf{t ≥ 0 :

∞∑
n=0

τ∗(E⊗An)e−tn < ∞}.

We say that τ is critical for E if

lim
t↘β(E,τ )

∞∑
n=0

τ∗(E⊗An)e−tn
= ∞.
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Remark 6.3. Note that the critical value of a trace and the notion of it being critical only depends on [E] ∈ KK0(A, A), in
fact only on the sequence (ch0(E⊗An))n∈N ⊆ HC0(A) in cyclic homology. Just as in the proof of Lemma 2.28 we obtain the
estimate 0 ≤ β(E, τ ) ≤ log(N), where N is the number of elements in the left frame and the right frame.

It follows from Definition 3.1 and Proposition 3.8 that the Li1-summable semifinite spectral triple (OE, L2(ΞA, τ ),Dα,
Nτ (ΞA), Trτ ) of Lemma 2.28 has positive Trτ -essential spectrum if and only if τ is critical.

By construction, the projection PDα is the projection onto the Fock module FE and therefore Nτ (ΞA)+ = (End∗

A(FE)⊗A1)′′ is
a subalgebra of B(L2(FE, τ )). We let N denote the number operator on L2(FE, τ ) — the self-adjoint operator defined from
N|E⊗n⊗AL2(A,τ )= nIdE⊗n⊗AL2(A,τ ). The next proposition follows from the definition of the Toeplitz algebra of a semifinite
spectral triple.

Proposition 6.4. The Toeplitz algebra TOE of the semifinite spectral triple

(OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ )

is given by

TOE = TE ⊗A 1A + K(End∗
A(FE )⊗A1)′′ ,

where TE ⊆ End∗

A(FE) is the Cuntz–Toeplitz algebra of E. Moreover, the action σ+ preserves TOE and is generated by the number
operator in the sense that for µ ∈ Ek, ν ∈ E⊗l and K ∈ K(End∗

A(FE )⊗A1)′′ , we have

σ+

s (TµT ∗

ν + K ) = eis(|µ|−|ν|)TµT ∗

ν + eisNKe−isN .

An immediate consequence of Proposition 6.4 is that OE = TOE /K(End∗
A(FE ))′′ and that the action σ on OE coincides

with the gauge action σs(SµS∗
ν ) = eis(|µ|−|ν|)SµS∗

ν . The following theorem is readily deduced from the computations of
Example 3.7 .

Theorem 6.5. Let E be a strictly W-regular fgp bi-Hilbertian bimodule over A. For any positive trace τ on A which is
critical for E and any extended limit ω as t → β(E, τ ), the KMS-state φω on OE associated with the semifinite spectral triple
(OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ) as in Corollary 3.21 is given by

φτ ,ω(SµS∗

ν ) = δ|µ|,|ν|e−β(E,τ )|µ|
· ω- lim

t→β(E,τ )

∑
∞

n=0 Tr
E⊗n

τ

(
(ν|µ)E|µ|

)
e−tn∑

∞

n=0 Tr
E⊗n
τ (1)e−tn

,

where ν ∈ E⊗k and µ ∈ E⊗l. The state φτ ,ω is KMS for the gauge action on OE and its inverse temperature is β(E, τ ).

Proof. By Lemma 6.1 the semifinite spectral triple (OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ) is β-analytic for any β ∈ R. By
Definition 3.1 and Proposition 3.8 it has positive Trτ -essential spectrum. Thus the state φτ ,ω as in Corollary 3.21 is KMS
for the gauge action on OE with inverse temperature β(E, τ ). Using the computation in Eq. (3.3), we see that

φτ ,ω(SµS∗

ν ) = δ|µ|,|ν| · ω- lim
t→β(E,τ )

∑
∞

n=|µ|

∑
|σ |=n e

−tnτ
(
( (µ|eσ )E|µ| eσ | (ν|eσ )E|µ| eσ )E⊗(n−|µ|)

)∑
∞

n=0
∑

|ρ|=n τ ((eρ |eρ)A)e−tn
,

for ν ∈ E⊗k and µ ∈ E⊗l. However, this expression can be vastly simplified using that φτ ,ω is KMS. Using

φτ ,ω(SµS∗

ν ) = δ|µ|,|ν|e−β(E,τ )|µ|φτ ,ω(S∗

ν Sµ) = δ|µ|,|ν|e−β(E,τ )|µ|φτ ,ω((ν|µ)E⊗|µ| ),

we obtain

φτ ,ω(SµS∗

ν ) = δ|µ|,|ν|e−β(E,τ )|µ|φω((ν|µ)E⊗|µ| )

= δ|µ|,|ν|e−β(E,τ )|µ|
· ω- lim

t→β(E,τ )

∑
∞

n=0
∑

|σ |=n e
−tnτ

(
( eσ | (ν|µ)E|µ| eσ )E⊗n

)∑
∞

n=0
∑

|ρ|=n τ ((eρ |eρ)A)e−tn

= δ|µ|,|ν|e−β(E,τ )|µ|
· ω- lim

t→β(E,τ )

∑
∞

n=0 Tr
E⊗n

τ

(
(ν|µ)E|µ|

)
e−tn∑

∞

n=0 Tr
E⊗n
τ (1)e−tn

. □

The reader should note that in the formula computing φτ ,ω , it is only the right inner product on E that appears.

Example 6.6. Let us consider the construction from Theorem 6.5 in a specific example. As in Example 2.30 , we consider
a compact Hausdorff space Y , a surjective local homeomorphism g : Y → Y and the associated bimodule Eg . Let us
compute φτ ,ω starting from a positive trace τ on C(Y ), i.e. a positive measure λ on Y . By the argument of Theorem 6.5,
the KMS-condition on φτ ,ω guarantees that it suffices to describe φτ ,ω(a) for a ∈ C(Y ). By the Riesz representation theorem,

φτ ,ω(a) =

∫
Y
a dλω,
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for a probability measure λω . We compute that for a ∈ C(Y ),

TrE
⊗n

τ (a) =

∑
|σ |=n

τ ((eσ |aeσ )C(Y )) =

∫
Y
Ln
g (a) dλ =

∫
Y
a d[(Ln

g )∗λ].

From Theorem 6.5, we conclude that λω is given by an extended weak* limit of measures

λω = ω- lim
t→β(Eg ,τ )

∑
∞

n=0 e
−tn(Ln

g )∗λ∑
∞

n=0 e−tn[(Ln
g )∗λ](Y )

.

The KMS-condition on φτ ,ω translates into (Lg )∗λω = eβ(E,τ )λω which is readily verified for the measure λω .
We remark that the construction above is reminiscent of the method in [62] to construct equilibrium measures. In the

case that g is mixing, i.e. for all open subsets U, V ⊆ Y there is an N ≥ 0 such that gn(U)∩V ̸= ∅ for all n ≥ N , then there
exists a unique KMS-state on OEg (see [17, Theorem 6.1]). In particular, for mixing g , the KMS-state φτ ,ω on OEg does not
depend on the choice of trace τ .

6.2. The Toeplitz construction vs the Laca–Neshveyev correspondence

In the previous subsection we saw that there is a mapping from the set of positive critical traces on a C∗-algebra A to
the set of KMS-states on the Cuntz–Pimsner algebra OE when E is strictly W-regular. As Example 6.6 shows, this mapping
is not injective in general, but it is surjective in some cases (e.g. when g is mixing). We now compare our construction to
the bijective correspondence between a certain set of tracial states on A with KMS-states on the Cuntz–Pimsner algebra
OE first discovered by Laca–Neshveyev [45].

Definition 6.7. The positive trace τ : A → C satisfies the Laca–Neshveyev condition for α ≥ 0 if

TrEτ (La) = eατ (a),

where La denotes the left action of a on E.

For notational simplicity we often write TrEτ (a) instead of TrEτ (La). Given a positive trace τ : A → C satisfying the
Laca–Neshveyev condition, it was proven by Laca–Neshveyev [45, Theorem 2.1 and 2.5] that the expression

φLN,τ (SµS∗

ν ) := δ|µ|,|ν|e−α|µ|τ ((ν|µ)A),

defines an α-KMS state on OE . Moreover, Laca–Neshveyev proved that the construction τ ↦→ φLN,τ is a bijection between
tracial states on A satisfying the Laca–Neshveyev condition for α ≥ 0 and α-KMS states on OE .

The work of Laca–Neshveyev [45] gives more context to the construction in Theorem 6.5 . For a unital C∗-algebra A,
we let T(A) denote the set of positive traces on A. If E is an A–A-correspondence which is finitely generated and projective
as a right module, we can also define CTE,α(A) as the set of positive critical traces τ with β(E, τ ) = α. We also define
LNE,α(A) as the set of positive traces satisfying the Laca–Neshveyev condition.

Following [45, Discussion proceeding Definition 2.3], we define

FE,α : T(A) → T(A), FE,ατ (a) = TrEτ (a)e
−α. (6.1)

Proposition 6.8. For any positive trace τ on a unital C∗-algebra and an A–A-correspondence E which is fgp from the right,
it holds that

F n
E,ατ (a) = e−αn TrE

⊗n

τ (a), n ∈ N+.

Proof. By definition, FE,ατ (a) = e−α
∑N

j=1 τ (ej|aej)A for a right frame (ej)Nj=1 of E. A direct computation shows that

F n
E,ατ (a) = e−αn

∑
|σ |=n

τ (eσ |aeσ )A = e−αn TrE
⊗n

τ (a). □

Proposition 6.9. Let E be an A–A-correspondence which is fgp from the right. Then τ ∈ T(A) is a fixed point of FE,α if and
only if τ satisfies the Laca–Neshveyev condition from Definition 6.7 .

Proposition 6.9 is a direct consequence of Definition 6.7 and the formula (6.1).

Proposition 6.10. Let E be an A–A-correspondence which is fgp from the right. If τ ∈ T(A) is a tracial state satisfying the
Laca–Neshveyev condition for α ≥ 0, then

τ∗(E⊗An) = eαnF n
E,ατ (1) = eαn.
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Proof. The proposition follows from the computation

τ∗(E⊗An) = TrE
⊗n

τ (1) = eαnF n
E,α(τ )(1),

and Proposition 6.9. □

Proposition 6.11. Let E be an A–A-correspondence which is fgp from the right and α ≥ 0. Then the following holds:

1. A positive trace τ ∈ T(A) is critical for α if and only if the positive trace

StE,ατ :=

∞∑
n=0

e−tnF n
E,ατ ,

is finite for t > 0 and satisfies StE,ατ (1) → ∞ as t → 0. In particular, we have an inclusion of sets

LNE,α(A) ⊆ CTE,α(A).

2. For any extended limit ω as t → 0, the mapping

SωE,α : CTE,α(A) → LNE,α(A), SωE,ατ := ω-lim
t→0

StE,ατ
StE,ατ (1)

,

is well defined. Moreover, (SωE,α)
2τ =

SωE,ατ
SωE,ατ (1)

and SωE,α surjects onto the set of tracial states in LNE,α(A).

Proof. Statement 1 is an immediate consequence of Proposition 6.10. The first part of statement 2 follows from the
computation

StE,ατ (1) − FE,αStE,ατ (1) = τ (1) = o(StE,ατ (1)), as t → 0 for τ ∈ CTE,α(A).

The second part of statement 2 follows from the fact that Proposition 6.9 implies that for τ ∈ LNE,α(A),

StE,ατ := (1 − e−t )−1τ . □

Remark 6.12. For Example 6.6, the mapping FE,α takes the form FE,ατ = e−αL∗
gτ . In particular, the computation of

Example 6.6 is a special case of the constructions in Proposition 6.11. We shall see that this holds in general below in
Proposition 6.14.

Using our previous results, Proposition 3.8 and Proposition 6.10 , we can deduce a computation of heat traces.

Proposition 6.13. Let E be a strictly W-regular fpg bi-Hilbertian bimodule over a unital C∗-algebra A. If τ is a tracial state
on A satisfying the Laca–Neshveyev condition for α ≥ 0, then

Trτ (PDe−t|Dα |) =
1

1 − eα−t .

In particular, for any tracial state τ satisfying the Laca–Neshveyev condition for α ≥ 0 the semifinite spectral triple
(OE, L2(ΞA, τ ),Dα,Nτ (ΞA), Trτ ) has positive Trτ -essential spectrum with βD = β(E, τ ) = α.

Proof. We compute that

Trτ (PDe−t|Dα |) =

∞∑
n=0

τ∗(E⊗An)e−tn
=

∞∑
n=0

e−(t−α)n
=

1
1 − eα−t .

In the first step we used Proposition 3.8 and in the second step we used Proposition 6.10. □

We can now reformulate Theorem 6.5 in terms of the map FE,α and the constructions of Proposition 6.11.

Proposition 6.14. Assume that E is a strictly W-regular fgp bi-Hilbertian bimodule over A. Let α ≥ 0, ω be an extended limit
as t → α and τ ∈ CTE,α(A) a critical trace. The KMS-state φτ ,ω defined from Theorem 6.5 takes the following form:

φτ ,ω(SµS∗

ν ) = δ|µ|,|ν|e−α|µ|SωαE,ατ ((ν|µ)A), µ, ν ∈ F
alg
E ,

where ωα is the extended limit at 0 obtained from translating ω by α.

Proof. The KMS-condition on OE reduces the proof to showing that φτ ,ω(a) = SωαE,ατ (a) for a ∈ A, just as in the proof of
Theorem 6.5. Using Proposition 6.8 we can compute for a ∈ A that

φτ ,ω(a) = ω0-limt→α

∑
∞

n=0 Tr
E⊗n

τ (a)e−tn∑
∞

n=0 Tr
E⊗n
τ (1)e−tn

= ω-lim
t→α

∑
∞

n=0 F
n
E,ατ (a)e

−(t−α)n∑
∞

n=0 F
n
E,ατ (1)e−(t−α)n

= SωαE,ατ (a). □
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Let KMSα(OE) denote the set of α-KMS states on OE for the gauge action and LNSE,α(A) for the set of tracial states satisfying
the Laca–Neshveyev condition.

Theorem 6.15. Let α ≥ 0 and let ω be an extended limit as t → α. Assume that E is a strictly W-regular fgp bi-Hilbertian
bimodule over A. The mapping

LNSE,α(A) → KMSα(OE), τ ↦→ φτ ,ω,

defined from Theorem 6.5, and revisited in Proposition 6.14, is a well defined bijection of sets. More precisely, φτ ,ω : OE → C
is a KMSα state for the gauge action, which is independent of ω and coincides with φLN,τ .

Proof. By Theorem 6.5 and Proposition 6.13, the mapping τ ↦→ φτ ,ω is a well defined mapping from the set of positive
traces on A satisfying the Laca–Neshveyev condition for α and α-KMS-states on OE for the gauge action. By the Laca–
Neshveyev correspondence, the KMS-state φτ ,ω is uniquely determined by the trace φτ ,ω|A. We can therefore deduce
that φτ ,ω = φLN,τ and the Theorem upon proving the identity φτ ,ω|A= τ . This statement follows immediately from
Proposition 6.14 and the second part of Proposition 6.11. □

There are some quasi-invariance assumptions on traces that allows us to compare the KMS-states constructed in
Theorem 6.5 and the Laca–Neshveyev correspondence to a simpler construction involving Φ∞. While the construction
of Φ∞ depends on the left inner product on E, the quasi-invariance condition we impose also depends on the left inner
product. The following quasi-invariance condition is a refinement of the notion of E-invariant functionals from [54].

Definition 6.16. Let α ≥ 0 and E a finitely generated projective bi-Hilbertian bimodule. We say that a positive trace τ
on A is α-quasi-invariant with respect to E and the extended limit ω0 ∈ ℓ∞(N)∗ if for all n ∈ N and µ, ν ∈ E⊗n we have

e−α|µ|τ ((ν|µ)A) = ω0-limk→∞τ (Φk(TµT ∗

ν )e
−βk ) = ω0-limk→∞τ ( A(µ|νeβk−|ν| )e−βk ). (6.2)

If τ is α-quasi-invariant with respect to E and some extended limit, we simply say that τ is α-quasi-invariant with respect
to E.

Note, that Φk are defined on formula (2.7) and the paragraph after.
Observe that if E is W-regular then the limit in the definition of quasi-invariance exists, and so is independent of the

extended limit ω0.

Remark 6.17. Just like in [54, Lemma 4.2], if E is full as a right module, then any positive functional τ : A → C which is
quasi-invariant in the sense of Definition 6.16 is a positive trace. To see this, observe that for all µ, ν ∈ F

alg
E and a ∈ A,

the centrality of the Watatani indices eβk ∈ A (see formula (2.6) for the definition) gives

e−α|µ|τ ((ν|µ)Aa) = e−α|µ|τ ((ν|µa)A) = ω0-limk→∞τ ( A(µa|νeβk−|ν| )e−βk )

= ω0-limk→∞τ ( A(µ|νa∗eβk−|ν| )e−βk ) = e−α|µ|τ ((νa∗
|µ)A)

= e−α|µ|τ (a(ν|µ)A).

Example 6.18. We consider the module Eg over C(Y ) defined from a surjective local homeomorphism g : Y → Y as in
Example 6.6 . In this case, βn = 0 for all n and quasi-invariance of a positive trace τ given by a positive measure λ on Y
is equivalent to the condition

(Lg )∗λ = eαλ.

Another computation shows that this condition is equivalent to the Laca–Neshveyev condition. In particular, for the
module Eg , quasi-invariance is equivalent to satisfying the Laca–Neshveyev condition.

Example 6.19. Let us consider the Cuntz algebra ON defined as the Cuntz–Pimsner algebra of the C-bimodule CN . In this
case, (ν|µ)A = A(µ|ν) for all µ, ν ∈ (CN )⊗n and βn = n log(N). Therefore, quasi-invariance of a trace τ on C is equivalent
to

eατ = Nτ .

That is, any non-zero trace on C is log(N)-quasi invariant.

Our immediate aim is to connect the quasi-invariance of Definition 6.16 with the condition imposed by Laca–Neshveyev,
[45].

Lemma 6.20. Let E be an fgp bi-Hilbertian bimodule. Suppose that τ satisfies the α-quasi-invariance condition of
Definition 6.16 with respect to E. Then τ satisfies the Laca–Neshveyev condition for α.
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Proof. This is a computation using Definition 6.16 of quasi-invariance and a frame (ej) for EA. So

TrEτ (La) = Trτ

(∑
j

aΘej,ej

)
=

∑
j

τ ((ej|aej)A) = eαω0-limk→∞τ (Φk(
∑

j

TaejT
∗

ej )e
−βk )

= eαω0-limk→∞τ (
∑

j

aA(ej|ejeβk−1 )e−βk ) = eαω0-limk→∞τ (aeβke−βk ) = eατ (a). □

If τ : A → C satisfies the α-quasi-invariance condition of Definition 6.16, then we can rewrite the Laca–Neshveyev KMS
state φLN,τ : OE → C as

φLN,τ (TµT ∗

ν ) = δ|µ|,|ν|e−α|µ|τ ((µ|ν)A) = ω0-limk→∞τ (Φk(TµT ∗

ν )e
−βk ).

This computation proves the following. Note that the next result does not require any W-regularity from the module E.

Proposition 6.21. Let E be an fgp bi-Hilbertian bimodule and consider an α-quasi-invariant positive trace τ : A → C with
respect to E. The state on OE defined by

SµS∗

ν ↦→ ω0-limk→∞τ (Φk(TµT ∗

ν )e
−βk ), (6.3)

is α-KMS for the gauge action on OE and coincides with φLN,τ .

If E is W-regular, the definition Φ∞(SµS∗
ν ) := limk→∞Φk(TµT ∗

ν )e
−βk shows that the state in Eq. (6.3) coincides with τ ◦Φ∞.

We conclude the following.

Corollary 6.22. Let τ : A → C be an α-quasi-invariant positive trace with respect to an fgp bi-Hilbertian bimodule E. Assume
that E is a W-regular. Then, the state τ ◦Φ∞ on OE is α-KMS for the gauge action on OE and coincides with φLN,τ .

By Theorem 6.15 and Corollary 6.22, we have that φω,τ = τ ◦Φ∞ for any α-quasi-invariant positive trace τ and extended
limit ω at α assuming that E is strictly regular.

6.3. Obstructions to bi-Hilbertian bimodule structures

In the two previous subsections, we assumed our A-bimodule E to be an fgp bi-Hilbertian bimodule, and imposed the
additional assumption of strict W-regularity (see Definitions 2.22 and 2.25). The assumptions allowed us to construct a
semifinite spectral triple from a Kasparov module relying on both the left and the right inner product on E. Instead,
we can just use [45] to proceed from a KMS-state directly to a semifinite spectral triple whose associated KMS-
state as in Corollary 3.21 coincides with the original KMS-state. In order to compare the indirect approach for strictly
W-regular modules to the direct approach from the KMS-state we will need to extend our module to von Neumann
algebra coefficients, and along the way we derive obstructions to having the structure of a strictly W-regular bi-Hilbertian
bimodule structure on an A–A-correspondence.

We suppose that we have a finitely generated projective right A-module EA, with A unital, and carrying a unital left
action of A. Let τ : A → C be a faithful positive trace satisfying the Laca–Neshveyev condition for α ≥ 0 (see Definition 6.7),
and define the associated KMS-state on OE by

φLN,τ (SµS∗

ν ) := δ|µ|,|ν|τ ((ν|µ)A)e−α|µ|, µ, ν ∈ F
alg
E .

By construction, φLN,τ |A= τ .
The Cuntz–Pimsner algebra OE acts on the GNS-space L2(OE, φLN,τ ) by left multiplication and, since φLN,τ restricts to a

trace on A, A acts by both left and right multiplication on L2(OE, φLN,τ ). For notational simplicity, we identify τ with its
normal extension to A′′. Note that A′′ is independent of whether we take the bicommutant in L2(OE, φLN,τ ) or L2(A, τ ) and
by faithfulness of τ we can identify A with its image under the GNS-representation and obtain an inclusion A ⊆ A′′.

Proposition 6.23. Let E be an fgp right A-Hilbert C∗-module with a left unital action of A, τ a faithful positive trace on A
satisfying the Laca–Neshveyev condition and let P0 : L2(OE, φLN,τ ) → L2(A, τ ) ⊂ L2(OE, φLN,τ ) denote the orthogonal projection.
It then holds that

A′′
= P0O′′

EP0.

Proof. It is clear that A′′
⊆ P0O′′

EP0. To prove the converse inclusion, take T ∈ P0O′′

EP0 and write T = P0T0P0 where T0 is
the WOT-limit of a net Tλ =

∑
j Sµλ,jS

∗
νλ,j

∈ OE . We have that

P0TλP0 =

∑
j:|µλ,j|=|νλ,j|=0

Sµλ,jS
∗

νλ,j
,

so P0TλP0 ∈ A and T ∈ A′′. □
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We can define a conditional expectation

Φ̃∞ : O′′

E → A′′, Φ̃∞(S) := P0SP0,

which is well defined by Proposition 6.23. Using the expectation Φ̃∞ we can define a right module ΞA′′ by completing OE
in the norm defined by the inner product

(S1|S2)A′′ := Φ̃∞(S∗

1S2), S1, S2 ∈ OE .

It is clear that L2(OE, φLN,τ ) = L2(ΞA′′ , τ ). The construction of ΞA′′ does not require EA to be biHilbertian, just an A–A-
correspondence. The following result follows from the relations defining the Cuntz–Pimsner algebra and the fact that Φ̃∞

is a conditional expectation.

Proposition 6.24. For µ ∈ E⊗k and ν ∈ E⊗l,

Φ̃∞(S∗

µSν) = δ|µ|,|ν|(µ|ν)A.

In particular, the map µ ↦→ Sµ extends to an A′′-linear isometric embedding FE ⊗A A′′
→ ΞA′′ of the Fock module.

We now turn to describing the WOT-closure of E inside O′′

E . We will identify E with an A-sub-bimodule of OE via µ ↦→ Sµ.

Lemma 6.25. Let A be a unital C∗-algebra. Let EA be a finitely generated projective right A-module with a unital left action,
and suppose that τ : A → C satisfies the Laca–Neshveyev condition on E for α ≥ 0. Then

E ′′
:= E

WOT
⊂ O′′

E

is an A′′-bimodule. Moreover, the following hold:

1. As right A′′-modules, E ′′ ∼= E ⊗A A′′ and the isomorphism is an isomorphism of A′′-Hilbert C∗-modules when equipping
E ′′ with the right inner product

(µ|ν)A′′ := Φ̃∞(S∗

µSν), µ, ν ∈ E ′′.

2. The right A′′-Hilbert C∗-module E ′′ is finitely generated and projective.
3. If E is finitely generated and projective as a left A-module, then E ′′ is finitely generated and projective as a left A′′-module.
4. If the implication

P0ee∗P0 = 0 ⇒ e = 0 ∀e ∈ E ′′, (6.4)

holds, the expression

A(e|f ) := P0SeS∗

f P0

gives a left inner product on E ′′ making it into a bi-Hilbertian bimodule. The right Watatani index of E ′′ is 1 and
qk = Id(E′′)⊗k for all k (and so is invertible).

5. If E ′′ is a finitely generated projective module from the left and the implication (6.4) holds, then E ′′ is a strictly W-regular
fgp bi-Hilbertian bimodule over A′′.

Proof. The initial statement of the lemma is clear since E is an A-sub-bimodule of OE , so its WOT closure is a bimodule
over A′′. To prove statement 1. we note that E ⊗A A′′ ∼= EA′′

⊆ O′′

E . Moreover, using that E is finitely generated and
projective, it follows that E ′′

= EA′′ and therefore E ′′ ∼= E ⊗A A′′ follows. Statement 1. now follows from Proposition 6.24.
Statement 2. follows from statement 1. because E is finitely generated and projective over A. Statement 3. is proven in a
similar way as Statement 1., indeed if E is finitely generated and projective as a left A-module then E ′′ ∼= A′′

⊗A E as a left
A-module.

Statement 4. is less trivial. Assuming that the implication (6.4) holds, it is straight-forward to verify that the left and
right actions are compatible, i.e. that the A-action from the left/right is adjointable for the right/left inner product. For E ′′

to be a bi-Hilbertian bimodule it remains to show that the norm arising from the left inner product is equivalent to the
norm arising from the right inner product. For any e ∈ E, we compute that

∥A(e|e)∥A = ∥P0SeS∗

e P0∥L2(A,τ ) = ∥S∗

e P0Se∥L2(E∗,φτ ) = ∥S∗

e Se∥L2(E∗,φτ ) =

= ∥(e|e)A∥L2(E∗,φτ ) = ∥(e|e)A∥A (6.5)

where the norm of S∗
e Se is attained by S∗

e P0Se on L2(E∗, φτ ) by the assumption that A(·|·) is positive definite. Eq. (6.5) shows
that the two norms

√
∥(·|·)A∥A and

√
∥A(·|·)∥A on E are equivalent.

To finalize the proof of statement 4., we compute the right Watatani index of E, which exists because E ′′ is finitely
generated projective by statement 2. We compute on L2(A, τ ) ⊂ L2(OE, φτ ) that

⟨a,
∑

j

A(ej|ej)a⟩ = ⟨a,
∑

j

P0π (1)(Θej,ej )P0a⟩ = φτ (a∗P0π (1)(IdE)P0a) = φτ (a∗1Aa) = τ (a∗a).
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By the faithfulness of τ and Cuntz–Pimsner covariance we can now deduce that the right Watatani index is equal to 1A.
This immediately implies that qk = Id(E′′)⊗k for all k.

Finally, statement 5. follows from that under the stated assumptions, E ′′ is an fgp bi-Hilbertian bimodule (using
statements 1., 2. and 4.) and by statement 4. qk satisfies the condition in Definition 2.25, so E ′′ is strictly W-regular. □

Remark 6.26. There are examples of A–A-correspondences E that are fgp from the right but not fgp from the left such
that E ′′ is fgp from the left. These examples come from (certain) self-similar dynamical systems, see [41].

Here is a simple example. Let A = C([0, 1]),

γ1 : [0, 1] → [0, 1] γ1(x) = x/2, γ2 : [0, 1] → [0, 1] γ2(x) = 1/2 + x/2,

and E = C({(γ1(x), x) : x ∈ [0, 1]} ∪ {(γ2(x), x) : x ∈ [0, 1]}). The correspondence structure is defined for a, b ∈ A and
e ∈ E by

(a · e · b)(γj(x), x) = a(γj(x))e(γj(x), x)b(x) and (e1|e2)A(x) =

∑
j=1,2

e1(γj(x), x)e(γj(x), x).

The graphs of γ1 and γ2 in [0, 1] × [0, 1] are disjoint and their respective characteristic functions χ1 and χ2 are elements
of E. One checks directly that {χ1, χ2} is a right frame for EA, and since (χ1|χ2) = 0, there is an isomorphism of right
Hilbert C∗-modules EA ∼= C[0, 1] ⊕ C[0, 1]. We conclude that EA is fgp from the right. Using the frame {χ1, χ2}, we can
identify AE ∼= C[0, 1/2]⊕C[1/2, 1] as a left C[0, 1]-module. As a left module, AE is therefore finitely generated but clearly
not projective as the rank of Ex := E/C0([0, 1] \ {x})E is discontinuous at x = 1/2.

We shall now see that it is even impossible for a left inner product compatible with the right inner product to exist.
Let 0 ≤ φ ∈ A be 1 on [0, 1/2]. Then if we have a compatible left A-valued inner product

A(χ1|χ2)(x) = A(φ · χ1|χ2)(x) = φ(x)A(χ1|χ2)(x) = A(χ1|χ2)(x)φ(x) = A(χ1|φ · χ2)(x).

Taking the infimum over such φ we see that the support of A(χ1|χ2) is contained in {1/2}. Then for arbitrary a, b ∈ A

A(aχ1 + bχ2|aχ1 + bχ2)
= aA(χ1|χ1)a∗

+ bA(χ2|χ2)b∗
+ a(1/2)b∗(1/2)A(χ1|χ2) + b(1/2)a∗(1/2)A(χ2|χ1).

From here one can show that any inner product taking values in the continuous functions takes values in the functions
vanishing at 1/2. Then one shows that the associated norm cannot be equivalent to the right inner product.

The situation is better for E ′′. We consider the trace τ (a) :=
∫ 1
0 a(x)dx on C[0, 1]. A short computation shows that

TrEτ = 2τ so τ satisfies the Laca–Neshveyev condition for α = log(2) and extends to a KMS-state on OE at inverse
temperature log(2). It is readily verified that C[0, 1]′′ = L∞

[0, 1], E ′′ ∼= L∞
[0, 1] ⊕ L∞

[0, 1] as a right module and
E ′′

= L∞
[0, 1/2] ⊕ L∞

[1/2, 1] as a left module. In particular, E ′′ is an fgp bi-Hilbertian bimodule over L∞
[0, 1].

The same discussion applies to any ‘graph separated’ iterated function system satisfying the open set condition. See [41]
for more details.

Theorem 6.27. Let EA be a right A-Hilbert C∗-module with a unital left action and assume that E is finitely generated both as
a left and a right A-module and E ′′ is finitely generated and projective both as a left and a right A′′-module. Then EA has a left
inner product such that E is an fgp bi-Hilbertian bimodule, has finite right Watatani index and is W-regular with qk invertible
for all k if and only if Φ̃∞ is faithful and Φ̃∞(OE) ⊆ A.

We remark that if E is W-regular and qk is invertible for all k, then E is strictly W-regular by [30, Lemma 3.8].

Proof. First suppose that Φ̃∞ is faithful and Φ̃∞(OE) ⊆ A. Lemma 6.25 shows that E ′′ has a left inner product making E
(not just E ′′) bi-Hilbertian with right Watatani index 1A and (invertible) qk = Id(E)⊗k . Since E, both as a left and a right
module, is finitely generated and admits a Hilbert C∗-module structure it is also projective.

Conversely, if E is an fgp bi-Hilbertian bimodule with finite right Watatani index and is W-regular with invertible qk,
then [54] proves that the map Φ∞(SµS∗

ν ) = A(µ|q|ν|(ν)) is a (faithful) conditional expectation. That it agrees with Φ̃∞ is a
computation. □

Remark 6.28. The issue with qk being non-invertible is as follows. Since qk = q1 ⊗ q1 ⊗ · · · ⊗ q1, the non-invertibility
occurs with q1. Supposing OE to be strictly W-regular, we can define the right module ΞA as the completion of OE for the
norm coming from Φ∞. Then Φ̃∞(SeS∗

f ) = A(e|q1(f )), and so if q1 is not invertible, we do not get a left inner product in
this way. See [54, Example 3.10] for an example where we have strict W-regularity with q1 not being invertible.

Heuristically, one should view the passage to ΞA as erasing the information about the left inner product on E,
corresponding to the kernel of q1. On the other hand, if qk is invertible for all k then we can replace our left inner products
A(·|·)E

⊗k
by A(·|qk(·))E

⊗k
and obtain an equivalent inner product structure with right Watatani index 1.

We can now relate our constructions above back to KMS-states.
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Proposition 6.29. Let A be a unital C∗-algebra, E a finitely generated projective right A-Hilbert C∗-module with a unital
adjointable left A-action, α ≥ 0 and τ a positive trace on A. We assume that this data satisfies the following conditions:

• τ satisfies the Laca–Neshveyev condition.
• The A′′-bimodule E ′′ is finitely generated and projective from the left.
• The implication (6.4) holds.

We define a semifinite spectral triple (OE, L2(OE, φLN,τ ),Dα,N, T) using that L2(OE, φLN,τ ) = L2(OE′′ , φLN,τ ) = L2(ΞA′′ , τ )
and pulling back the semi-finite spectral triple defined from the fgp bi-Hilbertian A′′-bimodule E ′′ as in Lemma 2.28 along
the inclusion OE → OE′′ . This semi-finite spectral triple is Li1-summable, α-analytic, has positive essential T-spectrum with
βDα = α and its associated KMS-state for the gauge action (as in Corollary 3.21) coincides with φLN,τ .
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