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Abstract
With the rapid development of the Internet of Things (IoT) a lot of critical information is shared however without having
guarantees about the origin and integrity of the information. Digital signatures can provide important integrity guarantees
to prevent illegal users from getting access to private and sensitive data in various IoT applications. Functional signatures,
introduced by Boyle, Goldwasser and Ivan (PKC 2014) as signatures with a finegrained access control, allow an authority
to generate signing keys corresponding to various functions such that a user with a signing key for a function f , can sign the
image of the function f on a messagem i.e., can sign f (m). Okamoto and Takashima (PKC 2013) firstly proposed the notion
of a decentralized multi-authority functional signature (DMA-FS) scheme, which supports non-monotone access structures
combined with inner-product relations. In this paper, we generalise the definition of DMA-FS proposed by Okamoto et al.
(PKC13) for even more general policy functions, which support any polynomial-size boolean predicates other than the inner
product relation and allow modifications of the original message. In our multi-authority functional signature (MAFS), there
are multiple authorities and each one is able to certify a specific function and issue a corresponding functional signing key for
each individual with some property, rendering them very useful in application settings such smart homes, smart cities, smart
health care etc. We also provide a general transformation from a standard signature scheme to a MAFS scheme. Moreover,
we present a way to build a function private MAFS from a FS without function privacy together with SNARKs.

Keywords IoT · Functional signatures · Attribute-based signature · Decentralised multi-authority functional signatures

1 Introduction

With the rapid development of the Internet of Things (IoT)
in various application settings (e.g., smart homes [6, 7],
smart cities [4, 8], and smart health-care [1]), ensuring the
communication integrity and authenticity of information
shared between IoT devices becomes a major concern,
since millions of devices sense and communicate large
volumes of private and sensitive data. Digital signatures
is one of simplest and more reliable approaches, that can
be employed to achieve the integrity and authentication
properties and thus, prevent illegal users from getting access
to private and sensitive data.
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A digital signature on a message, originally introduced
by Diffie and Hellman [5], produces information that allows
the receiver to verify that the original message was indeed
signed by the claimed signer (sender). Boyle, Goldwasser
and Ivan [2] have recently introduced a new type of
signatures, called functional signatures. In a functional
signature scheme, a trusted authority holds a master secret
key known only to the authority. Given a description of
a function f , the authority using the master secret key
can generate a functional signing key skf associated with
the function f . Anyone that has access to the functional
signing key skf and a message m can compute f (m) as
well as a functional signature σ of f (m). Such fine-grained
generation of signatures is extremely useful in multiple
applications such as authentication and trust-negotiation.
For instance, we can consider the case where a document
(message m) has some fields to be filled in, i.e., the initial
document m needs to be modified by applying a function on
it f (m) and then subsequently signed. Thus, it is required
to produce a signature σ that corresponds to f (m). In that
case, a function f could be associated with the fields of the
document that need to be filled in, as well as the type of
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the information (e.g., calendar date). Then, by generating
a signing key skf for this specific function f , we can
guarantee which documents have been filled in and signed
by an individual.

In this paper, we go beyond standard functional signa-
tures and we re-explore the existing concept: decentralised
or multi-authority functional signatures for general pol-
icy functions, which aids for smart projects such for smart
home, smart city, smart health care etc.

Decentralised functional signatures Although functional
signatures (FS) are a very powerful primitive, the basic con-
cept of FS has a serious challenge since it requires that a
single authority issues for all users their secret signing keys
associated with different functions. This definitely contra-
dicts the distributed public key infrastructure that allows
having multiple certification authorities with different levels
of trust. When considering realistic applications of func-
tional signatures, it is hard to imagine that a single central
authority will be trusted by everyone and will manage all
credentials and generate functional signing keys for differ-
ent functions for all individuals. Inspired by the practical
demand for the distributed trust, we explore the model for
multi-authority functional signatures (MAFS).

Okamoto et al. [12] firstly proposed the concept
of a decentralised multi-authority functional signature
(DMA-FS) scheme, which supports non-monotone access
structures combined with inner-product relations [11].
Intuitively, the non-monotone access structures combined
with inner-product relations [11] supported by the DMA-
FS scheme of Okamoto et al. are: for properties u :=
(u1, . . . , uN) ∈ F

n1+...+nN
q , a policy function F :=

(M̂, (v1, . . . , vN) ∈ F
n1+...+nN
q ) is the componentwise

inner-product relations for property vector components,
e.g., {ui · vi = 0 or not}i∈{1,...,N} that are taken as input to
a span program M̂ , and the property vector u satisfies the
policy F iff the truth-value vector of ((u1·v1 = 0), . . . , (uN ·
vN = 0)) is accepted by the span program M̂ . In their
DMA-FS setting, there are multiple authorities and each
authority is able to generate a secret key associated with a
sort of attributes ui , i.e., a user obtains several secret keys
w.r.t. the attributes it has, u := (u1, . . . , uN), each of which
is issued by corresponding authority. A user with secret keys
w.r.t. the attributes u := (u1, . . . , uN) is able to sign the
message iff u s.t. ((u1 · v1 = 0), . . . , (uN · vN = 0)) is
accepted by the span program M̂ .

Contrary to Okamoto et al. [12] work, in this paper we
consider whether it is possible to extend the DMA-FS with
respect to even more general policy functions, which are
not limited to inner-product predicates [11] but support any
polynomial sized boolean predicate. Furthermore, we allow
one to sign a message that is in the range of a function f ,

which can be considered as to make some operations on
the original message first and then to sign the new resulting
message.

A motivating example of using MAFS in the IoT setting
Before we describe our generalized multi-authority FS
(MAFS) scheme in more detail, let us consider a motivating
example in the IoT setting. In order to allow both businesses
and customers greater visibility and tracking of their
products and parcels than ever before, every shipment or
parcel can be equipped with an inexpensive small device or
sensor which would continuously monitor and record every
information from the position of a parcel to the temperature
and light conditions– meaning that those sending and
receiving the parcels can see both where their items are
and how they are being handled on route and whether they
have been opened or not. For instance, a headphone made
by a company in Germany is ordered to be delivered to
China by a logistics company. A rather challenging task
is keeping and updating the records of all transactions
during the delivery where multiple authorities (such as
country of origin, logistics company, insurance company)
might be involved, while ensuring that the users are able
to verify all the transactions that occurred. The concept of
multi-authority functional signature properly addresses this
type of problems. For example, a headphone from Country
A might be ordered to be delivered to Country B by a
specific logistics company Xwith a insurance company. The
transaction messages may be updated with info about the
luminous intensity and the current location of the parcel
should be signed through a MAFS with a policy such that
((Original country = Country A OR B) AND (Logistics =
Company X OR Y) AND (Luminous Intensity ≤ 0.2lx)).
In a MAFS scheme, a user obtains several secret keys
associated with multiple properties, each of which is issued
by a different authority. A sensor embedded in the parcel
receives a secret key (for the country of origin A) from
the producer S, a secret key for the logistics company
X, and a secret key for a luminous intensity from the
insurance company T, where the country of origin A, the
logistics company X and the insurance company T are all
individual authorities.. The sensor while the parcel in on
route, updates the properties information of the parcel and
signs the updated messages. A user can then verify that the
signed transactions (depicted in Fig. 1) indeed occurred.

Our results Our main results and contributions can be
summarised as follows: (i)we introduce for the definition of
multi-authority functional signatures (MAFSs) for general
policy functions; (ii) we provide a general transformation
from a standard signature scheme to a MAFS scheme and
a corresponding construction; (iii) given a non-function-
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Fig. 1 An example of using the
multi-authority functional
signature scheme in the IoT
setting

private FS scheme and a SNARK we provide a way to build
a function private MAFS scheme.

In a MAFS scheme, multiple authorities can indepen-
dently generate their master secret and master public ver-
ification keys. Any authority i should be able to generate
a functional signing key for a user with identity UID and
property Ui along with a policy F over various authori-
ties. A user UID, with signing keys for a policy function
F and different property Ui from the authority i ∈ [N],
is allowed to generate a signature for the new message
F(U1, . . . , Un, m) only if his property set {Ui}i∈[N] sat-
isfies the policy, while anyone using the N authorities’
master verification keys should be able to verify the valid-
ity of the message-signature pair. An important requirement
for MAFS is the security (unforgeability) against collusion
attacks, which states that colluding users e.g., whose iden-
tities are UID1 with property U1 and UID2 with property
U2 (even if they collude with some corrupted authorities)
should not be able to forge a signature endorsed by a user
UID1 with properties U1 and U2. Another desirable prop-
erty of MAFS is function privacy, which implies that the
signature should reveal neither the function F that the func-
tional signing key used in the signing process corresponds
to, nor the message m that F was applied to. In particu-
lar, the notion of MAFS generalizes that of multi-authority
attribute based signature [12].

In this paper, we first give a construction of MAFS that
is not function private, based on any standard signature
scheme. Then, assuming the existence of succinct non-
interactive arguments of knowledge (SNARKS) for NP
languages, we propose a function-private MAFS scheme
from a non-function-private FS scheme. The resulting
function-private MAFS scheme is defined in the common

reference string model, which means that we allow all
algorithms (and the adversary) to get as input also a public
uniformly distributed common reference string [9, 10].
Below we describe in an informal way, highlights of our
results and the approaches we employ.

Theorem 1 (Informal) Assuming the existence of an
existentially unforgeable signature scheme, then there exists
a multi-authority functional signature scheme satisfying the
unforgeability requirement but not function privacy.

Overview of the approach The master signing and verifica-
tion key for each authority i ∈ [N] will correspond to a
key pair, (mski ,mvki ), in an underlying (standard) signa-
ture scheme. To generate a signing key for a user with UID
and property U for a function F , the authority i does the
following. First, it samples a fresh signing and verification
key pair (ski , vki ) in the underlying signature scheme, and
then signs the concatenation UID‖U‖F‖vki usingmski . The
signing key consists of this certificate (signature) together
with ski . Given N signing keys, a user can sign any message
m∗ = F({(i, Ui)}i∈[N], m) by signing m using each ski , and
outputting these N signatures, together with N certificates
of UID‖U‖F‖vki .

Theorem 2 (Informal) Assuming the existence of SNARKs
and a functional signature scheme that is unforgeable,
then there exists a multi-authority functional signature
scheme in the common reference string model satisfying the
unforgeability requirement and function privacy.

Overview of the approach The setup algorithm generates
a common reference string crs. The authority setup and
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key generation algorithms are the same as those of the
construction in Theorem 2. Given N signing keys, a user
does the following. First, it signsm using each sk

f
i , and then

it generates a zero-knowledge SNARK for the following
statement: ∀i ∈ [N], ∃σi such that σi is a valid signature of
m∗ = f (m) under mvki in the functional signature scheme.
The final signature consists of the proof together with N

certificates of UID‖U‖F‖vki .

2 Related work

Multi-authority functional encryption Inspired by the dis-
tributed trust offered by public-key encryption, Chandran
et al. [3] introduced a new primitive that is called Multi-
Authority Functional Encryption (MAFE) as a generaliza-
tion of both Functional Encryption and Multi-Authority
Attribute-Based Encryption (MA-ABE). Based on subexpo-
nentially secure indistinguishability obfuscation and injec-
tive one-way functions they show how to obtain MAFE for
arbitrary polynomial-size circuits, namely F({Uid}id∈S , m)

which is a |S| + 1 variate policy function (each component
is in {0, 1}k) in MAFE that takes as input up to |S| prop-
erties and a message and outputs a value. In this paper, we
generalise the definition of DMA-FS in [12] for even more
general policy functions, which supports any polynomial
sized boolean predicates other than the inner product rela-
tion and allows modifications of the original message. Such
a generalisation is not straightforward. To achieve that we
take advantage of the method that Chandran et al. [3] used
to define the function policy in a multi-authority setting.

Multi-authority attribute based signature The concept of
multi-authority attribute based signature (MA-ABS) was
introduced by Okamoto et al. [9, 10]. In a MA-ABS
model, there are multiple authorities and each authority
is responsible for issuing a secret key associated with a
category of attributes. But a central trustee is required
in addition to multiple authorities. Okamoto et al. [12]
showed that if the central authority is corrupted in MA-
ABS, the security (unforgeability) of the system will be
totally broken. Thus, in [12] they proposed the first MA-
ABS scheme with no central authority, which supports
more general predicates, non-monotone access structures in
which no central authority exists and no global coordination
is required except for the setting of a parameter for
a prime order bilinear group and hash functions under
a standard assumption, the DLIN assumption in the
random oracle model. They also proposed a more general
signature scheme, DMA-FS scheme, which supports non-
monotone access structures combined with inner-product
relations [11], and prove that the proposed DMA-FS scheme

is fully secure (adaptive-predicate unforgeable and perfect
private in the DMA security model) under the DLIN
assumption in the random oracle model.

From the point of view of the class of functions
that multi-authority FS supports, the DMA-FS scheme
proposed by Okamoto et al. [12] is a special case of our
generalized MAFS scheme, where the underlying predicate
is specialized to be the inner product relation. Okamoto et
al.’s DMA-FS scheme is fully secure (adaptive-predicate
unforgeable and perfect private in the DMA security model)
under the DLIN assumption in the random oracle model,
while our MAFS scheme is secure in the common reference
string model satisfying the unforgeability requirement
and function privacy. Moreover, the notion of MA-ABS
proposed by Okamoto et al. [12] is a specific case of our
generalized MAFS for general policy functions since the
policy function in MA-ABS can be considered as the special
case of our MAFS where the policy function F always
outputs the message m if the properties satisfy F .

3 Preliminaries

Definition 1 (Functional signature [2]) A functional
signature scheme for a message space M, and function
family F = {f : Df → M} consists of the PPT algorithms
FS = (FS.Setup, FS.KeyGen, FS.Sign, FS.Verify):

– FS.Setup(1λ) → (msk,mvk) : on input the security
parameter 1λ, the setup algorithm outputs the master
signing key and the master verification key.

– FS.KeyGen(msk, f ) → skf : on input the master
signing key and a function f ∈ F , the key generation
algorithm outputs a signing key for f .

– FS.Sign(f, skf , m) → (f (m), σ ) : on input the signing
key for function f ∈ F and a message m ∈ Df ,
the signing algorithm outputs f (m) and a signature of
f (m).

– FS.Verify(mvk, m∗, σ ) → {0, 1} : on input the master
verification key mvk, a message m∗ and a signature σ ,
the verification algorithmoutputs 1 if the signature is valid.

We require it to satisfy the following conditions:

Correctness ∀f ∈ F , ∀m ∈ Df , (msk,mvk) ←
FS.Setup(1λ), (m∗, σ ) ← FS.Sign(f, skf , m), it holds that

FS.Verify(mvk, m∗, σ ) = 1.

Unforgeability The scheme is unforgeable if the advantage
of any PPT algorithmA in the following game is negligible:

– The challenger generates (msk,mvk) ← FS.Setup(1λ),
and gives mvk to A;
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– The adversary is allowed to query a key generation
oracle Okey, and a signing oracle Osign, that share a
dictionary indexed by tuples (f, i) ∈ F × N, whose
entries are signing keys: skf

i ← FS.KeyGen(msk, f ).
This dictionary keeps track of the keys that have been
previously generated during the unforgeability game.
The oracles are defined as follows:

– Okey(f, i) :
• If there exists an entry for the key

(f, i) in the dictionary, then output
the corresponding value, ski

f .• Otherwise, sample a fresh key
ski

f ← FS.KeyGen(msk, f ), add an

entry (f, i) → ski
f to the dictionary,

and output ski
f .

– Osign(f, i, m) :
• If there exists an entry for the key

(f, i) in the dictionary, then generate
a signature on f (m) using this key:
σ ← FS.Sign(f, ski

f , m).
• Otherwise, sample a fresh key

ski
f ← FS.KeyGen(msk, f ), add

an entry (f, i) → ski
f to the

dictionary, and generate a sig-
nature on f (m) using this key:
σ ← FS.Sign(f, ski

f , m).

– The adversary wins if it can produce (m∗, σ ) such that:

– FS.Verify(mvk, m∗, σ ) = 1.
– There exists no m such that m∗ = f (m) for

any f which was sent as a query to the Okey

oracle.
– There exists no (f, m) pair such that (f, m)

was a query to the Osign oracle and m∗ =
f (m).

Function privacy The scheme is function private if the
advantage of any PPT algorithm A in the following game is
negligible:

– The challenger honestly generates (mvk,msk) ←
FS.Setup(1λ) and gives both values to the adversary.

– The adversary A chooses a function f0 and
receives an (honestly generated) secret key
skf0 ← FS.KeyGen(msk, f1).

– The adversary A chooses a second function f1 for
which |f0| = |f1| and receives an (honestly generated)
secret key skf1 ← FS.KeyGen(msk, f1).

– The adversary chooses a pair of messages m0, m1 for
which |m0| = |m1| and f0(m0) = f1(m1).

– The challenger selects a random bit b ← {0, 1} and
generates a signature on the image f0(m0) = f1(m1)

using secret key skfb
, and gives the resulting signature

σ ← Sign(skfb
, mb) to the adversary.

– The adversary outputs a bit b′, and wins the game if
b′ = b.

4Multi-authority functional signature

We describe syntax and security notions of a multi-authority
functional signature scheme.

Definition 2 (Multi-Authority FS (MAFS)) A decentral-
ized multi-authority FS scheme is composed of the follow-
ing algorithms:

– ASetup(id, 1λ) → (MVKid ,MSKid ) : Each authority
id ∈ I runs the authority setup algorithm to generate
its own public verification key and secret key pair,
(MVKid ,MSKid ). The authority id publishesMVKid and
stores MSKid .

– KeyGen(MSKid ,UID, U, F ) → K
UID,U
id,F : When an

authority id who wishes to issue a user, whose identity
is UID, a secret key associated with a property U and a
policy function F , it runs the key generation algorithm
that outputs a secret key K

UID,U
id,F . The authority gives

K
UID,U
id,F to the user.

– Sign({KUID,Uid

id,F }(id,Uid )∈�, m) →
(F ({(id, Uid)}(id,Uid )∈�, m), σ ) : A user signs a
message m with a |�| + 1 < O(poly(λ)) variate
policy function F (each component is in {0, 1}λ),
only if the user has obtained a set of secret keys
{KUID,Uid

id,F |(id, Uid) ∈ �} from the authorities
such that all properties included in � are satis-
fied by the policy function. Then, the user outputs
the value F({(id, Uid)}(id,Uid )∈�, m) and a signa-
ture of F({(id, Uid)}(id,Uid )∈�, m). F takes as input
up to |�| properties and a message and outputs a
value.

– Verify({MVKid}id∈�, m∗, σ ) → {0, 1} : To verify a
signature σ on a message m∗, using a set of public keys
for relevant authorities {MVKid}id∈� , a user runs the
verification algorithm which outputs a boolean value
accept := 1 or reject := 0.

Definition 3 (Correctness of MAFS) A MAFS scheme
is said to be correct, if, for all F ∈ F , m ∈ Df ,
authority id ∈ I, (MVKid ,MSKid ) ← ASetup(id, 1λ)

, K
UID,Uid

id,F ← KeyGen(MSKid ,UID, Uid , F ) assigned by
the authority id for the user UID with property Uid and
policy function F , and (F ({(id, Uid)}(id,Uid )∈�, m), σ ) ←
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Sign({KUID,Uid

id,F }(id,Uid )∈�, m) for a set of authorities � ⊂ I,
if it satisfies the following condition:

Verify({MVKid}id∈�, F ({(id, Uid)}(id,Uid )∈�, m), σ ) = 1.

Remark 1 1. We assume that each user is allowed to
have only one particular property corresponding to one
authority (category) id.

2. For |�| + 1 < O(poly(λ)) variate policy function F ,
any different component of property is associated with a
different authority. In fact, a policy function F consists
of a predicate Predic which is used to indicate the set of
properties that are accepted or not, and a deterministic
function f which is used to modify the input message.
The functionality of F({(id, Uid)}(id,Uid )∈�, m) first
checks whether Predic
({(id, Uid)}(id,Uid )∈�) = 1, if it is true then it outputs
f (m); else it outputs ⊥.

3. For a set of properties {(id, Uid)}id which is accepted
by F , we denote it as �. Since a different property
component in F corresponds to different authorities, we
misuse the notation id ∈ � to represent the authority
that belongs to the accepted set.

Definition 4 (Unforgeability of MAFS) For any PPT
adversary, we define AdvMAFS,UF

A (λ) to be the success
probability in the following experiment for any security
parameter λ. For ease of notation let us assume the chosen
set of authorities by the adversary is [N] for a polynomialN .
A MAFS scheme is existentially unforgeable if the success
probability of any polynomial-time adversary is negligible:

– The adversary A outputs [N]. The challenger runs the
ASetup for the authorities labelled in [N] and hands
over the verification keys of all the authorities to A.
Adversary A specifies a set S ⊂ [N] of corrupted
authorities, and gets {MSKi}i∈S . Let’s denote S̄ :=
[N]\S.

– The adversary is allowed to query a key generation
oracle Okey and a signing oracle Osign, that share a dic-
tionary indexed by tuples (UID, i, Ui, F ), whose entries
are keys: K

UID,Ui

i,F ← KeyGen(MSKi ,UID, Ui, F ). This
dictionary keeps track of the keys that have been pre-
viously generated during the unforgeability game. The
oracles are defined as follows :

– Okey(UID, i, Ui, F ) : The attacker A submits
tuples of the form (UID, i, Ui, F ) to the
challenger, where UID is a user’s identity and
Ui is the user’s property w.r.t a non corrupted
authority i. The challenger responds by giving
A the corresponding key K

UID,Ui

i,F .

• If there exists an entry for
(UID, i, Ui, F ) in the dictionary,

then output the corresponding value
K

UID,Ui

i,F .

• Else, generate K
UID,Ui

i,F ←
KeyGen(MSKi ,UID, Ui, F ), add an
entry (UID, i, Ui, F ) → K

UID,Ui

i,F to

the dictionary, and output KUID,Ui

i,F .

– Osign({UID, i, Ui, F }i∈S̄ , {KUID,Ui

i,F }i∈S, m) :
The attacker selects a policy F and wishes to
get the user UID’s signature.

• For any i ∈ S̄, generate K
UID,Ui

i,F ←
KeyGen( MSKi ,UID, Ui, F ) and
add the entry (UID, i, Ui, F ) →
K

UID,Ui

i,F to the dictionary. Run

Sign({KUID,Ui

i,F }i∈[N], m) to generate
a tuple (F ({(i, Ui)}i∈[N], m), σ ) and
return it back.

– At the end, A outputs (m∗, σ ∗). We say the adversary
succeeds, if

– Verify({MVKi}i∈[N], m∗, σ ∗) = 1.
– ({UID, i, Ui, F

∗}i∈S̄ , {KUID,Ui

i,F ∗ }i∈S, m̃) has
never been sent as a query to the ora-
cle Osign for any F ∗ and m̃ such that
m∗ = F ∗({(i, Ui)}i∈[N], m̃).

– There doesn’t exist m such that m∗ =
F ∗({(i, Ui )}i∈[N], m) where for any i ∈ S̄,
(UID, i, Ui, F

∗) has been sent as a query to
the oracle Okey and the user UID’s property set
{(i, Ui)}i∈[N] is accepted by F ∗.

Remark 2 Since the predicate circuit Predic contained in the
policy function F ∗ is specified over N properties (i, Ui), we
say that F ∗ does not accept �UID which means that when the
properties corresponding to any authority i ∈ S̄ are taken
from �UID no matter what the leftover |S| properties of the
user UID are, F ∗ never accepts it.

Definition 5 (Function privacy of MAFS) For any PPT
adversary, we define AdvMAFS,priv

A (λ) to be the success
probability in the following experiment for any security
parameter λ. A MAFS scheme is function private if the
success probability of any polynomial-time adversary is
negligible:

– The adversary A outputs [N]. The challenger runs the
setup for all N authorities labelled in [N], namely
generating a key pair (MVKi ,MSKi ) ← ASetup(i, 1λ)

and hands over the verification keys of all the
authorities to A. The adversary A specifies a set S ⊂
[N] of corrupted authorities, and gets their master secret
keys {MSKi}i∈S . Let us denote this set of corrupted
authorities as S̄ := [N]\S.
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– The adversary A chooses a policy function F0 as
well as a tuple (UID, i, Ui, F0) for one specific
user UID and his property Ui according to the
category i, and receives an (honestly generated) key
K

UID,Ui

i,F0
← KeyGen(MSKi ,UID, Ui, F0) corresponding

to an uncorrupted authority i ∈ S̄.
– The adversary A chooses a second policy function F1

for which |F0| = |F1|, as well as a tuple (UID, i, Ui, F1)

for the same user UID and his property Ui according
to the category i, and receives an (honestly generated)
secret key K

UID,Ui

i,F1
← KeyGen(MSKi ,UID, Ui, F1)

corresponding to the uncorrupted authority i ∈ S̄.
– The adversary chooses a pair of messages m0, m1 for

which |m0| = |m1| and F0
({(i, Ui)}i∈[N], m0

) =
F1

({(i, Ui)}i∈[N], m1
)
.

– The challenger selects a bit b ← {0, 1} and
generates a signature on the image m′ =
F0

({(i, Ui)}i∈[N], m0
) = F1

({(i, Ui)}i∈[N], m1
)
using

secret key K
UID,Ui

i,Fb
, and gives the resulting signature

σ ← Sign({KUID,Ui

i,Fb
}i∈[N], mb) to the adversary.

– The adversary outputs a bit b′, and wins the game if
b′ = b.

Remark 3 The policy functions F0 and F1 should contain
the same predicates, which means F0 = Predic‖f0 and
F1 = Predic‖f1.

Definition 6 (MAFS with CRS) We say that (ASetup,
KeyGen, Sign, Verify) is a MAFS scheme with CRS if
Definition 2 is satisfied except that we allow all algorithm
(and the adversary) to get as input also a public uniformly
distributed common random string.

5 Our construction for MAFS

5.1 MAFS from standard signatures

In this section, we provide a construction of a MAFS
scheme based on any standard signature scheme (i.e.,
existentially unforgeable under chosen-message attacks).
Our resulted MAFS scheme is proved to be unforgeable as
the Definition 4, but not function private.

The main ideas of our construction are as follows.
The master signing and public keys for each authority i

(MSKi ,MVKi ) will simply be a standard key pair for the
underlying signature scheme. The signing key generated by
the authority i for a user’s identity UID, a property U and
a function F consists of a fresh key pair (sk, vk) for the
underlying signature scheme, and a signature (with respect
to MVKi) on the user’s identity UID, a property U and a
function F together with vk. We can regard this signature

as a certificate authenticating that the owner of key vk is
allowed to sign values resulted from the policy function F .

Let λ denote the security parameter and N denote the
bound on the number of authorities used, while signing
the message. Let Sig=(Sig.Setup, Sig.Sign, Sig.V- erify) be
a signature scheme that is existentially unforgeable. We
propose a MAFS scheme as follows:

– ASetup(i, 1λ) : Each authority i ∈ [N] runs Sig.Setup
(1 λ) → (mski ,mvki ) and sets MSKi = mski and MVKi

= mvki .
– KeyGen(MSKi ,UID, U, F ) :

– Sample a signing and verification key pair for
signature scheme (ski , vki ) ← Sig.Setup(1λ).

– Parse MSKi = mski . Run σvki
← Sig.Sign

(mski , UID‖U‖F‖vki ).
– Create a certificate c

UID,U
i,F = (vki , σvki

,UID,

U, F ).
– Set K

UID,U
i,F = (ski , c

UID,U
i,F ) and output key

K
UID,U
i,F .

– Sign({KUID,Ui

i,F }i∈[N], m) :
– Parse K

UID,Ui

i,F = (ski , c
UID,Ui

i,F ) where c
UID,Ui

i,F= (vki , σvki
,UID, Ui, F ), and run σi ←

Sig.Sign(ski , m) for all i ∈ [N].
– Compute m∗ = F({(i, Ui)}i∈[N], m) and set

σ = (m, {cUID,Ui

i,F , σi}i∈[N]).
– Output (m∗, σ ).

Remark 4 When {(i, Ui)}i∈[N] is rejected by Predic the
output of the policy function F will be ⊥, and the
corresponding signature should also be ⊥.

– Verify({MVKi}i∈[N], m∗, σ ) :
– Parse σ = (m, {cUID,Ui

i,F , σi}i∈[N]) and c
UID,Ui

i,F= (vki , σvki
,UID, Ui, F ), and perform the

following checks. If all of the checks pass
output 1; otherwise output 0.

1. m∗ = F({(i, Ui)}i∈[N], m);
2. Sig.Verify(vki , m, σi) = 1 for all i ∈ [N];
3. Sig.Verify(mvki ,UID‖Ui‖F‖vki , σvki

) =
1 for all i ∈ [N].

Theorem 3 If the signature scheme Sig is existentially
unforgeable under chosen message attacks, then our multi-
authority functional signature scheme as specified above
satisfies the unforgeability requirement defined in Section 4.

Proof Let AMA be a PPT adversary in the unforgeability
game for multi-authority functional signatures that is
allowed to make query to the oracles Okey and Osign.
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Assume AMA made polynomial numbers of queries, Q(λ)

in total to the oracles Okey and Osign. We construct an
adversary BSig with AMA as a subroutine such that, if
AMA wins in the unforgeability game for MAFS with non-
negligible probability, then BSig breaks the unforgeability
game of underlying signature scheme, which is assumed to
be unforgeable.

For AMA to win unforgeability game of MAFS, it
should output a message signature pair (m∗, σ ∗ =
(m̃, {cUID,Ui

i,F ∗ }i∈[N], {σ ∗
i }i∈[N])) where c

UID,Ui

i,F ∗ = (vki , σvki
,

UID, Ui, F
∗) such that:

– For each i ∈ S̄, σ ∗
i is a valid signature of m̃ under the

verification key vki ;
– For each i ∈ S̄, σvki

is a valid signature of
UID‖Ui‖F‖vki under mvki ;

– m∗ = F ∗({(i, Ui)}i∈[N], m̃);
– AMA has not sent a query of form ({UID, i, Ui,

F ∗}i∈S̄ , {KUID,Ui

i,F ∗ }i∈S, m̃) to the signing oracle Osign.

– AMA has not sent queries (UID, i, Ui, F
∗) for all i ∈ S̄,

to the oracle Okey such that the user’s UID property set
{(i, Ui)}i∈[N] is accepted by F ∗ and m∗ is in the range
of the function F ∗.

Assume there are N − 1 authorities that are
corrupted, while the uncorrupted one’s identity
is i∗. There are two cases for such a forgery(
m∗, σ ∗ = (m̃, {cUID,Ui∗

i∗,F ∗ , σ ∗
i∗}, {cUID,Ui

i,F ∗ , σ ∗
i }i∈[N]\i∗)

)

where c
UID,Ui

i,F ∗ = (vki , σvki
,UID, Ui, F

∗) for all i ∈ [N]:
– Type I forgery: The tuples (vki∗ ,UID, Ui∗, F ∗) satisfy

that UID‖Ui∗‖F ∗‖vki∗ has not been signed under mvki∗
for the queries ofAMA to both the oracle Osign and Okey.

– Type II forgery: The tuples (vki∗ ,UID, Ui∗, F ∗) satisfy
that UID‖Ui∗‖F ∗‖vki∗ has been signed under mvki∗
during the queries of AMA to both the oracle Osign and
Okey.

Here we assume that all the queries of AMA send to the
oracles Osign are proceeded by the oracle Okey to generate a
signing key as intermediate steps.

We now describe the signature adversary BSig. In the
unforgeability game for the standard signature scheme,
given the verification key vkSig, and access to a signing
oracle ORegsig , BSig wins the unforgeability game if he
successfully outputs a forgery, i.e., a signature for a message
that was not queried to ORegsig . In order to play the role of
the challenger interacting withAMA in the security game for
MAFS, BSig must simulate the Okey and Osign oracles. BSig

flips a coin b, and proceeds as following.

Case 1: b = 1 BSig guesses that AMA will produce a Type
I forgery:

First BSig sets vkSig as the master verification key for the
authority i∗ in the MAFS security game, namely mvki∗ :=
vkSig and sends it to AMA. For all of the other corrupted
authorities, BSig behaves honestly. To simulate the Okey and
Osign oracles, BSig maintains a dictionary indexed by the

tuples (UID, i∗, Uj
i∗, F ), whose entries are signing keys that

are generated by the authority i∗ for the user UID with
propertyU

j
i∗ and policy function F .BSig answers the queries

issued by AMA as follows:

– Okey(UID, i∗, Uj
i∗, F ) :

– If there exists an entry for the tuple
(UID, i∗, Uj

i∗, F ) in the dictionary, then output

the corresponding value K
UID,U

j

i∗
i∗,F .

– Otherwise, run (skj , vkj ) ← Sig.Setup(1λ) and

send UID‖Uj
i∗‖F‖vkj to its own signing oracle

to get σ
vk

j

i∗
← ORegsig(UID‖Uj

i∗‖F‖vkj ). Set

K
UID,U

j

i∗
i∗,F = (skj , c

UID,U
j

i∗
i∗,F ) where c

UID,U
j

i∗
i∗,F =

(vkj , σ vk
j

i∗
,UID, U

j
i∗ , F ), add it to the dictio-

nary, and output it.

– Osign({UID, i∗, Ui∗ , F }, {KUID,Ui

i,F }i∈[N]\i∗ , m) :
– If there exists an entry for the tuple {UID, i∗, Ui∗ ,

F } in the dictionary, namely the key K
UID,Ui∗
i∗,F ,

then it generates (F ({(i, Ui)}i∈[N], m), σ ) ←
Sign({KUID,Ui

i,F }i∈[N], m) and outputs the result.
– Otherwise, BSig samples a new pair of key for

the signature scheme, (ski∗ , vki∗) ←
Sig.Setup(1λ), and obtains σvki∗ ← ORegsig
(UID‖Ui∗‖F‖vki∗) fr- om its own signing
oracle. It sets K

UID,Ui∗
i∗,F := (ski∗ , c

UID,Ui∗
i∗,F )

where c
UID,Ui∗
i∗,F = (vki∗ , σvki∗ ,UID, Ui∗, F ),

and adds it to the dictionary. For each i ∈ [N],
it then computes σi ← Sig.Sign(ski , m)

and m∗ = F({(i, Ui)}i∈[N], m). It sets σ :=
(m, {cUID,Ui

i,F }i∈[N], {σi}i∈[N]), then outputs
(m∗, σ ).

Eventually, AMA outputs a message signature forgery(
m∗, σ ∗ = (m̃, {cUID,Ui∗

i∗,F ∗ , σ ∗
i∗}, {cUID,Ui

i,F ∗ , σ ∗
i }i∈[N]\i∗)

)

where c
UID,Ui

i,F ∗ = (vki , σvki
,UID, Ui, F

∗) for each
i ∈ [N]. Since the forgery satisfies Sig.Verify(mvk

i∗ ,UID‖Ui∗‖F ∗‖vki∗ , σ ∗
vki∗ ) = 1, BSig outputs (UID‖Ui∗

‖F ∗‖vki∗ , σ ∗
vki∗ ) as its message-forgery pair in the security

game for the standard signature scheme.

Case 2: b = 0 BSig guesses that AMA will produce a Type
II forgery:
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For each authority i ∈ [N], BSig generates Sig.Setup
(1λ) → (mski ,mvki ) and sets MSKi = mski and MVKi =
mvki . BSig forwards mvki of all the authorities together with
{mski} for a specified set S = {i : i ∈ [N]\i∗} of corrupted
authorities toAMA. BSig chooses a random value q∗ between
1 and Q(λ) as the index of MAFS’s signing queries
which the challenge verification key will be positioned on.
We use numkeys to denote the number of signing keys
that has been generated. We initialize numkeys= 0. As
before, BSig maintains a dictionary indexed by the tuples

(UID, i∗, Uj
i∗, F ), whose entries are signing keys that are

generated by the authority i∗ for the user UID with property
U

j
i∗ and policy function F . BSig answers the queries issued

by AMA as follows:

– Okey(UID, i∗, Uj
i∗ , F ) :

– If there exists an entry for tuple (UID, i∗,
U

j
i∗, F ) in the dictionary, with value Chal,

abort;

– If there exists an entry for tuple (UID, i∗,
U

j
i∗, F ) in the dictionary and its value is

not Chal, then output the corresponding value

K
UID,U

j

i∗
i∗,F .

– Otherwise, generate (skj , vkj ) ← Sig.Setup
(1λ) and σ

vk
j

i∗
← Sig.Sign(mski∗ ,UID‖Ui∗

j‖F‖vkj ). Set K
UID,U

j

i∗
i∗,F = (skj , c

UID,U
j

i∗
i∗,F )

where c
UID,U

j

i∗
i∗,F = (vkj , σvk

j

i∗
,UID, U

j
i∗ , F ),

add it to the dictionary, and output it.

– Osign({UID, i∗, Ui∗ , F }, {KUID,Ui

i,F }i∈[N]\i∗ , m) :
– If there exists an entry for tuple

{UID, i∗, Ui∗, F } in the dictionary, namely the
key K

UID,Ui∗
i∗,F , then it runs (F ({(i, Ui)}i∈[N],

m), σ ) ← Sign({KUID,Ui

i,F }i∈[N], m) and
outputs the result.

– If there is no {UID, i∗, Ui∗, F } entry in the dic-
tionary, and numkeys = q∗, then BSig

generates a new key pair of signature scheme,
(ski∗ , vki∗) ← Sig.Setup(1λ), signs
UID‖Ui∗‖F‖vki∗ under mski∗ : σvki∗ ←
Sig.Sign(mski∗ ,UID‖Ui∗‖F‖vki∗). BSig

sets K
UID,Ui∗
i∗,F := (ski∗ , c

UID,Ui∗
i∗,F ) where

c
UID,Ui∗
i∗,F = (vki∗ , σvki∗ ,UID, Ui∗, F ), and
adds it to the dictionary. For each i ∈ [N],
it computes σi ← Sig.Sign(ski , m)

and m∗ = F({(i, Ui)}i∈[N], m). Set
σ = (m, {cUID,Ui

i,F }i∈[N], {σi}i∈[N]), then output
(m∗, σ ). numkeys is then incremented.

– If there is no {UID, i∗, Ui∗ , F } entry in the
dictionary and numkeys = q∗, or if the
{UID, i∗, Ui∗ , F } entry in the dictionary is
set to Chal, then BSig sets vki∗ := vkSig,
signs UID‖Ui∗‖F‖vkSig under mski∗ :
σvki∗ ← Sig.Sign(mski∗,UID‖Ui∗‖F‖vkSig),
and queries its oracle for a signature of
m under vkSig, σi∗ ← ORegsig(m). Set

c
UID,Ui∗
i∗,F = (vki∗ , σvki∗ ,UID, Ui∗ , F ). For each

i ∈ [N]\i∗ it then runs σi ← Sig.Sign(ski , m)

and m∗ = F({(i, Ui)}i∈[N], m). Set
σ = (m, {cUID,Ui

i,F }i∈[N], {σi}i∈[N]), then output
(m∗, σ ). If there is no {UID, i∗, Ui∗, F } entry
in the dictionary, BSig sets it to Chal. And
numkeys is then incremented.

If BSig does not abort, AMA will output a signature(
m∗, σ ∗ = (m̃, {cUID,Ui∗

i∗,F ∗ , σ ∗
i∗}, {cUID,Ui

i,F ∗ , σ ∗
i }i∈[N]\i∗)

)
wh-

ere c
UID,Ui

i,F ∗ = (vki , σvki
,UID, Ui, F

∗) for every i ∈ [N].
BSig outputs (m̃, σ ∗

i∗) as its forgery for the standard signature
scheme under vkSig.

We will now argue that if AMA forges in the MAFS
scheme with non-negligible probability then BSig wins
the unforgeability game for the standard signature scheme
with non-negligible probability. We note that as long as
AMA doesn’t query the Okey oracle for the secret key
corresponding to the embedded vkSig challenge, then BSig

perfectly simulates the Okey and Osign oracle.

Now, if AMA produces a Type I forgery, then this
forgery must consist of a signature on a new message
UID‖Ui∗‖F ∗‖vki∗ that was not ever signed under the
i∗ authority’s master verification key mvki∗ during the
queries of AMA to both the oracle Okey and Osign, which
means that AMA produces a forgery on a new message
UID‖Ui∗‖F ∗‖vki∗ that BSig did not query to his signature
oracle, which yields a forgery for the standard signature
scheme.

If AMA produces a Type II forgery, by definition the
corresponding UID‖Ui∗‖F ∗‖vki∗ should already have been
signed under the i∗ authority’s master verification keymvki∗
during the queries of AMA to both the oracle Okey and
Osign. We declare that the tuple (UID, i∗, Ui∗, F ∗) cannot
be queried to Okey by AMA, since if it is then given the
responded signing key, producing a signature under this
signing key is not a valid forgery in the MAFS scheme.
Therefore, the tuple (UID, i∗, Ui∗, F ∗) must then have
been issued as a query to Osign. Namely, the verification
key vki∗ must be freshly generated for a query of form
Osign({UID, i∗, Ui∗, F ∗}, {KUID,Ui

i,F ∗ }i∈[N]\i∗ , m) for which no
entry under index (UID, i∗, Ui∗, F ∗) previously existed, and
then the pair UID‖Ui∗‖F ∗‖vki∗ was signed under the master
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signing key of identity i∗. Note that ifAMA produces a Type
II forgery and BSig correctly guessed q∗ where his challenge
is embedded in as well as BSig does not abort, the forgery
produced by AMA must consist of a signature on a new
message m̃ under vkSig, for a m̃ that BSig has not queried
from his own signing oracle, and therefore such a signature
also constitutes a forgery for the standard signature scheme.

We note that, if BSig does abort, it only can occur when
BSig did not guess the correct q∗, since another possible
condition of abort occurrence is when AMA made a query
as Okey(UID, i∗, Ui∗ , F ∗), which is not allowed since if
the adversary has queried the Okey(UID, i∗, Ui∗ , F ∗), no
message in the range of F ∗ would be considered a forgery
in the MAFS game.

Thus, if AMA produces a forgery in MAFS scheme with
non-negligible probability 1

Poly(λ)
, then BSig successfully

forges in the underlying signature scheme with non-
negligible probability 1

2Q(λ)Poly(λ)
, which contradicts with

the assumption that Sig is existentially unforgeable. We
conclude that the MAFS scheme as specified above is
unforgeable as defined in Section 4.

5.2 Function-private MAFS from SNARKs

While the construction of MAFS above does not provide
function privacy property, in this section we show how to
obtain a MAFS scheme satisfying function privacy in the
common reference string (CRS) model by employing the
building blocks of a FS without function privacy guarantee
and a succinct non-interactive argument of knowledge
(SNARK). In the CRS model there is an additional setup
algorithm, which takes as input the security parameter and
outputs the CRS for the system.

As mentioned in the Remark 1, we considered the policy
function F consisting of a predicate Predic which is to indi-
cate the set of properties are accepted or not, and a determin-
istic function f which is to work on the input message. The
functionality of policy function F({(id, Uid)}(id,Uid )∈�, m)

is first to check Predic({(id, Uid)}(id,Uid )∈�) = 1, if it is
true then output f (m); else output⊥. In this section, we rep-
resent the policy function F as Predic‖f , which means for
input ({(id, Uid)}(id,Uid )∈�, m), Predic‖f firstly compute
Predic({(id, Uid)}(id,Uid )∈�), if the predicate circuit accepts
then output f (m), otherwise output ⊥.

Let Sig = (Sig.Setup,Sig.Sign,Sig.Verify) be a sig-
nature scheme that is existentially unforgeable under
chosen message attacks, FS = (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify) be a FS scheme satisfying the unforge-
ability but not function privacy, and
SNARK=

(
Gen,Prove,Verify,S = (Scrs,SProof),E = (E1, 2)

)

be a zero knowledge (ZK) SNARK system for the following
NP language L:

L = {(M, {mvk}i∈[N])|for ∀i ∈ [N], ∃σi s.t .

FS.Verify(mvki , M, σi) = 1}.

By using Sig, FS and SNARK we construct a new MAFS
scheme as follows, which also satisfies function privacy.

– Setup(1λ) :
– Choose a CRS for the ZK-SNARK: crs ←

SNARK.Gen(1λ).

– ASetup(i, 1λ) :
– Authority i ∈ [N] samples a pair of keys for

Sig: (ski , vki ) ← Sig.Setup(1λ).
– Set the master secret key MSKi = ski , and the

master verification key MVKi = vki .

– KeyGen(MSKi ,UID, U,Predic‖f ) :
– Parse MSKi = ski and sample a master secret

and verification key for the functional signa-
ture scheme FS.Setup(1λ) → (mski ,mvki ).

– Compute ηi ←
Sig.Sign(ski ,UID‖U‖Predic‖mvki ) and
sk

f
i ← FS.KeyGen(mski , f ).

– Create the certificate c
UID,U
i,Predic =

(ηi,UID, U,Predic,mvki ).
– Set K

UID,U
i,Predic‖f = (sk

f
i , c

UID,U
i,Predic) and output a

key K
UID,U
i,Predic‖f .

– Sign(crs, {KUID,Ui

i,Predic‖f }i∈[N], m) :
– Parse K

UID,Ui

i,Predic‖f = (sk
f
i , c

UID,Ui

i,Predic) where

c
UID,Ui

i,Predic = (ηi,UID, U,Predic,mvki ).
– For all i ∈ [N] if UID are the same

and Predic({(i, Ui)}i∈[N]) = 1, then run

(f (m), σi) → FS.Sign(sk
f
i , m).

– Run πi ←
SNARK.Prove

(
(f (m), {mvki}i∈[N]), {σi}i∈[N], crs

)
,

a ZK-SNARK that (f (m), {mvki}i∈[N]) ∈ L,
where L is defined as above.

– Set m∗ = f (m) and σ = ({cUID,Ui

i,Predic}i∈[N], π).
– Output (m∗, σ ).

– Verify(crs, {MVKi}i∈[N], m∗, σ ) :
– ParseMVKi = vki and σ = ({cUID,Ui

i,Predic}i∈[N], π)

where c
UID,Ui

i,Predic = (ηi,UID, U,Predic,mvki ),
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and perform the following checks. If all of the
checks pass output 1; otherwise output 0.

1. UID are the same and
Predic({(i, Ui)}i∈[N]) = 1;

2. Sig.Verify(vki ,UID‖U‖Predic‖mvki , ηi) =
1for all i ∈ [N];

3. SNARK.Verify(crs, ({mvki}i∈[N], m∗), π) =
1.

Theorem 4 Assume the existence of functional signature
scheme FS supporting the class F of polynomial-sized
circuits that satisfies unforgeability but not function privacy,
Sig is an existentially unforgeable signature scheme, and
SNARK be an adaptive zero-knowledge SNARK system for
NP. Then, there exists a MAFS scheme as specified above,
which satisfies both the unforgeability (Definition 4) and
function privacy (Definition 5).

Proof We first prove that our scheme satisfies unforgeabil-
ity. Let us fix a PPT adversary AMA. We will use AMA

to construct an adversary B such that, if AMA wins in the
unforgeability game for multi-authority functional signa-
tures with non-negligible probability, then B either breaks
the underlying signature scheme or functional signature
scheme, which are assumed to be secure.

B interacts with AMA, playing the role of the challenger
in the security game for the multi-authority functional
signature scheme. B generates (crs, trap) ← E1(1λ),
a simulated CRS for the ZK-SNARK, together with
a trapdoor, and forwards crs to AMA as the CRS.
B also must simulate the Okey and Osign oracles. B
flips a coin b, indicating his guess for the type of
forgery AMA will produce, and places his challenge
accordingly. Since B behaves almost the same as what
he does in Case 1 and Case 2 of the proof in
Theorem 3. We omit the details here. Eventually AMA

outputs a forgery
(
m∗, σ ∗ = ({cUID,Ui

i,Predic∗}i∈[N], π∗)
)
where

c
UID,Ui

i,Predic∗ = (η∗
i ,UID, Ui,Pre-dic∗,mvki ) such that:

– π∗ is a valid proof the statement ({mvki}i∈[N], m∗) ∈ L

under CRS;
– For each i ∈ S̄, η∗

i is a valid signature of
UID‖Ui‖Pre-dic∗‖mvki under vki ;

– AMA has not sent a query of form(
{UID, i, Ui,Predic∗‖f̃ }i∈S̄ , {KUID,Ui

i,Predic∗‖f̃ }i∈S, m̃
)

to

the signing oracle Osign for any f̃ and m̃ such that
f̃ (m̃) = m∗.

– AMA has not sent queries (UID, i, Ui,Predic∗‖f̃ ) for
all i ∈ S̄, to the oracle Okey such that the user UID’s

property set {(i, Ui)}i∈[N] is accepted by Predic∗ and
for any f̃ that has m∗ in its range.

In Case 1, B finally outputs (UID‖Ui∗‖
Predic∗‖mvki∗ , η∗

i∗) as its message-forgery pair for the
standard signature scheme. Whereas, in Case 2, B
runs the extractor E2(crs, trap, (m∗, {mvki}i∈[N]), π∗)
to recover a witness w = {σ ∗

i }i∈[N] such that
FS.Verify(mvki , m

∗, σ ∗
i ) = 1 for all i ∈ [N]. B then outputs

(m∗, σ ∗
i∗) as a forgery for the FS scheme under mvkFS.

We will now argue that if AMA forges the MAFS scheme
with non-negligible probability, then B either wins the
unforgeability game for the standard signature scheme or
the functional signature with non-negligible probability.

Hybrid 0 The real MAFS challenge experiment. Namely,
the CRS is generated in the honest manner crs ←
SNARK.Gen(1λ). Let Forge0 denote the probability of the
adversary producing a valid forgery in the MAFS scheme in
this game.

Hybrid 1 The same experiment as Hybrid 0, except that
the CRS is generated using the extractor, (crs, trap) ←
E1(1λ). Let Forge1 denote the probability of the adversary
producing a valid forgery in a MAFS scheme in this
game. Following directly from the fact that the CRS
values generated via the standard algorithm Gen and those
generated by the extractor algorithm E1 are statistically
close, we have Forge1 − Forge0 ≤ negl(λ).

Hybrid 2 The same experiment as Hybrid 1. And at
the end we apply the ZK-SNARK extraction algorithm
on the adversary’s forgery σ ∗ = ({cUID,Ui

i,Predic∗}i∈[N], π∗)
(on message m∗) in the MAFS scheme: i.e.,
E2(crs, trap, (m∗, {mvki}i∈[N]), π∗) → {σ ∗

i }i∈[N]. Let
Forge2 denote the probability that σ ∗

i∗ is a valid signature
in the underlying FS scheme on a message m∗. Following
directly from the extraction property of the ZK-SNARK
system, we have Forge2 − Forge1 ≤ negl(λ).

Since Forge2 is precisely the probability that the
adversary B constructed above produces a successful
forgery in the unforgeability game for FS, due to the
unforgeability of FS, we have Forge2 ≤ negl(λ).

To prove that our scheme satisfies function privacy, we
show that if there exists a PPT adversary Apriv wining
the function privacy game for MAFS with non-negligible
advantage, then there exists an PPT adversary breaking
the zero knowledge security game of the ZK-SNARK.
More specifically, consider the following two hybrid
games:
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Hybrid 0 The real function privacy game. Namely, the CRS
for the ZK-SNARK system is honestly generated crs ←
SNARK.Gen(1λ). To generate the challenge signature on
message mb for a random bit b ∈ {0, 1}, the challenger
first generates a signature on mb under the underlying
FS scheme: (fb(mb), σi) → FS.Sign(sk

fb

i , mb) for each
i ∈ [N] and then honestly generates a proof π ←
SNARK.Prove

(
(fb(mb), {mvki}i∈[N]), {σi}i∈[N], crs

)
.

Hybrid 1 The same game as Hybrid 0 except that the
proof in the challenge signature is generated in the
simulated manner. Namely, the CRS is generated using
the simulator algorithm (crs, trap) ← Scrs(1λ). The
challenger then uses the simulator to generate the proof
π ← SProof((crs, trap), (m∗, {mvki}i∈[N])), where m∗ =
f0(m0) = f1(m1).

Following directly from the zero knowledge property
of the ZK-SNARK system, the difference between the
advantage of the adversary Apriv in guessing the bit b in
Hybrid 0 and Hybrid 1 is negligible. Note that the view
of Apriv in Hybrid 1 is independent with the bit b, hence
any PPT adversary cannot correctly guess the bit b with
non-negligible advantage.

6 Conclusion

The emergence of the IoT, has led to millions of sensors and
smart devices sending sensitive data across communication
networks. Thus, it is of utmost importance to address the
challenge of guaranteeing the integrity and authentication
of the transmitted information. To achieve that we propose
a generalized signature scheme with a fine grained access
control, that can provide significant advantages to the
digital world, in application settings where the authenticity
of shared information is crucial e.g., smart healthcare,
smart homes, smart cities. In this paper, we introduce
the definition of multi-authority functional signatures
(MAFSs) for general policy functions, and provide a general
transformation from a standard signature scheme to aMAFS
scheme satisfying unforgeability property but not function
privacy. Given a non-function-private functional signature
and a SNARK we provide a way to build a function private
MAFS scheme.

Our MAFS can properly solve the problem we depicted
in the IoT related delivery operation world and successfully
provides both businesses and customers greater visibility
and trackability of their products and parcels than ever
before. In particular, by using our MAFS the records of all
transactions during the en-route of delivery is able to be kept
and renewed. Moreover, we allow the multiple authorities to
be involved in the execution of the transactions, meanwhile
ensuring that the users are able to verify all the transactions

occurred in the network. We believe our MAFS can be
applied to other IoT related application scenarios.
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Appendix A: Signature scheme

Definition 7 A signature scheme with message space
M(λ), signature key space SK(λ) and verification
key space VK(λ) consists of the PPT algorithms
(SIG.Setup,SIG.Sign,SIG.Verify):

– Key generation. SIG.Setup is a randomized algorithm
that takes as input the security parameter 1λ and outputs
the signing key sk ∈ SK and the verification key
vk ∈ VK.

– Signature generation. SIG.Sign takes as input the
signing key sk ∈ SK and a message m ∈ M and
outputs a signature σ .

– Verification. SIG.Verify takes as input a verification key
vk ∈ VK, a message m ∈ M and a signature σ and
outputs either 0 or 1.

Correctness For all λ ∈ N, (vk, sk) ← SIG.Setup(1λ),
messages m ∈ M(λ), we require that

SIG.Verify(vk, m,SIG.Sign(sk, m)) = 1.

We say that a signature scheme SIG =
(SIG.Setup,SIG.Sign,SIG.Verify) is existentially
unforgeable under adaptively chosen message attacks if

Pr[Expuf-cma
SIG,A(λ) = 1] ≤ negl(λ)

for some negligible function negl() and for all PPT attackers
A, where Expuf-cma

SIG,A(λ) is the following experiment with the
scheme SIG and an attacker A:

1. (vk, sk) ← SIG.Setup(1λ).
2. (m∗, σ ∗) ← ASign(sk,·)(1λ, vk).

If SIG.Verify(vk, m∗, σ ∗) = 1 and m∗ was not queried
to the Sign(sk, ·) oracle, then return 1, else return 0.

Appendix B: Succinct Non-Interactive
Arguments (SNARGs)

We employ the definition of SNARGs in [2].
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Definition 8 � = (Gen,Prove,Verify) is a succinct non-
intera- ctive argument for a language L ∈ NP with witness
relation R if it satisfies the following properties:

– Completeness: For all x, w such that R(x, w) =
1, and for all strings crs ← Gen(1k),
Verify(crs, x,Prove(x, w, crs)) = 1.

– Adaptive Soundness: There exists a negligible function
μ(k), such that, for all PPT adversaries A, if crs ←
Gen(1k) is sampled uniformly at random, then the
probability that A(crs) will output a pair (x, π) such
that x /∈ L and yet Verify(crs, x, π) = 1, is at most
μ(k).

– Succinctness: There exists an universal polynomial
p(k) that does not depend on the relation R, such
that ∀x, w s.tR(x, w) = 1, crs ← Gen(1k), π ←
Prove(x, w, crs),

|π | ≤ p(k + logR)

where R denotes the runtime of the relation associated
with language L.

Definition 9 A SNARG � = (Gen,Prove,Verify) is a
succinct non-interactive argument of knowledge(SNARK)
for a languageL ∈ NPwith witness relationR if there exists
a negligible function μ(·) such that, for all PPT provers P ∗,
there exists a PPT algorithm EP ∗ = (E1

P ∗ ,E2
P ∗) such that

for every adversary A,

|Pr[A(crs) → 1 |crs ← Gen(1k)] −
Pr[A(crs) → 1|(crs, trap) ← E1

P ∗ (1k)]| = μ(k),

and,

Pr[P ∗(crs) → (x, π) and E2
P ∗ (crs, trap, x, π) → w∗

s.t . Verify(crs, x, π) → 1 and (x, w∗) /∈ R] = μ(k).

where the probabilities are taken over (crs, trap) ←
E1

P ∗(1k), and over the random coin tosses of the extractor
algorithm E2

P ∗ .

Definition 10 A SNARK � = (Gen,Prove,Verify) is a
zero-knowledge SNARK for a language L ∈ NP with

witness relation R if there exist PPT algorithms S =
(Scrs,SProof) satisfying the following property:

– Adaptive Zero-Knowledge: For all PPT adversaries A,

|Pr[ExpA(k) → 1] − Pr[ExpS
A(k) → 1]| ≤ μ(k),

where the experiments ExpA(k) and ExpS
A(k) are

defined as follows:

where S′(crs, trap, x, w) = SProof(crs, trap, x).
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