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Abstract

To realize feasible band structure engineering and hence enhanced luminescence efficiency, InGaNBi is an attractive
alloy which may be exploited in photonic devices of visible light and mid-infrared. In present study, the structural,
electronic properties such as bandgap, spin-orbit splitting energy, and substrate strain of InGaNBi versus In and Bi
compositions are studied by using first-principles calculations. The lattice parameters increase almost linearly with
increasing In and Bi compositions. By bismuth doping, the quaternary InGaNBi bandgap could cover a wide energy
range from 3.273 to 0.651 eV for Bi up to 9.375% and In up to 50%, corresponding to the wavelength range from
0.38-1.9 μm. The calculated spin-orbit splitting energy are about 0.220 eV for 3.125%, 0.360 eV for 6.25%, and 0.600 eV
for 9.375% Bi, respectively. We have also shown the strain of InGaNBi on GaN; it indicates that through adjusting In and
Bi compositions, InGaNBi can be designed on GaN with an acceptable strain.
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Introduction
In recent years, wurtzite (WZ) InxGa1−xN alloys and
InGaN/GaN quantum wells (QWs) have aroused wide
attention due to their large potential for developing solar
cells, high-efficiency light emitting diodes (LEDs), and
laser diodes (LDs) [1–10]. The commonly used [0001]-
oriented InxGa1−xN/GaN QWs suffer an intense built-in
electric field induced by biaxial compressive stress of the
InxGa1−xN layer [11], which gives rise to the decrease in
QW emission energy and oscillator strength of electron-
hole pairs. Besides, there exists a high-density of geo-
metric defects in InxGa1−xN alloys, including stacking
faults and threading dislocations (TDs) [12]; these TDs
have a large correlation with non-radiative recombination
centers. Defects, electron leakage, and Auger recombi-
nation are the three sources for the efficiency droop of
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InxGa1−xN LEDs, of which the Auger recombination is
the principal cause [13].
Similarly, for GaAs-based infrared diodes, it has already

been proposed that bismuth alloying is an effective
method to decrease bandgap (Eg) as well as enhance spin-
orbit (SO) splitting to achieve the suppression of Auger
recombination process [14]. The largest group V element
of bismuth reveals attractive effects on physical properties
of bismide alloys. The changes in the band structure of
bismide alloys have been investigated for different ternary
alloymaterials both experimentally and theoretically, such
as AlNBi [15], GaNBi [16, 17], GaSbBi [18, 19], InPBi
[20, 21], and InSbBi [19, 22–24]. The bandgap is modified
mainly by the large Bi atom-induced strain at high con-
centration in InPBi. The incorporation of Bi perturbs the
valence bands (VBs) due to the interaction of Bi impurity
states with heavy/light hole bands and spin-orbit split off
bands [21]. More recently, quaternary bismide alloys (for
example, GaAsNBi [25–27], InGaAsBi [28, 29], GaAsPBi
[30]) have also garnered extensive attention. The local dis-
tortions around P and Bi atoms significantly contribute
to the bandgap modification of GaAsPBi. A composi-
tion requirement for GaAs1−x−yPyBix to achieve lower
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Auger recombination ratio than GaAs was obtained [30].
Combining bismuth and other III or V atom increases
the scope of band structure engineering, including con-
trol of bandgap, spin-orbit splitting, conduction (CB) and
valence band offsets, and strain [25]. Therefore, it is of sig-
nificant interest to describe the effect of Bi substitution
on the [0001] InxGa1−xN/GaN, tuning the structural and
electronic properties and hence the luminescence effi-
ciency. In present study, using first-principles calculations
[31], the structural, electronic properties such as bandgap,
spin-orbit splitting energy (�SO), and substrate strain of
InGaNBi versus In and Bi compositions are studied. Con-
sidering the large lattice mismatch and poor quality for
In content higher than 55–60% in InGaN sample [32] as
well as the low solubility of bismuth in diluted-bismide
alloys, the concentrations of In and Bi are controlled
up to 50% and 9.375%, respectively. The paper is orga-
nized as follows. In the “Methods” section, we present
the detailed computational methods. The structural, elec-
tronic properties and substrate strain are provided in the
“Results and Discussion” section. Finally, a short summary
is summarized.

Methods
Our theoretical calculations are based on the density func-
tional theory (DFT) [31] as implemented in the VASP
code [33, 34]. In the calculations of structural prop-
erties, the electron-ion and exchange-correlation inter-
actions are treated with the projector augmented wave
method (PAW) [35, 36] and the generalized gradient
approximation (GGA) of the Perdew-Burke-Ernzerhof
(PBE) [37], respectively. The valence-electron configu-
rations for In, Ga, N, and Bi atoms are employed as
4d105s25p1, 3d104s24p1, 2s22p3, and 5d106s26p3, respec-
tively. In order to overcome the underestimation of PBE
potential on the bandgap of the electronic properties, we
employ themodified Becke-Johnson exchange potential in
combination with local density approximation correlation
(MBJLDA) [38]. Bismuth has a large spin-orbit coupling
(SOC) effect, and therefore, SOC is included in the elec-
tronic calculations. In all the computations, the structures
are relaxed until the forces on each atom become less
than 0.02 eV/Å and maximum energy change is of the
order of 10−4 eV. A plane-wave cutoff of 450 eV is set
to ensure the accuracy of the calculations. A Monkhorst-
Pack of 4 × 4 × 4 k-point mesh is adopted in the first
Brillouin zone.

Results and Discussion
Structural Properties
The supercells consist of 4 × 2 × 2 of WZ-GaN primitive
cell, including 64 atoms. We investigate 36 compositions
of InyGa1−yN1−xBix with 0 ≤ x ≤ 0.09375, 0 ≤ y ≤
0.5 based on recent experiments where InGaN sample

exhibits large lattice mismatch and poor quality for In
content higher than 55–60% [32] as well as the low solu-
bility of bismuth in diluted-bismide alloys. One represen-
tative configuration is considered where In and Bi atoms
are evenly spread out.We have summarized the calculated
lattice parameters of ternary InyGa1−yN and quaternary
InyGa1−yN1−xBix alloys together with other theoretical
and experimental data in Fig. 1. For pristine GaN, the lat-
tice parameters a = 3.211, c = 5.235 Å, which are in
good agreement with other theoretical calculations a =
3.155, 3.22 Å, c = 5.144, 5.24 Å [39–41] and experimental
data 3.19 Å for a, 5.19 Å for c [42]. The lattice parameters
(a, c) of InyGa1−yN rise when In composition is increased
and show a nearly linear variation, as shown in Fig. 1a. The
present calculations predict a = 3.304 Å, c = 5.365 Å for
In0.25GaN and a = 3.397 Å, c = 5.509 Å for In0.5GaN,
all of which agree well with previous results of a = 3.33
Å, c = 5.39 Å for In0.25GaN and a = 3.43, 3.485 Å, c =
5.55, 5.488 Å for In0.5GaN [39, 40, 43, 44]. In the case of
quaternary alloys InyGa1−yN1−xBix, as far as we are con-
cerned, there are no experimental and theoretical values
for structural properties. In Fig. 1b, the obtained lattice
parameters also increase almost linearly with increasing
In and Bi compositions. Because of larger ionic radii of In
and Bi than Ga and N atoms, the substitution of In over
Ga and Bi over N leads enhanced lattice parameters of
InGaNBi.
In and Bi incorporation will break the crystal period-

icity and introduce geometrical deformation in a heav-
ily alloyed structure. We choose In0.25GaNBi0.0625 as an
example for four chemical bonds statistics, as shown in
Fig. 2; the average lengths of the Ga-N, In-N, Ga-Bi, and
In-Bi bonds are 2.009, 2.195, 2.592, and 2.704 Å, respec-
tively. Note that the Ga-N bond length in pristine bulk
GaN is 1.970 Å. The In-N bond length is larger than that of
Ga-N, which indicates In atom markedly pushes N atom
away. Similarly, the larger bond length of Ga-Bi than Ga-N
means Bi atom pushes Ga atom away, finding good con-
sistency with the order of covalent radii of Ga (1.22 Å), In
(1.42 Å), N (0.71 Å), and Bi (1.48 Å) [45]. Other config-
urations display the similar behavior. Lattice deformation
and disparity in electronegativity between the host and
dopant have considerable effect on electronic and optical
properties.

Electronic Properties
It has been shown that the functional or correction poten-
tials and SOC effect greatly influence the predicted accu-
racy of III-V alloy bandgap energy, valence band, and
spin-orbit splitting energy. Thus, we validate our results
using MBJLDA potential and compare with other theo-
retical calculations and experiments. Figure 3 is a plot of
bandgap energy versus In composition in InyGa1−yN as
well as a fit to the data. Some bandgap values obtained by
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Fig. 1 The lattice parameters for a ternary alloys InyGa1−yN, with 0 ≤ y ≤ 0.5 and b quaternary alloys InyGa1−yN1−xBix , with 0 ≤ x ≤ 0.09375,
0 ≤ y ≤ 0.5. For comparison, we add some other calculations and experimental data from Ref. [39–44] in Fig. 1a. The solid line represents a and
dashed line is c

experiments, theoretical HSE06, mBJ, and LMTO-CPA-
MBJ functionals are also plotted. The predicted bandgap
of GaN is 3.273 eV, which is in good consistency with
present calculations and experiments, 3.33 eV bymBJ [40],
3.261, 3.23 eV by HSE06 [39, 46], and 3.40–3.50 eV by
experiments [47–49]. As observed in InyGa1−yN, our DFT
results confirm that Eg values of InyGa1−yN continuously
decrease as y is increased from 0 to 50%. Eg smoothly
decreases from 3.273 to 1.546 eV. This compares well with
those from theoretical (HSE06, mBJ potentials)[39, 40, 46]
and experimental results [50, 51].
The contour plot for the bandgap of quaternary

InyGa1−yN1−xBix alloys is shown in Fig. 4. The bandgaps

Fig. 2 Histogram of bond length in In0.25GaNBi0.0625. The values in
panel indicate the average lengths of the four types of bond

of the quaternary alloys display a non-linear trend as a
function of composition, which decreases with increasing
In and Bi contents. From the results, we find that InGaNBi
bandgap could cover a wide energy range from 3.273 to
0.651 eV for Bi up to 9.375% and In up to 50%, corre-
sponding to the wavelength range from 0.38 to 1.9 μm,

Fig. 3 Predicted bandgap energy (Eg , red solid line) as a function of In
composition in InyGa1−yN as well as a fit to the data (black dashed
line). Other theoretical [39, 40, 46] and experimental [47–51] results
are also plotted
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Fig. 4 Contour plot of the bandgap values for InyGa1−yN1−xBix alloys,
as a function of Bi(x) and In(y) compositions

indicating their potential optoelectronic applications in
visible light and mid-infrared scope.
Compared with InGaN, the incorporation of Bi induces

a sharper bandgap reduction. But beyond that, a sig-
nificant increase in �SO is obtained due to the strong
SOC effect of bismuth where the advanced interaction
between the electron spin and orbital angular momen-
tum decreases the SO band energy. Furthermore, the
improved valence-band edge arised from the valence
band anti-crossing effect of bismide alloys also largely
enhances �SO [28]. Our calculated �SO values are about
0.220 eV for 3.125%, 0.360 eV for 6.25%, and 0.600 eV for
9.375% Bi, respectively, which has an insignificant vari-
ation with indium fraction. Previous investigations have
demonstrated that different Bi arrangements are of great
influence on band structures of bismide alloys, including
spin-orbit splitting energy [21, 52]. The present results
display that the In0.5GaNBi0.09375 bandgap value (0.651
eV) is very close to that of �SO (0.577 eV). Since InGaN
sample exhibits large lattice mismatch and poor quality
for In content higher than 55–60% [32] as well as the low
solubility of bismuth in diluted-bismide alloys, we set the
contents of In up to 50% and Bi up to 9.375%. We believe
that a higher indium or bismuth content will achieve
�SO > Eg in quaternary InGaNBi sample to enhance the
efficiency of InGaNBi-based LEDs and LDs.
The projected band structures and total density

of states (TDOS) of pristine GaN, In0.25GaN, and
In0.25GaNBi0.03125 alloys are presented in Fig. 5. The con-
tributions of In and Bi are highlighted by color: blue
(red) corresponds to the state originating from In (Bi).

The In substitution in In0.25GaN has great influence on
both the conduction band and valence band, where the
conduction band minimum (CBM) is pushed to lower
energies regarding the Fermi level and reflect narrower
energy gap. Unlike bismuth that introduces the defect
band in the forbidden gap near the Fermi level, the In
atoms show a hybridization with the deep level of the VB.
For quaternary alloy In0.25GaNBi0.03125, it can be clearly
seen that the reduction of bandgap results from both
upward valence band maximum (VBM) and downward
CBM, and CBM changes more significantly compared to
In0.25GaN, which is attributed to larger compressive strain
in InGaNBi from the addition of bismuth. The defect level
highlighted by red color has a strong interaction with the
VB edge, which is derived from the hybridization mainly
between Bi and the near Ga atoms. The TDOS in Fig. 5e
also reflects the local defect level at −1.0 to −0.5 eV.

Strain of InGaNBi on GaN
The [0001]-oriented InyGa1−yN/GaN strained quantum
wells are widely adopted in current LED and LD devices,
in which InyGa1−yN layers suffer a biaxial compres-
sive stress. Local compositional fluctuations and different
covalent radii of In and Ga atoms give rise to the strains
in InyGa1−yN layers [53]. Figure 6 shows the strain of
InGaNBi on an GaN substrate. Since indium atom is
larger than gallium atom, bismuth atom is larger than
nitrogen atom; thus, incorporating In and Bi atoms in
InGaNBi induces compressive strain InGaNBi on GaN.
It is shown that in the In content of 50% and Bi con-
tent of 9.375%, InGaNBi is under high 8.5% compres-
sive strain. For In fraction within 6.25% and Bi fraction
within 2.8%, the strain of InGaNBi on GaN is within
1%. That is, through adjusting In and Bi compositions,
InGaNBi can be designed on GaN with an acceptable
strain.

Conclusions
The structural, electronic properties and strain of
InGaNBi on GaN versus In and Bi compositions are
investigated based on density functional theory. The lat-
tice parameters of InGaNBi increase almost linearly with
increasing In and Bi compositions. Since In and Bi atoms
have the larger atomic radius than that of Ga and N atoms,
the In-N and Ga-Bi bond lengths are larger than that of
Ga-N. For electronic properties, we have shown the con-
tour plot for the bandgap of quaternary InyGa1−yN1−xBix
alloys. The quaternary alloys bandgap could cover a wide
energy range from 3.273 to 0.651 eV for Bi up to 9.375%
and In up to 50%, corresponding to the wavelength range
from 0.38 to 1.9 μm. The calculated �SO values are about
0.220 eV for 3.125%, 0.360 eV for 6.25%, and 0.600 eV
for 9.375% Bi, respectively, which has an insignificant
variation with indium fraction. We believe that a higher
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Fig. 5 The projected band structures and their corresponding total density of states (TDOS) of a GaN, b, c In0.25GaN, and d, e In0.25GaNBi0.03125. The
black dashed line represents the Fermi level, which sets to be zero. The relative contributions of In and Bi are highlighted by color: blue (red)
corresponds to the state originating from In (Bi)

indium or bismuth composition will achieve �SO > Eg in
quaternary InGaNBi sample to enhance the efficiency of
InGaNBi-based LEDs and LDs. The band structure anal-
yses show the indium has great influence on both CB
and VB, and bismuth has a strong interaction with the
VB edge. Finally, we investigate the strain of InGaNBi
on GaN. Through adjusting In and Bi compositions,
InGaNBi can be designed on GaN with an acceptable
strain.

Fig. 6 Strain of InGaNBi alloys on GaN substrate at various In (0–0.5) as
a function of Bi fraction. Positive values of strain indicate InGaNBi is
under compressive strain
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