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Road safety: the average male as a norm in vehicle occupant
crash safety assessment
A. Linder a,b and M. Y. Svenssonb

aSwedish National Road and Transport Research Institute, VTI, Gothenburg, Sweden; bDepartment of
Mechanical and Maritime Science, Chalmers University, Gothenburg, Sweden

ABSTRACT
This review addresses how women and men are represented in
regulatory tests conducted to assess adult occupant safety in
vehicles. Injury statistics show that protection in the event of a
crash is lower for females than males. Still, vehicle crash safety
assessment for adult occupants is only using the average sized
male to represent the entire adult population, while the average
sized female is not represented. In order to enable car
manufacturers and road safety regulators to safeguard that
females benefit equally from crash safety measures as males, it is
necessary to develop new dedicated occupant models. These new
models must represent the female part of the population, i.e.
crash test dummies and human body models representing the
average female. New female models would, together with their
male equivalents, make it possible to identify the vehicle
occupant safety systems which provide the best safety features
for both females and males.
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Introduction

Every year approximately 1.35 million people are killed worldwide in road traffic crashes
(WHO 2018). More people die as a result of traffic injuries than HIV/AIDS, tuberculosis
and diarrheal diseases (WHO 2018) together. In addition, up to 50 million people sustain
injuries in traffic of which some will lead to life-long disabilities. Thus, health loss in the
road transport system is a global health concern. Injury statistics are used to identify
potential gaps in terms of protective performance as well as to evaluate any improvements
of recently introduced injury preventing measures.

Vehicle design and technology plays an important role in achieving traffic safety
improvements (European Transport Safety Council, ETSC 2018). A vehicle’s ability of
preventing occupants and surrounding road users from being injured and killed is assessed
in regulatory tests such as the UN Vehicle Regulations (ECER, UNECE 2017) and the US
Federal Motor Vehicle Safety Standards (FMVSS 208 2018; FMVSS 214 2018), as well as
through consumer information tests in various New Car Assessment Programmes
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(NCAPs) and by insurance organizations such as the Insurance Institute for Highway
Safety.

Regulatory tests are conducted to ensure that vehicle structures are robust and that life-
threatening injuries are prevented. Crash testing is performed with crash test dummies
representing vehicle occupants. During the last few decades virtual models of the
human body, also known as human body models (HBMs), have been developed. Incorpor-
ated into the models are details such as the skeleton, organs and muscles of the human
body, which in comparison to mechanical crash test dummies allows for more detailed
assessment of the loadings human body is subjected to in a crash.

The aims of this study were to review how the adult population is represented in vehicle
safety assessment tests, provide an overview of the main differences in average female and
male properties of importance in vehicle crashes, compile road traffic injury statistics in
terms of female and male injury risk and provide recommendations on how to better rep-
resent the whole adult population in vehicle safety assessments.

Method

A review of the models representing the adult population in regulatory and consumer tests
as well as the latest developments within this area was carried out. To identify different
regulations, enquiries were made to the relevant governmental agency in Sweden, the
Swedish Transport Agency as well as the consumer testing organization, Euro NCAP.
The obtained regulations were then verified with a selection of vehicle manufacturers’
safety department and certified crash testing laboratories. Finally, summaries were
made of the development within virtual occupant models throughout the last few
decades and gender differences, of importance in vehicle crashes, as well as any discrepan-
cies in the risk of injury between males and females.

Results

Regulatory and consumer tests

Crash test dummies are used when developing and evaluating the level of crash safety of a
vehicle. Vehicle regulatory test procedures predominantly involve two main sets of tests
worldwide, the ECE regulations No. 16 (R16) (safety belt), No. 94 (R94) and No. 137
(R137) (frontal collision), and No. 95 (R95) and No 135 (R135) (lateral collision)
(UNECE 2017) and tests that only applies in the US, the frontal test FMVSS 208 (2018)
and the side impact test FMVSS 214 (2018). The tests are applied worldwide with
minor modifications. For vehicles to be type approved within the EU/EES areas in
Europe, the technical requirements for vehicles are applied under Directive 2007/46/EC.
The basis of Directive 2007/46/EC is the 1958 Agreement and its 135 Addenda WP29
(UNECE 2017). In Europe, there are five regulatory tests assessing adult occupant
safety in the event of a crash, ECE regulation (R16, R94, R95, R135, R137). In the US,
the FMVSS 208 and FMVSS 214 are applied. Crash test dummies are also used in consu-
mer information tests, such as NCAP tests (Euro NCAP 2017). Both frontal and side
impact regulatory tests are performed at impact severities representing a high risk of
fatal and severe injuries. Injuries such as whiplash injury occur at a lower crash severity,
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typically below 25 km/h (Eichberger et al. 1996; Kullgren et al. 2003). The assessment of
occupant protection in these types of impacts is currently not part of any regulatory tests.

Models for addressing the height and weight range in the population are available for
both frontal and side impact tests. The Hybrid III 50th percentile male (H III 50M) used in
high speed frontal tests has been scaled up to a 95th percentile male and scaled down to the
weight and size of a 5th percentile female, see Table 1. The ECE R137 test describes the
Hybrid III 5th percentile female dummy as follows: ‘The dummy represents the smallest
segment of the adult population and has been derived from scaled data from the Hybrid III
50th Dummy’ (H III 5F). The 5th percentile female is, according to growth curves of the
Swedish population, equivalent to a 12–13-year-old girl (PCPAL 2018). For ECE R16, a
manikin (R16 Manikin) is used to represent an occupant that is the weight of an
average sized male (75.5 kg, pp 68) as well as has the torso shape of a male.

The side impact dummy in ECE R95 should have ‘the dimensions and masses of the
side impact dummy representing a 50th percentile male, without lower arms’. The foot-
note on page 48 states: The dummy corresponds to the specifications of the ES-2
dummy (ES-2). The ECE R135 describes that ‘a WorldSID 50th percentile adult male
dummy’ should be used (WorldSID). In the FMVSS 208 and FMVSS 214, average male
dummies are used in the same manner as in the UNECE tests with the average male
scaled down to a 5th percentile female to represent a small occupant. Thus, the female
part of the adult population is currently not represented in any crash test dummy
models. Hence, an average female dummy model, equivalent to the average male
frontal and the side impact dummies, does not exist.

The same dummy tests as in the UNECE regulation tests are used in the EuroNCAP for
the frontal and side impact tests. The average male dummy BioRID (Davidsson et al. 1998)
can be used to perform an additional optional low severity rear impact test series, but an
average female dummy, equivalent to the BioRID, is not yet available.

Injury statistics

Comparing the risk of injury for males and females, Bose, Segui-Gomez, and Crandall
(2011) showed that females are exposed to a higher injury risk for a range of crash
types. Bose, Segui-Gomez, and Crandall (2011) analysed accident data on fatally or
severely injured belted occupants held on the National Automotive Sampling System
Crashworthiness Data System (NASS CDS) 1998–2008, managed by the US National
Highway Traffic Safety Administration (NHTSA). Injury severity is determined through
the Abbreviated Injury Scale (AIS), an anatomically based, global severity scoring
system classifying each individual injury by body region according to its relative severity
on a 6-point scale (1 = minor and 6 =maximal). The AIS incorporates current medical

Table 1. The mass and height of the 5th and 50th percentile female and 50th and 95th percentile male
(Schneider et al. 1983).
Percentile Sex Stature (cm) Mass (kg)

5th Female 151.1 47.3
50th Female 161.8 62.3
50th Male 175.3 77.3
95th Male 186.9 102.3
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terminology providing an internationally accepted tool for ranking injury severity (AAAM
2019). MAIS is the MaximumAIS, which is the most severe injury that a person can sustain.
The results show that the odds of a belt-restrained female driver sustaining a MAIS 3+ and
MAIS 2+ injury were 47% and 71% higher, respectively, than for a belt-restrained male
driver, when controlled for the effects of age, mass, Body Mass Index, crash scenario,
change of velocity, vehicle body type, number of events and crash direction.

Whiplash injuries

For the injuries studied to date, the most significant difference between male and female
injury risk is found for soft tissue neck injuries, generally referred to as ‘whiplash injuries’.
In Sweden, such injuries account for ∼70% of all injuries leading to disability due to
vehicle crashes (Kullgren et al. 2007). The majority of those experiencing initial whiplash
injury symptoms following a car crash recovered within a few weeks or months of the
crash (The Whiplash Commission 2005). However, 5–10% of these individuals also
experienced permanent disabilities of varying degrees (Nygren 1983; Galasko, Murray,
and Pitcher 1996; The Whiplash Commission 2005). Injury statistics from the mid-
1960s until today show that on average, females are exposed to double the risk of sustain-
ing whiplash injuries than males, ranging from 1.5 to 3 times higher (among others: Kihl-
berg 1969; O’Neill et al. 1972; Otremski et al. 1989; Morris and Thomas 1996; Dolinis
1997; Temming and Zobel 1998; Richter et al. 2000; Chapline et al. 2000; Kullgren et al.
2003; Krafft et al. 2003; Jakobsson, Norin, and Svensson 2004; Storvik et al. 2009; Carsten-
sen et al. 2012).

In fact, certain types of whiplash protection systems have proved to be more effective
for males than females (Kullgren and Krafft 2010; Kullgren, Stigson, and Krafft 2013).
With designs based on what is known as a reactive head restraint, the proportion of per-
manent medical impairment for men was reduced by 70% while simultaneously increased
for females by 13%. These results confirm that the safety performance of different seat
designs varies for male and female occupants.

Average male and female characteristics

Females and males have different anthropometry as shown by Schneider et al. (1983) in
the examples of mass and height of the 5th and 50th percentile female and 50th and
95th percentile male, as found in Table 1.

The mass distribution of the different body parts was found to vary according to gender
(Young et al. 1983; McConville et al. 1980). Furthermore, there are inherent differences
between each sex in terms of geometry, such as shape and form of the torso, for example.

Female and male muscle strength
The dynamic response in the event of a crash may also differ due to differences in the
muscle strength in males and females. Some examples include: the stabilizing torques of
the spinal muscles and the trunk muscles differ between the genders. Jordan et al.
(1999) reported that the maximum isometric strength in a seated position was 20–25%
greater in males during flexion and extension of the head. A study by Vasavada, Li, and
Delp (2001) revealed that maximum neck moments (generated by the strengths of the
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muscles in the neck) were 40–50% lower in females. Greater flexion strength and stiffness
of the upper cervical spine in male human specimens were reported by Nightingale et al.
(2007). Brown et al. 2002 reported greater axial stiffness also for the lumbar spine in males.
Stemper et al. (2010) reported similar findings for the thoracic spine, and also that the
elastic modulus in female specimens was greater than in males. Studies have reported
female-to-male neck strength ratios ranging from 0.8 down to 0.4 (Kumar, Narayan,
and Amell 2001; Peolsson, Oberg, and Hedlund 2001; Chiu, Lam, and Hedley 2002;
Garcés et al. 2002; Vasavada, Li, and Delp 2001).

Female and male dynamic response in a rear impact vehicle crash
It has been reported that the dynamic response of females in rear impact volunteer tests
is somewhat different than in males, such as greater head forward acceleration, greater
(or similar) T1 forward acceleration, more pronounced rebound and larger angular displa-
cements between adjacent vertebrae in females (Szabo et al. 1994; Siegmund et al. 1997;
Hell et al. 1999; Welcher and Szabo 2001; Croft, Haneline, and Freeman 2002;
Mordaka and Gentle 2003; Viano 2003; Ono et al. 2006; Linder et al. 2008; Schick et al.
2008; Carlsson et al. 2011; Carlsson et al. 2012; Sato et al. 2014; Sato et al. 2015).

Female and male differences of the neck influencing the response in a rear impact
Looking closer at the differences in the neck of females and males, for example, several
systematic morphological differences have been found (Stemper, Pintar, and Rao 2011)
between the female and male cervical spines. The morphological, i.e. occupant–related,
characteristics that can influence the response of the cervical spine during automotive
rear impacts was identified as anatomical differences of the cervical spine, head neck
and cervical spine orientation at the time of impact, facet joint orientation and neck
muscle size and orientation (Stemper, Pintar, and Rao 2011). Some examples include: a
smaller circumference relative to the length of the neck, smaller vertebral body size and
20–32% less muscle strength for size matched subjects (Vasavada, Li, and Delp 2001).

Average female and male size and geometrical differences
The EvaRID, a virtual average female dummy model for low severity rear impact testing,
based on the same approach as the design and development of the average male crash test
dummy, the BioRID, was recently developed (Linder et al. 2013; Carlsson et al. 2014). The
numerical models of the rear impact dummy, the BioRID and the average female equiv-
alent, the EvaRID, visualize the main differences between the average sized male and
female, as shown in Figure 1.

Female and male spinal curvature
A further issue that may be of importance in a dynamic event is the difference in spinal
alignment in males and females (Sato et al. 2016), with males displaying a more pro-
nounced curvature of the neck in seated positions. A rear impact simulation study of
Sato et al. (2017) showed larger intervertebral angular displacements in the cervical
spine in female spinal alignment compared to in male. Hence, thresholds for injury criteria
are expected to differ for average male and female models. John et al. (2018) modelled vari-
ations in spinal vertebral geometries that mirror the differences between male and female
cervical spines. They concluded that straighter spine segments sustained greater posterior
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facet joint compression, which may offer an explanation for the higher incidence of whi-
plash-associated disorders among females, who exhibit a straighter cervical spine.

In a simulation study, Yao, Svensson, and Nilsson (2016), reproducing potentially
injurious pressure transients in the neck vertebral canal during whiplash trauma,
showed a trend toward increased pressure magnitudes with female properties, compared
to male properties. Based on a synthesis of literature data, Schmitt et al. (2012) suggested a
20% lower threshold with regard to Neck Injury Criterion for the average female, com-
pared to the male.

Discussion

This study covers a review of injury statistics from road traffic crashes including the risk of
injury of male and female occupants in these crashes, an overview of how the adult popu-
lation is represented in regulatory and consumer tests as well as the main differences
between the average male and female in terms of weight, height, geometry and the
dynamic properties such as muscle strength. The review of the regulations shows that
the adult population is represented by the average sized male, while the average sized
female is excluded from the assessment of the protection of adult vehicle occupants.
Although the overall structure of male and female bodies is similar, certain inherent differ-
ences prevail producing differences between the average of males and females. These
differences have the potential to influence the protective performance of a vehicle as

Figure 1. The low severity virtual rear impact average sized male dummy BioRID (left) and the average
sized female EvaRID (right) (Linder et al. 2013).
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has been shown in a range of crash scenarios (among others Bose, Segui-Gomez, and
Crandall 2011; Kullgren, Stigson, and Krafft 2013).

Adult occupant crash safety is assessed through high speed frontal and side impact tests
(FMVSS 208 2018; UNECE 2017, Euro NCAP 2017) and an optional low severity test in
Euro NCAP (2017). All tests exclusively use the 50th percentile male to represent the
whole adult population. To study the effect on the smallest and largest parts of the popu-
lation, the 50th percentile male has been scaled down to represent the height and weight of
a 5th percentile female and scaled up to a 95th percentile male. According to growth
curves of the Swedish population, the 5th percentile female is equivalent to an average
12–13-year-old girl (PCPAL 2018).

The safety potential of recent developments in the vehicle safety area with regard to pre-
venting crashes from occurring, or largely reducing the energy in any crashes that occur, is
significant. However, it will take time before all vehicles become autonomous and crashes
are eliminated. Fully autonomous driving (automation level 4 or above) will initially likely
only be allowed in less complicated traffic situations, for instance, on motorways as
described by Victor et al. (2017). Only later when this technology has reached a more
mature level will it become available in more complicated traffic environments, such as
inner cities. Swedish injury statistics show that in 2017 only 9% of fatalities and 1% of
severe injuries occurred on the highways (SRA 2018), and this indicates that the major
safety gains that are expected from road vehicle automation will not materialize in the
near future.

In order to identify the best performing occupant safety systems, it would be advan-
tageous to use dummy models representing both parts of the adult population. To initiate
such an approach, an average sized female prototype dummy, the BioRID 50F (Schmitt
et al. 2012) a scaled down version of the BioRID 50M, was developed. To illustrate
some of the geometrical differences between males and females, both models can be
seen seated in the same seat, Figure 2.

Figure 2. The low severity rear impact average sized male dummy BioRID 50M (left) and the average
sized female prototype BioRID 50F (right) seated in the same vehicle seat (Schmitt et al. 2012).
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In the last few decades, finite element HBMs have been developed with a detailed rep-
resentation of the geometries and mechanical properties of the human body structures.
These models typically started out as average sized male models, for example: the Total
HUman Model for Safety (THUMS) (Iwamoto et al. 2002; Iwamoto and Nakahira
2015) and the Global Human Model Consortium (Gayzik et al. 2011; Vavalle 2012).
These models have recently been developed into a small female and a large male
version to represent a wider occupant height and weight range. Although these additional
sizes are important, they are not sufficient or comparable in representing the female part of
the population, to the average male size representing the male part of the population.
Thus, developing average female human models in the same manner as the average
male models still remains. The first step has been made by developing the open source
HBM ViVA model, representing an average female and adapted for low severity rear
impact testing (Östh et al. 2017) and the development of THUMS 50F by Sato et al. (2017).

Kullgren, Stigson, and Krafft (2013) not only showed that seats equipped with reactive
head restraints can provide different levels of protection for females and males. Kullgren,
Stigson, and Krafft (2013) also showed that two different whiplash protection systems, the
Whips and the WIL, provide increased protection for both females and males, Figure 3.

Regulatory tests, as well as consumer evaluation tests, should be able to identify which
vehicles provide the best protection for the whole adult population. In order to identify the
best performing occupant safety systems (which exists as shown by Kullgren, Stigson, and
Krafft 2013), dummy models representing both the female and the male part of the popu-
lation would be needed. This issue has previously been highlighted byMordaka and Gentle
(2003) who stated that the need to revise car testing programmes and regulations, cur-
rently based on the average male, is evident.

Despite the urgent need and ambition for developing a 50th percentile female it has, to
date, never been included in the family of available dummy models for crash testing. In
their work in the early 1980s, Schneider et al. (1983), who defined anthropometric
design specifications for crash test dummies, argued that providing both 50th percentile
male and female dummies would be optimal; still, the 50th percentile female was and
remains omitted. The knowledge required to address both women and men equally

Figure 3. The proportion of drivers sustaining permanent medical impairment in three different seat
categories: WIL and Whips, seats with reactive head restraint and the standard seat from Kullgren,
Stigson, and Krafft (2013).
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well in the assessment of vehicle safety is already available. However, what is lacking in all
new car safety assessment methods is the incorporation of the knowledge obtained into the
development of models of the female part of the population, in the same manner as for the
male part.

Conclusions

Despite injury statistics showing that protection in the event of a crash is not equal for
women and men, the average male represents the adult population in vehicle safety assess-
ments. Development and usage of occupant models representing the female part of the
population, i.e. crash test dummies and HBMs representing the average female for use
in safety assessment tests together with the male equivalent, would make it possible to
assess vehicle occupant safety for both females and males. The knowledge required to
develop HBMs, appropriate for assessing vehicle safety equally well for females as
males, has already been obtained and is ready for use.

In order to enable car manufacturers and road safety regulators to ensure that females
are offered equal benefit from crash safety measures as males, new occupant models must
be developed. It is imperative that the female part of the population is represented by these
new models, i.e. crash test dummies and HBMs representing the average female. New
female models would, together with their male equivalents, make it possible to identify
vehicle occupant safety systems providing the best safety features for both females and
males.

Using occupant models representing both female and male vehicle occupants would
enhance the robustness of current safety assessments and consequently encourage safety
innovations that increase the protection for both the female and the male part of the
population.
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