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Abstract
This paper presents the verification of a generational copying garbage collector for the
CakeML runtime system. The proof is split into an algorithm proof and an implementation
proof. The algorithm proof follows the structure of the informal intuition for the genera-
tional collector’s correctness, namely, a partial collection cycle in a generational collector is
the same as running a full collection on part of the heap, if one views pointers to old data
as non-pointers. We present a pragmatic way of dealing with ML-style mutable state, such
as references and arrays, in the proofs. The development has been fully integrated into the
in-logic bootstrapped CakeML compiler, which now includes command-line arguments that
allow configuration of the generational collector. All proofs were carried out in the HOL4
theorem prover.

Keywords Interactive theorem proving · Formal methods · Garbage collection · Compiler
verification

1 Introduction

High-level programming languages such asML,Haskell, Java, Javascript and Python provide
an abstraction of memory which removes the burden of memory management from the
application programmer. The most common way to implement this memory abstraction is
to use garbage collectors in the language runtimes. The garbage collector is a routine which
is invoked when the memory allocator finds that there is not enough free space to perform
allocation. The collector’s purpose is to produce new free space. It does so by traversing the
data in memory and deleting data that is unreachable from the running application. There
are two classic algorithms: mark-and-sweep collectors mark all live objects and delete the
others; copying collectors copy all live objects to a new heap and then discard the old heap
and its dead objects.

Since garbage collectors are an integral part of programming language implementations,
it is essential that they are performant. As a result, there have been numerous improvements
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464 A. Sandberg Ericsson et al.

to the classic algorithms mentioned above. There are variants of the classic algorithms that
make them incremental (do a bit of garbage collection often), generational (run the collector
only on recent data in the heap), or concurrent (run the collector as a separate thread alongside
the program).

This paper’s topic is the verification of a generational copying collector for the CakeML
compiler and runtime system [18]. The CakeML project has produced a formally verified
compiler for an ML-like language called CakeML. The compiler produces binaries that
include a verified language runtime, with supporting routines such as an arbitrary precision
arithmetic library and a garbage collector. One of the main aims of the CakeML compiler
project is to produce a verified system that is as realistic as possible. This is why we want
the garbage collector to be more than just an implementation of one of the basic algorithms.

Contributions

– To the best of our knowledge, this paper presents the first completed formal verification
of a generational garbage collector. However, it seems that the CertiCoq project [1] is in
the process of verifying a generational garbage collector.

– We present a pragmatic approach to dealing with mutable state, such as ML-style ref-
erences and arrays, in the context of implementation and verification of a generational
garbage collector. Mutable state adds a layer of complexity since generational collectors
need to treat pointers from old data to new data with special care. The CertiCoq project
does not include mutable data, i.e. their setting is simpler than ours in this respect.

– We describe how the generational algorithm can be verified separately from the concrete
implementation. Furthermore, we show how the proof can be structured so that it follows
the intuition of informal explanations of the form: a partial collection cycle in a genera-
tional collector is the same as running a full collection on part of the heap if one views
pointers to old data as non-pointers.

– This paper providesmore detail than anypreviousCakeMLpublication onhowalgorithm-
level proofs can be used to write and verify concrete implementations of garbage
collectors for CakeML, and how these are integrated into the full CakeML compiler
and runtime. The updated in-logic bootstrapped compiler comes with new command-
line arguments that allow configuration of the generational garbage collector.

Differences from Conference Version This paper extends a previous conference paper [4] by
providing more detailed explanations, a new section on timing the new GC, and stronger
theorems about the GC algorithms. Explanations have been expanded in Sects. 3.2, 3.3, and,
in particular, Sect. 4. The new timing section (Sect. 5) compares the generational garbage
collector with the previous non-generational version. In Sect. 3.3, the correctness theorems
have been strengthened to cover GC completeness, i.e., that a collection cycle collects all
garbage.

2 Approach

In this section, we give a high-level overview of the work and our approach to it. Subsequent
sections will cover these topics in more detail.

Algorithm-Level Modelling and Verification

– The intuition behind the copying garbage collection is important in order to understand
this paper. Section 3.1 provides an explanation of the basic Cheney copying collector
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algorithm. Section 3.2 continues with how the basic algorithm can be modified to run
as a generational collector. It also describes how we deal with mutable state such as
ML-style references and arrays.

– Section 3.3 describes how the algorithm has been modelled as HOL functions. These
algorithm-level HOL functions model memory abstractly, in particular we use HOL lists
to represent heap segments. This representation neatly allows us to avoid awkward rea-
soning about potential overlap between memory segments in the algorithm-level proofs.
It also works well with the separation logic we use later to map the abstract heaps to their
concrete memory representations, in Sect. 4.2.

– Section 3.4 defines the main correctness property, gc_related, that any garbage collector
must satisfy: for every pointer traversal that exists in the original heap from some root
(i.e. program variable), there must be a similar pointer traversal possible in the new heap.

– A generational collector can run either a partial collection, which collects only some part
of the heap, or a full collection of the entire heap.We show that the full collection satisfies
gc_related. To show that a run of the partial collector also satisfies gc_related, we exploit a
simulation argument that allows us to reuse the proofs for the full collector. Intuitively,
a run of the partial collector on a heap segment h simulates a run of the full collector on
a heap containing only h. Section 3.4 provides some details on this.

Implementation and Integration into the CakeML Compiler

– The CakeML compiler goes through several intermediate languages on the way from
source syntax to machine code. The garbage collector is introduced gradually in the
intermediate languages DataLang (abstract data), WordLang (machine words, concrete
memory, but abstract stack) and StackLang (more concrete stack).

– The verification of the compiler phase fromDataLang toWordLang specifies howabstract
values of DataLang are mapped to instantiations of the heap types that the algorithm-
level garbage collection operates over, Sect. 4.1. We prove that gc_related implies that
from DataLang’s point of view, nothing changes when a garbage collector is run.

– For the verification of the DataLang to WordLang compiler, we also specify how each
instantiation of the algorithm-level heap types maps into WordLang’s concrete machine
words and memory, Sect. 4.2. Here we implement and verify a shallow embedding of
the garbage collection algorithm. This shallow embedding is used as a primitive by the
semantics of WordLang.

– Further down in the compiler, the garbage collection primitive needs to be implemented
by a deep embedding that can be compiled with the rest of the code. This happens in
StackLang, where a compiler phase attaches an implementation of the garbage collector
to the currently compiled program and replaces all occurrences of Alloc by a call to the
new routine. Implementing the collector in StackLang is tedious because StackLang is
very low- level—it comes after instruction selection and register allocation. However, the
verification proof is relatively straight-forward since the proof only needs to show that
the StackLang deep embedding computes the same function as the shallow embedding
mentioned above.

– Finally, the CakeML compiler’s in-logic bootstrap needs updating to work with the new
garbage collection algorithm. The bootstrap process itself does not need much updating,
illustrating the resilience of the bootstrapping procedure to such changes. We extend
the bootstrapped compiler to recognise command-line options specifying which garbage
collector is to be generated: --gc=none for no garbage collector; --gc=simple for the pre-
vious non-generational copying collector; and --gc=gensize for the generational collector
described in the present paper. Here size is the size of the nursery generation in number
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of machine words. With these command-line options, users can generate a binary with a
specific instance of the garbage collector installed.

Mechanised Proofs The development was carried out in HOL4. The sources are available
at http://code.cakeml.org/. The algorithm and its proofs are under compiler/backend/gc;
the first implementation at the word-level, i.e. the shallow embedding, is in compiler/

backend/proofs/word_gcFunctionsScript.sml and its verification is in
compiler/backend/proofs/data_to_word_gcProofScript.sml; the StackLang deep
embedding is in compiler/backend/stack_allocScript.sml; its verification is in
compiler/backend/proofs/stack_allocProofScript.sml.
Terminology The heap is the region of memory where heap elements are allocated and which
is to be garbage collected. A heap element is the unit of memory allocation. A heap element
can contain pointers to other heap elements. The collection of all program visible variables
is called the roots.

3 AlgorithmModelling and Verification

Garbage collectors are complicated pieces of code. As such, it makes sense to separate
the reasoning about algorithm correctness from the reasoning about the details of its more
concrete implementations. Such a split also makes the algorithm proofs more reusable than
proofs that depend on implementation details. This section focuses on the algorithm level.

3.1 Intuition for Basic Algorithm

Intuitively, a Cheney copying garbage collector copies the live elements from the current
heap into a new heap. We will call the heaps old and new. In its simplest form, the algorithm
keeps track of two boundaries inside the new heap. These split the new heap into three parts,
which we will call h1, h2, and unused space.

old: new:

h1 h2 unused

content of old heap here content of new heap here

Throughout execution, all pointers in the heap segment h1 will point to the new heap, and
all pointers in heap segment h2 will only point to the old heap, i.e. pointers that are yet to be
processed.

The algorithm’s most primitive operation is to move a pointer ptr, and the data element d
that ptr points at, from the old heap to the new one. The move primitive’s behaviour depends
on whether d is a forwarding pointer or not. A forwarding pointer is a heap element with
a special tag to distinguish it from other heap elements. Forwarding pointers will only ever
occur in the heap if the garbage collector puts them there; between collection cycles, they
are never present nor created.

If d is not a forwarding pointer, then d will be copied to the end of heap segment h2,
consuming some of the unused space, and ptr is updated to be the address of the new location
of d. A forwarding pointer to the new location is inserted at the old location of d, namely at
the original value of ptr. We draw forwarding pointers as hollow boxes with dashed arrows
illustrating where they point. Solid arrows that are irrelevant for the example are omitted in
these diagrams.
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old: new:

h1 h2 unused

Before move of ptr:

ptr

old: new: 

h1 h2 unused

After move of ptr:

ptr

If d is already a forwarding pointer, the move primitive knows that this element has been
moved previously; it reads the new pointer value from the forwarding pointer, and leaves the
memory unchanged.

The algorithm starts from a state where the new heap consists of only free space. It then
runs the move primitive on each pointer in the list of roots. This processing of the roots
populates h2.

Once the roots have been processed, the main loop starts. The main loop picks the first
heap element from h2 and applies the move primitive to each of the pointers that that heap
element contains. Once the pointers have been updated, the boundary between h1 and h2 can
be moved, so that the recently processed element becomes part of h1.

old: new: 

h1 h2 unused

Before iteration of main loop:

old: new: 

h1 h2 unused

After iteration of main loop:

This process is repeated until h2 becomes empty, and the new heap contains no pointers to
the old heap. The old heap can then be discarded, since it only contains data that is unreachable
from the roots. The next time the garbage collector runs, the previous old heap is used as the
new heap.

3.2 Intuition for Generational Algorithm

Generational garbage collectors switch between running full and partial collection cycles. In
a partial collection cycle, we run the collector only on part of the heap. The motivation is that
new data tends to be short-lived while old data tends to stay live. By running the collector
on new data only, one avoids copying around old data unnecessarily. Full collection cycles
consider the entire heap; hence they are slower, but can potentially free up more space.

The intuition is that a partial collection focuses on a small segment of the full heap and
ignores the rest, but operates as a normal full collection on this small segment. The cleanup
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after a partial collection cycle differs from a Cheney copying collector: of course, we cannot
simply discard the old heap, since it may still contain live data outside the current segment.
Rather, we copy the new segment back into its previous location in the old heap.

old:

Partial collection pretends that a small part is the entire heap:

. . . . . . new: 

The collector operates as normal on part of heap:

old: . . . . . . new: 

Finally, the external new segment is copied back:

new: . . . . . .

For the partial collection to work we need:

(a) the partial algorithm to treat all pointers to the outside (old data) as non-pointers, in
order to avoid copying old data into its new memory region.

(b) that outside data does not point into the currently collected segment of the heap, because
the partial collector should be free to move around and delete elements in the segment
it is working on without looking at the heap outside.

In ML programs, most data is immutable, which means that old data cannot point at new
data. However, ML programs also use references and arrays (henceforth both will be called
references) that are mutable. References are usually used sparingly, but are dangerous for a
generational garbage collector because they can point into the new data from old data.

Our pragmatic solution is to make sure immutable data is allocated from the bottom of the
heap upwards, and references are allocated from the top downwards, i.e. the memory layout
as in the diagram below. (The conventional solution, which does not impose such a layout
on the heap, is described further down.)

The following diagram also shows our use of aGC trigger pointer which indicates the end
of the current nursery generation. Any allocation that tries to grabmemory past theGC trigger
pointer causes the GC to run. By default, after a GC run, the GC trigger pointer is placed the
distance of the nursery generation into the unused part of the heap. If the allocation asks for
more space than the length of the nursery size, then the trigger pointer is placed further into
the unused part of the heap in order to guarantee success of the allocation.

current:T immutable data here . . .     | unused space here . . .        | references

GC trigger
start of nursery gen.

relevant part for the 
next partial collection

used as extra roots 
by partial collections

To satisfy requirement (a), full collection cycles must maintain this memory layout. Hence
our full collection is the simple garbage collection algorithmdescribed in the previous section,
modified so that it copies references to the end of the new heap and immutable data to the
start. The algorithm assumes that we have a way to distinguish references from other data
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elements; the CakeML compiler delivers on this assumption by way of tag bits. To satisfy
requirement (b), we make each run of the partial collection algorithm treat the references as
roots that are not part of the heap.

Our approach means that references will never be collected by a partial collection. How-
ever, they will be collected when the full collection is run.

Full collections happen if there is a possibility that the partial collector might fail to free
up enough space, i.e. if the amount of unused space prior to collection is less than the amount
of new memory requested. Note that there is no heuristic involved here: if there is enough
space for the allocation between the GC trigger pointer and the actual end of the heap, then
a partial collection is performed since the partial collection will, in this case, always be able
to move the GC trigger pointer a sufficient distance towards the beginning of the references
for the requested allocation to be successful.

One could run a partial collection regardless of whether it might fail to find enough
memory, and then run a full collection if it fails. We decided against this because scanning all
of the roots twice would potentially be costly and if the complete heap is so close to running
out of space that a partial collection might fail, then a full collection is likely to run very soon
anyway.
Reconfiguring or Switching GC at Runtime With our approach, it is possible to reconfigure
or switch GC at runtime. One can at any point switch from the generational to the non-
generational because the non-generational version does not care about where the references
are. Switching from the non-generational to the generational GC can be done by running a
full collection cycle of the generational corrector on the heap. This works because the full
collection cycle of the generational collector moves the references to the top of the heap
regardless of where they were before.
The Conventional Solution to Mutable References Most implementations of ML do not
impose a heap layout where references are at one end of a heap. Instead they use write
barriers on reference updates. In the simplest form, an approach based on write barriers exe-
cutes code at every reference update that conses the name of the updated reference to a list
of references that have been updated since the last run of the generational garbage collector.
With such a record of which references have been updated, the partial collector can use just
a subset of the references (only the relevant ones) as extra roots. This is in contrast to our
approach which treats all references as extra roots always.

We decided to go with the simple but unconventional approach of imposing a heap layout
because it is simpler for the verification proofs, but also because we do not want to allocate
write barriers on reference updates. Maintaining a list of recently updated references is not
needed for the non-generational collector, and we want to have the same mutator code for
both the generational and non-generational collectors in order to be able to switch between
them.

3.3 Formalisation

The algorithm-level formalisation represents heaps abstractly as lists, where each element is
of type heap_element. The definition of heap_element is intentionally somewhat abstract, with
type variables α used for the type of data that can be attached to pointers and data elements,
and β which represents tags carried by pointers. We use this flexibility to verify the partial
collector for our generational version, in the next section.
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Addresses are of type heap_address and can either be an actual pointer with some data
attached, or a non-pointer Data. A heap element can be unused space (Unused), a forwarding
pointer (ForwardPointer), or actual data (DataElement).

α heap_address = Pointer num α | Data α

(α, β) heap_element =
Unused num

| ForwardPointer num α num

| DataElement (α heap_address list) num β

Each heap element carries its concrete length in machine words (minus one). The length
(minus one) is part of each element for the convenience of defining a length function, el_length.
No heap element has a zero length.

el_length (Unused l) = l + 1
el_length (ForwardPointer n d l) = l + 1
el_length (DataElement xs l data) = l + 1

The natural number (type num in HOL) in Pointer values is an offset from the start of the
relevant heap. We define a lookup function heap_lookup that fetches the content of address a
from a heap xs:

heap_lookup a [] = None

heap_lookup a (x::xs) =

if a = 0 then Some x
else if a < el_length x then None

else heap_lookup (a − el_length x) xs

The generational garbage collector has two main routines: gen_gc_fullwhich runs a collec-
tion on the entire heap including the references, and gen_gc_partialwhich runs only on part of
the heap, treating the references as extra roots. Both use the record type gc_state to represent
the heaps. In a state s, the old heap is in s.heap, and the new heap comprises the following
fields: s.h1 and s.h2 are the heap segments h1 and h2 from before, s.n is the length of the
unused space, and s.r2, s.r1 are for references what s.h1 and s.h2 are for immutable data 1; s.ok
is a boolean representing whether s is a well-formed state that has been arrived at through a
well-behaved execution. It has no impact on the behaviour of the garbage collector; its only
use is in proofs, where it serves as a convenient trick to propagate invariants downwards
in refinement proofs. Intuitively, adding a conjunct to s.ok is similar in spirit to making an
assert statement in a program.

Figure 1 shows the HOL function implementing the move primitive for the partial gen-
erational algorithm. It follows what was described informally in the section above: it does
nothing when applied to a non-pointer, or to a pointer that points outside the current genera-
tion. When applied to a pointer to a forwarding pointer, it follows the forwarding pointer but
leaves the heap unchanged. When applied to a pointer to some data element d, it inserts d at
the end of h2, decrements the amount of unused space by the length of d, and inserts, at the
old location of d, a forwarding pointer to its new location. When applied to an invalid pointer
(i.e. to an invalid heap location, or to a location containing unused space) it does nothing
except set the ok field of the resultant state to false; we prove later that this never happens.

1 For technical reasons, the segments s.r1 and s.r2 each comprise two distinct heap segments that are treated
slightly differently; the presentation here abstracts away from this detail.
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gen gc partial move conf state (Data d) = (Data d , state)
gen gc partial move conf state (Pointer ptr d) =
let ok = state.ok ∧ ptr < heap length state.heap in – Assert: ptr points into old heap
if ptr < conf .gen start ∨ conf .refs start ≤ ptr then – Is ptr not within generation?
(Pointer ptr d , state with ok := ok) – If so, no change to state or heap

else
case heap lookup ptr state.heap of – Follow ptr into old heap
None ⇒ (Pointer ptr d , state with ok := F) – Assert: ptr points at something...

| Some (Unused _) ⇒ (Pointer ptr d , state with ok := F) – ... that is not empty space
| Some (ForwardPointer ptr _ l ) ⇒ (Pointer ptr d , state) – Follow forwarding pointers
| Some (DataElement xs l dd) ⇒

let ok = ok ∧ l + 1 ≤ state.n ∧ ¬conf .isRef dd ;
n = state.n − (l + 1); – Decrement free space in new heap
h2 = state.h2 ++ [DataElement xs l dd ]; – Move data to the new heap
(heap,ok) = write forward pointer ptr state.heap state.a d ok ;
a = state.a + l + 1 in – Increment end of h2

(Pointer state.a d ,
state with h2 := h2; n := n; a := a; heap := heap; ok := ok )

Fig. 1 The algorithm implementation of the move primitive for gen_gc_partial

The with notation is for record update: for example, s with 〈|ok := T; h2 := l|〉 denotes a record
that is as s but with the ok and h2 fields updated to the given values.

The HOL function gen_gc_full_move implements the move primitive for the full genera-
tional collection. Its definition, which is shown in Fig. 2, is similar to gen_gc_partial_move, but
differs in two main ways. First, gen_gc_full_move does not consider generation boundaries.
Second, in order to maintain the memory layout it must distinguish between pointers to ref-
erences and pointers to immutable data, allocating references at the end of the new heap’s
unused space and immutable data at the beginning. This is implemented by the case split on
conf .isRef, which is an oracle for determining whether a data element is a reference or not.
It is kept abstract for the purposes of the algorithm-level verification; when we integrate our
collector into the CakeML compiler, we instantiate conf .isRef with a function that inspects
the tag bits of the data element.

gen_gc_partial_move does not need to consider pointers to references, since generations are
entirely contained in the immutable part of the heap.

The algorithms for an entire collection cycle consist of several HOL functions in a similar
style; the functions implementing the move primitive are the most interesting of these. The
main responsibility of the others is to apply the move primitive to relevant roots and heap
elements, following the informal explanations in previous sections.

3.4 Verification

For each collector (gen_gc_full and gen_gc_partial), we prove that they do not lose any live
elements. We formalise this notion with the gc_related predicate shown below. If a collector
can produce heap2 from heap1, there must be a map f such that gc_related f heap1 heap2.
The intuition is that if there was a heap element at address a in heap1 that was retained by
the collector, the same heap element resides at address f a in heap2.

The conjuncts of the following definition state, respectively: that f must be an injective
map into the set of valid addresses in heap2; that its domain must be a subset of the valid
addresses into heap1; and that for every data elementD at address i ∈ domain f , every address
reachable from D is also in the domain of f , and f i points to a data element that is exactly
D with all its pointers updated according to f .
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gen gc full move conf state (Data d) = (Data d , state)
gen gc full move conf state (Pointer ptr d) =
case heap lookup ptr state.heap of
None ⇒ (Pointer ptr d , state with ok := F)

| Some (Unused _) ⇒ (Pointer ptr d , state with ok := F)
| Some (ForwardPointer ptr _ _) ⇒ (Pointer ptr d , state)
| Some (DataElement xs l dd) ⇒
let ok = state.ok ∧ l + 1 ≤ state.n; n = state.n − (l + 1)
in
if conf .isRef dd then – Does the data have a reference tag?
let r2 = DataElement xs l dd ::state.r2; – References to the front of r2
(heap,ok) = write forward pointer ptr state.heap (state.a + n) d ok
in
(Pointer (state.a + n) d ,
state with r2 := r2; n := n; heap := heap; ok := ok )

else – Other data to the end of h2
let h2 = state.h2 ++ [DataElement xs l dd ];
(heap,ok) = write forward pointer ptr state.heap state.a d ok ;
a = state.a + l + 1
in
(Pointer state.a d ,
state with h2 := h2; n := n; a := a; heap := heap; ok := ok )

Fig. 2 The algorithm implementation of the move primitive for gen_gc_full

gc_related f heap1 heap2 ⇐⇒
injective (apply f ) (domain f ) { a | isSomeDataElement (heap_lookup a heap2) } ∧
(∀ i. i ∈ domain f ⇒ isSomeDataElement (heap_lookup i heap1)) ∧
∀ i xs l d.

i ∈ domain f ∧ heap_lookup i heap1 = Some (DataElement xs l d) ⇒
heap_lookup (apply f i) heap2 =

Some (DataElement (addr_map (apply f ) xs) l d) ∧
∀ptr u. mem (Pointer ptr u) xs ⇒ ptr ∈ domain f

Proving a gc_related-correctness result for gen_gc_full, as below, is a substantial task that
requires a non-trivial invariant, similar to the one we presented in earlier work [12]. The main
correctness theorem is as follows. We will not give further details of its proofs in this paper;
for such proofs see [12].

	 roots_ok roots heap ∧ heap_ok heap conf .limit ⇒
∃ state f .

gen_gc_full conf (roots,heap) = (addr_map (apply f ) roots,state) ∧
domain f = reachable_addresses roots heap ∧
heap_length (state.h1 ++ state.r1) = heap_length (heap_filter (domain f ) heap)
∧gc_related f heap (state.h1 ++ heap_expand state.n ++ state.r1)

The theorem above can be read as saying: if all roots are pointers to data elements in the
heap (abbreviated roots_ok), if the heap has length conf .limit, and if all pointers in the heap
are valid non-forwarding pointers back into the heap (abbreviated heap_ok), then a call to
gen_gc_full results in a state that is gc_related via a mapping f whose domain is exactly all the
addresses that are reachable from roots in the original heap. The theorem above, furthermore,
states that the length of the used parts of the heap (i.e. state.h1 and state.r1) is the same as
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the sum of the lengths of all reachable data elements in the original heap. The latter property
means that a full collection cycle is complete in the sense that it collects all garbage.

Themore interesting part is the verification of gen_gc_partial, whichwe conduct by drawing
a formal analogy between how gen_gc_full operates and how gen_gc_partial operates on a small
piece of the heap. The proof is structured in two steps:

1. We first prove a simulation result: running gen_gc_partial is the same as running
gen_gc_full on a state that has been modified to pretend that part of the heap is not
there and the references are extra roots.

2. We then show a gc_related result for gen_gc_partial by carrying over the same result for
gen_gc_full via the simulation result (without the completeness conjunct, since partial
cycles are not complete).

For the simulation result, we instantiate the type variables in the gen_gc_full algorithm so
that we can embed pointers into Data blocks. The idea is that encoding pointers to locations
outside the current generation as Data causes gen_gc_full to treat them as non-pointers, mim-
icking the fact that gen_gc_partial does not collect there. The type we use for this purpose is
defined as follows:

(α, β) data_sort = Protected α | Real β
and the translation from gen_gc_partial’s pointers to pointers on the pretend-heap used by
gen_gc_full in the simulation argument is:

to_gen_heap_address conf (Data a) = Data (Real a)
to_gen_heap_address conf (Pointer ptr a) =

if ptr < conf .gen_start then Data (Protected (Pointer ptr a))
else if conf .refs_start ≤ ptr then Data (Protected (Pointer ptr a))
else Pointer (ptr − conf .gen_start) (Real a)

Similar to_gen functions, elided here, encode the roots, heap, state and configuration for a
run of gen_gc_partial into those for a run of gen_gc_full. We prove that for every execution of
gen_gc_partial starting from an ok state, and the corresponding execution of gen_gc_full starting
from the encoding of the same state through the to_gen functions, encoding the results of the
former with to_gen yields precisely the results of the latter.

Initially, we made an attempt to do the gc_related proof for gen_gc_partial using the obvious
route of manually adapting all loop invariants and proofs for gen_gc_full into invariants and
proofs for gen_gc_partial. This soon turned out to overly cumbersome; hence we switched to
the current approach because it seemed more expedient and more interesting. As a result, the
proofs for gen_gc_partial aremore concernedwith syntactic properties of the to_gen-encodings
than with semantic properties of the collector. The syntactic arguments are occasionally quite
tedious, but we believe this approach still leads to more understandable and less repetitive
proofs.

Finally, note that gc_related is the same correctness property that we use for the previous
copying collector; thismakes it straightforward to prove that the top-level correctness theorem
of the CakeML compiler remains true if we swap out the garbage collector.

3.5 Combining the Partial and Full Collectors

An implementation that uses the generational collector will mostly run the partial collector
and occasionally the full one. At the algorithm level, we define a combined collector and leave
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it up to the implementation to decide when a partial collection is to be run. The choice is made
visible to the implementation by having a boolean input do_partial to the combined function.
The combined function will produce a valid heap regardless of the value of do_partial.

Our CakeML implementation (next section) runs a partial collection if the allocation will
succeed even if the collector does not manage to free up any space, i.e., if there is already
enough space on the other side of the GC trigger pointer before the GC starts (Sect. 3.2).

4 Implementation and Integration into the CakeML Compiler

The concept of garbage collection is introduced in the CakeML compiler at the point where
a language with unbounded memory (DataLang) is compiled into a language with a finite
memory (WordLang). In this phase of the compiler,we have to prove that the garbage collector
automates memory deallocation and implements the illusion of an unbounded memory.

A key lemma is the proof that running WordLang’s allocation routine (which includes
the GC) preserves all important invariants and that the resulting WordLang state relates to
the same DataLang state extended with the requested new space (or alternatively giving up
with a NotEnoughSpace exception). This theorem is shown in Fig. 9. It is used as a part in the
correctness proof of the DataLang-to-WordLang phase of the compiler: theorem shown in
Fig. 10.

Proving the key lemma about allocation requires several layers of invariants in the form
of state- and value-relations and proofs about these. These invariants are the topic of the
following subsections. The last part of this section will also briefly describe the required
work in a language further down in the compiler (StackLang) where the GC primitive is
implemented in concrete code.

4.1 RepresentingValues in the Abstract Heap

The language which comes immediately prior to the introduction of the garbage collector,
DataLang, stores values of type v in its variables.

v = Number int | Word64 (64 word) | Block num (v list)

| CodePtr num | RefPtr num

DataLang gets compiled into a language called WordLang where memory is finite and
variables are of type word_loc. A word_loc is either a machine word Wordw where the car-
dinality of α encodes the word width,2 or a code location Loc l1 l2, where l1 is the function
name and l2 is the label within that function.

α word_loc = Word (α word) | Loc num num

In what follows, we will provide some of the definitions that specify how values of type
v are represented in WordLang’s word_loc variables and memory. The definitions are multi-
layered and somewhat verbose. In order to make sense of the definitions, we will use the
following DataLang value as a running example.

Block 3 [Number 5; Number 80000000000000]

2 For details on this representation of words and word widths, we refer to Harrison [7].
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The relationship between values of type v andWordLang is split into layers. We first relate
v to an instantiation of the data abstraction used by the algorithm-level verification of the
garbage collector, and then separately in the next section relate that layer down to word_loc

and concrete memory.
The relation v_inv, shown inFig. 3, specifies howvalues of type v relate to the heap_addresses

and heaps that the garbage collection algorithms operate on. The definition has a case for
each value constructor in the type v. Note that list_rel r l1 l2is true iff l1 and l2 have equal
length and their elements are pairwise related by r.

The Number case of v_inv is made complicated by the fact that DataLang allows integers of
arbitrary size. If an integer is small enough to fit into a tagged machine word, then the head
address x must be Data that carries the value of the small integer, and there is no requirement
on the heap. If an integer i is too large to fit into a machine word, then the heap address must
be a Pointer to a heap location containing the data for the bignum representing integer i.

The Word64 case of v_inv is simpler, because 64-bit words always need to be boxed. On
64-bit architectures, they are represented as a DataElement with a single word as payload. On
32-bit architectures (the only other alternative), they are represented as two words: one for
each half of the 64-bit word. Here and throughout, dimindex (:α) is the width of the word type
αword (64 for 64-bit words), and dimword (:α) is the size of the word type (264 for 64-bit
words). (: α) encodes the type α as a term.

The CodePtr case shows that DataLang’s code pointers are represented directly as Loc-
values wrapped in the Data constructor to signal that they are not pointers that the GC is to
follow. The second element of the Loc is set to zero because DataLang’s code pointers only
point at the entry to functions.

The RefPtr case of v_invmakes use of the argument called f , which is a finite map that spec-
ifies how semantic location values for reference pointers are to be represented as addresses.

The Block case specifies how constructors and tuples from DataLang are represented.
Values without a payload (e.g. those coming from source values such as [], NONE, ()) are
represented in a word wrapped as Data. All other Block values are represented as DataElements
that carry the name n of the constructor that it represents. Constructor names are numbers at
this stage of compilation.

Note that pointers representing Block-values carry information about the constructor name
and the length of the payload in the Pointer itself. This information is stored there in order
to make primitives used for pattern matching faster: in many cases a pattern match can look
at only the pointer bits rather than load the address in order to determine whether there is a
match. The amount of information stored in Pointers is determined by the configuration conf.
The ptr_bits function (definition omitted here) determines the encoding of the information
based on conf.

For our running example, we can expand v_inv as follows to arrive at a constraint on the
heap: the address xmust be a pointer to a DataElementwhich contains Data representing integer
5, and a pointer to some memory location which contains the machine words representing
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Fig. 3 Relation between values of type v and abstract heaps

bignum 80000000000000. Here we assume that we are talking about a 32-bit architecture.
Below one can see that the first Pointer is given information, ptr_bits conf 3 2, about the length,
2, and tag, 3, of the Block that it points to.
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	 v_inv conf (Block 3 [Number 5; Number 80000000000000]) (x,f ,heap) ⇐⇒
∃ptr1 ptr2.

x = Pointer ptr1 (Word (ptr_bits conf 3 2)) ∧
heap_lookup ptr1 heap =

Some

(DataElement [Data (Word (Smallnum 5)); Pointer ptr2 (Word 0w)] 2
(BlockTag 3,[])) ∧

heap_lookup ptr2 heap = Some (Bignum 80000000000000)

The following is an instantiation of heap that satisfies the constraint set out by v_inv for
representing our running example.

	 v_inv conf (Block 3 [Number 5; Number 80000000000000])
(Pointer 0 (Word (ptr_bits conf 3 2)),f ,
[DataElement [Data (Word (Smallnum 5)); Pointer 3 (Word 0w)] 2

(BlockTag 3,[]); Bignum 80000000000000])

As we know, the garbage collector moves heap elements and changes addresses. How-
ever, it will only transform heaps in a way that respects gc_related. We prove that v_inv

properties can be transported from one heap to another if they are gc_related. In other
words, execution of a garbage collector does not interfere with this data representation.
Here addr_apply f (Pointer x d) = Pointer (f x) d.

	 gc_related g heap1 heap2 ∧ (∀ptr u. x = Pointer ptr u ⇒ ptr ∈ domain g) ∧
v_inv conf w (x,f ,heap1) ⇒
v_inv conf w (addr_apply (apply g) x,g ◦ f ,heap2)

In the formalisation, v_inv is used as part of abs_ml_inv (Fig. 4) which relates a list of values
of type v and a reference mapping refs from DataLang to a state representation at the level
of the collector algorithm’s verification proof. The state is a list of roots, a heap, and some
other components. For the relation to be true, the roots and the heap have to be well-formed
(roots_ok and heap_ok as mentioned previously); furthermore, the heap layout mandated by
the generational collector must be true if a generational collector is used (gc_kind_inv), and
unused_space_inv specifies that sp + sp1 slots of unused space exists at heap location a. The
v_inv relation is used inside of bc_stack_ref_inv which specifies the relationship between stack
and roots: these lists have to be pairwise (list_rel) related by v_inv.

The invariant on the layout of the heap is specified in gc_kind_inv in Fig. 5. The length of
the available space is always given by sp + sp1, where sp is the space available before the
GC trigger pointer, see Sect. 3.2. If a non-generational GC is used, then sp1 must be zero
indicating that the trigger is always at the end of the available space. For the generational
collector, it must be possible to split the heap (heap_split) at the end of the available space so
that all heap elements prior to this cut off are not references, and all heap elements after this
pointer are references. Furthermore, each generation boundary gens must be well-formed
(gen_state_ok). Here gen_state_ok states that there must not be any pointers from old data to
new data, or more precisely, that every pointer must point to a location that is before the
generation boundary or point into the references at the end of the heap.

At the time of writing, the algorithm-level formalisation is proved correct for a version
which supports having several nested generations, but the word-level implementation of the
algorithm has only been set up to work for at most one nursery generation, i.e. the setting
where length gens ≤ 1.
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Fig. 4 Invariants in the compiler proof

Fig. 5 Invariants regarding the heap layout of the generational GC

4.2 Data Refinement Down to Concrete Memory

The relation provided by v_inv only gets us halfway down to WordLang’s memory repre-
sentation. In WordLang, values are of type word_loc, and memory is modelled as a function,
αword → α word_loc, and an address domain set.

We use separation-logic formulas to specify how abstract heaps, i.e. lists of heap_elements,
are represented in memory. We define separating conjunction *, and use fun2set to turn a
memory function m and its domain set dm into something we can write separation logic
assertions about. The relevant definitions are:
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split s (u,v) ⇐⇒ u ∪ v = s ∧ u ∩ v = ∅
p * q = (λ s. ∃u v. split s (u,v) ∧ p u ∧ q v)
a �→ x = (λ s. s = { (a,x) } )

emp = (λ s. s = ∅)
cond c = (λ s. s = ∅ ∧ c)
fun2set (m,dm) = { (a,m a) | a ∈ dm }

Using this separation logic set up and a number of auxiliary functions, we define
word_heap a heap conf to assert that a heap_element list heap is in memory, starting at address
a. The definition of word_heap, which is partially shown in Fig. 6, uses word_el to assert that
individual heap_elements are correctly represented. Here and throughout, n2w is a function
which turns a natural number into the corresponding word modulo the word size. Numerals
written with a w-suffix indicate that it is a word literal, i.e. 2w is the same as n2w 2. Here
w << n shifts word w by n bits left, and (m – n) w zeros bit k of word w if k > m or k < n.

Figure 7 shows an expansion of the word_heap assertion applied to our running example
from the previous section.

4.3 Implementing the Garbage Collector

WordLang Implementation The garbage collector is used in the WordLang semantics as a
function that the semantics of Alloc applies to memory when the allocation primitive runs out
of memory. At this level, the garbage collector is essentially a function from a list of roots
and a concrete memory to a new list of roots and concrete memory.

To implement the newgarbage collector,wedefine aHOL function at the level of a concrete
memory, and prove that it correctly mimics the operations performed by the algorithm-level
implementation from Sect. 3.

In Fig. 8 we show the definition of word_gen_gc_partial_move, which is the refinement
of gen_gc_partial_move. A side-by-side comparison with the latter (shown in Fig. 1) reveals
that it’s essentially the same function, recast in more concrete terms: for example, pattern
matching on the constructor of the heap element is concretised by inspection of tag bits, and
we must be explicit about converting between pointers (relative to the base address of the
current heap) and (absolute) memory addresses. Note that it is still a specification. It is never
executed: its only use is to define the semantics of WordLang’s garbage collection primitive.

To formally relate word_gen_gc_partial_move and gen_gc_partial_move we prove the fol-
lowing theorem, which states that the concrete memory is kept faithful to the algorithm’s
operations over the heaps. We prove similar theorems about the other components of the
garbage collectors.

	 gen_gc_partial_move gc_conf s x = (x1 ,s1) ∧
word_gen_gc_partial_move conf (word_addr conf x,…) = (w,…) ∧ … ∧
(word_heap a s.heap conf * word_heap p s.h2 conf * …) (fun2set (m,dm)) ⇒
w = word_addr conf x1 ∧ … ∧
(word_heap a s1.heap conf * word_heap p1 s1.h2 conf * …) (fun2set (m1 ,dm))

As a corollary of these theorems, we can lift the result from Sect. 3.4 that the generational
garbage collector does not lose any live elements, to the same property about WordLang’s
garbage collection primitive and the allocation function.

For the allocation primitive, we prove a key lemma shown in Fig. 9: if the state relation
state_rel between DataLang state s and WordLang state t holds, then running the allocation
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word heap a [] conf = emp
word heap a (x ::xs) conf =
word el a x conf * word heap (a + bytes in word * n2w (el length x)) xs conf

bytes in word = n2w (dimindex (: α) div 8)

word list a [] = emp
word list a (x ::xs) = a → x * word list (a + bytes in word) xs

word list exists a n = ∃ xs. word list a xs * cond (length xs = n)

word el a (Unused l) conf = word list exists a (l + 1)
word el a (ForwardPointer n d l) conf =
a → (Word (n2w n << 2)) * word list exists (a + bytes in word) l

word el a (DataElement ys l (tag,qs)) conf =
let (h,ts,c) = word payload ys l tag qs conf
in
word list a (Word h::ts) *
cond
(length ts < 2 ** (dimindex (: α) − 4) ∧
decode length conf h = n2w (length ts) ∧ c)

word payload ys l (BlockTag n) qs conf =
(make header conf (n2w n << 2) (length ys),
map (word addr conf ) ys,
qs = [] ∧ length ys = l ∧
encode header conf (n * 4) (length ys) =
Some (make header conf (n2w n << 2) (length ys)))

· · ·

make header conf tag len =
(n2w len << (dimindex (: α) − conf .len size) tag << 2 3w)

word addr conf (Data (Loc l1 l2)) = Loc l1 l2
word addr conf (Data (Word v)) = Word (v && ¬1w)
word addr conf (Pointer n w) = Word (get addr conf n w)

get addr conf n w = (n2w n << shift length conf get lowerbits conf w)

get lowerbits conf (Word w) = ((small shift length conf − 1 – 0) w 1w)
get lowerbits conf (Loc v3 v4) = 1w

Fig. 6 Some of the definitions for word_heap

routine on input k will either result in an abort with NotEnoughSpace (and an unchanged
foreign-function interface state ffi) or in success (indicated by res = None) and space for k
more slots in a new WordLang state new_t which is state_rel-related to a modified version
of the original DataLang state. Here names is the set of local variable names that need to be
stored on the stack in case the garbage collector is called, i.e. it is the set of local variables
that survive a call to the allocation routine.

With the help of such properties about the WordLang’s allocation routine, we can prove a
compiler correctness theorem for the compiler phase from DataLang toWordLang. Compiler
correctness theorems are, in the context of the CakeML compiler [18], simulation relations
as shown in Fig. 10.
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Fig. 7 Running example expanded to concrete memory assertion

word gen gc partial move conf (Loc l1 l2,i ,pa,old ,m,dm,gs,rs) =
(Loc l1 l2,i ,pa,m,T)

word gen gc partial move conf (Word w ,i ,pa,old ,m,dm,gs,rs) =
if (w && 1w) = 0w then (Word w ,i ,pa,m,T)
else
let header_addr = ptr to addr conf old w ; tmp = header_addr − old
in
if tmp <+ gs ∨ rs ≤+ tmp then (Word w ,i ,pa,m,T)
else
let c1 = ptr to addr conf old w ∈ dm; v = m (ptr to addr conf old w)
in
if is fwd ptr v then
(Word (update addr conf (theWord v >>> 2) w),i ,pa,m,c1)

else
let c2 = c1 ∧ header_addr ∈ dm ∧ isWord (m header_addr);
len = decode length conf (theWord (m header_addr));
v = i + len + 1w;
(pa1,m1,c3) = memcpy (len + 1w) header_addr pa m dm;
c4 = c2 ∧ header_addr ∈ dm ∧ c3;
m1 = (header_addr =+ Word (i << 2)) m1
in
(Word (update addr conf i w),v ,pa1,m1,c4)

Fig. 8 The WordLang shallow embedding of the move primitive for partial collection

Note that the compiler correctness theorem implies that the garbage collector must ter-
minate on every cycle. This is because the theorem does not allow a terminating execution
(e.g. one that terminates returning a value Rval v) to be simulated by a divergent execution.
Here a divergent execution is one that results in Rtimeout_error for every value ck of the
semantic clock. In the case of diverging source-language programs, the GC cannot diverge,
since diverging executions must be simulated by diverging executions that exhibit the same
observable events (i.e. the same FFI calls); hence if the GC diverged the StackLang program
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state rel c l1 l2 s t [] locs ∧ cut env names s.locals = Some new_locals ∧
alloc k names t = (res,new_t) ⇒
res = Some NotEnoughSpace ∧ new_t .ffi = t .ffi ∨
res = None ∧ state rel c l1 l2 (s with locals := new_locals; space := k ) new_t [] locs

Fig. 9 Key lemma: the allocation primitive of WordLang either raises a NotEnoughSpace-exception or
returns normally with a new_t state that relates to the original DataLang state s updated to have k slots of
space available

Fig. 10 Correctness theorem relatingDataLang evaluation withWordLang evaluation. Here state_rel_ext
relates DataLang states s with WordLang states t and includes the requirements: (1) the code in state t
is the compilation of the code in state s; (2) the GC is present in state t; and (3) all data from s is correctly
represented in state t

would emit fewer FFI calls.3 For more details on this technique for treating divergence we
refer to Owens et al. [15].
StackLang Implementation:Asmentioned earlier, theWordLang garbage collection primitive
needs to be implemented by a deep embedding that can be compiled with the rest of the
code. This happens in the next intermediate language, StackLang, which uses the same data
representation but concretises the stack and adds primitives for inspecting and manipulating
it. These primitives are used to implement root scanning in the StackLang implementation
of the GC.

The GC implementation is tedious: the StackLang programmer does not have the luxury
of variables, and so must manually juggle data between registers and memory locations. To
give the flavour, here is a pretty printed version of the StackLang code for a memory copying
procedure. This code snippet copies n machine words from the memory location pointed to
by register 2, to the memory location pointed to by register 3, where n is the contents of
register 0. Here BYTES_IN_WORD is a target-specific constant specifying the number of
bytes in a machine word: for 32-bit architectures it is 4 and 64-bit architectures it is 8. In
HOL, the corresponding constant, bytes_in_word, is a constant whose value depends on its
type, e.g. bytes_in_word:32 word = 4 and bytes_in_word:64 word = 8.

while (reg0 <> 0) {
reg1 := mem[reg2];
reg2 := reg2 + BYTES_IN_WORD;
reg0 := reg0 - 1;
mem[reg3] := reg1;
reg3 := reg3 + BYTES_IN_WORD;

}

3 In principle, the theorem would allow for a GC that may diverge iff the source program diverges silently.
This would be unproblematic since we would then simulate silent divergence with silent divergence.
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The actual deep embedding as StackLang code is the following:

memcpy_code =

While NotEqual 0 (Imm 0w)

(Seq (Inst (Mem Load 1 (Addr 2 0w)))

(Seq (Inst (Arith (Binop Add 2 2 (Imm bytes_in_word))))

(Seq (Inst (Arith (Binop Sub 0 0 (Imm 1w))))

(Seq (Inst (Mem Store 1 (Addr 3 0w)))

(Inst (Arith (Binop Add 3 3 (Imm bytes_in_word))))))))

Here 0w denotes the machine word where all bits are 0, and 1w the machine word where all
bits are 0 save for the LSB.

We prove that according to StackLang’s big-step semantics, evaluating this program com-
putes the same function and has the same effect on memory as the corresponding shallow
embedding memcpy does:

	 memcpy (n2w n) a b m dm = (b1 ,m1 ,T) ∧ n < dimword (: α) ∧ s.memory = m ∧
s.mdomain = dm ∧ get_var 0 s = Some (Word (n2w n)) ∧ 1 ∈ domain s.regs ∧
get_var 2 s = Some (Word a) ∧ get_var 3 s = Some (Word b) ⇒
∃ r1.

evaluate (memcpy_code,s with clock := s.clock + n) =

(None,

s with

〈|memory := m1;
regs :=
s.regs |++
[(0,Word 0w); (1,r1); (2,Word (a + n2w n * bytes_in_word));
(3,Word b1)]|〉)

Here |++ updates a finite mapwith the key-value pairs in the RHS.We prove similar theorems
about all the constituent parts of the GC implementation, allowing us to lift the result that the
WordLang garbage collection primitive does not lose live elements to the same result about
its StackLang implementation.

Root scanning is made explicit and implemented in the StackLang implementation. The
root scanning code has to find and process all current roots in the program stack. This is made
tedious because not all slots in the stack contain active data or data that is relevant to the GC.
Each stack frame is marked with an identifier which is a pointer into a separate data structure
where the GC can at runtime find a compact representation of a description of the structure
of the stack frame. Verification of the root scanning code is not particularly difficult, but the
proofs are long due to the low-level nature of the compact stack frame descriptions, which
is described in previous work [18].

The StackLang implementation of the GC is injected into the program to be compiled as
part of the StackLang phases of the compiler. At this point all uses of the allocation primitive
have been replaced by calls to the GC implementation. From this point onwards, the code
for the GC is just another part of the program to be compiled, and there is no need for the
remaining passes to even be aware of whether the code contains a garbage collector.
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5 Timing the GC

In this section, we evaluate how the performance of our new generational garbage collector
compares to CakeML’s pre-existing copying collector on a number of benchmarks. We have
several objectives here. We would like to discover whether the new generational collector
is performant enough to be a useful addition to the CakeML ecosystem, and if so, to give
users some hints about what kind of programs our collector might be useful for. Moreover,
we are interested in the performance penalty that maintaining our heap layout incurs on
non-generational copying collection.

Benchmark Suite
Our first seven benchmarks are taken from theMLton repository.4 They exclude benchmarks
that use features currently unsupported by CakeML, and features that are treated in substan-
tially different ways by MLton and CakeML (records, system calls, machine words, floating
point numbers). Moreover, we exclude benchmarks whose memory footprint is too small to
trigger the copying collector. For the remaining benchmarks, we modified minor details like
syntax and currying to make the benchmarks compatible with CakeML’s parser and basis
library.

The remaining benchmarks repeatedly create short-lived binary trees of various depths,
simulating programs that require different amounts of short-lived live data in addition to a
fixed amount of long-lived data allocated at the start of the program. The depths considered go
from5 (157machinewords inmemory) to 16 (327,677machinewords inmemory).Wewould
expect the generational collector to perform better with smaller trees that fit comfortably in
a generation, but worse on bigger trees.

SetupWe compiled each benchmark programwith the heap size set to 10MB—the small size
makes sure we trigger plenty of collection cycles—and with a variety of different garbage
collection settings:

1. (copying): Copying GC
2. (no-gen): Generational GC, with generation size > heap size (hence partial collection

never triggers).
3. (small-gen): Generational GC, with 100,000 word generation size
4. (large-gen): Generational GC, with 200,000 word generation size

All benchmarks were run on a 4 GHz Intel(R) Core(tm) i7-6700K CPU and 32 GB of
memory, running Debian 4.9.82-1. Presented results are the average over 100 runs. In order
to allow us to distinguish GC time from other time, we run the compiler in a debug mode
which injects snippets of timing code at GC entry and exit.

Results Table 1 shows our benchmark results for the MLton benchmarks. We see that the
relative performance of our collectors varies wildly: from imp-for where the generational
GC performs worse by two orders of magnitude, to smith-normal-form where the
generational GC performs approximately 4 times better.

The benchmark imp-for consists of 7 nested for-style loops that allocate around 100
million references in total, and uses very little immutable data. That a program with such an
allocation pattern does not benefit from our generational garbage collection scheme is hardly
surprising: when most data is mutable, running collection cycles on only the immutable
data is a waste of time. The other example where generational collection underperforms is
pidigits, which is based on an encoding of lazy lists as a function for producing the tail;

4 https://github.com/MLton/mlton/tree/master/benchmark.
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Table 1 MLton benchmark results, measured as total garbage collection time in milliseconds with different
collector settings (and as percentage of the benchmark’s total run-time)

copying no-gen small-gen large-gen

merge 7520 (63%) 6830 (61%) 11,300 (74%) 6700 (62%)
imp-for 8.7 (0.08%) 9.7 (0.08%) 5810 (34%) 2360 (17%)
life 12.5 (0.08%) 13 (0.08%) 33 (0.2%) 17 (0.1%)
pidigits 10 (0.09%) 11 (0.1%) 75 (0.7%) 37 (0.34%)
logic 7570 (33%) 5700 (27%) 10,300 (41%) 5700 (28%)
mpuz 50.4 (0.37%) 56.3 (0.41%) 98.3 (0.74%) 51.6 (0.39%)
smith-normal-form 69.0 (0.47%) 69.0 (0.47%) 22.4 (0.15%) 19.6 (0.13%)

Best-performing collector on each benchmark indicated in boldface

Table 2 Results for tree allocation benchmarks

copying no-gen small-gen large-gen

depth5 1840 (21%) 1920 (22%) 30.8 (0.46%) 16.9 (0.25%)
depth6 1810 (21%) 1930 (22%) 39.4 (0.59%) 20.5 (0.31%)
depth7 1820 (21%) 1930 (22%) 54.5 (0.81%) 29.0 (0.44%)
depth8 1820 (21%) 1910 (22%) 86.5 (1.29%) 45.4 (0.68%)
depth9 1820 (21%) 1920 (22%) 146 (2.1%) 78.5 (1.2%)
depth10 1820 (21%) 1910 (22%) 266 (3.9%) 145 (2.1%)
depth11 1820 (21%) 1910 (22%) 504 (7.1%) 278 (4.0%)
depth12 1980 (23%) 2090 (24%) 988 (13%) 543 (7.6%)
depth13 1970 (23%) 2090 (24%) 2020 (23%) 1130 (14%)
depth14 1970 (23%) 2080 (24%) 4020 (38%) 2270 (25%)
depth15 1970 (22%) 2080 (24%) 7630 (53%) 4970 (43%)
depth16 6420 (49%) 6470 (49%) 12,600 (65%) 10,600 (61%)

Total garbage collection time in milliseconds with different collector settings (and as percentage of the bench-
mark’s total run-time). Best-performing collector on each benchmark indicated in boldface

more research is needed to determine why the generational GC would be bad for such an
application.

The smith-normal-form has several features that seem a good fit for generational
collection. It uses references, albeit more sparingly than imp-for: it represents 35*35
matrices as int arrays, so collecting the references themselves would be of relatively
little use. The fact that the references point at integers that change frequently means high
turnover of data and a small footprint of live data at all times. Hence partial cycles are likely
to be quick (not much more to see after following each reference to an integer) and free up
plenty of space (1225 integers is very little live data).

The difference between the columns copying and no-gen shows the overhead incurred by
maintaining our heap layout, which turns out to be negligible. The difference between small-
gen and large-gen suggest that all else being equal, larger generation sizes are preferable.

Table 2 shows our results for the tree allocation benchmarks. We see that the performance
profile of our generational collector vs the copying collector is as expected: when the amount
of live non-persistent data at any one time is much smaller than the generation size, the
generational collector outperforms the copying collector by two orders of magnitude. The
collection time for the generational collector grows linearly in the size of the non-persistent
live memory (i.e. exponentially in the tree depth), until it starts performing worse than the
copying collector when the trees no longer fit comfortably in a generation. Meanwhile, the
performance profile of copying collection is more flat. At depth 16, both collectors start
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exhibiting degenerate performance as the size of the trees approaches the heap size. Trees of
depth 17 are too big to fit in the heap regardless of which collection scheme is used.

In conclusion, we find that the generational collector is indeed a useful addition to the
CakeML ecosystem that can improve the performance of programs where most new data
has small live ranges. Of course, neither the generational nor the copying collector is a
clear winner for all use cases, and the optimal choice of collector will depend heavily on
the allocation pattern of the user program under consideration. We encourage performance-
conscious compiler users to perform their own experiments to determine which settings fit
their programs. However, it is worth stressing that when program responsiveness matters, the
generational GC is often preferable when the performance difference is small, because the
same total GC time is spread out over many shorter collection cycles.

6 Discussion of RelatedWork

Anand et al. [1] reports that the CertiCoq project has a “high-performance generational
garbage collector” and a project is underway to verify this using Verifiable C in Coq. Their
setting is simpler than ours in that their programs are purely functional, i.e. they can avoid
dealing with the added complexity of mutable state. The text also suggests that their garbage
collector is specific to a fixed data representation. In contrast, the CakeML compiler allows a
highly configurable data representation, which is likely to become more configurable in the
future. The CakeML compiler generates a new garbage collector implementation for each
configuration of the data representation.

CakeML’s original non-generational copying collector has its origin in the verified col-
lector described in Myreen [12]. The same verified algorithm was used for a verified Lisp
implementation [13] which in turn was used underneath the proved-to-be-sound Milawa
prover [2]. These Lisp and ML implementations are amongst the very few systems that use
verified garbage collectors as mere components of much larger verified implementations.
Verve OS [19] and Ironclad Apps [9] are verified stacks that use verified garbage collectors
internally.

Numerous abstract garbage collector algorithms have been mechanically verified before.
However, most of these only verify the correctness at the algorithm-level implementation
and only consider mark-and-sweep algorithms. Noteworthy exceptions include Hawblitzel
and Petrank [10], McCreight [11], and Gammie et al. [5].

Hawblitzel and Petrank [10] show that performant verified x86 code for simple mark-
and-sweep and Cheney copying collectors can be developed using the Boogie verification
condition generator and the Z3 automated theorem prover. Their method requires the user to
write extensive annotations in the code to be verified. These annotations are automatically
checked by the tools. Their collector implementations are realistic enough to show good
results on off-the-shelf C# benchmarks. This required them to support complicated features
such as interior pointers, which CakeML’s collector does not support. We decided to not
support interior pointers in CakeML because they are not strictly needed and they would
make the inner loop of the collector a bit more complicated, which would probably cause the
inner loop to run a little slower.

McCreight [11] verifies copying and incremental collectors implemented in MIPS-like
assembly. The development is done in Coq, and casts his verification efforts in a common
framework based on ADTs that all the collectors refine.
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Gammie et al. [5] verify a detailed model of a state-of-the-art concurrent mark-and-sweep
collector in Isabelle/HOL, with respect to an x86-TSO memory model. A related effort by
Zakowski et al. [20] uses Coq to verify a concurrent mark-and-sweep collector expressed in a
purpose-built compiler intermediate representation rather than the pseudocode of Gammie et
al., although Zakowski et al. verifies theirs with respect to an interleaving semantics.

Pavlovic et al. [16] focus on an earlier step, namely the synthesis of concurrent collection
algorithms from abstract specifications. The algorithms thus obtained are at a similar level of
abstraction to the algorithm-level implementation that we start from. The specifications are
cast in lattice-theoretic terms, so e.g. computing the set of live nodes is fixpoint iteration over
a function that follows pointers from an element. A main contribution is an adaptation of the
classic fixpoint theorems to a setting where the monotone function under consideration may
change, which can be thought of as representing interference by mutators.

This paper started by listing incremental, generational, and concurrent as variations on
the basic garbage collection algorithms. There have been prior verifications of incremental
algorithms (e.g. [8,11,14,17]) and concurrent ones (e.g. [3,5,6,16]), but we believe that this
paper is the first to report on a successful verification of a generational garbage collector.

7 Summary

This paper verifies a generational copying garbage collector and integrates it into the verified
CakeML compiler. The algorithm-level part of our proof is structured to follow the usual
informal argument for a generational collector’s correctness: a partial collection is the same
as running a full collection on part of the heap if pointers to old data are treated as non-
pointers. To the best of our knowledge, this paper is the first to report on a completed formal
verification of a generational garbage collector.
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