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ABSTRACT: The ongoing quest to develop single-particle
methods for the in situ study of heterogeneous catalysts is
driven by the fact that heterogeneity in terms of size, shape,
grain structure, and composition is a general feature among
nanoparticles in an ensemble. This heterogeneity hampers
the generation of a deeper understanding for how these
parameters affect catalytic properties. Here we present a
solution that in a single benchtop experimental setup
combines single-particle plasmonic nanospectroscopy with
mass spectrometry for gas phase catalysis under reaction
conditions at high temperature. We measure changes in the
surface state of polycrystalline platinum model catalyst
particles in the 70 nm size range and the corresponding
bistable kinetics during the carbon monoxide oxidation reaction via the peak shift of the dark-field scattering spectrum of
a closely adjacent plasmonic nanoantenna sensor and compare these changes with the total reaction rate measured by the
mass spectrometer from an ensemble of nominally identical particles. We find that the reaction kinetics of simultaneously
measured individual Pt model catalysts are dictated by the grain structure and that the superposition of the individual
nanoparticle response can account for the significant broadening observed in the corresponding nanoparticle ensemble
data. In a wider perspective our work enables in situ plasmonic nanospectroscopy in controlled gas environments at high
temperature to investigate the role of the surface state on transition metal catalysts during reaction and of processes such
as alloying or surface segregation in situ at the single-nanoparticle level for model catalysts in the few tens to hundreds of
nanometer size range.
KEYWORDS: single-particle catalysis, single particle, plasmonic nanospectroscopy, CO oxidation, bistable kinetics,
dark-field scattering spectroscopy, quadrupole mass spectrometry

Studying individual nanoparticles is of high relevance in
heterogeneous catalysis,1−4 where they are widely used
and where polydispersity in terms of size, shape, and

grain structure is a general feature among them. This
heterogeneity hampers the generation of a deeper under-
standing for how these structural parameters affect catalytic
activity since they, together with electronic and spillover
interactions with the support,5−8 directly control the catalytic
performance. Assessing the state, activity, and selectivity of
individual nanoparticles thus has significant potential to
contribute to the development of efficient catalyst materials.
Therefore, the characterization of single nanoparticles at in situ
conditions is a major tour de force in catalysis, and significant
efforts are invested in the development of the required
experimental techniques.

To this end, plasmonic nanospectroscopy is an experimental
concept that employs metal nanoparticles capable of
manipulating light at the nanoscale, via electron oscillations
known as localized surface plasmon resonance (LSPR).9−11

Such plasmonic nanoantennas have been successfully used as
nanoscopic probes of various processes including phase
transitions,11 biomolecule interactions and sensing,12−14

metal hydride formation,15 gas- and chemosensing,10,16 and
catalytic reactions.17−21 In catalysis applications they can
report directly on the catalyst nanoparticle surface or bulk state
due to the intrinsically very high sensitivity of LSPR to surface
and bulk changes.11 One of the most appealing assets of the
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plasmonic nanospectroscopy concept, when projected onto
catalysis research, is the possibility to address individual
nanoparticles in the 10−100s nm size regime, which is
accessible to the enhanced precision of top-down nano-
fabrication that enables the preparation of controlled and
precisely tunable model systems.4,22−25 Notably, this single-
nanoparticle resolution comes without principle restrictions on
the surrounding medium; that is, both liquid and gas phase
environments are accessible at ambient pressure or
above.6,13,19,26−31 Moreover, multiple individual nanoparticles
can be addressed simultaneously using concepts such as
hyperspectral imaging and derivatives.32−35 This potentially
offers similar insights as recently obtained by in situ X-ray
absorption spectromicroscopy at a beamline4,7 but with
benchtop optical microscopy instrumentation for optical
dark-field scattering spectroscopy.36

To date, the plasmonic nanospectroscopy concept has been
successfully applied to study catalytic processes at the single-
particle level at in situ conditions in the liquid phase, as
introduced in the seminal paper by Novo et al.19 Subsequent
studies by various groups further diversified the concept37 to,
for instance, investigate the photocatalytic decomposition of
lactic acid,31 Au nanoparticle-catalyzed redox reactions
between glucose and O2,

38 hydrogenation of chemisorbed 4-
NTP,39 electron transfer rates from different nanoparticle
facets,40 spectroelectrochemistry,41 and spillover effects to an
oxide support.6 However, while elegantly demonstrating the
single-particle capabilities of plasmonic nanospectroscopy in
catalysis, all these studies have been carried out in the liquid
phase and at or close to room temperature. Thus, they leave
unaddressed the important field of gas phase heterogeneous
catalysis, which typically takes place at several hundred Kelvin
at atmospheric pressure or above. Furthermore, all these
investigations have in common that they solely rely on the
plasmonic signal, that is, the spectral shift of the resonance
peak as the readout. In other words, only the state of the
catalyst nanoparticle itself (e.g., charge or oxidation state)19,40

or of the surrounding medium (e.g., via spillover)6 is reported,
while the reaction products remain unanalyzed.
As a first step toward overcoming these limitations, we

report an experimental concept and the corresponding setup
that combines in situ single-particle plasmonic nanospectro-
scopy of catalyst nanoparticles with a gas phase catalytic flow
reactor operating at up to 623 K and equipped with a
quadrupole mass spectrometer (QMS) for the simultaneous
quantitative analysis of reaction products from an adjacent
ensemble (on the order of 109 particles) of nominally identical
nanoparticles prepared by nanofabrication (Figure 1). This
design enables the direct investigation of ensemble averaging
effects in a single experiment since individual nanoparticles
(LSPR) and a corresponding ensemble (QMS) can be probed
simultaneously in the same experiment. To this end, we also
note that for the detection of bioanalytes in the liquid phase
both SPR42 and LSPR43 sensing setups have been combined
with mass spectrometry, however, not simultaneously as done
here.
As the second step we introduce a Au@SiO2−Pt

nanostructure design according to the indirect nanoplasmonic
sensing17,44 scheme, where a nanofabricated single Au
plasmonic antenna observer, which is completely encapsulated
in SiO2 and closely adjacent to the active single Pt catalyst
nanoparticle, boosts the total light-scattering signal of the
structure and serves as optical transducer in the plasmonic

nanospectroscopy single-nanoparticle readout. This arrange-
ment is necessary since most of the transition metal catalysts
are poor light scatterers,45 and it has the potential to enable
studies of individual catalyst particles in the sub-10 nm size
regime most relevant to industrial catalysis.28,46,47 Here, we use
nanofabricated ∼20 × 70 nm polycrystalline Pt nanoparticles as
our model system to deliberately create sizable particle
heterogeneity in terms of grain structure, defects, and surface
faceting to demonstrate how such parameters impact reaction
kinetics at the single-nanoparticle level.
As the third step and to demonstrate and benchmark our

setup using these Au@SiO2−Pt structures, we investigated the
kinetic phase transition phenomenon and the corresponding
bistable kinetics that have been reported for the carbon
monoxide (CO) oxidation reaction both on single-crystal
surfaces48 and on nanofabricated Pt model catalysts.22,48,49 As
the main results obtained at atmospheric pressure conditions,
we found that the reaction kinetics of simultaneously measured
individual model catalyst nanoparticles are remarkably different
and critically depend on their grain structure in terms of
abundance of grains and of the corresponding surface faceting
and that the superposition of the individual nanoparticle
response can account for the significant broadening observed
in the corresponding nanoparticle ensemble data.

RESULTS AND DISCUSSION
Our experimental setup (Figure 1; for a more technical
drawing refer to Figure S1 in the Supporting Information, SI)
comprises an upright optical microscope operated in dark-field
epi-illumination mode. It is connected to a spectrometer
equipped with a CCD camera, which is used to collect
scattered light from (individual) plasmonic nanostructures via

Figure 1. Overview of the setup that is centered on a flow-reactor
tube made from glass. To enable dark-field scattering spectrosco-
py, the reactor tube is equipped with a flat 200 μm thick optical
window. The flow reactor arrangement is mounted on the sample
stage of an upright optical microscope. It is connected to a
spectrometer equipped with a CCD camera to collect scattered
light from (individual) catalyst nanostructures via a long-working-
distance 50× dark-field objective and epi-illumination. It is also
equipped with a gas inlet connected to mass-flow controllers for
accurate control of reactant concentration and reactant flow. The
quadrupole mass spectrometer (QMS) is mounted on a high-
vacuum chamber that is connected to the flow reactor chamber via
a stainless steel tube. To enable the QMS readout directly from the
close vicinity of the nanofabricated sample surface, we use a glass
capillary “sniffer” mounted inside the flow reactor. It acts as orifice
leak and has a ∼5 μm opening. Its position can be accurately
controlled via an x−y−z micrometer stage. To control sample
temperature, the system is internally equipped with a flat ceramic
carbon heater that serves as the sample holder for the nano-
fabricated model catalyst.
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a long working-distance 50× objective and thus enables both
ensemble and single-particle plasmonic nanospectroscopy
readout from a tailor-made catalytic reactor described below.
Plasmonic nanospectroscopy relies on the fact that the LSPR
frequency of a metal nanoparticle is very sensitive to minute
changes on its surface or on a second nanoparticle in its close
vicinity.13,17,28,29 Using dark-field scattering spectroscopy, the
induced change in LSPR frequency can be efficiently detected
as a spectral shift of the peak maximum in the light-scattering
spectrum of a single nanoparticle, with resolution high enough
to detect single molecules.35 In our setup focusing on catalysis
applications, the nanofabricated plasmonic/catalytic sample is
mounted on an inert flat ceramic carbon heater installed inside
a glass flow reactor tube with 400 mm diameter, which we have
equipped with a 1 in., 200 μm thin flat optical window to
facilitate dark-field scattering spectroscopy readout from inside
the reactor. It is also equipped with a gas inlet connected to
mass-flow controllers for accurate control of reactant
concentration. An active feedback loop controls the temper-
ature of the sample up to 623 K via a thermocouple and a
temperature controller. To facilitate the QMS readout directly
from the nanofabricated sample surface, we use a glass capillary
“sniffer”,50 which is mounted inside the flow reactor. Its
position can be accurately controlled via an x−y−z micrometer
stage connected to the reactor by a stainless steel bellow. Via a
stainless steel tube, the sniffer is further connected to a UHV
chamber, on which the QMS is mounted. The opening of the
glass capillary sniffer toward the sample is tuned to 5 μm using
the method introduced by Kasemo.50 In this way it effectively
acts as orifice leak for local, fast-response gas sampling using
the QMS by ensuring the necessary pressure drop from 1 atm
inside the reactor to below the maximal operation pressure of
the QMS, which is on the order of 10−6 mbar.
To initially validate the function of the setup, we

benchmarked it with our earlier work on the kinetic phase
transition that occurs during the hydrogen oxidation reaction
over a Pt nanoparticle ensemble model catalyst due to bistable
kinetics, which we had studied when introducing the indirect
nanoplasmonic sensing concept.17 The corresponding analysis
of a very similar set of experiments using our combined
plasmonic nanospectroscopy and QMS setup presented here is
summarized and discussed in detail in the SI and Figures S2
and S3. As the first key result, it reproduces the insights
obtained in our previous study using a traditional quartz-tube
flow reactor setup and simple optical transmittance measure-
ments.17 As the second key result, it demonstrates the
anticipated complementarity of the optical and the QMS
signals, that is, that the QMS reports the catalyst activity of the
nanofabricated model catalyst ensemble and that the
plasmonic nanospectroscopy optical signal directly reports
the catalyst surface state, as identified by the observed
coincidence of the highest reaction rate and change of the
catalyst surface state at the kinetic phase transition (Figure
S2c).
To enable single-particle plasmonic nanospectroscopy from

a Pt model catalyst, which by itself is a weak light scatterer,45

we want to place it closely adjacent to an inert plasmonic
nanoanetanna “observer” in order to enhance the total
scattering cross-section of the system. However, in contrast
to the earlier implementations of this concept,26,28,51 here we
also have to consider the high operating temperature of our
system and thus develop a means to spatially separate the
catalyst from the Au nanoantenna to prevent alloy or

intermetallic phase formation between the two.52,53 For this
purpose, we further tailored our hole−mask colloidal
lithography nanofabrication approach (see Methods for
details), to enable the chemical vapor deposition of a thin
SiO2 layer through the nanofabrication mask that encapsulates
the entire Au nanoantenna before the growth of the Pt catalyst
nanoparticle (Figure 2a). In this way, due to the self-alignment,
it becomes possible to grow the catalyst exclusively on top of
the nanoantenna sensor, while simultaneously still completely
encapsulating the underlying Au nanoantenna. This results in a
Au@SiO2−Pt hybrid nanostructure with combined sensing
(via the Au nanoantenna) and catalytic (via the Pt) function
(Figure 2b−d). Furthermore, since different types of
separating layers, as well as catalyst particle materials, can be
grown in this way, our approach is generic and can be easily
expanded to other catalyst systems to tailor the catalyst
formulation in a modular fashion.
To test the thermal and chemical stability of the Au@SiO2−

Pt nanostructures used here, we thermally annealed them at
623 K in 3% H2 + 3% O2 for 2 h and exposed them to reaction
environment for the CO-oxidation reaction (3% CO + 3% O2)
at 623 K for 0.5 h and in Ar carrier gas. The corresponding
scanning electron microscopy (SEM) analysis reveals their
structural integrity, as well as the anticipated recrystallization of
the Pt (Figure 2e−g). Furthermore, comparing a representative
single-particle scattering spectrum of such a nanoarchitecture
after the thermal and reaction treatment (Figure 2h) with a
corresponding finite-difference time-domain (FDTD) simu-
lation (Figure 2i depicts the used simulation scheme) reveals
good agreement and thus further corroborates both the
integrity of the nanostructure and the anticipated coupling
between the two metal elements, essential for the indirect
sensing principle.
To further characterize the Pt model catalyst nanoparticles,

we performed transmission electron microscopy (TEM)
analysis. However, since the entire Au@SiO2−Pt hybrid
structure would be too thick for TEM imaging, as well as
would lead to convoluted images due to the stacked Au and Pt
particles, we nanofabricated analogous Pt model catalyst
nanoparticles (i.e., without Au underneath) with the same
size on a TEM membrane and treated them in the same way as
the real sample at the reaction conditions described above. The
corresponding TEM images of representative Pt nanoparticles
reveal the formation of mainly polycrystals with various
numbers of grains (Figure 3a). Further resorting to our earlier
detailed characterization of the grain structure in equivalently
nanofabricated Pd nanoparticles using transmission Kikuchi
diffraction (TKD), we conclude that each nanoparticle has its
distinct and unique grain structure with different grain
orientation (cf. Figure 5 in ref 35) and multiple surface facets
exposed by the different grains (cf. Figure S17 in ref 35).
Hence they fulfill the desired criterion to serve as single-
particle model systems for structurally distinctly different
catalyst nanoparticles.
As the final characterization step of the Au@SiO2−Pt hybrid

nanostructures to ensure that the SiO2 layer indeed
encapsulates the Au nanoantenna and prevents direct contact
between Au and Pt elements even at reaction conditions, we
carried out X-ray photoelectron spectroscopy (XPS) analysis
(Figure 3b). It reveals that the distinct characteristic Pt 4f
peaks are preserved even after the reaction treatment and thus
corroborates that no mixing with the Au nanoantenna has
occurred.
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To generally characterize the catalytic properties of the Au@
SiO2−Pt hybrid nanostructures, we first performed ensemble-
type experiments using the oxidation of carbon monoxide (CO
+ 1/2 O2 → CO2) over Pt as the model reaction.54 Specifically,
we put our focus on the phenomenon of kinetic phase

transitions and the corresponding reported kinetic bistabilities,
that is, the existence of two stable kinetic regimes that may
coexist for a given set of reaction conditions, which has been
reported for the CO oxidation reaction both on nanofabricated
Pt model catalysts22 and on single-crystal surfaces.48 In the
present case, as illustrated schematically in Figure 4, this means
that at low relative CO concentration, αCO = [CO]/([CO] +

Figure 2. Characterization of nanofabricated Au@SiO2−Pt hybrid
nanostructures with combined sensing and catalytic function. (a)
Schematic depiction of the structures that are composed of a Au
nanoantenna (20 nm thickness) encapsulated in a 10 nm thin silica
layer with a nanofabricated Pt model catalyst nanoparticle on top.
(b) Top-view (scale bar: 100 nm), (c) top-view zoom-in (scale bar:
50 nm), and (d) side-view (scale bar: 100 nm) SEM images of such
nanoarchitectures directly after deposition of the respective layers
and prior to any thermal treatment or catalytic reaction. SEM
images taken after thermal annealing under reaction conditions
described in the text: (e) Top-view (scale bar: 100 nm), (f) top-
view zoom-in (scale bar: 50 nm), and (g) side-view (scale bar: 100
nm). Note the structural integrity of the nanoarchitecture and its
components and the change in dimensions of the Pt catalyst due to
recrystallization. (h) Representative single-particle scattering
spectrum of the thermally treated Au@SiO2−Pt nanostructure
displayed in (f) together with the corresponding finite-difference
time-domain (FDTD) simulation. (i) Graphic illustration of the
used FDTD simulation scheme assuming the following nanostruc-
ture dimensions to mimic the Au@SiO2−Pt architecture after
annealing: Au disk: 90 nm × 27 nm, SiO2 thickness: 10 nm, Pt
nanoparticle: 65 nm × 28 nm.

Figure 3. TEM and XPS sample characterization. (a) TEM images
of representative Pt nanoparticles after high-temperature anneal-
ing and reaction condition treatment. (b) High-resolution XPS
spectra in the Pt 4f spectral region of a fresh and a reaction-treated
Au@SiO2−Pt sample, as well as of a Au@SiO2 (i.e., no Pt on top)
control. As the main observation, we note that no significant
changes in terms of intensity or binding energy take place for the
Pt 4f lines (the small difference observed is a consequence of
surface charging effects due to the used oxidized silicon substrate),
corroborating that no Pt−Au alloy/intermetallic phase is formed,
and thus that the SiO2 encapsulation layer does not deteriorate
during reaction.

Figure 4. Schematic depiction of the CO oxidation reaction and
the three kinetic regimes. The top scheme illustrates the key steps
of the CO oxidation reaction over a Pt catalyst, involving
dissociative adsorption of molecular oxygen, nondissociative
adsorption of CO, and formation and desorption of the CO2
reaction product. The bottom scheme depicts the origin of the
bistable kinetics at the interface between the O-rich and CO-rich
reaction regimes. In oxygen excess, the surface of the Pt
nanoparticles is mainly covered by dissociated chemisorbed
oxygen (O). By increasing the CO concentration in the feed the
reaction rate increases until a critical CO concentration is reached
and a so-called kinetic phase transition occurs to a state where CO
predominantly covers the surface.
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[O2]), or in other words in oxygen excess, the surface of the Pt
nanoparticles is mainly covered by dissociated chemisorbed
oxygen (O). In this regime the reaction rate is high and almost
proportional to the supplied CO concentration in the feed,
since the influence of O on the sticking probability of CO is
small. Accordingly, the reaction rate increases until a critical
CO concentration is reached, and the kinetic phase transition49

occurs to a new state where the surface is predominantly
covered by CO. In this state the reaction rate is significantly
reduced since the adsorbed CO molecules effectively block or
“poison” the chemisorption of O2 and thus limit the supply of
O to form CO2. This asymmetry in terms of poisoning in the
O- or CO-covered surface regimes can give rise to the
coexistence of two stable kinetic states and thus hysteresis in
obtained reaction rates, depending on the initial surface
condition. Typically, at higher temperatures, the coexistence
region is narrowing and eventually disappears due to the
increasing CO desorption rate, which ultimately eliminates the
poisoning effect.22,49

To explore this phenomenon with our setup and for the
Au@SiO2−Pt model catalyst, we varied αCO in the reactant
flow from a CO-rich to an O2-rich condition and back again,
while keeping the total reactant concentration ([CO] + [O2])
constant at 9% in Ar carrier gas. Simultaneously, we
continuously recorded both the CO2 partial pressure in the
reactor via the QMS and the plasmonic nanospectroscopy peak
position signal, λ, via the dark-field scattering spectroscopy
readout from a sample area comprising ca. 5000 Au@SiO2−Pt
nanostructures (Figure 5a). The sample temperature was set to
503 K. A complete αCO up- and down-sweep together with the
corresponding QMS and λ response are summarized in Figure
5b. We observe a maximum in the reaction rate at a critical
reactant mixture αCO

cr = 0.04−0.05, at which the optical λ
signal exhibits a distinct change in trend. Since the αCO steps
displayed in Figure 5b are nonlinear in magnitude, this
becomes clearer in Figure 5c, where the QMS and plasmonic
nanospectroscopy data (now expressed as the shift of the LSPR
scattering peak position, Δλ, with respect to the first taken data
point at t = 0) are plotted as a linear function of αCO. Both for
the αCO up- and down-sweep, Δλ is essentially constant for
αCO < αCO

cr and then rapidly spectrally blue-shifts for αCO >
αCO

cr, to reach a steady-state value beyond αCO ≈ 0.2. The
reaction rate obtained by the QMS and expressed as CO2
partial pressure in the chamber exhibits a distinct maximum
that coincides with the onset of the blue-shift of Δλ.
It is now interesting to further discuss these data in the

context of the bistable reaction kinetics introduced above. To
this end, first, we observe hysteresis between αCO up- and
down-sweeps in both the QMS and the Δλ response, in good
agreement with Johańek et al.,22 who investigated the
bistability phenomenon using molecular beam experiments
on nanofabricated Pd model catalysts over a wide size range
(2−500 nm). They found a distinct particle size dependence of
the hysteresis as a consequence of the interplay between a
higher abundance of defects on smaller particles and
fluctuations between the two kinetic reaction regimes. Second,
as predicted by theory,49 we also observe increased or
decreased hysteresis width at lower and higher reaction
temperature, respectively (Figure S4), in both the QMS and
plasmonic nanospectroscopy response. This is the conse-
quence of CO poisoning being less severe at higher
temperature due to enhanced CO desorption. Third, we
notice the excellent agreement in global trend between QMS

signal and Δλ response in the CO-rich surface regime and the
contrasting essentially constant Δλ signal in the O-rich surface
regime, despite a significant change in reaction rate. This
indicates that the plasmonic nanospectroscopy signal, Δλ,
directly reports the surface state of the catalyst at in situ
conditions, which at the kinetic phase transition switches from
an essentially constantly O-covered (and thus presumably
oxidized/reconstructed55−57) to a mainly CO-covered surface.
However, due to the relatively high temperature of our
experiment, the CO coverage depends more strongly on the
absolute αCO value than the O coverage (for which the higher
temperature rather stabilizes any oxide,55 if formed), since it
dictates the equilibrium with CO in the gas phase.49

Furthermore, it has been demonstrated in a recent combined
photoemission electron microscopy (PEEM) and QMS
study58 of the local catalytic ignition during CO oxidation

Figure 5. Correlated ensemble plasmonic nanospectroscopy and
mass spectrometry for CO oxidation over Pt. (a) Schematic cross-
section of the used array of Au@SiO2−Pt nanostructures. (b) CO2
partial pressure measured by the QMS together with the
corresponding spectral position of the plasmonic scattering peak
readout, λ, obtained during reaction at 503 K. The data are plotted
as a function of the relative CO concentration in the gas flow, αCO

= [CO]/([CO] + [O2], at a constant total reactant concentration
of 9% in Ar carrier gas. During the experiment, αCO is swept from 1
to 0 and back to 1, in steps of 0.006 close to αCO

cr and in steps of
0.16 otherwise. As the key feature, we observe that a distinct
change in trend of the plasmonic nanospectroscopy signal, λ
coincides with the maximum in CO2 partial pressure measured
simultaneously by the QMS at αCO

cr = 0.04 ± 0.006. (c) The same
data as in (b) but plotted as a function of the αCO value for 0 < αCO

< 0.5. Both for the αCO up- and down-sweep, the plasmonic peak
shift, Δλ, is essentially constant for αCO < αCO

cr and then rapidly
blue-shifts for αCO > αCO

cr, to reach a steady-state value beyond
αCO ≈ 0.2, where the catalyst activity is essentially zero, as seen
from the QMS signal. This is the signature of the kinetic phase
transition from a predominantly O-covered to a reduced CO-
covered surface.
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on low-index Pt surfaces present on a polycrystalline Pt foil
that the global QMS CO2 signal obtained from the entire foil
(cf. Figure S1 in ref 58) is significantly “smeared” along the CO
partial pressure axis (which is equivalent to αCO used here)
compared to the PEEM intensity measured from single grains
with different surface termination ((111), (100), and (110))

within the foil. Using the PEEM intensity together with density
functional theory (DFT) calculations the authors also showed
that the local kinetic phase diagrams for individual Pt grains in
the foil vary significantly depending on their index (cf. Figure 3
in ref 58). Hence, the smearing in the global QMS signal is a
consequence of the superposition of the local kinetics of all

Figure 6. Simultaneous single-particle plasmonic nanospectroscopy and ensemble mass spectrometry for CO oxidation over Pt. (a)
Schematic cross-section of the used single Au@SiO2−Pt nanostructures. (b−e) Dark-field scattering spectra of the four nanostructures
simultaneously under study together with corresponding SEM images (scale bar 50 nm). The scattering spectra were taken for a surface in
the CO-covered state (blue) and in the oxidized O-covered state (black). Note the difference in response for the two chemical states. (f−i)
Combined plots for scattering peak position λ obtained by plasmonic nanospectroscopy (red) for each nanoparticle shown in (b)−(e) and
the overall CO2 partial pressure (black) in the reactor measured with the QMS, acquired during a 15 h experiment sweeping αCO (blue) from
1 to 0 and then back to 1. We note a different but completely reversible single-nanoparticle response. The black and blue arrows indicate
where along the experimental sequence the spectra shown in (b)−(e) were taken.

Figure 7. Simultaneous single-particle plasmonic nanospectroscopy and ensemble mass spectrometry for CO oxidation over Pt at 503 K. (a−
d) SEM top view micrographs of the single Au@SiO2−Pt nanostructures used in the experiment depicted in Figure 5. The scale bar is 50 nm.
(e−h) CO2 partial pressure measured by the QMS (black) and correlated single-particle plasmonic nanospectroscopy signal (red) as a
function of αCO up- and down-sweep (upward- and downward-pointing triangles, respectively). The plots are derived based on the raw data
depicted in Figure 6 by averaging the QMS signal and the peak shift, Δλ, for each of the four particles over the 15 min long αCO steps during
the sweep. (i−l) Zoom-in on the kinetic phase transition region (αCO = 0−0.5) to highlight the quite different nature of the transition on the
different nanoparticles.
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grains with a different index present in the foil. In analogy, we
argue that the same mechanism is in play in our system since
(111), (100), and (110) facets are the dominant surfaces of
nanofabricated Pt nanoparticles after annealing, with significant
variations in terms of their relative abundance from particle to
particle (see Figure 5 in ref 59). Hence, the relatively gradual
change of Δλ across the kinetic phase transition and thus the
corresponding gradual change of CO surface coverage
measured in our experiment (Figure 5c) are the consequence
of the ensemble averaging over ca. 5000 nanoparticles with
different facets that exhibit kinetic phase transitions at different
αCO.
To enable single-particle plasmonic nanospectroscopy

during CO oxidation reaction conditions, we prepared a
sample comprising three different areas (Figure S5). In the
center is a 4 × 8 mm area with the standard nanoparticle
surface coverage of ca. 15% obtained by HCL nano-
fabrication,60 including a small region close to the edge (ca.
5% of the total surface area) with a particle coverage low
enough (i.e., particle−particle distances larger than the
diffraction limit) for single-particle plasmonic nanospectro-
scopy (Figure 6a; see Methods for details of the nano-
fabrication). To the left and right is a 4 × 8 mm area with
identical Au@SiO2−Pt nanostructures but at ca. 40% surface
coverage to provide enough reaction product for detection by
the QMS. In total this means that about 109 particles are
averaged for the QMS readout. Focusing optically on the low-
density area of this sample arrangement, we aligned a set of
four individual particles within the spectrometer slit, to track
their optical response simultaneously and independently
(Figure 6b−e). These four particles lie within an area of 35
μm × 6 μm (Figure S 5d), which ensures that they experience
the same conditions. Using this arrangement, we executed the
same experiment as for the ensemble case discussed above,
sweeping αCO (9% total reactant concentration in Ar carrier
gas at a constant flow rate of 100 mL/min) in a stepwise
fashion in 0.16 and 0.006 α-units per step for αCO > 0.2 and
αCO < 0.2, respectively, from a CO-rich to a O2-rich condition
and back again. The sample temperature was set to 503 K, and
we simultaneously monitored the peak position, λ, of the
scattering spectra of the four catalyst nanoparticles and the
CO2 reaction product from the corresponding ensemble
(Figure 6f−i and Figure S6 for a contour plot of the entire
spectral evolution).
To further analyze these raw data and decrease the noise

level, we averaged the QMS and Δλ signals for each of the four
particles (Figure 7a−d; for an identical second data set
measured at 533 K see Figure S7) over each 15 min long αCO

step and plotted the corresponding averaged Δλ values as a
function of αCO for both increasing and decreasing αCO (Figure
7e−h and i−l for zoom-in on a narrower αCO range). We
immediately notice that the overall response looks quite
different for the four nanoparticles, which were measured all at
the same time. Hence, we can ascribe these differences to their
individual response. For example, defining the largest spectral
shift between two data points as the kinetic phase transition,
we find that it occurs at values ranging from 0.0044 to 0.2 for
the αCO up-sweep on the different particles. At the same time,
for the αCO down-sweep, the difference between particles is
smaller. Also hysteresis, however with different width, occurs
between the αCO up- and down-sweeps for all four particles.
These observations are in line with our arguments put forward
above,58 that is, that different nanoparticles exhibit variations

in terms of the relative abundance of the dominant surface
facets,59 as well as in terms of grain boundaries and related
defects (Figure 3). Consequently, they are expected to exhibit
the kinetic phase transition at different αCO, in agreement with
what we observe in our experiments. Looking even more in
detail and comparing the single nanoparticle Δλ response with
the one from the ensemble (cf. Figure 5c), we note that for the
single nanoparticles distinct steps in Δλ and thus in reactant
surface coverage occur at the kinetic phase transition, whereas
such steps are absent in the ensemble data. Also this
observation is thus in line with the main hypothesis of our
work, namely, that single-nanoparticle experiments enable
insights beyond ensemble averaging, and it demonstrates that
the rather smeared out transition in reactant surface coverage
reported by Δλ from the ensemble is the consequence of
averaging the rather sharp transitions of the individual
nanoparticles, which may occur across a range of αCO, dictated
by the particle-specific abundance of grains, defects, and
certain surface facets. In this sense, our results for the
individual nanoparticles are also well in line with the PEEM
study of the polycrystalline Pt foil, for which the kinetic phase
transition is rather continuous at the global level and a distinct
step at the level of the individual grain with dimensions on the
order of 100 μm (rather than 100 nm as in our case here).58

These observations thus show how the reaction kinetics of
simultaneously measured individual model catalyst nano-
particles critically depend on their grain structure and how
such information can be obtained at in situ conditions
(compared to the to-date used surface science techniques
operating at (ultra)high-vacuum conditions such as PEEM58)
using plasmonic nanospectroscopy based on a benchtop-type
experimental setup comprising an optical microscope and a
traditional catalytic flow reactor operating at atmospheric
pressure.

CONCLUSIONS
In summary, we have presented an experimental setup that
combines in situ gas phase single-particle plasmonic nano-
spectroscopy of individual catalyst nanoparticles with mass
spectrometry on a corresponding nanoparticle ensemble in one
and the same experiment. In the current design, the system
operates at atmospheric pressure and is compatible with
temperatures of up to 623 K. We have also developed a
nanofabrication method for the crafting of Au@SiO2−Pt
hybrid nanostructures to achieve combined sensing function
(via an oxide-encapsulated Au nanoantenna) and catalytic
function (via a single Pt model catalyst particle on top) within
the same structure, to enable plasmonic nanospectroscopy
based on the indirect sensing principle at the single-
nanoparticle level and in harsh conditions. To demonstrate
the capabilities of our setup, nanostructures, and the general
experimental approach, we used ∼20 × 70 nm polycrystalline
Pt nanoparticles as the active part in the Au@SiO2−Pt hybrid
nanostructure model system, since they offer maximized
particle heterogeneity in terms of defects and surface faceting
at the single-nanoparticle level. We then applied these
structures to investigate the bistable kinetics of the CO
oxidation reaction over Pt. As the key results we first found
that a characteristic kinetic phase transition can be resolved
both at the ensemble and single catalyst nanoparticle level as a
distinct spectral shift in the plasmonic nanospectroscopy
readout and that it occurs at the highest reaction rate identified
by the simultaneous QMS readout. This is in agreement with

ACS Nano Article

DOI: 10.1021/acsnano.9b02876
ACS Nano 2019, 13, 6090−6100

6096

http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b02876/suppl_file/nn9b02876_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b02876/suppl_file/nn9b02876_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b02876/suppl_file/nn9b02876_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b02876/suppl_file/nn9b02876_si_001.pdf
http://dx.doi.org/10.1021/acsnano.9b02876


theory and experimental data obtained using surface science
techniques in the corresponding literature. Second, we found
that the bistable reaction kinetics and the signature of the
kinetic phase transition of simultaneously measured individual
model catalyst nanoparticles critically depend on their grain
structure, defects, and surface faceting and that the super-
position of the individual nanoparticle response induces a
significant broadening and smearing in the corresponding
kinetic response of a nanoparticle ensemble. This highlights
that our experimental approach, which enables studies of
catalysts both at the individual nanoparticle level and at the
ensemble level in the same system, has the potential to shed
light on the role of local catalyst design parameters, such as
loading, particle size, shape, and dispersion, as well as metal−
support interactions, on reaction kinetics, and how ensemble
averaging limits our insights in this respect. To this end, we
also briefly summarize the main challenges with the presented
approach and developed instrumentation: (i) To maintain the
particles of interest in focus during the (typically very long)
experiments, in particular at elevated temperature due to
thermal expansion effects. Here we predict that the
implementation of active focus control solutions will lead to
significant improvements in this respect.61 (ii) To obtain
enough product from the reaction over these nanofabricated
model catalysts to enable online QMS detection. Here the use
of microreactors with significantly smaller volumes and thus
QMS detection limits could provide interesting solutions.62

In a wider perspective, we predict that our instrument as
such, due to the available high temperature and controlled gas
environment, and the experimental concept in particular, due
to its high sensitivity, will enable single-particle investigations
of, for example, the catalyst state during rate oscillations48

since LSPR is highly sensitive to nanoparticle shape.63,56

Furthermore, it will enable studies of the role of the surface
state on noble metal catalysts such as Cu and Ag (which
themselves are highly plasmonically active) during reaction,
of thermally induced nanoalloy formation where LSPR will
report on the concurrent change of the complex dielectric
function as alloy formation occurs,52,64 or of the annealing and
segregation of alloy components in bimetallic catalysts under
reaction conditions via LSPR interface damping effects that
occur upon enrichment of a certain element at the
surface.65−67

METHODS
Experimental Setup. The main parts of the experimental setup

used in this work consisted of a in-house-built transparent flow
reactor, a quadrupole mass analyzer (Leda Mass Vacscan), a modified
Nikon upright microscope (Eclipse LV150N), and a spectrometer/
CCD system (Andor Shamrock 193i spectrograph and Andor Newton
920 CCD camera), as shown schematically in Figure 1 and in detail in
Figure S1 in the SI. The central part of the flow reactor is a KF40
Duran glass tube (Hositrad), with a round, 25 mm diameter flat
borosilicate optical window of 0.2 mm thickness welded in the center
to allow collection of images and spectra of individual nanoparticles
through the microscope objective in dark-field mode. The reactor is
sealed using CF vacuum flanges and Viton O-ring sealed KF flanges,
and it operates at atmospheric pressure. Reactants diluted in Ar carrier
gas are introduced to the reactor through a gas inlet tube welded onto
one of the flanges. The gas flow rate and composition are controlled
by a set of mass flow controllers (Bronkhorst Low-ΔP-flow and EL-
flow). The gas outlet is located on the opposite side of the flow
reactor to maintain equilibrium plug-flow conditions during the
reaction. An in-house-built stainless steel sample holder is mounted
inside the reactor tube and equipped with a ceramic resistive heater

(Momentive HT01) onto which the sample is clamped. The sample
temperature is controlled by a power supply (Instek GW GPS-1850)
and a temperature controller (Eurotherm 3216) via a thermocouple-
controlled feedback loop to maintain a constant temperature. The
latter also prevents defocusing of the sample image during an
experiment, which otherwise is induced by thermal expansion and
contraction of the sample holder. To enable the mass spectrometric
readout, the QMS glass capillary orifice “sniffer” is mounted at the
end of the gas transfer line (6.0 mm stainless steel Swagelok tube) to
allow only a small and controlled amount of gas leakage into the mass
analyzer chamber. The glass capillary orifice was fabricated by
inserting the tip of a borosilicate glass tube (2/0.1 mm outer/inner
diameter, Hilgenberg) in a propane−oxygen flame in order to shrink
the inner diameter to a few micrometers. A detailed description of this
method can be found in ref 50. The gas leak rate through the orifice is
around 2 × 10−4 mbar s−1. With such a leak rate, the pressure inside
the QMS analyzer chamber stays below about 6.3 × 10−6 mbar, which
guarantees proper operation of the QMS. Such an orifice design
enables efficient molecular flow of the gas from the reactor to the
QMS analyzer chamber through the transfer line, and thus a fast
response time can be achieved. The gas transfer line outside of the
reactor and the QMS analyzer chamber are maintained at 385 K to
prevent water condensation.

Mass Spectrometry. The QMS is controlled using a customized
LabVIEW control program. All QMS raw data were measured as ion
current of the corresponding gas. Since ≥91% of the gas inside the
reactor consists of Ar, the Ar partial pressure (PAr) is roughly
estimated as being the same as atmospheric pressure (1013.25 mbar).
The partial pressure of reactants or product, Pi, was calculated in mbar
by comparison with the Ar signal according to the equation

= × ÷ ×P
I

I
S1.27 1013.25i

i
i

Ar (1)

where Ii and IAr are ion currents of gas species i and Ar measured
directly by the QMS and Si is the relative sensitivity factor (RSF) of
the quadrupole mass analyzer for species i. All shown QMS data are
corrected for any background recorded from a control sample without
Pt during an identical experimental sequence to the real experiment.

Dark-Field Scattering Spectroscopy. White light from the
microscope lamp (Nikon LV-HL50W LL) is used to illuminate the
sample, which is mounted inside the reactor close to the optical
window, in dark-field mode through the objective (50× Nikon Plano
LWD). Scattered light from the sample is collected in a backscattering
mode using the objective and then directed toward the entrance slit of
the spectrograph through a pair of identical 2 in. plano-convex lenses
( f = 150 mm, Thorlabs). For single-particle measurements, the
sample surface was first imaged at the zero grating position with the
spectrometer slit fully open (2500 μm). After subsequently aligning a
group of suitable nanoparticles along the center of the slit, the width
of the slit was reduced to 450 μm to exclude multiple nanoparticles
from being recorded on the same position along the y-axis of the
CCD chip. The grating of the spectrograph (150 lines/mm, blaze
wavelength 800 nm) was then centered at a suitable wavelength
around 600−650 nm to acquire a dark-field scattering spectrum from
the scatterers on the sample aligned within the slit of the spectrograph
in the spectral imaging mode. Normalized scattering spectra Isc from
individual particles were thus obtained as a function of wavelength λ
using the relation Isc(λ) = (S − D)/CRS, where S is the collected
signal from an integrated area with nanoparticle, D is the signal from
the nearby area without nanoparticle (dark signal for background
correction taken from an area with identical pixel width but without
particles), and CRS is the signal collected from the diffuse white
certified reflectance standard bright reference sample (Labsphere
SRS-99-020). CRS is used in order to correct the signal for the lamp
spectrum. The acquisition time for each spectrum was 10 to 15 s
depending on the brightness of the particle. The obtained single-
particle scattering spectra were fitted with a Lorentzian function (±75
nm from the peak position) to derive information about the temporal
evolution of the peak position.68
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For scattering measurements from nanoparticle ensembles, the slit
width of the spectrometer was reduced to 100 μm to prevent
saturation of the CCD sensor chip. To calculate normalized scattering
spectra Isc, the background signal D was collected from a blank
substrate without any particles, under the same conditions as when
the signal S was collected. The same CRS as in single-particle
measurements was used for spectrum correction. Peak position was
extracted using the same fitting procedure as in single-particle
measurements.
Sample Nanofabrication. The Au@SiO2−Pt nanostructures

were fabricated on a thermally oxidized silicon substrate (100 nm
oxide thickness) using a tailored variant of the hole−mask colloidal
lithography (HCL) method that is described in detail elsewhere.60

The main new step in the present nanofabrication route is the growth
of a 10 nm thin SiO2 layer through the nanofabrication mask
generated using the standard HCL process, encapsulating a plasmonic
nanoantenna particle grown before. The key step enabling this
through-mask sputtering without compromising the final lift-off step is
a prolonged oxygen plasma etch (90 s, 50 W, 250 mTorr, Plasma-
Therm Batchtop RIE 95m) to create a significant underetch in the
poly(methyl methacrylate) (PMMA) resist of the mask after the
polystyrene bead tape-stripping step. After this plasma etch, the SiO2
encapsulation was grown in an Oxford Plasmalab 100 inductively
coupled plasma 180 at room temperature with a base pressure of 3 ×
10−7 Torr and a deposition rate of 2.75 Å/s. The Au nanoantennas,
which were grown using e-beam evaporation (Lesker PVD 225, base
pressure of 5 × 10−7 Torr, 1.5 Å/s deposition rate), have nominal
dimensions of 110 ± 10 nm in diameter and 20 nm in height. After
encapsulation in the 10 nm SiO2 shell, the Pt catalyst nanoparticle was
then evaporated on top (Lesker PVD 225, base pressure of 5 × 10−7

Torr, 1.5 Å/s deposition rate), also still through the hole−mask, at a
nominal thickness of 10 nm. A control sample was fabricated
following the same recipe except for omitting the last step that
evaporates the Pt catalyst. Finally, lift-off was used to remove the
PMMA resist and all metal layers by step-by-step sonication in mr-
Rem 700 (Microresist Technology GmbH), isopropyl alcohol, and
acetone. It is important to note that the single-particle region of 5%
coverage was formed due to faster drying at the edge when blow-
drying after drop-casting a polystyrene (PS) solution onto the
substrate. To increase coverage from 15% to 40%, 0.1 mmol of NaCl
was added to the PS solution to reduce interparticle repulsion and
thus particle density.69

CO Oxidation Experiments on Pt Catalyst Nanoparticle
Ensemble. Prior to sweeping αCO in the kinetic phase transition
experiments, the sample was exposed to 20 cycles of alternating 9%
CO (6.0 purity in Ar) and 9% O2 (6.0 purity in Ar) pulses of 15 min
duration, followed by a 1 h pulse of 9% CO, in order to activate the
catalyst and reach a stable optical signal. During this treatment, the
sample temperature was kept at 553 K. For the αCO sweep, the
temperature was kept constant at the set value, and the sample was
exposed to a constant total reactant concentration [CO + O2] of 9%,
at a constant flow rate of 100 mL/min. A scattering spectrum was
simultaneously collected every 60 s using an integration time of 0.1 s
and 10 accumulations for the CCD. With the QMS, the ion currents
of CO, CO2, air/N2, O2, and Ar inside the reactor were continuously
measured at a mass value of 28, 44, 14, 32 and 40, respectively, with a
time resolution of 5 s. The QMS was operated in SEM mode. To
subtract the CO2 background signal, measurements on a control
sample without Pt under the exact experiment conditions were also
carried out at corresponding temperatures. The CO2 QMS signal
shown in this article for both ensemble and single-particle
experiments is corrected by subtracting the CO2 signal from the
sample with Pt from the control sample without Pt catalyst.
CO Oxidation Experiments on Single Pt Catalyst Nano-

particles. Nanoparticles in the sample region of low particle density
as shown in Figure S5d were chosen to achieve well-separated (>20
pixels) diffraction-limited spots on the CCD sensor chip, using the
50× objective of the microscope. The sample stage was adjusted to
align the image of the chosen nanoparticles within the view of the
spectrometer slit set to a 450 μm opening. The scattered light from

each nanoparticle dispersed by the grating was collected in spectral
image mode with 14 s integration time and accumulated with 4
acquisitions every 60 s. The same conditions as in the ensemble CO
oxidation experiment were applied to compare the two results
directly. A normalized scattering spectrum from each nanoparticle was
extracted and fitted according to the procedure described in the
previous dark-field scattering spectroscopy method section to extract
the peak position.
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(22) Johańek, V.; Laurin, M.; Grant, A. W.; Kasemo, B.; Henry, C.
R.; Libuda, J. Fluctuations and Bistabilities on Catalyst Nanoparticles.
Science 2004, 304, 1639−1644.
(23) Alayoglu, S.; Krier, J. M.; Michalak, W. D.; Zhu, Z.; Gross, E.;
Somorjai, G. A. In Situ Surface and Reaction Probe Studies with
Model Nanoparticle Catalysts. ACS Catal. 2012, 2, 2250−2258.
(24) Hoener, B. S.; Kirchner, S. R.; Heiderscheit, T. S.; Collins, S. S.
E.; Chang, W.-S.; Link, S.; Landes, C. F. Plasmonic Sensing and
Control of Single-Nanoparticle Electrochemistry. Chem. 2018, 4,
1560−1585.
(25) Wang, W. Imaging the Chemical Activity of Single Nano-
particles with Optical Microscopy. Chem. Soc. Rev. 2018, 47, 2485−
2508.
(26) Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A.
P. Nanoantenna-Enhanced Gas Sensing in a Single Tailored
Nanofocus. Nat. Mater. 2011, 10, 631−636.
(27) Tang, M. L.; Liu, N.; Dionne, J. A.; Alivisatos, A. P.
Observations of Shape-Dependent Hydrogen Uptake Trajectories
from Single Nanocrystals. J. Am. Chem. Soc. 2011, 133, 13220−13223.
(28) Syrenova, S.; Wadell, C.; Nugroho, F. A. A.; Gschneidtner, T.
A.; Diaz Fernandez, Y. A.; Nalin, G.; Switlik, D.; Westerlund, F.;
Antosiewicz, T. J.; Zhdanov, V. P.; Moth-Poulsen, K.; Langhammer,
C. Hydride Formation Thermodynamics and Hysteresis in Individual
Pd Nanocrystals with Different Size and Shape. Nat. Mater. 2015, 14,
1236−1244.

(29) McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles
as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett.
2003, 3, 1057−1062.
(30) Chen, L.; Wu, B.; Guo, L.; Tey, R.; Huang, Y.; Kim, D.-H. A
Single-Nanoparticle NO2 Gas Sensor Constructed Using Active
Molecular Plasmonics. Chem. Commun. 2015, 51, 1326−1329.
(31) Seo, D.; Park, G.; Song, H. Plasmonic Monitoring of Catalytic
Hydrogen Generation by a Single Nanoparticle Probe. J. Am. Chem.
Soc. 2012, 134, 1221−1227.
(32) Zopf, D.; Jatschka, J.; Dathe, A.; Jahr, N.; Fritzsche, W.; Stranik,
O. Hyperspectral Imaging of Plasmon Resonances in Metallic
Nanoparticles. Biosens. Bioelectron. 2016, 81, 287−293.
(33) Fritzsche, J.; Albinsson, D.; Fritzsche, M.; Antosiewicz, T. J.;
Westerlund, F.; Langhammer, C. Single Particle Nanoplasmonic
Sensing in Individual Nanofluidic Channels. Nano Lett. 2016, 16,
7857−7864.
(34) Pini, V.; Kosaka, P. M.; Ruz, J. J.; Malvar, O.; Encinar, M.;
Tamayo, J.; Calleja, M. Spatially Multiplexed Dark-Field Micro-
spectrophotometry for Nanoplasmonics. Sci. Rep. 2016, 6, 22836.
(35) Alekseeva, S.; Fanta, A. B. d. S.; Iandolo, B.; Antosiewicz, T. J.;
Nugroho, F. A. A.; Wagner, J. B.; Burrows, A.; Zhdanov, V. P.;
Langhammer, C. Grain Boundary Mediated Hydriding Phase
Transformations in Individual Polycrystalline Metal Nanoparticles.
Nat. Commun. 2017, 8, 1084.
(36) Taylor, A. B.; Zijlstra, P. Single-Molecule Plasmon Sensing:
Current Status and Future Prospects. ACS Sens 2017, 2, 1103−1122.
(37) Li, K.; Qin, W.; Xu, Y.; Peng, T.; Li, D. Optical Approaches in
Study of Nanocatalysis with Single-Molecule and Single-Particle
Resolution. Front. Optoelectron. 2015, 8, 379−393.
(38) Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.;
Fan, C. DNA-Directed Assembly of Gold Nanohalo for Quantitative
Plasmonic Imaging of Single-Particle Catalysis. J. Am. Chem. Soc.
2015, 137, 4292−4295.
(39) Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao,
K. X.; Han, Y. Site-Specific Growth of Au−Pd Alloy Horns on Au
Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic
Reactions by Surface Enhancement Raman Spectroscopy. J. Am.
Chem. Soc. 2013, 135, 8552−8561.
(40) Eo, M.; Baek, J.; Song, H. D.; Lee, S.; Yi, J. Quantification of
Electron Transfer Rates of Different Facets on Single Gold
Nanoparticles During Catalytic Reactions. Chem. Commun. 2013,
49, 5204−5206.
(41) Wonner, K.; Evers, M. V.; Tschulik, K. Simultaneous Opto- and
Spectro-Electrochemistry: Reactions of Individual Nanoparticles
Uncovered by Dark-Field Microscopy. J. Am. Chem. Soc. 2018, 140,
12658−12661.
(42) Grote, J.; Dankbar, N.; Gedig, E.; Koenig, S. Surface Plasmon
Resonance/Mass Spectrometry Interface. Anal. Chem. 2005, 77,
1157−1162.
(43) Anker, J. N.; Hall, W. P.; Lambert, M. P.; Velasco, P. T.;
Mrksich, M.; Klein, W. L.; Van Duyne, R. P. Detection and
Identification of Bioanalytes with High Resolution LSPR Spectrosco-
py and MALDI Mass Spectrometry. J. Phys. Chem. C 2009, 113,
5891−5894.
(44) Langhammer, C.; Larsson, E. M.; Kasemo, B.; Zoric,́ I. Indirect
Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for
Nanomaterials Science and Optical Nanocalorimetry. Nano Lett.
2010, 10, 3529−3538.
(45) Langhammer, C.; Kasemo, B.; Zoric, I. Absorption and
Scattering of Light by Pt, Pd, Ag, and Au Nanodisks: Absolute Cross
Sections and Branching Ratios. J. Chem. Phys. 2007, 126, 194702.
(46) Zhang, C.; Zhao, H.; Zhou, L.; Schlather, A. E.; Dong, L.;
McClain, M. J.; Swearer, D. F.; Nordlander, P.; Halas, N. J. Al−Pd
Nanodisk Heterodimers as Antenna−Reactor Photocatalysts. Nano
Lett. 2016, 16, 6677−6682.
(47) Syrenova, S.; Wadell, C.; Langhammer, C. Shrinking-Hole
Colloidal Lithography: Self-Aligned Nanofabrication of Complex
Plasmonic Nanoantennas. Nano Lett. 2014, 14, 2655−2663.

ACS Nano Article

DOI: 10.1021/acsnano.9b02876
ACS Nano 2019, 13, 6090−6100

6099

http://dx.doi.org/10.1021/acsnano.9b02876


(48) Imbihl, R.; Ertl, G. Oscillatory Kinetics in Heterogeneous
Catalysis. Chem. Rev. 1995, 95, 697−733.
(49) Zhdanov, V. P.; Kasemo, B. Kinetic Phase Transitions in Simple
Reactions on Solid Surfaces. Surf. Sci. Rep. 1994, 20, 113−189.
(50) Kasemo, B. Quartz Tube Orifice Leaks for Local, Fast-
Response Gas Sampling to Mass Spectrometers. Rev. Sci. Instrum.
1979, 50, 1602−1604.
(51) Shegai, T.; Langhammer, C. Hydride Formation in Single
Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic
Dark-Field Scattering Spectroscopy. Adv. Mater. 2011, 23, 4409−
4414.
(52) Nugroho, F. A. A.; Iandolo, B.; Wagner, J. B.; Langhammer, C.
Bottom-Up Nanofabrication of Supported Noble Metal Alloy
Nanoparticle Arrays for Plasmonics. ACS Nano 2016, 10, 2871−2879.
(53) Ponec, V.; Bond, G. C. Catalysis by Metals and Alloys; Elsevier:
Amsterdam, 1995; Vol. 95, p 744.
(54) van Spronsen, M. A.; Frenken, J. W. M.; Groot, I. M. N. Surface
Science under Reaction Conditions: CO Oxidation on Pt and Pd
Model Catalysts. Chem. Soc. Rev. 2017, 46, 4347−4374.
(55) van Spronsen, M. A.; Frenken, J. W. M.; Groot, I. M. N.
Observing the Oxidation of Platinum. Nat. Commun. 2017, 8, 429.
(56) Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona,
P.; Mele, L.; Morana, B.; Nelissen, B. J.; van Rijn, R.; Creemer, J. F.;
Kooyman, P. J.; Helveg, S. Visualization of Oscillatory Behaviour of Pt
Nanoparticles Catalysing CO Oxidation. Nat. Mater. 2014, 13, 884−
890.
(57) Hartmann, N.; Imbihl, R.; Vogel, W. Experimental Evidence for
an Oxidation/Reduction Mechanism in Rate Oscillations of Catalytic
CO Oxidation on Pt/SiO2. Catal. Lett. 1994, 28, 373−381.
(58) Vogel, D.; Spiel, C.; Suchorski, Y.; Trinchero, A.; Schlögl, R.;
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