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Extended eigenvarieties for
overconvergent cohomology

Christian Johansson and James Newton

Recently, Andreatta, Iovita and Pilloni constructed spaces of overconvergent modular forms in character-
istic p, together with a natural extension of the Coleman—Mazur eigencurve over a compactified (adic)
weight space. Similar ideas have also been used by Liu, Wan and Xiao to study the boundary of the
eigencurve. This all goes back to an idea of Coleman.

In this article, we construct natural extensions of eigenvarieties for arbitrary reductive groups G over a
number field which are split at all places above p. If G is GL,/Q, then we obtain a new construction of
the extended eigencurve of Andreatta—lovita—Pilloni. If G is an inner form of GL, associated to a definite
quaternion algebra, our work gives a new perspective on some of the results of Liu—Wan—Xiao.

We build our extended eigenvarieties following Hansen’s construction using overconvergent cohomol-
ogy. One key ingredient is a definition of locally analytic distribution modules which permits coefficients
of characteristic p (and mixed characteristic). When G is GL,, over a totally real or CM number field, we
also construct a family of Galois representations over the reduced extended eigenvariety.

A correction was submitted on 27 October 2020 and posted online on 27 February 2021.

1. Introduction

1.1. The halo conjecture. The eigencurve, introduced by Coleman and Mazur [1998], is a rigid analytic
curve &2 over Q » which parametrizes systems of Hecke eigenvalues of finite-slope overconvergent
modular forms. It comes equipped with a morphism &£"¢ — ngg, called the weight map, whose target is
known as weight space. Wéig parametrizes continuous characters « : Z; — @; and is a disjoint union of
a finite number of open unit discs. There is also a morphism "¢ — G, which sends a system of Hecke
eigenvalues to the U,-eigenvalue; the p-adic valuation of the U),-eigenvalue is known as the slope. The
geometry of &€ encodes a wealth of information about congruences between finite-slope overconvergent
modular forms, and it is therefore not surprising that its study remains a difficult topic. In particular, we
know very little about the global geometry of £"¢ (for example, it is not known whether the number of
irreducible components of £"2 is finite or not).

Letgq = pif p #2and g =4 if p = 2. The components of ngg are parametrized by the characters
(Z/qZ)* — (Z/qZ)*, and if we define X := X, = k(exp(gq)) — 1, then X defines a parameter on each

1

component. Very little is known about the global geometry of &' over the centre |X| < ¢~! and it

seems likely to be rather complicated. Near the boundary, however, the situation turns out to be rather

MSC2010: primary 11F33; secondary 11F80.
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simple. Coleman and Mazur raised the question of whether the slope tends to zero as one moves along a
component of &€ towards the boundary of W(;ig. Buzzard and Kilford [2005] investigated this question
for p =2 (and tame level 1) and proved a striking structure theorem: é"rigl“ X|>1/8} 18 a disjoint union
of connected components (E;)7°, and the weight map E; — {|X | > %} is an isomorphism for every i.
Moreover, the slope of a point on E; with parameter X is i.v,(X), where v, is the p-adic valuation
(normalized so that v, (p) = 1). Out of this came a folklore conjecture; the following version is essentially
[Liu et al. 2017, Conjecture 1.2]:

Conjecture. Forr € (0, 1) sufficiently close to 1, é"rig|{| X|>r} is a disjoint union of connected components
(E)2, such that each E; is finite over {|X| > r}. Moreover, there exist constants A; € R>o fori =0, 1, ...,
strictly increasing and tending to infinity, such that if x is a point on E; with weight parameter X, then the
slope of x is Ajv,(X). The sequence (1;)72 is a finite union of arithmetic progressions, after perhaps

removing a finite number of terms.

We will loosely refer to this as the “halo conjecture” (the “halo” in question is the (disjoint union of)
annuli {|X| > r}). Let us assume p # 2 for simplicity. If « is a point of ngg then U, acts compactly on
the space of overconvergent modular forms M,’. ¥ The Fredholm determinants det(1 — T U, M K‘ ye@ HITT
interpolate to an entire series F = Zn _oan T" with coefficients in Z [[ZX]] (Q(WHg)O Fix a character
n: Z; — [F; and consider the ideal I;, = (p, [n]—n(n) [n=1, ..., p—1). The quotient ring ZI,[[Z;]]/I,7
is isomorphic to F,[[ X ]| via the map sending [exp(p)] to 1 + X. We may consider the reduction F, of F

modulo /,, and the character
Ky :Z;,< — (Z‘,,[[Z;]]/In)X = [Fp[[X]]X.

In an unpublished note, Coleman conjectured that there should exist an [, ((X))-Banach space M; M of

“overconvergent modular forms of weight i, with a compact U),-action such that det(1—-7".U, | M ) =F,,
and promoted the idea that one should study the halo conjecture via integral models of the elgencurve
near the boundary of weight space.

In [Andreatta et al. 2018], Andreatta, Iovita and Pilloni proved Coleman’s conjecture on the existence
of M Jf and constructed an integral model &’ of ", which lives in the category of analytic adic spaces
[Huber 1994]. an has a natural formal scheme model Spf Z [[ZX]] which may be viewed as an adic
space Qg over the affinoid ring (Z,, Z,). Apart from the points corresponding to the adic incarnation
of ngg, 20, contains an additional 2(p — 1) points in characteristic p, corresponding to the characters
n and k,. The latter points are analytic in Huber’s sense (the former are not) and one may consider
the analytic locus Wy = Wéig U {ky, | n} of Wy (viewing Wéig as an adic space). Wy may be viewed
as a compactification of Wrig, and Coleman’s idea may be interpreted as saying that one should study
the behaviour of £"¢ near the boundary of W, by extending the eigencurve to an adic space living
over W, turning global behaviour into local behaviour “at infinity”. At a point &,, one can no longer
measure slopes using p. Instead, one has to use X. Noting that one can use X not only at &, but also
“near” it, the halo conjecture says that the X-adic slope is constant as one approaches «,. This supports
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the idea that an extension of &"¢ exists, and that the E; in the halo conjecture are X-adic Coleman
families (i.e., subspaces which are finite over their images in weight space, and of constant slope). In this
framework, the slopes of U, should be the A;, with multiplicity the degree of X; over {|X| > r}. The halo
conjecture asserts, remarkably, that a Coleman family centred at a point over k, extends to some locus
{|X| > r} in the component corresponding to 1, where r is independent of the family (and in particular
its slope).

In [Liu et al. 2017], Liu, Wan and Xiao prove the halo conjecture for eigencurves for definite quaternion
algebras. Here the construction of (overconvergent) automorphic forms is of a combinatorial nature. Those
authors succeeded in proving the halo conjecture by calculations on some relatively explicit ad hoc integral
models of spaces of overconvergent automorphic forms. They construct one space over the whole of 20,
with a possibly noncompact U),-action, and another model over {|X| > p~ '} with a compact Up-action.
By the p-adic Jacquet-Langlands correspondence of [Chenevier 2005], this proves the halo conjecture
for the components of the Coleman—Mazur eigencurve of (generically) Steinberg or supercuspidal type at
some prime g # p.

1.2. Extended eigenvarieties for overconvergent cohomology. The main goal of this paper is to construct
extensions of eigenvarieties for a very general class of connected reductive groups G over Q. In
particular, we give a new construction of the extended eigencurve & appearing in [Andreatta et al. 2018].
Our construction also gives a conceptual framework for many of the results in [Liu et al. 2017] (and
establishes a generalization of some of their results, which was described as an “optimistic expectation”
in Remark 3.26(2) of that paper). See Theorem 6.3.4 for an interpretation of some of their results using
the extended eigencurve.

Our construction of these eigenvarieties appears in Section 4.1. For the purposes of the introduction,
we have the following vague statement:

Theorem A. Let F be a number field and let H be a connected reductive group over F which is split
at all places above p. Set G = Resg H. Then the eigenvarieties for G constructed in [Hansen 2017]
naturally extend to adic spaces Z¢g over the extended weight space

W = Spa(Z,[ Tyl Z, 1 ToD)™,
where T is a certain quotient of the Z ,-points Ty of a maximal torus in a suitable model of G over Z,,.

The assumption that H is split at all places above p is made for convenience only; it makes it easy
to define a “canonical” Iwahori subgroup. We believe that it should be relatively straightforward to
generalize our constructions to general quasisplit G over Q (or to the setting of [Loeffler 2011]). The
resulting theory would, however, be even more notationally cumbersome, so we have decided to stick to
the simpler (but still very general) situation in this paper.

As a secondary goal, we show (Theorem 5.4.5) that when G = Resg GL,/F, where F is a CM or
totally real number field, the reduced eigenvariety that we construct carries a Galois determinant (in the
language of [Chenevier 2014]) satisfying the expected compatibilities between Frobenii at unramified
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places and the eigenvalues of Hecke operators. This shows that, in these cases, the new systems of Hecke
eigenvalues that we construct in characteristic p carry arithmetic information.

Theorem B. There exists an n-dimensional continuous determinant D of G with values in O+(%Cr;ed)
such that
D(1 — X Frob,) = P,(X)

for unramified places v, where P,(X) is the usual Hecke polynomial (5.3.1).

Our proof of Theorem B is an adaptation of an argument due to the first author and David Hansen
in the rigid setting, which will appear in a slightly refined form in [Hansen and Johansson > 2019]. It
crucially uses Scholze’s results [2015] on Galois determinants attached to torsion classes, as well as
filtrations on distribution modules constructed in [Hansen 2015].

To end our brief discussion of the results established in this paper, we explain one interpretation of the
phrase “naturally extend” in Theorem A. Suppose for simplicity that F = Q, G(R) is compact modulo
centre, and G(Q,) may be identified with GL, (Q,). We let Tp € GL,(Q,,) denote the diagonal matrices
with entries in Z,, (in this case Ty = T}j). Modules of overconvergent automorphic forms for G (and some
fixed tame level, which we suppress) were constructed in [Chenevier 2004] (see also [Loeffler 2011]). If
we denote by U the Hecke operator corresponding to

1
p .

n—1

then this acts compactly on the spaces of overconvergent automorphic forms, and so for each continuous
character « : Ty — Q ; there is a characteristic power series F, € Q p[[IT1 given by the determinant of
1 — TU on the space of overconvergent automorphic forms of weight x. The following theorem is a
consequence of our eigenvariety construction, together with Corollary 4.1.5.

Theorem C. The characteristic power series F, glue together to F\yy € OOW){T}}, an entire function on
affine 1-space over W.

Suppose k : To — F,(X))* is a continuous character, with q a power of p. Then we give an
interpretation of the specialization Fyy ¢ of Fyy at k as the characteristic power series of U acting on an
F, (X))-Banach space of overconvergent automorphic forms of weight k.

The Fredholm hypersurface % cut out by Fyy is locally quasifinite, flat and partially proper over W
and the eigenvariety & comes equipped with a finite map to %.

1.3. Outline of the construction. The eigenvarieties that we extend are those constructed using overcon-
vergent cohomology (sometimes also referred to as overconvergent modular symbols). Overconvergent
cohomology was developed in [Stevens 1994; Ash and Stevens 2008], and the eigenvarieties were
constructed in [Hansen 2017]. Let us recall their construction in the special case of the Coleman—Mazur
eigencurve and p # 2. Let R be an affinoid Q) -algebra in the sense of rigid analytic geometry and
let k : Z; — R* be a continuous homomorphism. It is well known that « is locally analytic, and in
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particular analytic on the cosets of 1 + p*Z, for all sufficiently large s. For such s, we consider the
Banach R-module A, [s] of functions f: pZ, — R which are analytic on the cosets of p°Z,. The monoid

A:{y:<‘c‘ Z)GMQ(ZP)‘MC, anX,ad—bc;éO}

acts on A, [s] from the right by

d
(fY)x)=«(a Jrlax)f(c+ x).

a—+bx

We consider the dual space D, [s] = Homg ¢s(Ai[s], R), with the dual left action of A. A key point is that
the matrix = ((1) 2) acts compactly on D, [s]; it factors through the compact injection D, [s] < D [s + 1].
Fix an integer N > 5 (for simplicity) which is coprime to p, and consider the congruence subgroup
I'=T1(N)NTo(p) € A. We may view D,[s] as a local system 2~),< [s] on the complex modular curve
Y (I') = I'\'H and consider the singular cohomology group

H'(Y (D), D[s]) = H'(T, D, [s),

where the right-hand side is group cohomology (in general we would consider cohomology in all degrees,
but it turns out that H' (T, D[s]) = 0 if i # 1; see Section 6.1). It carries an action of the Hecke
operator U,. Considering these spaces for varying s and R = O(Uf), where U C Wéig is an affinoid open
subset, Hansen shows how to construct an eigenvariety from the Ash—Stevens cohomology groups by
a clever adaptation of the eigenvariety construction of [Coleman 1997] (in the one-dimensional case)
and [Buzzard 2007] (in the general case).! This eigenvariety turns out to equal the Coleman—Mazur
eigencurve. To extend this construction to W), the key point is to define generalizations of the modules
D, [s] for all open affinoid subsets U/ € Wy. Let R = O(U) and let « : Z; — R be the induced character.
The first thing to note is that « is continuous but need not be locally analytic anymore, so one cannot
directly copy the definition of D, [s]. One could try to instead use the space A, of all continuous functions
pZ, — R. This carries an action of A by the same formula, and we may consider its dual D,. However,
the action of ¢ is no longer compact, so one has to do something different.

Let f : pZ, — R be a continuous function and let f(x) =), cn(xfl P ) be its Mahler expansion.
Recall that, when U/ C Worig (i.e., when R is a QQ,-algebra), a the(;rem of Amice (see [Colmez 2010,
Théoréme 1.4.7]) says that £ is analytic on the cosets of p*™1Z,, if and only |c,|p™/?" P~V — 0 as n — oo.
Here | — | is any Q,-Banach algebra norm such that |p| = p~!. Dually, we may identify D, with the ring

ZdnT”,

n>0

of formal power series

where T" is the distribution f — ¢,(f) and d, is bounded as n — oo. The analytic distribution
module D, [s] is defined by the weaker condition that |d,, | p‘"/ P’ (=1 is bounded as n — co. We may
INote that it is not clear how to topologize the R-modules H 1 (I, Dy [s]), nor that they can be made into potentially ON-able

Banach R-modules, so even in this special case we are combining Hansen’s eigenvariety construction with the Fredholm theory
of Coleman and Buzzard, rather than using the Coleman—-Mazur-Buzzard eigenvariety construction.
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define norms | —||,, forr €[1/p, 1), on D, by || ano d,T" Hr =sup,, |d,|r". Let D, denote the completion

of D, with respect to || — ||; it may be explicitly described as the ring of power series ano d,T", where
|d,|r" — 0. While the D,[s] are not among the D, , one sees that 1<i£1r_>1 Dy =lim _  Di[s], so the

norms allow one to recover the space of locally analytic distributions. As an aside, we remark it is
possible to recover the D, [s] on the nose from the || — ||, but we will not need them for the construction
of eigenvarieties.

The upshot of considering the norms || — ||, is that they may be constructed on D, for any open affinoid
U Wy, by the formula given above. It is, however, not clear a priori that the norms interact well
with the action of A. As a monoid A is generated by the Iwahori subgroup I = ANGL,(Z,) and the
element 7. The element ¢ acts via multiplication by p on pZ, and it is not too hard to see that it induces
a norm-decreasing map (D, || — I;) = (D, || — ll,1/») and that the inclusions D; C D, for r < s are
compact. Thus ¢ induces a compact operator on D, as desired. The action of I is more complicated to
analyze, but it turns out that / acts by isometries for sufficiently large r (depending only on «). To see
this, it is useful to find a different description of || — ||,. This description, which we will outline below,
is one of the key technical innovations of this paper. It is the analogue, in our setting of norms, of the
observation in the rigid case that if « is s-analytic then the /-action on A, preserves A,[s].

Schneider and Teitelbaum [2003] generalized the norms defined above to the spaces D(G, L) of
continuous distributions on a uniform pro-p group G [Dixon et al. 1999, Definition 4.1] valued in a
finite extension L of Q,. To recall this construction briefly, a choice of a minimal set of topological
generators of G induces an isomorphism G = Z‘;imG of p-adic manifolds and using multivariable Mahler
expansions one may identify D(G, L) (as an L-Banach space) with Or[T1, ..., Tgimcl[1/p], and we
put (m = dim G)

nittny
----- N |r °

r

Schneider and Teitelbaum showed that these norms are submultiplicative and independent of the choice
of minimal generating set. We generalize the construction of these norms to the module D(G, R) of
distributions on a uniform group G valued in a certain class of normed Z,-algebras R that we call
Banach-Tate Z ,-algebras. These include the rings R = O(U/) for U € W) open affinoid (for a suitable
choice of norm) and generalize the constructions in the previous paragraph, which was the special case
G = pZ,. Moreover, the action of g € G on D(G, R) via left or right translation is an isometry for || — ||,
(for any r).

Let By = {y € I | c = 0} be the upper triangular Borel and let N1 = {(! %) | x € pZ,} = pZ,,; I has
an Iwahori decomposition / = N x By. Extend « to a character of By by setting «(y) = «(a). We have
an /-equivariant injection f + F of A, into the space C(/, R) of continuous functions F : G — R given
by F(nb) = f(n)x(b), withn € N and b € By. Here I acts on C(I, R) via left translation. The image
is the set of functions F such that F'(gb) = x(b)F(g) for all g € I and b € By. Dually, we obtain an
I-equivariant surjection D(/, R) — D,. If we pretend, momentarily, that / is uniform, then we may
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consider the quotient norm on D, induced from || — ||, on D(I, R) and one can show that for sufficiently
large r, this quotient norm agrees with the previously defined || — ||, on D,. This shows that I acts by
isometries on (D, || — ||,) for sufficiently large r. In reality / is not uniform, but one can adapt the
argument by working with a suitable open uniform normal subgroup of 1.

This summarizes our construction of the modules D, which we use to construct the eigenvariety.
From the D;, we construct variants DS and function modules A, € A, as well. When R is a Banach
Q-algebra, the A.[s] and D,[s] appearing in [Hansen 2017] are equal to A} and D', respectively, for
r=p~ /P (P=D 1t is easiest, however, to use the modules D, to construct the eigenvariety since they are
potentially orthonormalizable. Using the D/, the construction of the eigenvariety follows [loc. cit.], and
amounts largely to generalizing various well-known results from rigid geometry and nonarchimedean
functional analysis. Our arguments also generalize from the case of G = GL;/q to the general case
considered in [loc. cit.] (as stated in Theorem A). In particular, our methods work for groups that do not
have Shimura varieties (such as G = Resg GL,,F for n > 3), which are intractable by the methods of
[Andreatta et al. 2018] (see also [Andreatta et al. 2016]).

Remark 1.3.1. In independent work, Daniel Gulotta [2018] used a similar definition of distribution
modules to extend Urban’s construction [2011] of equidimensional eigenvarieties for reductive groups
possessing discrete series.

1.4. Questions and future work.

Generalizations of the halo conjecture. It is interesting to consider how the halo conjecture might
generalize beyond the case of GL,/Q. For general G we raise the following questions:

Question 1.4.1. Does every irreducible component of the extended eigenvariety 2 contain a point in
the locus p = 0?

Question 1.4.2. Are there irreducible components of 2 contained in the locus p = 0?

In the case of G = GL,/Q it is a consequence of the halo conjecture that every irreducible component
contains a characteristic- p point. Similarly, when G is an inner form of GL,/Q associated to a definite
quaternion algebra over @, it is a consequence of the results of [Liu et al. 2017] that every irreducible
component contains a characteristic-p point (see Theorem 6.3.4). In general, we regard an affirmative
answer to the first question as a very weak version of the halo conjecture.

If a component has a characteristic-p point, it becomes possible to study characteristic-0 points
in the component (if they exist) by passing to the characteristic-p point, or to points approximat-
ing the characteristic-p point. In the case of GL,/Q (or its inner forms), components which have
a characteristic-p point have a Zariski dense set of points corresponding to (twists of) classical modular
forms of weight 2. One argument in this spirit appears in [Pottharst and Xiao 2014], which has been used
by the authors in combination with the methods of [Liu et al. 2017] to establish new cases of the parity
conjecture for the Bloch—Kato Selmer groups associated to Hilbert modular forms. We essentially do
this by showing that there is a classical parallel weight-2 point on every irreducible component of an
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eigenvariety for a definite quaternion algebra over a totally real field in which p splits completely. See
[Johansson and Newton 2018] for more details.

Dimensions of irreducible components and functoriality. We note here that the theory of global irreducible
components for the adic spaces we work with requires some explanation (see [Conrad 1999] for the
rigid case). We have done this in a sequel to this paper [Johansson and Newton 2017], where we also
generalize some of the results of [Hansen 2017]. In particular, we show that the lower bound for the
dimension of irreducible components [loc. cit., Theorem 1.1.6] and (a variant of) the interpolation of
Langlands functoriality [loc. cit., Theorem 5.1.6] generalize to our extended eigenvarieties.

One application of the interpolation of Langlands functoriality is that in the case of GL,,q (or its inner
forms) [Bergdall and Pollack 2016; Liu et al. 2017] show that the extended eigenvarieties contain the
usual rigid eigenvarieties as a proper subspace. Applying functoriality (cyclic base change, for example)
then shows that this is true for a larger class of groups. See [Johansson and Newton 2017] for more details.

Galois representations. In [Andreatta et al. 2018] the natural question is raised as to whether the Galois
representations attached to characteristic-p points of the extended eigencurve are trianguline (in an
appropriate sense). One can similarly ask this question for the characteristic-p Galois representations con-
structed in this paper. Note that in our level of generality, it is still only conjectural that the characteristic-0
Galois representations carried by the eigenvariety are trianguline, but this is known, for example, in the
case where G is a definite unitary group defined with respect to a CM field. It would also be interesting
to construct a “patched extended eigenvariety” in this setting, extending the construction of [Breuil et al.
2017], and we hope to study this in the near future.

1.5. An outline of the paper. Let us describe the contents of the paper. Section 2 collects what we need
about the eigenvariety machine and the notion of slope decompositions, and introduces some functional-
analytic terminology that we will need throughout the paper. Since the key point of the paper is the
construction of certain norms, we adopt terminology that puts emphasis on the norm, as opposed to
merely the underlying topology. We give a definition of a slope decomposition (a concept introduced in
[Ash and Stevens 2008]) that differs slightly from the definitions that appear in the literature. This is
necessary since the definition given in [loc. cit.] neither localizes nor glues well, and so is not suitable for
the construction of eigenvarieties. Our definition is a formalization of an informal definition that the first
author learnt from conversations with David Hansen.

In Section 3, we carry out the construction of the norms on the D,, following the outline above. We
first discuss the generalization of the Schneider—Teitelbaum norms to distributions on a uniform group G
valued in a certain class of normed Z ,-algebras that we call Banach-Tate Z ,-algebras. These include,
for example, all Banach Q,-algebras in the usual sense, as well as Tate rings R = O(U{) with U/ an
affinoid open subset of weight space (equipped with a suitable norm). We show that, in a precise sense,
the completion of D(G, R) with respect to the family of norms (|| — ||)re(1/p,1) only depends on the
underlying topology of R. Imposing some additional conditions on the norm (which is always possible in

practice), we then construct the modules D/, D" and A; as outlined above.
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Section 4 then uses the modules D, to construct the eigenvariety, following the strategy in [Hansen
2017]. Since the D, are potentially orthonormalizable, the construction simplifies somewhat. We end
the section by generalizing the “Tor-spectral sequence” [loc. cit, Theorem 3.3.1] to our setting, which is
a key tool for analyzing the geometry of eigenvarieties, and use it give a description of the “points™ of
the eigenvariety valued in a local field. We use this description in Section 5 when we construct Galois
determinants.

In Section 6 we discuss the relationship of our work with that of [Andreatta et al. 2018; Liu et al.
2017]. We show that when G = GL;/q, our construction, over the normalization of the weight space W)
discussed above, produces the same eigencurve as in [Andreatta et al. 2018] (this normalization is only
different from W, if p =2). When G is the algebraic group over (0 associated with the units of a definite
quaternion algebra over @, we show that our framework gives a conceptual proof of [Liu et al. 2017,
Theorem 3.16], which is a key ingredient in their proof of the halo conjecture. In essence, the numerical
estimate of [loc. cit., Theorem 3.16] falls out directly from our proof of compactness of the U,-operator.
Thus, it is possible to view our proof of compactness of suitable “U,-like” operators (known as controlling
operators) as a generalization of [loc. cit., Theorem 3.16], as asked for in [loc. cit., Remark 3.26(2)].
Since this numerical estimate doesn’t appear strong enough to establish the halo conjecture in more
general situations, we have restricted ourselves to proving the statement in the setting of [loc. cit.] as an
illustration of our method.

Finally, the Appendix proves various results that we need on the class of Tate rings whose associated
affinoid adic spaces appear as the local pieces of our eigenvarieties; some of these results might be of
independent interest.

2. Preliminaries

The goal of this section is to set up some functional analytic terminology and theory. Specifically, we
require the results of [Buzzard 2007, §2-3] on Fredholm determinants, Riesz theory and the construction
of spectral varieties in a level of generality that is intermediate between the settings of [Buzzard 2007,
Coleman 1997] (see also [Andreatta et al. 2018, Appendice B]). For example, we need to work over coeffi-
cient rings arising from affinoid opens in the adic space W, discussed in our Introduction. These rings are
complete topological rings which are 7ate in the language of Huber [1993, §1]. The topology on these rings
is induced by a norm, and to discuss the spectral theory of compact operators it is convenient to fix such
a norm. This gives rise to a class of normed rings which we call Banach—Tate rings (see Definition 2.1.2).

The proofs in [Buzzard 2007] go through with little to no change when working over Banach-Tate
rings, so we will be rather brief. All norms etc. will be nonarchimedean so we will ignore this adjective.
All rings will be commutative unless otherwise specified.

2.1. Fredholm determinants over Banach—Tate rings.
Definition 2.1.1. Let R be aring. A function | — | : R — R is called a seminorm if (for all r, s € R)
(1) 0]=0and |1| =1;
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(2) |Ir +s| <max(|r], |s]);
3) Irs| < |rlls].

If in addition |r| = 0 only if » = 0, then we say that | — | is a norm. A ring R together with a (semi-)norm
will be called a (semi-)normed ring. A normed ring R is called a Banach ring if the metric induced by the
norm is complete.

If f: R — S is a morphism of normed rings, we say that f is bounded if there is a constant C > 0
such that | f(r)| < C|r| for all r € R.

We say that two norms | — |, | —|" on a ring R are equivalent if they induce the same topology. We say
that they are bounded-equivalent if there are constants C1, C> > 0 such that Cy|r| < |r|" < C;|r| for all
r € R (note that this is stronger than equivalence, see Lemma 2.1.6). Let R be a normed ring. We say
that » € R is multiplicative if |rs| = |r||s| for all s € R.

Definition 2.1.2. Let R be a normed ring. We say that R is Tate if R contains a multiplicative? unit o
such that |@r| < 1. We call such a @ a multiplicative pseudouniformizer. If R is also complete, we say
that R is a Banach—Tate ring. If R is a Tate normed ring and = is a multiplicative pseudouniformizer,

then we define the corresponding valuation v, on R by v, (r) = —log, |r|, where a = |& ~!|.

We remark that it is easy to see that a unit @ in a normed ring R is multiplicative if and only if
|o~!| = |=r|~!. A multiplicative pseudouniformizer & is a uniform unit in the sense of [Kedlaya and
Liu 2015, Remark 2.3.9(b)].

Remark 2.1.3. Let R be a Tate normed ring, with e a multiplicative pseudouniformizer:

(1) The underlying topological ring is a Tate ring in the language of Huber; the unit ball Ry is a ring of
definition and @ is a topologically nilpotent unit. Conversely, assume R is a Tate ring and @ € R is a
topologically nilpotent unit, contained in some ring of definition Ry. If @ € R., then we may define a
norm on R by |r| =inf{a™ | r € @" Ry, n € Z}. Equipped with this norm, R is a Tate normed ring with
unit ball Ry and @ is a multiplicative pseudouniformizer.

(2) A Banach-Tate ring A is the same thing as a Banach algebra A satisfying |A™| # 1 in the language
of [Coleman 1997, §1] (and what we call a Banach ring is what Coleman calls a Banach algebra). Here
A™ denotes the set of multiplicative units of A. Additionally, when R is a Banach-Tate ring and R™ is
a ring of integral elements, a choice of a multiplicative pseudouniformizer & may be used to identify
the Gelfand spectrum M (R) of bounded multiplicative seminorms on R [Berkovich 1990, §1.2] with
the maximal compact Hausdorff quotient of the adic spectrum Spa(R, R*) [Huber 1993]; see [Kedlaya
and Liu 2015, Definition 2.4.6]. Concretely, @ gives us a natural way of viewing a rank-1 point in
Spa(R, R1) as a bounded multiplicative seminorm.

Definition 2.1.4. Let R be a normed ring. A normed R-module is an R-module M equipped with a
function || — || : M — Rx¢ such that (for all m,n € M and r € R)

2That is, a unit which is multiplicative in the sense we just defined, as well as being a unit for multiplication!
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(1) |lm] = 0 if and only if m = 0;
(2) lm + nll < max(|lmll, [Inl);
) llrm| < |r|lim].

We remark that if » € R is a multiplicative unit, then one sees easily that ||rm| = |r|||m| for all m € M.
If R is a Banach ring and M is complete, we say that M is a Banach R-module.

Let R be a Tate normed ring. If M and N are normed R-modules, then a homomorphism ¢ : M — N is
a continuous R-linear map. In this case, continuity of an R-linear map ¢ is equivalent to boundedness; i.e.,
there exists C € R such that ||¢ (m)|| < C||m|| for all m € M. In this case we set || = Sup,,, 20 ¢ (m)] |m|~!
as usual; Hompg (M, N) becomes a normed R-module with respect to this norm. The open mapping
theorem holds in this context; see, e.g., [Huber 1994, Lemma 2.4(i)].

Let R be a Noetherian Banach—Tate ring. The results of [Bosch et al. 1984, §3.7.2] hold in the context
of Banach-Tate rings with the same proofs (thanks to the open mapping theorem), so R being Noetherian
is equivalent to all ideals being closed. Moreover, the results of [loc. cit., §3.7.3] hold for Noetherian
Banach-Tate rings with the same proofs. In particular, any finitely generated R-module carries a canonical
complete topology, and any abstract R-linear map between two finitely generated R-modules is continuous
and strict with respect to the canonical topology.

Definition 2.1.5. Let R be a Banach-Tate ring and let / be a set. We define cz(/) to be the set of
sequences (r;);c;s in R tending to O (with respect to the filter of subsets of I with finite complement). It is
a Banach R-module when equipped with the norm ||(r;)|| = sup;¢; |7:].

We say that a Banach R-module M is (potentially) orthonormalizable (or (potentially) ON-able for
short) if there exists a set I such that M is R-linearly isometric (resp. merely R-linearly homeomorphic)
to cr(I). A setin M corresponding to the set {e; = (8;;); | i € I} € cg(I) under such a map is called an
(potential) ON-basis.

Finally, we say that a Banach R-module M has property (Pr) if it is a direct summand of a potentially
ON-able Banach R-module.

If M — N is a continuous morphism of ON-able Banach R-modules, then we may define its matrix
for a fixed ON-basis on M and one on N as on [Buzzard 2007, p. 65], and the properties stated there
hold in this situation as well. A morphism ¢ : M — N between general Banach R-modules is said
to be of finite rank if the image of ¢ is contained in a finitely generated submodule of N. More
generally, ¢ is said to be compact (or completely continuous) if it is a limit of finite-rank operators in
Homg ¢s(M, N). If R is Noetherian, [loc. cit., Lemma 2.3, Proposition 2.4] go through with the same
proofs (using a multiplicative pseudouniformizer @ for what Buzzard calls p in the proof of Lemma 2.3)
and we see that if ¢ : M — N is a continuous R-linear map between ON-able Banach R-modules with
matrix (a;;) with respect to some bases (¢;);c; of M and (fj);es of N, then ¢ is compact if and only if
lim;_, oo sup;¢; la;j| =0. When M = N and (¢;);e; = (fj);ey this allows us to define the characteristic
power series, or Fredholm determinant, det(1 — T ¢) of a compact ¢ using the recipe on [loc. cit., p. 67]
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and one sees that det(1 — Tu) € R{{T}}, where

R{T) = {ZanT" € RITT | lam|M™ — Ofor all M € [Rzo}
n
is the ring of entire power series in R.

Moving on, we remark that [loc. cit., Lemma 2.5, Corollary 2.6] are true in our setting with the same
proofs. In particular, the notion of the Fredholm determinant extends to compact operators on potentially
ON-able M, and may be computed using a potential ON-basis. It will be useful (at least psychologically)
for us to know that these notions remain unchanged if we replace the norm on R by an equivalent one.
First, we remark that changing the norm on R to an equivalent one doesn’t change the topology on cg (1)
(for I arbitrary). This can be seen directly, but it is also a consequence of the following lemma, which we
will need later.

Lemma 2.1.6. Let R be a complete Tate ring, and let w, m € R be topologically nilpotent units. Assume

that we have two equivalent norms | — | and | — |, on R (inducing the intrinsic topology) such that @ is
multiplicative for | — | and m is multiplicative for | — | ;. Then we may find constants Cy, C3, s1, 55 > 0
such that

Cilaly <lalm < Calal?

foralla € R.

Proof. We thank a referee for suggesting a more efficient argument for this proof. First, note that it
suffices to find constants such that the inequalities hold for all nonzero a € R, since it trivially holds
for @ = 0 and all choices of constants. We will first prove the second inequality. To start, pick C' > 0
such that |a|, < 1 implies |a|, < C’ for all a € R (possible since the norms are equivalent). Since @ is
m |;1

topologically nilpotent we may find m € Z> such that |o™|, < 1. It follows that | ™" |, > |& > 1.

{ log |al, W
log |@™ |

We have || |al, < 1. If n > 0, we deduce that [o™"al|, < |&"|} |al, < 1. If n <0 we similarly
deduce that

For any nonzero a € R, set

o™ al, <o " " aly <l@"7lal < 1.

Therefore we have |@™"a|, < C'. By multiplicativity of @ for | — |5 we get |a|, < C'|ew | Setting
q = |o|," > 1, we then have

m|—1
laly < C'q" < C'qUoglin/ 812"+ = Cglal2,
where we have put s, = (logq |wm|;1)_1; note that s, > 0. Set C, = C'q; we get

lalm < Calaly,

with C,, s5 > 0 as desired.
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To get the first inequality, note that by symmetry we may find D, ¢ > 0 such that |a|; < Dlal|’,.
Rearranging we obtain
Cilaly <lalm < Colaly

as desired, where C; = D~/ and 51 = 1/1. O
Remark 2.1.7. If R has two equivalent norms | — | and | — |" with a common multiplicative pseudouni-
formizer @ such that | | = ||, then the proof shows that | — | and | — |" are bounded-equivalent. This

is also easy to see directly, and will be used freely throughout the paper.

Suppose then that (M, | — |) is a Banach (R, | — |)-module, and (M, | —|') is a Banach (R, | —|)-
module, where | — | and | — |" are equivalent on both R and M. A Banach (R, | — |)-module isomorphism
(M, |—|) = (cg(I), | —]) is then the same thing as a Banach (R, | —|")-module isomorphism (M, | —|) =
(cr(D), | —1"), since (cr(I),| —1) = (cg(I), | — ") as topological R-modules via the identity map. Thus
(M, | —) is potentially ON-able if and only if (M, | —|’) is potentially ON-able, and (e¢;);<; is a potential
ON-basis for (M, | —|) if and only if it is a potential ON-basis for (M, | —|'). It follows, at least when R
is Noetherian (which is all we need), that an operator ¢ is compact on a potentially ON-able (M, | — |) if
and only if it is compact on a potentially ON-able (M, | —|'), and the Fredholm determinant is the same.

We remark that the results [Buzzard 2007, Lemma 2.7—Corollary 2.10] hold over Noetherian Banach—
Tate rings R, again with the same proofs. We can extend the notion of Fredholm determinants of compact
operators on Banach R-modules with property (Pr) as on [loc. cit., pp. 72-73], and the results there hold
over Noetherian Banach—Tate rings. One also sees that having property (Pr) is stable when changing
the norms on (R, M) to equivalent ones, as is compactness of operators and the Fredholm determinants
for compact operators are unchanged. We summarize the results of this section with the following
proposition:

Proposition 2.1.8. Let R be a Noetherian Banach—Tate ring. If M is a Banach R-module with property
(Pr)and ¢ : M — M is compact then there is a well-defined Fredholm determinant

det(1 — T¢|M) € R{T)).

If we change the norms on (R, M) to equivalent ones, then M still has property (Pr), ¢ is still compact,

and the Fredholm determinant is unchanged.

2.2. Riesz theory, slope factorizations and slope decompositions. We continue to let R denote a Banach—
Tate ring. If Q € R[T], we write Q*(T) := T2 Q(1/T). We recall the following definitions:
n>1nT" € R{T}}. A polynomial
Q € R[T] is called multiplicative if the leading coefficient of Q is a unit (in other words, if 0*(0) € R*).
Two entire series P, Q € R{{T'}} are said to be relatively prime if the ideal (P, Q) is equal to R{T'}}.

Definition 2.2.1. A Fredholm series is a formal power series F =1+ _

The proof of [Buzzard 2007, Theorem 3.3] goes through without changes; we state it for completeness
(see also [Andreatta et al. 2018, Théoreme B.2]). Implicit in this is that [Buzzard 2007, Lemma 3.1]
holds with the same proof; we will make use of this later.
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Theorem 2.2.2. Assume that R is Noetherian. Let M be a Banach R-module with property (Pr) and
let u: M — M be a compact operator with F = det(1 — Tu). Assume that we have a factorization
F = QS, where S is a Fredholm series, Q € R[T] is a multiplicative polynomial, and Q and S are
relatively prime in R{{T}}. Then Ker Q*(u) C M is finitely generated and projective and has a unique
u-stable closed complement N such that Q*(u) is invertible on N. The idempotent projectors M —
Ker Q*(u) and M — N lie in the closure of R[u] C Endg ¢s(M). The rank of Ker Q*(u) is deg Q, and
det(1 — Tu | Ker Q*(u)) = Q. Moreover, u is invertible on Ker Q*(u), and det(1 — Tu | N) = S.

Proof. Apart from the last sentence, this is (a minor reformulation of) [Buzzard 2007, Theorem 3.3]. To
see that u is invertible on Ker Q*(u), note that

det(u | Ker Q*(u)) = Q*(0) € R™.
To see that det(1 — Tu | N) = S, write S’ =det(1 — Tu | N) and note that
F =det(1—Tu | Ker Q*(u))det(1—Tu | N) = QS".
Hence O(S — §’) =0, and Q is not a zero divisor since Q(0) =1,s0 S =S". O

The following lemma may be extracted from the proof of [loc. cit., Lemma 5.6]; we give the short
proof for completeness.

Lemma 2.2.3. Assume that R is Noetherian. Let M and M' be two Banach R-modules with property
(Pr) and assume that we have a continuous R-linear map v : M — M’ and a compact R-linear map
i:M — M. Set u=ivand u' = vi. Then u and u’ are both compact and det(1 — Tu) = det(1 — Tu');
call this entire power series F. If F = QS is a factorization as in Theorem 2.2.2, then i restricts to an
isomorphism between Ker Q*(u’) and Ker Q* (u).

Proof. Compactness of u and u’ and the equality of their Fredholm determinants follows from [loc. cit.,
Proposition 2.7]. Now assume we have a factorization F = QS. If x’ € Ker Q*(u'), then Q*(u)(i(x)) =
i(Q*(w)(x")) = 0 so i(Ker O*(u')) € Ker Q*(u). Furthermore, if i(x’) = 0 then v/(x’) = 0, so
O*(w)(x") = 0*(0).x’ = 0 and hence x’ = 0, so i is injective on Ker Q*(u’). For surjectivity onto
Ker Q*(u), let x € Ker Q*(u) and choose y € Ker Q*(u) with u(y) = x (possible by Theorem 2.2.2).
Then one checks, similarly to the computation above, that v(y) € Ker Q*(u”), and hence i (v(y)) =u(y) ==x,
which gives us surjectivity and finishes the proof. O

Next, we let K be a field, complete with respect to a nontrivial nonarchimedean absolute value. We
briefly define the Newton polygon of a power series F € K[T]], following [Ash and Stevens 2008, §4.2]
(in this special case). A subset N C R? is said to be sup-convex if it is convex and, if a point (a, b) is
in NV, then A contains the whole half-line {(a, b +1) | t > 0} above it. Given an arbitrary subset S C R?,
there is a unique smallest sup-convex set containing S, which we will denote by H (S). If I € Z>( and
w : I — R is a function, then any set of the form H, ({(n, w(n)) | n € I}) is called a Newton polygon. We
refer to [loc. cit., §4.2] for the notions of vertices, edges and slopes of a Newton polygon.
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Definition 2.2.4. Let F = ano a,T" € K[T]. Fix a pseudouniformizer @ € K and consider the
corresponding valuation v,. The Newton polygon of F is the Newton polygon H (S(F)), where

S(F) = {(n, vy (ay)) | n € Ir} CR?,
with Ir = {n € Z>¢ | a, #0}.

Let & € R. We say that a power series F € K[[T]] has slope < h (or > h) if all slopes of its Newton
polygon are < & (or > h). Now consider a Banach—Tate ring R with a multiplicative pseudouniformizer .
We say that F € R[[T] has slope < & (or > h) if, for any x in the Gelfand spectrum M (R) with residue
field K, the specialization F, € K,[T] has slope < h (or > h).

Definition 2.2.5. Let R be a Banach—Tate ring with a fixed multiplicative pseudouniformizer @ . Let
F € R{{T}} be a Fredholm series and let 1 € R. A slope < h-factorization of F is a factorization F = QS
in R{T}}, where Q is a multiplicative polynomial of slope < & and S is a Fredholm series of slope > h.

Remark 2.2.6. If R is a complete Tate ring with a fixed topologically nilpotent unit zr, then the notions
of slope factorizations and slope < i or > h are independent of the choice of a norm on R with @
multiplicative. Moreover, one can define all these notions directly without choosing a norm on R.

Recall that an element a € R is called quasinilpotent if its spectral seminorm? lalsp is 0. This is
equivalent to |a|, = 0 for all x € M(R) by [Berkovich 1990, Corollary 1.3.2]. The set of quasinilpotent
elements forms an ideal of R, which is the kernel of the Gelfand transform R — [, r) Kx. We note
that it is easy to see that a quasinilpotent element is topologically nilpotent. For the kinds of rings R
which appear in practice in this paper, the quasinilpotent elements are just the nilpotent elements (this
follows from Theorem A.7), and the proof of the following lemma is simpler. However, we will avoid
imposing additional technical assumptions at this stage.

Lemma 2.2.7. Let R be a Banach—Tate ring with a fixed multiplicative pseudouniformizer w and let
h € Qso. Let S be a Fredholm series of slope > h and Q a multiplicative polynomial of slope < h. Then
QO and S are relatively prime.

Proof. We will use Coleman’s resultant Res, for which we refer to [Coleman 1997, §A3] (the reader
may also benefit from the discussion on [Buzzard 2007, p. 74]). By [Coleman 1997, Lemma A3.7]
it suffices to prove that Res(Q, S) is a unit in R{{T'}}. Pick x € M(R) and specialize to K. Then
Res(Q, S)x =Res(Qy, Sy) and since Qy has slope < & and S, has slope > h we see that Res(Q, S), €
K. {T}* = K. By [Berkovich 1990, Corollary 1.2.4] we see that Res(Q, S) =ao+ T.F(T), where
ap € R* and F(T) € R{{T}} has quasinilpotent coefficients. Multiplying by a, ! we see that it suffices to
prove that if F € R{{T}} has quasinilpotent coefficients, then 1 — T.F(T) € R{{T }}*.

To prove this, we use an argument suggested to us by a referee, which is more efficient than our original
argument. First note that the formal inverse of 1 — T.F(T) is G(T) = ano T".F(T)" so we need to
show that this is entire. Setting H(T) = T.F (T), it suffices to show that if H(T) is any entire power

3The definition of the spectral seminorm is recalled in the Appendix.
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series with H (0) = 0 and with quasinilpotent coefficients, then ) " _, H(T)" converges and is entire. In

n>0
fact, it suffices to prove that ano H(T)" € R(T), since if we have proved this we can apply this to
H(zw ~NT) for all N (which still has quasinilpotent coefficients) to deduce that > -0 H(T)" is entire.
So, to show this, it suffices to show that H(T') is topologically nilpotent in R(T'), where we equip R(T)
with the Gauss norm coming from the norm on R. Since the coefficients of H tend to 0, we may write
H(T)= Zfl\’:l hyT" 43",y hnT", with |h,| < 1 for n > N. Then the tail ), _, h,T" is topologically
nilpotent (it has Gauss norm < 1) and the terms %, T" are topologically nilpotent for all n since 4, is
quasinilpotent (and hence topologically nilpotent). So H(T') is a finite sum of topologically nilpotent

elements, and hence topologically nilpotent. 0

Continue to let R be a Banach-Tate ring with a fixed multiplicative pseudouniformizer . The
following is a minor variation of [Ash and Stevens 2008, Definition 4.6.1].

Definition 2.2.8. Let M be an (abstract) R-module, let u : M — M be an R-linear map and let & € Q.
An element m € M is said to have slope < h with respect to u if there is a multiplicative polynomial
Q € R[T] such that

(1) Q*(u).m =0;
(2) the slope of Q is < h.

We let M<;, € M denote the subset of elements of slope < A.

Lemma 2.2.9 [Ash and Stevens 2008, Proposition 4.6.2]. My, is an R-submodule of M, which is stable

under u.

Proof. 1t is clear from the definition that M<;, is closed under multiplication, and stable under u. It
therefore suffices to prove that it is closed under addition, for which it suffices to prove that if Q; and Q>
are two multiplicative polynomials of slope < A, then so is Q| Q». To see this it suffices to specialize
to the case when R is a field and the norm is an absolute value. The assertion is then well known (for
example, the argument in the proof of [loc. cit., Proposition 4.6.2] carries over without change). U

Definition 2.2.10 [Ash and Stevens 2008, Definition 4.6.3]. Let M be an R-module with an R-linear
map u : M — M and let h € Q. A slope < h-decomposition of M is an R[u]-module decomposition
M = M;, & M" such that

(1) My is a finitely generated R-submodule of M<y;

(2) for every multiplicative polynomial Q € R[T] of slope < h, the map Q*(u) : M" — M" is an
isomorphism of R-modules.

Proposition 2.2.11. We keep the above notation. If M has a slope < h-decomposition My, & M", then
it is unique, and My = M<y, (in particular the latter is finitely generated over R). We will from now on
write M), for the unique complement. Moreover, slope decompositions satisfy the following functorial
properties:
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(1) Let f: M — N be a morphism of R[u]-modules with slope < h-decompositions. Then f(M<y) S N<p,
and f(M~y) € N-j. Moreover, both Ker(f) and Im(f) have slope < h-decompositions.

(2) Let C* be a complex of R[ul-modules and suppose that each C' has a slope < h-decomposition. Then
every H' (C*) has a slope < h-decomposition, explicitly given by H'(C*) = Hi(C'Sh) @®HI(C)).

>h
Proof. The proof is identical to that of [Ash and Stevens 2008, Lemma 4.6.4]: one equates slope < h-
decompositions with S-decompositions (as defined and studied in [loc. cit., §4.1]) for the set S € R[u] of
all O*(u), where Q is a multiplicative polynomial of slope < h. The properties then stated follow from
general facts about S-decompositions, recorded in [loc. cit., Proposition 4.1.2]. O

Definition 2.2.12. Let R be a Banach-Tate ring with a fixed multiplicative pseudouniformizer e and let
M be a Banach R-module. Assume that M has a slope < h-decomposition M =M<, &M, . If f: R— S
is a bounded morphism of Banach—Tate rings such that f(zz') is a multiplicative pseudouniformizer in S,
we say that the slope < h-decomposition is functorial for R — § if M®gS = (M<, Q@rS)® (M-=p ®r S)
is a slope < h-decomposition of M®y S (using f (=) to define slopes for S). We say that the slope < /-
decomposition is functorial if it is functorial for all such bounded homomorphisms of Banach-Tate rings
out of R.

Theorem 2.2.13. Let R be a Noetherian Banach—Tate ring with a fixed multiplicative pseudouni-
formizer w, and let M be a Banach R-module with property (Pr). Let u be a compact R-linear operator
on M, with Fredholm determinant F(T) = det(1 — Tu). If M has a slope < h-decomposition which is
functorial with respect to R — K for all x € M(R), then F has a slope < h-factorization. Conversely, if

F has a slope < h-factorization, then M has a functorial slope < h-decomposition.

Proof. Assume that M has a slope < h-decomposition M = M, & M-, which is functorial with respect
to R — K, for all x € M(R). Then both of these spaces satisfy property (Pr) and are u-stable, and hence
we have

F=det(l —Tu|M<p)det(l —Tu | M-p).

We claim that this is a slope < h-factorization. Put Q =det(1 — Tu | M<p), S =det(1 —Tu | M~p).
Pick x € M(R) with residue field K, and specialize. We have Q, =det(l — Tu | M<, ®r K,) and
Sy =det(1—Tu | M-, QrK,). By assumption MQgrK, = (M<, ®r Kx)® (M>h(§)RKx) is a slope < h-
decomposition, so O, has slopes < & and S, has slopes > & and so F' = QS is a slope < h-factorization.

Conversely, assume that F has a slope < h-factorization F = QS. By Lemma 2.2.7 Q and S are
relatively prime, so we may apply Theorem 2.2.2 to get a u-stable decomposition M = Ker Q*(u) & N.
It is easy to see that this decomposition is functorial, as is a slope < h-factorization, so it suffices to
prove that this decomposition is a slope < s-decomposition. First, since Q has slope < /i we see that
Ker O*(u) € M<j, (and we know it’s finitely generated). It remains to show that for every multiplicative
polynomial P of slope < h, P*(u) is invertible on N. By Lemma 2.2.7 P and S are relatively prime.
Since S =det(1 — Tu | N) (by Theorem 2.2.2), it follows from [Buzzard 2007, Lemma 3.1] that P* is
invertible on N, as desired. O
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Corollary 2.2.14. With notation and assumptions as in the theorem, a slope < h-decomposition of M is
functorial if and only if it is functorial for the natural map R — K, for all x € M(R).

2.3. Fredholm hypersurfaces. In this section we discuss the notion of Fredholm hypersurfaces and relate
this to slope factorizations and decompositions. We will use Huber’s adic spaces as our framework for
nonarchimedean geometry, and we will use standard notions and notation from this theory freely, referring
to the basic references [Huber 1994; 1996].

Any Tate ring R with a Noetherian ring of definition has an associated affinoid adic space Spa(R, R™),
for any ring of integral elements R™, by [Huber 1994, Theorem 2.5]. Fix an R' and consider X =
Spa(R, R™). We will frequently be interested in affine 1-space over X. As an adic space over (Z, Z), we
have Al = Spa(Z[T], Z); it represents the functor X — O(X) on the category of adic spaces (we note that
the functor X — OT(X) is represented by the “closed unit disc” Spa(Z[T], Z[T])). The fibre product
A; =X Xspaz,2) Al exists, but it is no longer affinoid. Indeed, if we pick a topologically nilpotent unit
@ € R, it can be checked that the fibre product is given by

Al = U Spa(R(w™T), RT (@™ T))
m=>0
with respect to the transition maps coming from the natural inclusions. The ring of global functions on
A}( is the ring of entire power series R{{T'}}. Pick a topologically nilpotent unit o € R. If h € Q then,
writing h =m/n withm € Z and n € Z>, we define an affinoid subset Bx , C A; by

Bx.n ={IT"| < ||} € Ag.

We have A} = J,cq Bx.i-

Let R be a complete Tate ring with a Noetherian ring of definition and let F € R{{T}} be a Fredholm
series. Put X = Spa(R, R°). The closed subvariety Z(F) := {F =0} C A}( is called the Fredholm
hypersurface of F, or sometimes the spectral variety of F. It carries a projection map Z(F) — X, which
is flat, locally quasifinite and partially proper by [Andreatta et al. 2018, Théoreme B.1].

Definition 2.3.1. Let R be a complete Tate ring with a Noetherian ring of definition, and pick a topologi-
cally nilpotent unit € R. Let F be a Fredholm series with Fredholm hypersurface Z = Z(F) C A},
where X = Spa(R, R°). Let h € Q>¢ and let U € X be an open affinoid in X; put Zy , =ZNBy, C A}(
(this is an open affinoid subset of Z). We say that the pair (U, k) is a slope datum for (X, F) if Zy , - U
is finite of constant degree (if the pair (X, F') is clear form the context, we occasionally just say that
(U, h) is a slope datum).

Theorem 2.3.2. Let R be a complete Tate ring with a Noetherian ring of definition, and pick a topologi-
cally nilpotent unit w € R. Let F be a Fredholm series over R with spectral variety Z = Z(F) C AL,
where X = Spa(R, R°). Let U € X be an open affinoid and let h € Q. Then:

(1) (U, h) is a slope datum for (X, F) if and only if F has a slope < h-factorization in Ox (U){{T}}.
(2) The collection of all Zy j, for all slope data (U, h) is an open cover of Z.
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Proof. This follows almost directly from [Andreatta et al. 2018, Théoreme B.1, Corollaire B.1]. The
second assertion is shown by tracing through the proof of [loc. cit., Lemme B.1, Théoreme B.1]; adapting
the proof of [loc. cit., Théoreme B.1] slightly one sees that one may take the sets to be of the form Zy
(the degree is locally constant on U, so constancy of the degree can be arranged). For the first assertion,
the statement that if (U, h) is a slope datum then F has a slope < h-factorization in Ox (U){{T}} is
[loc. cit., Corollaire B.1]. Conversely, if F = QS is a slope < h-factorization in Ox (U){T}}, then S is a
unit in O(By ). Therefore O(Zy ) = OBy .p)/(F) = OBy.)/(Q) is finite of constant degree equal
to deg Q over U, and hence Zy , — U is finite of constant degree. O

More generally, let X be an analytic adic space locally of the form Spa(R, R°) for R a complete
Tate ring with a Noetherian ring of definition, and let ' be a Fredholm series over X with Fredholm
hypersurface Z. If U C X is an open affinoid and /& € Q>¢, we say that (U, h) is a slope datum for (X, F)
if O(U) is Tate and there is a topologically nilpotent unit @ € O(U) such that Zy j,, defined using this
choice of @, is finite flat of constant degree over U.

When constructing eigenvarieties, it will be useful to consider a slightly more general notion. Let X be
an analytic adic space as above and let F' be a Fredholm series over X, with associated hypersurface Z.
Write w : Z — X for the projection. We let ¥ov(Z) denote the set of all open affinoid V C Z such that
(V) C X is open affinoid, O(w(V)) is Tate, and the map |y : V — (V) is finite of constant degree.
Then we have the following theorem.

Theorem 2.3.3. Keep the notation and assumptions of the paragraph above. Then €ov(Z) is an open
cover of Z. If V € Gov(Z), then there exists a factorization F = QS in O(w(V)){{T}}, where Q is a
multiplicative polynomial of degree deg |y, S is a Fredholm series, Q and S are relatively prime, and
we have

O(V)=0@(V)ITI/(Q) and OF(V)=(O@(V)ITI/(Q)°.

Conversely, if such a factorization of F exists in O(U){{T}}, where U C X is open affinoid and O(U) is
Tate, then V = Spa((’)(U)[T]/(Q), ((’)(U)[T]/(Q))°) is naturally an element of €ov(Z).

Proof. The assertions about rings of integral elements follow immediately from the rest by Lemma A.3.
The first two parts are [Andreatta et al. 2018, Théoreme B.1, Corollaire B.1]. Note thatif 7 : V — U is a
finite flat morphism, with U C X and V C Z open affinoid, then r is open by [Huber 1996, Lemma 1.7.9].
For the last part, it is clear that V — U is finite and surjective of constant degree deg Q, so it remains to
see that V is naturally an open subset of Z. For this we may work locally over U. Set B = O(U). For
each n we have compatible morphisms

B[T1/(Q) = B(@"T)/(Q) < B(w"T)/(F).
The second map is the projection onto the first factor in the decomposition

B{@"T)/(F)=B({@"T)/(Q) x B{@"T)/(S)
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which results from the fact that Q and S are relatively prime. Thus {Q = 0} C Z is open and closed
in Z. Moreover, when 7 is sufficiently large, we claim that the first map is an isomorphism. To
see this, consider the quotient map p : B[T] — B[T]/(Q) and equip the target with a submultiplica-
tive norm that induces the canonical topology. For large enough n we will have |p(@"T)| < 1 and
hence p(Bol@w"T]) € (B[T]/(Q))o (here we are using —¢ to denote unit balls), so p is continuous
for the topology on B[T] coming from the inclusion B[T] € B(w"T), and we may complete to
obtain a morphism B{(w"T) — B[T]/(Q) with kernel QB (w"T). This gives an inverse to the map
B[T]/(Q) — B{@w"T)/(Q), proving the claim. Thus we may identify V with {Q = 0} € Z, which
shows that V is naturally an open subset of Z. 0

3. Relative distribution algebras

3.1. Relative distribution algebras and norms. A p-adic analytic group will in this paper always mean
a Q,-analytic group. Let R be a Banach—Tate ring. We denote the unit ball of R by Ry. If there exists a
norm-decreasing homomorphism Z, — R, where we equip Z, with the usual norm |x|, = p o) we
call such an R (together with the map Z, — R) a Banach-Tate Z ,-algebra. The goal of this section is
to extend some of the constructions of [Schneider and Teitelbaum 2003, §4] to the case of continuous
functions and distributions valued in such R. In particular, we construct R-valued analogues of (locally)
analytic distribution algebras for compact p-adic analytic groups. We begin with a lemma on the existence
of Banach-Tate Z ,-algebra norms.

Lemma 3.1.1. Let R be a Noetherian Banach—Tate ring with norm | — | and a multiplicative pseudouni-
formizer w. Assume that there exists a continuous homomorphism Z, — R (necessarily unique). Then
there exists a Banach-Tate Z ,-algebra norm | — |" on R which is bounded-equivalent to | — |* for some
s > 0, and such that @ is a multiplicative pseudouniformizer for | — |

Proof. Note first that a norm | —|" on R is a Banach-Tate Z ,-algebra norm if and only if | p|" < p~ ! sowe

need to check this. By continuity of Z, — R we have p € R°°. Choose m € Z> such that |pls, < |& |>/m
and consider the finite free R-algebra

S = R[] = R[X]/(X" —w).

We equip S with its canonical topology as a finite R-module; then the induced subspace topology on R € S
agrees with the original topology on S. Thus we have p, @ !/ € §°°. Now equip S with a submultiplicative
R-Banach module norm | — | that induces the canonical topology. Note that o is a multiplicative

pseudouniformizer for | — |s with | |s = ||, and that (R, | —|) — (S, | —|s) is norm-decreasing. We

1/m —1/m

then have |pw—1/’”|5,Sp < || < 1 by construction, so pw

1/m

is topologically nilpotent in S. We

—1/m

can then choose a ring of definition S, of S containing @ /™ and pw and consider the norm

Is|, = inf{|@ [/ | s € @*/™ S5},

Since p € w /™S, we have |p|, < 1, and we may hence find s > 0 such that Ipl5 < p~!. Restricting the
norm | —|":=|— |} to R C S then gives the desired norm. O
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Definition 3.1.2. Let X be a compact topological space and let A be a topological Z ,-algebra:

(1) We let C(X, A) denote the A-module of all continuous A-valued functions on X, and let Cs (X, A)
denote the subspace of all locally constant functions.

(2) We put D(X, A) = Homy os(C(X, A), A).

When A is a normed ring, we may topologize C(X, A) and Cyy (X, A) using the supremum norm, and
we may give D(X, A) the corresponding dual/operator norm. If A is complete, this makes C(X, A) into
a complete A-module. When the topology on X is profinite, Csn (X, A) is dense in C(X, A) and, if R
is a Banach—Tate Z ,-algebra, the natural map C(X, Z p)®ZpR — C(X, R) is a topological isomorphism.
Similarly C(X, Zp)®zp Ry = C(X, Ry), where Ry is the unit ball of R.

Continue to let X be a profinite set and R a Banach—Tate Z ,-algebra with unit ball Ry and a multiplicative
pseudouniformizer z. Note that D(X, Rg) = Hompg,(C(X, Rp), Ro) (i.e., continuity with respect to the
w -adic topology is automatic) and that this is the unit ball in D(X, R). We may equip D(X, Rp) with the
weak topology coming from the family of maps D(X, Ryp) — Ry given by u +— u(f) for f € C(X, Rop)
and the w-adic topology on Ry. We will refer to this topology as the weak-star topology on D(X, Rp).
When X = G is a profinite group, D(G, R) carries a convolution product

(n*v)(f) = (g = v(h = f(gh))).

One checks directly that 8, * 8, = 8, for all g, h € G, where 8, denotes the Dirac distribution at g. This
product preserves D(G, Ryp). We sum up some basic properties of the weak-star topology.

Lemma 3.1.3. If X is finite (hence discrete) the weak-star topology on D(X, Rg) coincides with the
@ -adic topology. In general, if X = lim, X, is an inverse limit of finite sets X,, we have a natural
isomorphism D(X, Ro) = lim, D(X,,, Ro) which identifies the weak-star topology on the source with the
inverse limit topology, where D(X,,, Ro) is equipped with the @ -adic topology. When X = G is a profinite
group this is a ring homomorphism, and multiplication on D(G, Ry) is jointly continuous with respect to
the weak-star topology.

Proof. The first assertion is straightforward. For the second, note that the formation of D(X, Ry) is
covariantly functorial in X, so the maps X — X, induce a natural map D(X, Ry) — lim, D(X,, Ro)
which is continuous by the first assertion when we equip the source and the target with the topologies in
the statement of the lemma. Moreover it is easily checked to be a ring homomorphism when X = G is a
profinite group. Unraveling, we see that this morphism is the natural morphism

Homg, (C(X, Ro), Ro) — Hompg,(Csm (X, Ro), Ro)

induced by the inclusion Cgp,y (X, Rg) € C(X, Ryp). Since this subspace is dense for the @ -adic topology,
we see that the map is an isomorphism. To check that it also a homeomorphism, note first that by the
same density one may define the weak-star topology using only locally constant functions. It is then
straightforward to check that all basic opens from locally constant functions come by pullback from basic
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opens on the D(X,, Rp), which implies that the map is a homeomorphism. Finally, multiplication is
jointly continuous for the w-adic topology on D(G,, Ry) for all n, and hence jointly continuous on the
inverse limit. This implies the last assertion. U

Let X = lim, X, be a countable inverse limit of finite sets, viewed as a profinite set. We define
Rol[X] :=lim, Ro[X,] and R[X] := (lim, Ro[X,])[1/]; these are Ro- and R-modules, respectively,
and independent of the choice of the X,,’s (here, if B is a ring and S is a finite set, B[S] denotes the
free B-module generated by the set S). If the X, are groups (so X is a profinite group) then they carry
natural algebra structures. We may topologize Ro[[ X ] in two ways; either giving it the natural inverse
limit topology or the w-adic topology. We give R[[X] the topology induced from the =z -adic topology
on Ro[[X], which is compatible with viewing R[[X ] as an R-Banach module with unit ball Ro[X]].

Proposition 3.1.4. Let X =lim, X, be a profinite set. There is a natural R-Banach module isomorphism
R[X] — D(X, R) sending |x] to éy. It restricts to an Ry-module isomorphism Ro[X] — D(X, Ryp)
which identifies the inverse limit topology on the source with the weak-star topology on the target. If
X = G is a profinite group, then these maps are ring homomorphisms.

Proof. Define compatible maps Ro[X,] — Hompg,(C(X,, Ro), Ro) by [x] — 8,; one checks directly that
this is an isomorphism of topological Ry-modules, and that it is a ring homomorphism when X is a
profinite group. Taking inverse limits we get

Ro[[X] = Hompg,(Csm(X, Ro), Ro) = D(X, Rp).

Lemma 3.1.3 shows that this identifies the inverse limit topology on the source with the weak-star
topology on the target. Inverting @ we get the desired isomorphism R[X] — D(X, R), which is clearly
a Banach module isomorphism since it identifies the respective unit balls Ro[ X ] and D(X, Ryp). Il

Recall the notion of a uniform pro-p group from [Dixon et al. 1999, Definition 4.1]. When G is a
uniform pro-p group, Z,[[G] may be identified with a ring of noncommutative formal power series

{Zdab“

where d is the dimension of G, o = (ay, ..., ay) € Z‘éo is a multi-index, g1, ..., g7 is a minimal set

dy eZp},

of topological generators of G, b; = [g;] — 1 and b* := b}" - - bj}". Our next goal is to show that the
analogous description holds for Ry[[G]l, with the same commutation relations between the b*.

Proposition 3.1.5. Let G = ZZ. Fora e Zio’ let Ey : ZZ — Z, denote the function

Ea()q,...,xd): (::) (zj) .

ws Y M(ENT - Ty
o

Then the Amice transform
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defines an algebra isomorphism D(Zf,, Ro) = Ryl T, ..., Tyl which identifies the weak-star topology
on the source with the product topology Ro[[ T, ..., Tsll =[], RO.TI‘)‘1 e T;" on the target.

Proof. Once again this is a simple extension of a well-known result, so we content ourselves with a sketch.
The key observation is that C (7%, Ry =cCz4,7 p)@)zp Ry. Then it is clear that

D(Z%, Ro) = [ [ Ro
o

via u — (U (Ey))e and it is straightforward to check that this identifies the weak topology on the source
with the product topology on the target (it is the statement that the E, suffice to define the weak-star
topology). To finish, we remark that the computation that the algebra structures match up is identical to
the well-known one in the case Ry =Z,,. Il

Note that the topology on Ry[[71, ..., T4] described in the proposition is equal to the (@, 11, . .., Ty)-
adic topology. Let us return to the case of a general uniform pro-p group G. The ring Z,[ Gl is described
by formal power series as above. Following [Schneider and Teitelbaum 2003], let us define elements
CBy.a e”? p by

BB = cpyab® (3.1.1)
o

We remark that, for fixed o, cg, o — 0as ||+ |y| — +0o0 (here and elsewhere, for a multi-index o we
define |a| = a1 + - - - + ay). This follows from [loc. cit., Lemma 4.1(i1)].

Proposition 3.1.6. Let G be a uniform pro-p group and use the notation above. Then Ro[[G] may be
identified with the ring of formal power series

{Zdab“

da € RQ}

with multiplication given by

(25: dﬂbﬂ) (Xy: eyby) -y (ﬂXV: dﬁeycﬂy,a) b

o

Proof. The choice gy, ..., g4 of a minimal (ordered) set of topological generators identifies G, as p-adic
analytic manifold, with Z‘Iﬂ. Thus we get a topological isomorphism Ry[[G] = Ry [[Z;’)]] of Rp-modules
(for both the weak-star and the @ -adic topology). Proposition 3.1.5 then implies the description in
terms of power series. To see that the multiplication works out as described, note that the natural map
Z,[[Gl1— Rol[G]l is an algebra homomorphism; hence the above formula is true for products of monomials.
We can then deduce the formula in general by noting that Ry is central in Ro[[G]l and that the subring
generated by Ry and the image of Z,[G] (for which the formula holds) is dense in Ro[[G ] with respect
to the weak-star topology, and that multiplication is jointly continuous for the weak-star topology. [

Inverting @ we get an explicit description of R[G] when G is uniform. Using this we may now
define a family of norms on R[G] following [Schneider and Teitelbaum 2003, §4]. We continue to fix a
minimal ordered set of topological generators g1, ..., g4
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Definition 3.1.7. Let r € [1/p, 1). We define the r-norm || — ||, on R[G] by the formula

Z d,b*

Recall that we have fixed a choice of norm | — | on R such that |z| < |z|, for all z € Z,,. This will

= sup |dy|r'¥.
r o

be convenient for some calculations. Note that the definition of || — ||, a priori depends on the choice
of generators. We remark that for all r € [1/p, 1), || — || induces the weak-star topology on Ro[G]
by Proposition 3.1.5 and a straightforward calculation. It follows that any homomorphism G — H of
uniform groups induces a continuous homomorphism Ry[[G] — Ro[[ H] when the source and target are
equipped with (any) r-norms, since this is true for the weak-star topology using the characterization in
Lemma 3.1.3.

Proposition 3.1.8. The norm || — ||, is independent of the choice of minimal ordered set of topological
generators for G, and is submultiplicative. Finally, if we replace the norm | — | on R by a bounded-
equivalent 7 ,-algebra norm | — |, then the resulting norm || — |\. is bounded-equivalent to || — ||,.

Proof. For the proof of independence, we follow the discussion after the proof of [Schneider and
Teitelbaum 2003, Theorem 4.10]. Let g}, ..., g/, be a different choice and set b; = [g/] — 1 € Z,[G]]
etc., and let || — || denote the r-norm with respect to this choice. We may write

b =" cpab”

in Z,[[G]], and one has |c/_z3,0,|pr“"| < rlBl (see [loc. cit.]). Transporting this to R[G] we have the same
identity, and the inequality |c/3,a|r‘“| < rlBl (since lcg,al < |cp,alp). Expanding out a general element

€ R[[G] we then have
n= S0 = (X djen )b
B o B

We then have
el < supldyllcp.alr'® < sup |dj|r'Pl = |ull.
B.a B

By symmetry, we must have equality.

To prove submultiplicativity, we follow the proof of [Schneider and Teitelbaum 2003, Proposition 4.2].
Recall the cgy o from (3.1.1). By [loc. cit., Lemma 4.1(ii)] we have |cgy o|7'* < |cp, o pr!® < rPIFIY]
forall a, B, y. Let u = Zﬂ dﬁbﬂ and v = Zy e, b” be elements of R[G]]; then we have

Uk = Z(Z dﬂe,,c,gy,a) b*
o "By

and we can calculate

Z dgeyCpy.a

B.y

v, = sup

o

rt < sup |dg] ley rPHIY T = |l vl
B.y
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where we use submultiplicativity and [cg, o |rlel < plBI+I¥1 to obtain the middle inequality. This finishes
the proof of submultiplicativity.

Finally, suppose we have C;|x| < |x|' < Cs|x| for all x € R. Then C|dy|r'*! < |dy|'r1*! < Cy|dy|r!*!
for all ¢ which implies

Ci

Z d,b” Z d,b® Z d,b”

as desired. O

=
-

/
<C
,

r

Before moving on to general compact p-adic analytic G, we record a few properties of the 7-norms.

Lemma 3.1.9. Let r € [1/p, 1). If g € G, then |[glll, = 1 and |[glull; = llulglll; = llnl for all
i € RIG]. Moreover, if ¢ is an automorphism of G (of p-adic analytic groups), then ¢ induces an
automorphism of RG] satisfying ||¢ ()|, = l|ill- for all uw € RI[G].

Proof. The first statement follows from the fact that the expansion of [g] has coefficients in Z, and
the constant term is 1. The second is an easy consequence of the first and submultiplicativity (since
[g]_1 = [g_l] also has norm 1).

For the final statement, observe that if gi,..., g4 is a set of topological generators then so are
o(g1), ..., 9(gq). Since the r-norms are independent of the choice of generators, we conclude that if
w=>_,d.b", then

ol =

= sup |de |r'® =[]l O
o

r

> du(@(b)*

We will use the last property mostly in the case when H is a compact p-adic analytic group, N C H is
a uniform open normal subgroup, and ¢ is the automorphism of N given by conjugation by some 4 € H.

Now let G be an arbitrary compact p-analytic group. Pick a uniform open normal subgroup N and a
set hy, ..., h; of coset representatives of G/N. Any n € R[G] may be written uniquely as = . [#;1;
with u; € R[N], and we define a norm || — ||y, on R[G] by

lialln,r = sup || il

1

We could alternatively take a right coset decomposition © = Zi v;[h;] with v; € R[N]], and define
I =I5 on RIGT by
igh
el = sup llvill,.
1
Proposition 3.1.10. We have || — v, = || — ||;\i,%2t. The definition is also independent of the choice of

coset representatives. Moreover, || — ||n » is submultiplicative and satisfies ||[g]lln.» =1 and || [g]liln . » =
lilgllin: = llilln,r for all g € G and € RG]

Proof. For left/right independence, note that v = Y. ([h;]u; [hi_l])[hi] and hence

i )
Il = sup Uit 10 = sup lusill = Nl
1

1
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by Lemma 3.1.9. For independence of the coset representatives, suppose we have &/ a different set with
hi = hin;; then =), [h;]1([n;]11;) and hence

Illy » = sup lnidmill- = sup llwill, = lielin,r
1

1
by Lemma 3.1.9 again. Next we prove submultiplicativity. Define k(i, j) by h;hj = hy jn;;. For
w=7y ;[hiln; and v = Zj[hj]vj in R[G]], we have

v = Z[hk]( DU (a 7% [h,-])v,-).
k i, jk(i, )=k
Using Lemma 3.1.9 and submultiplicativity for || — ||, on N one then sees easily that ||uv|y, <
Il v vl

Next, let g € G. Writing g = h;n for some i and n € N, we see that ||[g]||~ - =|[#]|l, =1 by Lemma 3.1.9.
Finally, the last property then follows by the same argument as in the proof of Lemma 3.1.9. U

As the notation suggests, || — || v, does depend on the choice of N. For a study of how the completions
change when one changes the subgroup in certain situations, see [Ardakov and Wadsley 2013, §10.6-10.8].

3.2. Completions. In this section we study the case when G is a uniform pro-p group in more detail.
Let R be a Banach-Tate Z ,-algebra with multiplicative pseudouniformizer @ as usual.

Definition 3.2.1. For r € [1/p, 1), define D" (G, R) to be the completion of D(G, R) with respect to the
norm || — ||, and we let 2(G, R) denote the completion of D(G, R) with respect to the entire family of

norms (|| — [I;)reri/p,1)-

Remark 3.2.2. Note that if we change the norm on R to a bounded-equivalent one, then the completion
D’ (G, R) is unchanged, by Proposition 3.1.8.

The motivation for this definition is that if R is a Banach @ ,-algebra, Z(G, R) is naturally isomorphic
to the space of locally analytic R-valued distributions on G, by Proposition 3.2.9.

Note that there are natural norm-decreasing injective maps D*(G, R) — D" (G, R) whenever r < s
(which we will think of as inclusions), and that they fit together into an inverse system with limit Z(G, R).
The explicit description of D(G, R) from Proposition 3.1.6 gives us an explicit formal power series
description

D'(G, R) = {Zdab“

dy € R, |dy|r'¥ — 0}

and the norm is still given by || > dyb* Hr = sup |d,|r'®!. We see that, unlike D(G, R), the D" (G, K) are
naturally potentially ON-able, with a potential ON-basis given by the elements @ ~"("@-®)p%, where

|a|10gprJ

(3.2.1)
log, |o|

nr,o,ua) = L
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Lemma 3.2.3. If r < s then the inclusion t : D*(G, R) — D" (G, R) is a compact map of R-Banach

modules.

Proof. For simplicity set D" := D" (G, R) etc. for the duration of this proof. Choose a minimal set of
topological generators g1, ..., g; of G and set b; = [g;] — 1 as usual. For n > 1 define 7,, : D* — D" by

Tn(Zdab“) = ) dub”.

|| <n

By definition we see that 7, is of finite rank. Then if ), d,b* is in the unit ball of D*, i.e., |dy Islel < 1
for all @, we have

(t— T,,)(Z dab"‘> = H D dab®| < (/).
o r lot|=n r
Thus ||¢ — T, || < (r/s)"*, where || — || is the operator norm on Hompg s(D¥, D”), and hence 7,, — ¢ as
n — 00, SO ¢ is compact. g

Lemma 3.2.4. Let G and H be two uniform pro-p groups and assume that f : G — H is a homomorphism
of p-adic analytic groups such that f(G) € HP" for some n > 0. Then the induced map f,: D(G, R) —
D(H, R) is norm-decreasing when we equip D(G, R) with || — ||, and D(H, R) with || — ||,i;m. As a
consequence, we get an induced map

f«:D"(G,R) - D" (H, R)

which factors through the natural map v (H, R) — D"(H, R). In particular, when n > 1, f, is
hich h h th / D"

compact.

Proof. We start with the first assertion. Note that the general case follows from two special cases: n =0,
f arbitrary, and n = 1, G = H?” with f the inclusion. Indeed the general case can be written as a
composition of these cases.

So, suppose first that n = 0. Scaling by powers of @, it suffices to prove this for D(G, Rp). The map
[« 1s continuous with respect to the norm || — ||, (see the discussion after Definition 3.1.7). Let g1, ..., g4
be a minimal set of topological generators for G and let b; = [g;] — 1 as usual. Using that |[[#] — 1|, <r
for all 4 € H, we see that

fe (Z dab“) Y da fu(b) ‘Zdab‘”

as desired, using continuity of f,. This completes the proof of the first special case.

<sup |a’w|r‘°‘| =
,

r

Next, we consider the second case G = H? C H. Let s =r'/?; since r > p~! we have s > p~ /P >
p‘l/(p_l). Let hy, ..., hg be a minimal set of topological generators for H. Then h,..., h‘ll form a
minimal set of topological generators for H”. Set b; = [hf ]—1 and b; = [h;] — 1 (apologies for the mild
abuse of notation). Then, inside D(H, R), we have

p

(7)o

k=1

=sP=r

I1Bills = (1 + b7 — 1|5 =

s
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using s > p~1/®~V and |p| < |p|, = p~'. Thus, if }_d,b* € D(H?, R), then inside D(H, R) we have

r

<sup |de |r®,
\)

which is equal to H > dy b Hr computed inside D(H?, R). This finishes the proof of first assertion. The
remaining assertions are then easily verified (using Lemma 3.2.3 for last one). (|

Before discussing what happens when one changes the norm on R, we record the following important
base change lemma.

Lemma 3.2.5. Let R and S be Banach-Tate 7 ,-algebras, and let f : R — S be a bounded ring ho-
momorphism. Suppose that there is a multiplicative pseudouniformizer w € R such that f (@) is also
multiplicative. Let r € [1/p, 1). Then the natural map D" (G, R)®gS — D" (G, S) is an isomorphism of
Banach S-modules.

Proof. Note that (since f is bounded) the fact that zo and f () are both multiplicative implies that |z | =
| f(@)|. We recall the potential ON-bases (e "™ ¥ p%), and (f () """/ @)@ p2)  of D"(G, R) and
D" (G, S), respectively. It is straightforward to check that the tensor product norm on

(@ R(w—"“w’“)b“)) ®r S = S (@7

induced by || — ||, on D" (G, R) and the norm on S is bounded-equivalent to the norm induced by || — ||,
on D" (G, §), and so we obtain isomorphic completions, which gives the desired statement. O

Our next goal is to prove that 2(G, R) is independent, as a topological R-module, of the choice of
norm on R. Recall that we only consider norms for which there exists a multiplicative pseudouniformizer,
and such that the natural map Z,, — R is norm-decreasing.

Proposition 3.2.6. 2(G, R) is independent of the choice of norm on R.

Proof. Let | — | and | — |" be two equivalent such norms on R; for r € [1/p, 1) we get the corresponding
r-norms || — ||, and || — ||. on D(G, R). Let u =), d,b* € D(G, R) be an arbitrary element and use
Lemma 2.1.6 to find constants Cy, Cy, s1, s > 0 such that
Cilal™ <lal" < Calal™
for all @ € R. Then
Cilde 71 < |, |'r®! < Cold,, |27
for all @ and hence

Cillell™ e, < il < Callpels,

for all r such that r, 7'/5t, r1/52 € [1/p, 1). Tt follows that the families (|| — |,,) and (|| — [I’) define the
same topology on D(G, R), and hence the same completion, as required. O
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We now introduce a variant of the D" (G, R), which, when R is a Banach Q,-algebra, recovers the
analytic distribution algebra (with fixed radius of analyticity). Although we do not use this variant in our
construction of eigenvarieties, it is used in Section 5 to construct Galois representations.

Letr > s > 1/p. Let D"°(G, R) = {>_dyb* | |dy|r'®! < 1} denote the unit ball of D" (G, R). We
define D<"°(G, R) to be the closure of D">°(G, R) in D*(G, R). Note that D<"°(G, R) is an Ry-module,
a priori depending on s, which carries two natural topologies (the @ -adic topology and the subspace
topology coming from D*(G, R)).

Proposition 3.2.7. We have
D<"°(G, R) = {Zdab“ € D*(G, R) ‘ dy |1 < 1}
o

as a subset of D*(G, R). Thus D="°(G, R) is independent of s. The subspace topology corresponds to the
weak topology with respect to the family of maps (u +— dy(1L)) on the right-hand side (and is therefore
also independent of s). The @ -adic topology is induced by the norm

or

= sup |dy|'r!*!
r o

and is separated and complete.

Proof. Let W = {}" dob* € D*(G, R) | |dy|r'*! < 1}. Since the maps p > dy (1) are continuous we see
that W is closed. On other hand, any finite truncation of an element in W is in D">°(G, R), so D"°(G, R)
is dense in W. It follows that W = D="°(G, R). The subspace topology is given by the norm || — ||, and
one checks easily that this agrees with the weak topology in the statement of the proposition. The final
statement is similarly easy to check; we leave it to the reader. 0

We then set D="(G, R) = D~"°(G, R)[1/w]; this is naturally a Banach R-module which embeds
into D*(G, R) for all s € [1/p, r). The (D~"(G, R)),>1/p form an inverse system and the natural map
D" (G, R) — D*(G, R) factors over D=" (G, R), so we therefore have

2(G, R) =limD<" (G, R)
r

as well. Recall the potential ON-basis (w ~""@-®)p%), of D" (G, R); we have

1

dy|r'* bounded } = Ry.aw @ @pe )| |
|dy |7 oune} (l:[ 0.0 -

We remark that if (o —"""@-®p%),, is an ON-basis, we have D<"°(G, R) =[], Ro. """ *b* and the
weak topology on the left-hand side is equal to the product topology on the right-hand side. Next, we

D<"(G, R) = {Zdab"‘

define some function modules in a similar fashion. We put

C<"°(G,R)={f €C(G, R) | |n(f)| < 1 for all x € D(G, R)ND"°(G, R)}
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and set C<"(G, R) =C=<"°(G, R)[1/w] S C(G, R). Wenote that f =) coEq € C="(G, R) if and only
if PO () = o "9 is bounded as o — o00; from this one sees that

1
CY(G,R) = <]‘[ Ro.w”(”w’“)Ea> [5}

and that it is the dual space of D" (G, R), and that the dual norm is given by || Y CaEa ||r =sup,, |cq |r—lel,
When r > s > 1/p, we let C" (G, R) denote the closure of C=*(G, R) inside C~" (G, R). Tracing through
the definitions we get an explicit description

C"(G,R) = {anEa

and see that the dual space of C" (G, R) is D~ (G, R).

o |r ™1 — 0} = @ R.w"r™YE,
o

Remark 3.2.8. The reader should compare our description of C" (G, R) with the construction of [Liu
et al. 2017, Section 5.4]. Here, the authors give a definition of a “modified” space of continuous functions
on Z, with values in Z,[[ T, pT ' which is morally (apart from the slight difference in coefficients and
the fact that we have only defined C" (G, R) for r > 1/p) the space C!/P(Z p» R), where R is the Tate ring

obtained as the rational localization
p\l1
Z,ITIH =) =

of Z,[[T]. We give R the norm with unit ball Z,[T[(p/T) and |T| =1/ p, defined as in Remark 2.1.3.
The definition which appears in [loc. cit.] is therefore a useful motivation for the general constructions of
this article, although we will not use the modules C" (G, R) in this article. We will see in Theorem 6.3.4
that one may use the module D'/?(Z p» R) (which is defined) to prove the main results of [loc. cit.].

To finish this section we discuss the relationship between our constructions and the spaces of locally
analytic functions or distributions when R is a Banach Q,-algebra. We may and do assume that Q,, is
isometrically embedded into R and that |p| = 1/p. Recall that the atlas on G induced from our choice of
a topological basis identifies G" with (p"Z p)dim G, Amice’s theorem [Colmez 2010, Théoréme 1.4.7]
tells us that the space of n-analytic functions on G with respect to this atlas is explicitly given as

C"(G, Qp) =P Qp ko Ea.

where k, ;= | p~"a1]! - - [p"adgimG ]! . The space of n-analytic R-valued functions on G is then
C"*™G, R) =D R-kaEs SC(G, R).
o
It is well known that |ke| ~ 7! with r, = p~1/?"®P=D, and it follows that C"*(G, R) = C"*(G, R) as

Q,-Banach spaces. Since r, — 1 from below as n — oo it follows that € (G, R) is the space of locally
analytic R-valued functions on G, with its usual locally convex topology. Dually, 2(G, R) is then the
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space of locally analytic R-valued distributions with its usual locally convex topology. We sum up this
discussion in a proposition.

Proposition 3.2.9. When R is Banach Q ,-algebra, € (G, R) is canonically the space of locally analytic
R-valued functions on G and 2(G, R) is dually the space of locally analytic R-valued distributions on G.

3.3. Ash-Stevens distribution modules for Banach-Tate Z ,-algebras. While the definitions in this
subsection will be of a local nature, let us nevertheless start by introducing the global setup that we will
need to define eigenvarieties. Let F be a number field. We put G = Resg H, where H is a connected
reductive group over F split at all places v | p. G is then a connected reductive group over (2. When v | p
we write Hp,. for a split model of Hf, over O, and choose a Borel subgroup B, (with unipotent radical
N,) and a maximal torus T, € B, of Hp,, . Set

_ OFU _ OFU _ OFU
Gz,=|[Res;" Ho,, B=][Res;"” B, T=][]Res;"T,
vlip vlp vip

Or,
Reszp B,

andalsoput N=[T,,
where the B, are the opposite Borels of B,,.

We will also need notation for various subgroups of G := G(Q,,). Set Go = Gz,(Z,), Bo= B(Z)),
To=T(Zp), and No = N(Z,). We let I denote the Iwahori subgroup of G defined as the preimage of
B(F ) under the reduction map Gy — GZP (Fp), and we let K; = Ker(Go — Gzp (Z/p*)) be the s-th

principal congruence subgroup of Gg for s > 1. Again for s > 1, set

Res(zopp * N,. We use overlines to denote opposite groups; e.g., B = IL Ip

Ty = Ker(To — T(Z/p*Z)),
Ny =Ker(No — N(Z/p°2)),
Ny, =Ker(N(Z,) — N(Z/p*Z)).

Set By = Ty N, for s > 0. We have Iwahori decompositions / = N1ToNo and K = N T, N,. Next, choose
a splitting 7 := T'(Q,) — Ty of the inclusion 7y € T and put X = Ker(T — Tp). We set

st={rex|tNit"' SNy},
TP ={te X |tN it~ C Ny}

We may then define A, = I £71; this is a monoid and (A, I) is a Hecke pair (which means that / and
815~" are commensurable for all § € A p)- The corresponding Hecke algebra (defined over Z,) will be
denoted by T(A,, I).

With these preparations let us now move on to the definition of analytic and locally analytic distribution
modules for general Banach-Tate Z ,-algebras R. When R is a Banach Q,-algebra, these were defined in
[Ash and Stevens 2008] using (locally) analytic functions on /. Recasting this in terms of the norms of
the previous section, we are able to extend the definition to all Banach—Tate Z ,-algebras.

Let x : Ty — R* be a continuous character. We will put some restrictions on the choice of norm on R,
according to the following lemma. We set e = 1 if p %2 and € =2 if p =2, and put ¢ = p*©.



124 Christian Johansson and James Newton

Lemma 3.3.1. Keep the above notation and assume that R is Noetherian. Write | — | for the given norm
on R and let w be a multiplicative pseudouniformizer. Then there exists a Banach-Tate Z ,-algebra norm
| —|" on R, bounded-equivalent to | — |* for some s > 0, such that |k (t)|' <1 forallt € Ty, k(@) —1] <1

forallt € T, and @ is a multiplicative pseudouniformizer for | — |'.

Proof. The proof is similar to that of Lemma 3.1.1. Let 71, .. ., t, be a set of topological generators of Ty
and let 7,41, ..., 1 be a set of topological generators for T¢; it suffices to find | — |” such that |k (#;)|' < 1

fori=1,...,a, [k(tj)—1|<1fori=a+1,...,b,and |p| < p~!

, which is bounded-equivalent to
| —|* for some s > 0.

Since Ty is compact, x(Tp) is bounded, and hence ¢; is powerbounded for all i. Moreover, T is
pro-p and R°/R°®° is a reduced discrete ring of characteristic p, so the continuous homomorphism
T — (R°/R°°)* induced from « is trivial. We conclude that « (T;) € 1 + R°° and hence x(;) — 1 € R°°
fori =a+1,...,b. We may now choose m such that |k (#;) — 1[sp < |w|2/’" fori=a+1,...,band
Iplsp < |e |2/, Arguing with § = R[w'/™] as in Lemma 3.1.1 we may construct a norm | — | on
R for which =z is a multiplicative pseudouniformizer with |@ |, = ||, |k ()], <1fori=1,...,a,
lk(ti)—1lp <1 fori=a+1,...,b,and |p|r < 1. Setting | — | := | — |5 for s sufficiently large then
gives the desired norm. g

Definition 3.3.2. Let R be a Banach-Tate Z,-algebra and « : Tp — R™ a continuous character. We will
say that the norm of R is adapted to k if k (Ty) € Ry and |k (1) — 1| < 1 for all ¢ € T,. Note that then
|k (t)| =1 for all t € Ty and there exists an r < 1 such that | (z) — 1| <r forall t € T..

For the rest of the subsection we consider a Banach—Tate Z ,-algebra R and character « : Typ — R such
that the norm on R is adapted to k. We extend « to a character of By by making it trivial on Nyg. We define
A CC(I, R) to be the subset of functions such that f(gb) =« (b) f(g) forall g € I and b € By. A, is
naturally a Banach R-module and carries a continuous right action of / by left translation. Restricting a
function from 7 to N gives a topological isomorphism A, = C(N1, R). By definition, £+ acts on the
left on N by conjugation, and via the previous isomorphism this induces a right action of £ on A,.
These actions fit together into a right action of A, on A,. We let D, denote the dual Hompg ¢s(Ac, R),
equipped with the dual left A ,-action. Since A, is the set of By-invariants of C(/, R) with respect to the
action (f.b)(g) = K(b)_lf(gb) (b € By, g € 1), D, is the Hausdorff By-coinvariants of D(/, R) with
respect to the dual (right) action. We record a more precise statement for future use:

Proposition 3.3.3. The natural surjection D(I, R) — D, is equivariant for the natural left I-actions on

both sides. Identifying D, with D(Ny, R), the map is given by &;p > k(b)d;.

Proof. The inverse to the restriction map A, — C(N1, R) is given by f +— (iib — «(b) f (1)) (here and
above 71 € N and b € By). From this one sees directly that the dual map sends 85, to k (b)d;. That this
characterizes the maps follows from R-linearity and continuity for the weak-star topology. O

To apply the results from the previous subsection we will need to know that some groups are uniform.
The following result is presumably well known to experts but we have been unable to find a suitable
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reference. The proof we give is due to Konstantin Ardakov, and we thank him for allowing us to include
it here (any errors are due to the authors).

Proposition 3.3.4. K, and N, are uniform for s > €.

Proof. By construction the groups are products Ky = [],,Kj.,, and similarly for Ny ,, in a natural

v
way, so it suffices to prove that each K, and each N 5.0 |ips uniform. Fix v|p and let s > €. First
assume that H, = GL,,0,, . Then we have the usual matrix logarithm log : K; , — p*M,(OF,) and
exponential exp : p*M,,(Of,) — Kj,,. They converge and are inverse to each other (by our assumption
on s) and the Lie algebra p* M, (OF,) is easily seen to be powerful by assumption, so by the definition
of the correspondence between powerful Lie algebras and uniform pro-p groups [Dixon et al. 1999,
Theorem 9.10] via the Campbell-Hausdorff series we see that K ,, is the uniform group corresponding
to p* M, (OF,). To get the result for N, we may by conjugation assume that N, is the group of lower
triangular unipotent matrices; the corresponding Lie algebra is that of lower triangular nilpotent matrices
and we then argue similarly.

Now let H, be arbitrary and choose a closed immersion H, — GL,,0,, for some n. We thereby
identify H, with a closed subgroup of GL,,0,, . Writing B, for the upper triangular Borel of GL,, 0, ,
N/ for its unipotent radical, N, for the opposite of N/, and T, for the diagonal torus, we may assume, after
conjugating if necessary, that T, C T, etc. We write K, etc. for the corresponding principal congruence
subgroups. With this setup, we now give the rest of the proof for the K, , only; the proof for Ny ,
proceeds in the same way. Note that K, = H,(Of,) N K.é,v‘ By [Dixon et al. 1999, Theorem 4.5] we see
that K;’v is torsion-free and that it suffices to prove that K ,, is powerful, i.e., that [K} ,, K, ,] € qu,u,
where [K ,, K., ] is the derived subgroup of K, and K §{ v 18 the subgroup generated by the g-th powers

of elements in K, (any compact p-adic analytic group is topologically finitely generated). We remark

that it is easy to see that [K , K ] € K[, , = (K| ). Using this and K, = H,(Of,) N K|, we see
that [Ks,v’ Ks,v] g K.;+e,v N HU(OFU) = Ks+6,v and K;I,U g Ks—i—e,v-

It remains to prove that K ., € K ,. We have Ty, = Ty, using the logarithm and exponential
(T, is a split torus). We have an isomorphism of Of, -schemes [ [, x4 : [ [, Ga = Ny, where « ranges
through the roots of H, whose root subgroups are contained in N,, and x, is a corresponding root
homomorphism. Under this isomorphism N , corresponds to [ [, p*OF,, and by standard properties of x,
one has x,(q.(p°a)) = x4, (p*a)? for any a € OF,. It follows that Ny ¢, = N;{v. Similarly ]VHG,U = N;{v.
By the Iwahori decomposition we then see that K., C Ky, as desired. O

Remark 3.3.5. Note that the argument in the final paragraph of the above proof also implies that, for
arbitrary p and s > 1, we have IVH],U = Nﬁv.

Definition 3.3.6. Letr € [1/p, 1):

(1) We define anorm || — ||§ub on D, by transporting the norm || — || No.r (defined before Proposition 3.1.10)
on D(N1, R) to D, via the isomorphism D(N1, R) = D, obtained by restriction of functions from
ItoN 1.
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(2) We define a norm || — ||quot on D, as the quotient norm induced from || — || g, (defined before
Proposition 3.1.10) via the natural surjection D(/, R) — D,.

Note that || — ||quot is I-invariant; this follows from [I-equivariance of the surjection and from
Proposition 3.1.10. The following is the key result of this subsection:

Proposition 3.3.7. Suppose that |k (t) — 1| <r forallt € T,. Then || — ||quOt | — ||ile on D,.

Proof. Let us first assume that p 2. First we claim that || — ||} “ls equal to the quotient norm on D, coming
from the surjection D(K, R) — D, and the norm || — ||, on the source. To see this, pick a set (b;); of coset
representatives of //K lying in By and define a map =, : D(I, R) = P, é,,D(K1, R) - D(Ki, R) by

Bo )i > Y k(b

We remark that composing this map with the natural surjection D(K, R) — D, gives the natural surjection
D(1, R) — D, (this follows from the explicit formula in Proposition 3.3.3). To prove the claim, it then
suffices to prove that || — ||, is the quotient norm of || — ||k, » via 7. Write || — ||). for this quotient norm.
For simplicity assume that 1 is one of the coset representatives b;. Then our map is a section of the
inclusion D(K, R) € D(I, R). It is then clear that | — || < (|| — lx,.»)Ipk,.») = Il — |l-. Conversely, if
w=7y;k(bj)u; € D(Ky, R) is the image of ), 8,,u; € D(I, R), then

Z Op; i
i

el < sup e Gl < sup flail =
l 1

Ky,r
Taking the infimum over such presentations we obtain || — ||, < || — ||’., and hence equality.
Next, let iy, ..., ng (resp. ny, ..., n;) be a minimal set of topological generators of N, (resp. Nyp),
and let 71, ..., #; be a set of topological generators of 7. Put n* = [[;(8,, — 1)* and similarly for T}

and N. By Proposition 3.3.3, the map D(K{, R) — D, is then given by

> dupyi®tPn? Z(Zdaﬁol_[(x(z,) —~ 1)/31)

a.B.y
We then make a computation similar to the one in the proof of the claim above. First, it’s clear that
| = I < || — I3 since restricting || — ||, on D(K{, R) to D(Ny, R) gives (the intrinsically defined)
Il — |l-, and the composition D(Ny, R) —» D(K;, R) - D =D(Nj, R) is the identity. Second, if

Z eall” = Z (Xﬂ: da,p.0 H(K(ti) - 1)’3">ﬁ°‘

then

E eqn”

o

Zd/g a%tPnY

o, By

’
r

< Sup<|da,60| l_[ e (1) — 1)Pir '“') < supld polrtAl <
,

where we have used the assumption |« (¢;) — 1| < r for all i to obtain the second inequality. Hence, taking

I quot

the infimum over such presentations, we see that || — ||§Ub <|—|ly  and equality follows.
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The case p = 2 is similar. We identify D, with D(N1, R) and consider the subspace D(N,, R). Tt
carries the norm || — ||, and also receives a quotient norm from the norm | — ||, on D(K3, R) via the
surjection ¢ : D(K3, R) — D(N,, R). These two norms are equal by the same type of argument as in the
second part above. We then equip D(/, R) with the norm || — ||k,,, and D(N, R) with the norm | — ||§”b.
Pick coset representatives (n;); of Ny / N, and (bj); of By/B>, both containing 1. We may then write
the map D(I, R) — D(N1, R) as

B i, D(K2. R) = €D 85, D(N2. R). (8, 1tij)ij > (aﬁl. Zx(bjw(mj)) :
ij i j i

By a computation similar to that in the first part of the proof in the case p # 2 (using additionally the

sub

equality of the two norms on D(N», R) asserted above) the norm || — ||§uOt agrees with the norm || — ||3*°,

as desired. O

Remark 3.3.8. It might happen that N is uniform when p =2 (e.g., when G = Resg GL;y/F). In this
case, the norm || — ||§Ub is bounded-equivalent to || — ||,12 on D(N1, R).

Definition 3.3.9. Write r, for the minimal » € [1/p, 1) such that |« (¢) — 1| <r for all t € T.. When

r > r, we write | — || for the norm || — ||§llb = - ||§1u°t on D, (we will never consider these norms when
r<re).
Let r > r,. We define D; to be the completion of D, with respect to || — ||, and let %, = lim,_ Dy .

D, is a Banach R-module with respect to its induced norm, and carries a left /-action (since / acts on
D, by || — || --isometries, the action extends to the completion). When R is a Banach Q,-algebra, it follows
from Proposition 3.2.9 that 9, is the locally analytic distribution module used in [Ash and Stevens 2008;
Hansen 2017]. We will also need to extend the action of = to these modules, and prove that elements of
X°Pt give compact operators. For this, it is convenient to use the definition of || — || as || — ||§“b. We have a
natural identification D, = D’ (N1, R) when p #2; when p =2 we have D] = ®ﬁieﬁu/ﬁz 8,—,iD’(IV2, R).

Corollary 3.3.10. Ift € £, then the action of t on Dy is norm-decreasing with respect to || — ||, for any
r > ry, and hence the action of t extends to D]. If t € P, then t acts compactly on D].. Moreover, in
this case the action of t is given by the composition of a norm-decreasing map

1/p

-
with the compact (norm-decreasing) inclusion

rl/p r
D, <—D,.

Proof. We use the identification D, = D(N, R), with regards to which 7 acts by the map induced from
the homomorphism N; — N given by 7 > tiit~!. First assume p # 2. The first assertion follows
directly from Lemma 3.2.4. The second assertion follows from the third, so it remains to prove the third
assertion. If t € P we have tN 1t~ C Ny = (N|)P by the definition of X' and Remark 3.3.5, so the
third assertion follows from Lemmas 3.2.3 and 3.2.4.
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Now assume p = 2 and let (77;); be a set of coset representatives of N{/N,. We have tN,t~' € N, and
i1 > tit ! induces a map N]/NQ — 1\_/1/1V2; moreover if € P! then t Nt~} C N_?,, by Remark 3.3.5.
Writing D(Ny, R) = @, 87, D(N2, R) we see that ¢ acts by a sum of maps of the form D(N», R) —
D(N,, R) induced by 71 — tiit~!, and the proof now proceeds as in the case when p # 2. UJ

Continue to assume r > r,.. In the rest of this subsection, for simplicity of notation we will assume
p # 2 in the discussion, but everything we do works for p =2 as well after minor adjustments, writing
D] = @i SﬁiD’(JVz, R). Letny, ..., n, be a topological basis of N and set n; = [i1;] — | € D, as usual.
Then the description e

D' (N1, R) =P R """ n”
o
gives us an explicit description of D via the identification D! = D" (N1, R). In particular we remark
that the D/ are potentially ON-able with a countable potential ON-basis that we can actually write down.
This is in contrast with the compact distribution modules considered in [Ash and Stevens 2008], which
are potentially ON-able but one cannot write down an explicit basis (and the dimension is uncountable),
as well as the distribution modules considered in [Hansen 2017], which are not known to be potentially
ON-able in general. Our next goal is to introduce variants of the modules D, as well as modules A;. C A,,
which are analogous to those considered in [loc. cit.].

Let r > r, and pick s € [r,, ). The unit ball D,>° of D, is A-stable since A acts by norm-decreasing
operators. The natural map D, — D; is injective, and may naturally be thought of as an inclusion. Doing
so, we define D-"° to be the closure of D;° inside D;. It is a w-torsion free Ry-module and we set
D" =D;"°[1/w]; this is an R-module which naturally embeds into D,.. Since D,>° C D, is A-stable

we see that D-"° and D" are as well. We may then define
A ={f € Ac | ln(f)l < 1forall u e D, ND°)

and AS" = AS"°[1/w] € A,. Then A" is the dual space of D.. We equip it with the norm dual to
| — Il -, and define A, € AZ" to be the closure of AS* C A" with respect to this norm. These spaces are
A-stable since D, ND,>° is. Note that we have natural identifications

D EDY (N, R), AT Z=CT(NLR), A ZC(NLR),
so the discussion in Section 3.2 applies to give explicit descriptions of these spaces, and show that they
are independent of the choice of s.
4. Overconvergent cohomology and eigenvarieties

In this section we establish the basic results on overconvergent cohomology needed to construct and
analyze eigenvarieties. We retain the notation from Section 3.3, but we will change our point of view
slightly, from a functional-analytic point of view to a geometric one. Instead of working with Banach-Tate
Z ,-algebras, we will work with complete Tate Z,-algebras, which we will always assume to have a



Extended eigenvarieties for overconvergent cohomology 129

Noetherian ring of definition. A weight will therefore be a continuous homomorphism « : Ty — R*, where
R is a complete Tate Z ,-algebra with a Noetherian ring of definition. We follow the strategy of [Hansen
2017, §3—4] to construct our eigenvarieties. A similar construction was also carried out in [Xiang 2012].

4.1. Eigenvarieties. We retain the global setup from the beginning of Section 3.3. To construct our
eigenvarieties, we will need some more notation as well as some concepts from [Ash and Stevens 2008;
Hansen 2017]. First, let us fix a compact open subgroup K, = K; C G (Qy), for each prime £ # p, which
is hyperspecial for all but finitely many ¢, and set K” =[], +p K¢ (the tame level) and K = K71. We
assume that K is neat (which is the case when K7 is sufficiently small).* Let Z denote the centre of G
and put Z(K) = Z(Q) N K. All weights in this section will be assumed to be trivial on Z(K) C T.

We also fix a monoid A, € G(Q) containing K, which is equal to G(Q,) when K, is hyperspecial,
such that (A, Ky) is a Hecke pair and the £-Hecke algebra T(A, K¢) (defined over Z,) is commutative.
Set A? = ]_[/ Ay (restricted product with respect to the K¢) and A = AP A, (recall that A, =1 >*1).
Next, as in [Hansen 2017, §2.1], we fix a choice C,(K, —) of an augmented Borel-Serre complex and for
any left A-module M we define C*(K, M). Note that C*(K, M) carries an action of the Hecke algebra
T(A, K). In general, if C* is a cochain complex we let C* = @iez C' and, similarly, we use H* to
denote the direct sum of all cohomology groups when cohomology makes sense.

Fix once and for all an element r € P, Let « : Ty — R be a weight, and choose a Banach-Tate
Z ,-algebra norm on R which is adapted to k. We let ﬁm = IAJJ,,,” denote the corresponding Hecke
operator on C*(K, Dy) (here r > r,). This operator is compact and we let

F/(T) =det(1 — TU,, | C*(K,D.))

denote its Fredholm determinant, which exists since C*(K, Dy) is potentially ON-able (by basic properties
of Borel-Serre complexes). Before proceeding, let us recall the definition of weight space.

Definition 4.1.1. Suppose (A, A™) is a complete sheafy affinoid (Z,,, Z,)-algebra. The functor
(A, AT) = Homes(To/ Z(K), AX)

from complete sheafy affinoid (Z,, Z,)-algebras (A, A™) to sets is representable by the affinoid ring
(ZpTo/Z(K)], Z,[To/ Z(K)), and we let 2 denote the corresponding adic space. We remark that any
continuous homomorphism 7y/Z(K) — A* automatically lands in (A1) *. To see this, note that Tj is

noncanonically isomorphic to F' x Z/, as a p-adic Lie group, where F'is a finite group and r € Z>¢. The
image of F" lands in the roots of unity jioc(A) in A, and the image of Z), lands in 1 + A®°. Since AT is
open and integrally closed in A (which is complete), 1o (A) and 1 + A°° are both subsets of (A1)*.
We let W denote the analytic locus of 20; this is an open subset. For any weight x : Ty — R and ring of
integral elements R™ C R°, we obtain a map U = Spa(R, R*) — W. If this map is an open immersion (so
in particular we have R = R°, by Corollary A.6), we will conflate the weight « and the open subsetZf C W
and refer to U/ as an open weight. In this case, we will also replace « by U in our notation, writing D;, etc.

“In fact it suffices to assume that K contains a neat open normal subgroup with index prime to p.



130 Christian Johansson and James Newton

Proposition 4.1.2. Let k be a weight and choose an adapted Banach—Tate Z ,-algebra norm on R. Then

F is independent of r > 1.

Proof. Let r, <r < s; we wish to prove that F] = F;. Note that the general case follows from the case
s <r'/P, so we may assume this. Then, by Corollary 3.3.10, l7,(,r factors as

C*(K,Dl) 25 C*(K,D}) - C*(K, D)),

where ¢ is induced by the natural compact inclusion D, < D,. We have Uy.s = P ot, so the result follows
from [Buzzard 2007, Lemma 2.7]. O

In light of this we will from now on drop r from the notation and simply write F,. We remark that it
currently depends on a choice of norm on R.

Proposition 4.1.3. Let k : To — R* be a weight and choose an adapted Banach—Tate Z ,-algebra norm
on R. Let w be a multiplicative pseudouniformizer in R:

(1) Assume that F, has a factorization F, = QS, where Q is a multiplicative polynomial, S is a Fredholm
series, and Q and S are relatively prime. Let s > r > r,.. The inclusion C*(K,D;) € C*(K, D;) induces
an equality Ker* Q*(lNJK,S) = Ker* Q*(lNJK,r) (here and elsewhere we write Ker* Q*(lA]JK,r)for the complex
with i-th term being the kernel of Q*(ﬁ”) acting on C' (K, DL)).

(2) Let R’ be a complete Tate ring with a Noetherian ring of definition, which we assume to be equipped
with a Banach-Tate Z ,-algebra norm | — |" which induces the topology. Assume that we have a bounded
homomorphism ¢ : R — R’ such that | — |" is adapted to k' = k o ¢ and ¢ (@) is multiplicative for | —|'.
Then Fo = ¢ (Fy).

If we assume moreover that F, has a factorization as in the previous part, we have a canonical
isomorphism (Ker* Q*(ﬁk ) Qr R = Ker® Q*(ﬁ,(/ ).
Proof For assertion (1), we note that the general case follows from the case s < r!/?, and then writing
UK » and UK s as in the proof of Proposition 4.1.2 the result follows from Lemma 2.2.3. For part (2), the
first assertion follows from Lemma 3.2.5 and [Buzzard 2007, Lemma 2.13], and the second assertion
follows from Lemma 3.2.5 upon writing C*(K, D,) = Ker* Q*(ﬁ”) @ N* as in Theorem 2.2.2 since
Q*(ﬁ”) is invertible on N°. O

We can now prove that F, is independent of the choice of norm on R.
Proposition 4.1.4. F is independent of the choice of adapted Banach-Tate Z ,-algebra norm on R.

Proof. Let | — | and | — |’ be two different such norms on R and denote the constructions coming from
| — | as usual and the constructions coming from | — |" by adding a prime. By Lemma 2.1.6, we may
find constants Cy, C», s1, s2 > 0 such that Cy|a|*" < |a|" < Cz|a|* for all a € R, which, as in the proof
of Proposition 3.2.6, implies that D7 < D' < D" for r suitably close to 1. Assume first that
52/51 < p, or in other words that rP/*> < r1/51, Then ﬁ”lm factors through D,fl/sz, and hence through D,

1/sy

Decreasing s; if necessary (still making sure that s,/s; < p), the inclusion D}’ € D, is compact, and

we may now argue as in the proof of Proposition 4.1.2.
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We now do the general case. Choose multiplicative pseudouniformizers @ and @’ for | — | and | — |’
respectively. Put X = Spa(R, R°) and let U C X be a rational subdomain. Write Ry := Ox(U) and ¢y
for the natural map R — Ry . Then it is easy to see, by (the proof of) Lemma 3.3.1, that we may find a
Banach-Tate norm | — |y on Ry such that ¢y : (R, | —1|) = (Ry, | — |v) is bounded, @ is a multiplicative
pseudouniformizer for | — |y, and for all ¢y sufficiently large, | — |tL[,’ is a Banach—Tate Z ,-algebra norm
on Ry which is adapted for ki := ¢y o k. We may find a norm | — |}, with the same properties in relation
to | —|” etc. By Proposition 4.1.3(2) we then have F,,, = ¢y (F,) and F, = ¢y (F,), using that changing a
norm by raising it to a real positive power only reindexes the D’, and hence does not change the Fredholm
determinant by Proposition 4.1.2. We also remark that raising | — | and | — |" to the same power ¢ > 0
does not change the quantity s,/s;. Thus, we aim to find an open cover (U;); of Spa(R, R°) consisting
of rational subdomains, such that, writing R; = O(U;) and equipping with norms of the form described
above, the quantity s;/s; is < p for each i. This would then finish the proof.

It remains to construct the cover (U;);. We recall from the proof of Lemma 2.1.6 that we may take
| '

_ log|o™ _log|(w

"Tloglmm T log (@)

for any m sufficiently large that ™', |(ew’)™| < 1. Let § > 0 be small, and choose m sufficiently large
that (|o™|)Y/™ — |w|;p <§8and (/)" |V/™ — |or'|sp < &. There is a continuous real-valued function ®
on M(R) given by

x> dx) = log|@'|'log|w|  logl|w'|, log|w],

log|a’| logla |, — logla’|slog|a

Note the similarity between s,/s; and ®. We recall here that M (R) is the maximal Hausdorff quotient
of Spa(R, R°®), and hence it does not depend on whether we used | — | or | — |" to construct it (though
of course the functions x — | — |, and x — | — | are in general different). We compose this function
with the projection Spa(R, R°) — M(R) to get a function on Spa(R, R°). We claim that it is constant
and equal to 1. To see this, fix x and note that there is an s > 0 such that | — |, = | — [}; one then checks
easily that ®(x) = 1. Fix x € Spa(R, R°). Let U be a rational subdomain containing x and give O(U)
two norms | — | and | — |’ constructed as for R; above. If U is small, |w|;p = SUPy e moW ) MR 1@} i
close to | |, and similarly for |&’|s,. Choosing 8 small, we may then ensure that the quantity s /sy is
close to ®(x) =1 for U small; in particular it is < p as desired. Picking such a U for every x gives the
desired cover. O

From the preceding two propositions, we can immediately deduce the following corollary.

Corollary 4.1.5. Let Uy C U, be open weights and let ¢ : Oy (U) — Ow U)) be the induced map. Then
¢ (Fu,) = Fy,. Therefore, the Fredholm determinants (F4)y, where U ranges over all open weights, glue
together to a Fredholm series Fyy € OOW){T}} = (’)(A%,V).

We write ﬁ,( for the Hecke operator on C*(K, %,) coming from our fixed t € X°P,
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Proposition 4.1.6. Let k : Ty — R* be a weight. Assume that F, has a factorization F, = QS, where
Q is a multiplicative polynomial, S is a Fredholm series, and Q and S are relatively prime. Then
Ker* Q*(ﬁ,() is a complex of projective R-modules. If ¢ : R — R’ is a continuous homomorphism, where
R’ is a complete Tate ring with a Noetherian ring of definition, then we have a canonical isomorphism
(Ker* Q*(ﬁK)) ®Qr R’ = Ker* Q*(ﬁ,g), where k' =k o ¢.

Proof. We have C*(K, %) = LiLnrer C*(K,D]). Since I7K = LiLnrer l~],{,r the result follows from
Proposition 4.1.3 upon noting that we may choose a topologically nilpotent unit @ € R and norms on R
and R’ such that ¢ and @ satisfies the assumptions of that proposition. O

Next we study what happens when the factorization of F, changes. Keep the notation of Proposition 4.1.6.
We make Ker* Q*(ﬁK) into a complex of R[T]/(Q(T))-modules by letting T act as 17,(_1.

Proposition 4.1.7. Let k : Tp — R be a weight. Assume that F, has two factorizations F, = Q18] =
0,8, where the Q; are multiplicative polynomials, the S; are Fredholm series, and for each i the Q; and

S; are relatively prime. Assume further that Q1| Q2. Then we have a canonical isomorphism

Ker* Q% (U,) ®rir1/(0y RIT1/(Q1) = Ker* (Q}(Uy)).

Proof. Let P be such that O, = PQy; P is then a multiplicative polynomial and one checks that
it is relatively prime to Q;, so we may find polynomials A, B € R[T] such that PA + QB = 1.
We then have R[T]/(Q2) = R[T]1/(Q1) x R[T]/(P) and PA € R[T]/(Q>) corresponds to (1,0) €
R[T]/(Q1)x R[T]/(P). The proposition now amounts to showing that P A. Ker* Q;(f],{) =Ker* QT([NJ,{).
If x € Ker* Q%(U,), then

QF(U,).PAx = U1 AQ,x =0,

which gives us one inclusion. For the other, assume that y € Ker* QT(ﬁK). Note that deg PA =deg 0 B.
Then
y =094 (P00 A*(T,) + B*(T0) 01(T0))y = P*(U) A*(U,) T e P4y,

which gives us the other inclusion. O

We now return to the Fredholm series Fyy from Corollary 4.1.5. Let & C A%/v denote its Fredholm
hypersurface. Consider €ov(%), the set of all open affinoid V C Z such that 7 (V) C X is open affinoid,
O(@m(V)) is Tate, and the map w|y : V — (V) is finite of constant degree, where w : & — W is the
projection map. For V € €ov(%), let us write Fyy = Qv Sy for the associated factorization of Fyy from
Theorem 2.3.3.

Corollary 4.1.8. The assignment V — Ker* Q’;(ﬁﬂ(v)), with V € €ov(%), defines a bounded complex

of coherent sheaves J¢* on .

Proof. €ov(%) is an open cover of 2 so we need to prove that whenever V| C V, are elements of ¥ov (%),
we have (Ker* Q*“,Z(U,,(Vz))) ®ovy) O(V)) = Ker* Q"“,] (Ux(v,)) canonically. Define V3 = JT|;21 ((V1)).
Then we have V| C V3 C V>, so it suffices to treat the inclusions V; C V3 and V3 C V5. In the first case
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we have 7w (V]) = 7 (V3) and the result follows from Proposition 4.1.7, since V| C V3 forces Qy, | Qv;.
For the second we have V3 = V5 X (y,) w(V}) and the result follows from Proposition 4.1.6. O

This allows us to finish the construction of the eigenvariety. We define .2#* = H*(.¢*); this is a
coherent sheaf on 2. Since the projectors C*(K, Z(v)) — Ker* Q*‘}(ﬁn(v)) commute with the action
of T(A?, K?) (by construction, using the assertion about the projectors in Theorem 2.2.2), we get an
induced action T(A?, K?) — &ndy(*). Let 7 C &nd 4 (A7) denote the sub-presheaf generated over
O« by the image of T(A”, K?). It is a sheaf by flatness of rational localization, hence a coherent sheaf
of O 4-algebras, and we define the eigenvariety 2" = Z¢. k» to be the relative Spa(.7, .7°) — Z (note
that the sheaf of integral elements is determined by Lemma A.3). The morphism?: Z — % is finite by
construction, and we have

O(q~' (V) =Im(T(A?, K?) ®7, O(V) — Endo(v)(H* (Ker* 0})))

forall V € ¥ov(%). In particular, if (U4, h) is a slope datum for OV, Fyy), we write J;; , = (’)(q_1 (Zu.n))
and have

Tyn =Im(T(A?, KP) ®z, O(Zy.n) — Endo(z, ) (H* (K, Zu)<n)).

Remark 4.1.9. Our eigenvariety 2" contains the eigenvariety constructed in [Hansen 2017, §4] as the
open subset {p # 0}. Indeed, our construction specializes to his over Banach Q ,-algebras, with the minor
difference that we use the complexes C*(K, D;,) to construct the auxiliary Fredholm hypersurface Z,
whereas the complexes C,(K, <)) (in our notation) are used in [loc. cit.], giving a different auxiliary
Fredholm hypersuface. However, working over the union of the two Fredholm hypersurfaces, one sees
that the coherent sheaf 7#* on Ag/vﬁg, with its T(A?, K”)-action, is equal to the sheaf .Z* on A;\,r;g (in
the notation of [loc. cit., §4.3]), with its T(A”, K?)-action (here we have used WW"2 to denote the locus

{p#£0W).

Remark 4.1.10. Like the other constructions, our construction of overconvergent cohomology and
eigenvarieties has numerous variations, which are sometimes useful to keep in mind. For example, one
may use compactly supported cohomology, homology or Borel-Moore homology instead (see [loc. cit.,
§3.3]), and/or one could use the modules .27, instead of the &,. One can also add (or remove) Hecke

operators, or work over some restricted family of weights, rather than the universal one.

4.2. The Tor-spectral sequence. We now give the analogue of the Tor spectral sequence in [Hansen
2017, Theorem 3.3.1], which is a key tool in analyzing the eigenvarieties. We phrase it in terms of slope
decompositions and Banach—Tate rings, though we could have formulated it more generally for elements
in ov(%).

Theorem 4.2.1. Let h € Q> and let k : To — R™ be a weight. We fix an adapted Banach-Tate Z ,-algebra
norm on R, and suppose that C*(K, D)) has a slope < h-decomposition for somer > r,. Let R — S be a
bounded homomorphism of Banach—Tate Z ,-algebras with adapted norms and write ks for the induced



134 Christian Johansson and James Newton

weight Ty — S*. Then there is a convergent Hecke-equivariant (cohomological) second quadrant spectral
sequence
Ej =Tor®;(H' (K, Z)<n, §) = H'/ (K, i) <n-

Proof. We follow the proof of [Hansen 2017, Theorem 3.3.1]. Define a chain complex €, by 4; =
C(K, P,)<i and the obvious differentials (i.e., we are just reindexing and viewing C*(K, %)<y as a
chain complex). This is a bounded chain complex of finite projective R-modules. Thus

Tor[, ;(4..S) = H;1 (€. ®& S).

where Tor denotes hyper-Tor. The hyper-Tor spectral sequence then gives us a homological spectral
sequence
E}, =Torf (Hj(%.), S) = Hi1;(6.®& 5)

which is concentrated in the fourth quadrant. Reindexing we may turn this into a cohomological spectral
sequence (see [Weibel 1994, Dual definition 5.2.3])

E;j = Torf,-(H_j(‘g.), S)= H_i—j(6.®rS)

which is concentrated in the second quadrant. Since H_;(%4,) = H (K, PD¢)<n (by definition) and
H__j(¢.®QrS)=H +i(K, P¢s)<ih (canonically, by our previous results) this gives the desired spectral
sequence. Finally, Hecke-equivariance follows from the functoriality of the hyper-Tor spectral sequence. [J

As an application, we prove the following analogue of [Hansen 2017, Theorem 4.3.3]. We will use it
in the next section when we construct Galois representations.

Proposition 4.2.2. Let (U, h) be a slope datum and let m C Oy(U) be a maximal ideal corresponding to
aweight k : Ty — L*, where L = Oy(U)/m; this is a local field by Lemma A.12. Fix an absolute value on
L with |p| < p~! (i.e., an adapted Banach—Tate Z y-algebra norm). Let T C T(A, K) be a Z ,-subalgebra
and put

Ten =Im(T ®z, L — End (H* (K, Z)<n)),

Ty n =Im(T ®z, OwU) — Endoy, @) (H* (K, Zu)<n))-
Then there is a natural isomorphism (Ty 1, ®o,,w) Lyred = Tlrf%.

Proof. By the Tor-spectral sequence we see that, if 7 € T acts as 0 on H*(K, Z;/)<p, then it acts
nilpotently on H*(K, Z,)<,. It follows that we have a surjection Ty, ®o,, @) L — T,rf‘}l of finite-
dimensional commutative L-algebras. To finish the proof it suffices to show that if q is a maximal ideal of
T, ®ow) L then the localization (T, ;)4 is nonzero. Let j be maximal such that (H (K, Du)<n)q #0
and localize the entire Tor-spectral sequence with respect to . Then the entry (Eg’j )q 1s stable (i.e.,
(ES7)q = (E%))q) and it follows that (H/ (K, Z)<p)q # 0. Thus we must have (T, ;) # 0 as desired. [J

Corollary 4.2.3. We retain the notation of Proposition 4.2.2. If we let U, be the double coset operator
[KtK1€T(A, K) for our fixed t € =P, consider the commutative subalgebra T(AP, KP)[U;]CT(A, K).

Then we have a natural isomorphism (Fn @ow) L)y =T (AP, Kp)[Ut]rKf%.
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Proof. By Proposition 4.2.2 we have a natural isomorphism
(T(A?, KM)[Udup ®@oen L™ ZT(AP, KPUIE,

so it suffices to show that 93, , = T(A?, K?)[Uly.n, which is clear from the definitions (note that
Endo(#, ) (H*(K, Zy)<n) S Endow) (H*(K, Zu)<n)). 0

5. Galois representations

We continue to assume that all weights are trivial on Z(K). Let G = Resg GL,,F, with F a totally real
or CM field. In this section we construct a Galois determinant (in the language of [Chenevier 2014])
valued in the global sections of the reduced extended eigenvariety, satisfying the expected compatibility
between Hecke eigenvalues and the characteristic polynomial of Frobenius at all unramified primes. The
construction is an adaptation of a construction due to the first author and David Hansen, to appear in
[Hansen and Johansson > 2019] (in a slightly refined form), which produces a Galois determinant over
the reduced rigid eigenvariety as constructed in [Hansen 2017]. The key step is to produce the desired
Galois determinant for all “points™ of the extended eigenvariety. In the rigid analytic setting one can
then glue these individual determinants together by an argument due to Bellaiche and Chenevier; we
prove a version of this gluing technique in our setting. We will not assume that G = Resg GL,,F until
Section 5.3.

5.1. Filtrations. Let k : To — L be a weight, where L is a local field equipped with an adapted absolute
value; we let @ be a uniformizer of L. Let r > r, and choose an auxiliary s € (., r). In this subsection,
we construct a filtration on the unit ball D"° of D" with finite graded pieces, generalizing the filtrations
constructed in [Hansen 2015]. We define

Fill DZ"° :=D="° N DE°.

When « and r are clear from the context we will simply write Fil/ for Fil/ Ds"° (we will always omit the
choice of 5). By the definitions the Fil/ are open and closed in the subspace topology on DS"° coming
from D} (we recall that D"° is compact with respect to this subspace topology since Oy, is compact).
Therefore the DF"°/ Fil/ are finite discrete O -torsion modules and we have DF"° = lim Do/ Fil/
topologically. Note that Fil’ is A-stable (being the intersection of two A-stable subsets in Dy), so the O -
torsion modules DS"°/ Fil/ inherit a A-action and the equality in the previous sentence is A-equivariant.
We also record the following lemma.

Lemma 5.1.1. We have

H'(K,Dg"°) =lim H' (K, D"/ FilY)  for all i.
J
Proof. On Borel-Serre complexes we have C*(K, Dg"°) =lim j C(K,D;"°/ Fil’) and these are bounded
complexes of compact abelian Hausdorff groups. This category is abelian and has exact inverse limits
(e.g., by [Neukirch 1999, Proposition 1V.2.7]), which gives us the result. O
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We remark that C*(K, DS") has a slope < h-decomposition for any & € Q¢ (since we are working
over the field L) and C*(K, D)<, = C*(K, D,)<p, (since it is sandwiched between C*(K, D))<; and
C*(K, D;)<n, and these are equal). Thus, we may use the D" instead of the D, to define overconvergent
cohomology. We will do this to define Galois representations because of the fact that DS"° is profinite
with respect to topology coming from the Fil/.

5.2. A morphism of Hecke algebras. We continue with the notation of the previous subsection. In this
subsection we will fix a Z,-subalgebra T C T(A, K) and, if A is any Z,-algebra, we will write T4 for
T®z, A. Then Tp, acts on H*(K, D;”O/Filj) for all » and j and we set

T, ; =Im(To, — Endp, (H*(K, D"/ Fil'))),

T,y = Im (TTOL —T]T j).
J
We equip each T, j with the discrete topology (they are finite rings) and give [ | i T j the product topology;
we then give T p; the subspace topology. We let T\,’(‘Fil denote the completion of T p; in I1 i T i this is
a compact Hausdorff ring.
Fix h € Q>¢. We have natural maps H*(K, D:"°) - H*(K,D;") = H*(K, D:")<;, and we define

H*(K,D:"°)<p to be the image of the composition.

Lemma 5.2.1. H*(K, D:"°) <y, is an open and bounded Op,-submodule of H*(K, D:") <y, (and hence a
finite free O -module).

Proof. It is an O -submodule which spans H*(K, DS")<; essentially by construction, so it suffices to
show that it is finitely generated. The morphisms H*(K, D;"°) — H*(K,D;") — H*(K, D;") <y are
induced by the morphisms

C'(K,D;"°)— C*(K,D;") — C(K,D:") <

of complexes. Let C*(K, D;"°)<;, denote the image of the composition. Note that each Ci(K, D:"°)
is bounded in C' (K, D7), so Ci(K, D:"°) <, is bounded in C/(K, DS")<p by continuity of the projec-
tion. Thus C*(K, D:"°) <, is a bounded complex of finite free Oy -modules. Since H* (K, DS"°) <, C
Im(H*(C*(K, D) <) — H*(K,DZ")<p), finite generation of the former follows. O

We define
17, = Im(To, — Endo, (H* (K, D) 24)):

by the above lemma this is a finite O -algebra and hence naturally a compact Hausdorff ring. Note that
ifT eTp, 1s01in TTI’(’FH, i.e., acts as O on all H*(K, D;”O/Filj), then it acts as 0 on H*(K, DS"°) <p,
and so is 0 in TZOS »- In other words we have a natural (surjective) map T, g —>AT£”°§h. The goal of this
section is to show that this map is continuous and so extends to the completion T} .

To do this we introduce some special open sets. Let pr; : T} g — T, ; denote the projection. We put

Uj = Ker(pr;); this is an open ideal of T} ;. On T"°_, the opens that we will use are more delicate to

K, <h
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construct. We have a commutative diagram
H*(K,Dg"°) —— H*(K, D) <n
H*(K,D})°) —— H*(K, D)<

where the right vertical map is an isomorphism, which we think of as an equality (the reader may trace
through the definitions and see that this is a natural thing to do). Defining H* (K, D;>°)< to be the image
of H*(K,D)°) — H*(K, D})<, we see that H*(K, D:"°) <, € H*(K, D;>°) <, are both open lattices
in H*(K,D;")<, = H*(K, D;)<;, (Lemma 5.2.1 holds for H*(K, D}°) <, as well, with the same proof).

Lemma 5.2.2. The ideals

V, ={T eT;°,, | T(H*(K,D"°) <) € @’ H*(K, D°) <n}

r,0
Kk, <h*

form a basis of open neighbourhoods of 0 in T

Proof. It’s easy to check that the V; are ideals. By the preceding remarks the subgroups @/ H*(K, DS°) <p
form a basis of neighborhoods of 0 in H* (K, D:"°) <, (for j >>0). Using this the lemma is elementary. [

We may now prove continuity. Denote the map T} ¢, — T;OS » by ¢.
Proposition 5.2.3. We have ¢(U;) € V;. Thus ¢ is continuous and extends to a continuous map

Ar r,0
Term = T

Proof. The second statement follows directly from the first (by general properties of linearly topologized
groups and the fact that T;‘; , 1s complete). The first statement amounts, by the definitions, to proving
that if T acts as 0 on H*(K_, D,fr’c’/Filj), then it maps H*(K, D:"°) <, into w!H*(K, D °)<p, or in
other words that T acts as 0 on

Im(H*(K, DF"%) <y — H*(K, D3°) < /).
By definition this image is equal to
Im(H*(K,DS"°) — H*(K, DS°)<p /@ ).

Assume now that 7" acts as 0 on H*(K, D:"°/ Fil’). We may factor H*(K, D:"°)— H*(K, D,ﬁ’°)§h/wj
through H*(K, D:°) /@ so it suffices to prove that T acts as 0 on

Im(H*(K, D:"°) — H*(K, D2°) /@ ).
From the long exact sequence attached to the short exact sequence
0— DI 25 D DI ferd — 0

we see that
H*(K,D}°)/w/ — H*(K,D>°/w?).
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By definition, we have a natural map D;"°/ Fil/ — D/ /. Assembling the last few sentences, we
have a commutative diagram

H*(K,Dg"°) —— H*(K, D°) /o’

l l

H*(K, Dz FilV) —— H*(K, D5°/w )

where the right vertical map is injective. By assumption 7" acts as 0 on H*(K, D"°/ Fil’); hence it acts
as 0 on Im(H*(K,D;"°) — H*(K, D,ﬁ’o/wf)). But, since the right vertical map is injective, this image
is isomorphic to Im(H*(K, D:"°) — H*(K, D,ﬁ"’)/zzrj). Thus T acts as 0 on this, which is what we
wanted to prove. U

5.3. Galois representations. We now specialize to the case G = Resg GL,,F, where F is a totally real
or CM number field, and n > 2. When discussing Galois representations we will, for simplicity of
referencing, use the same conventions as in [Scholze 2015, §5]. Let S denote the set of places w of @
such that either w = oo, or if w is finite then K, is not hyperspecial. This is a finite set containing p and
the primes which ramify in F. We let S denote the set of places in F lying above those in S’. We set

T:@TU,

vesS
where T, = Z,[GL,(F,)//GL,(OF,)] is the usual spherical Hecke algebra (we assume that K C
GL,(Of ®z7 2)). We have T C T(A, K) and we will use the notation and results of the previous
subsection for this choice of T. Let g, be the size of the residue field at v. We have the (unnormalized)
Satake isomorphism
Tolgy 1= Zlqy N o 1,

where S, is the symmetric group on {1, ..., n} permuting the variables x, ..., x,. If we let 7; , denote
the i-th elementary symmetric polynomial in x1, ..., x,, then qf,("H)/ 2T[~,v € T, and we define
Py(X)=1—q" V2T X4 ¢" ' X? — o (=1)"q" TV, X" e T, [X]. (5.3.1)

The following theorem is essentially a special case of [Scholze 2015, Theorem 5.4.1]. We let G s denote
the Galois group of the maximal algebraic extension of F unramified outside S. For the notion of a
determinant we refer to [Chenevier 2014].

Theorem 5.3.1. (Scholze) There exists an integer M depending only on [F : Q] and n such that the
following is true: for any j and r there exists an ideal 1, ;S L j with (I . j)M = 0 and an n-dimensional
continuous determinant D of G, s with values in T, j /1 j such that

D(1 — X Frob,) = P,(X)
forallv ¢ S.
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We remark that the local systems corresponding to the DS"°/ Fil/ are not necessarily included in
the formulation of [Scholze 2015, Theorem 5.4.1], but the proof works the same: one first applies the
Hochschild—Serre spectral sequence to reduce to the case of a trivial local system.

Corollary 5.3.2. Keep the notation of Theorem 5.3.1:

(1) There exists a closed ideal I C :ﬂ\—/r(,Fil such that I'M = 0 and an n-dimensional continuous determinant
D of G s with values in ?;’F“/I such that D(1 — X Frob,) = P,(X) forallv ¢ S.

(2) Let h € Q>¢. Then there exists a closed ideal J C Ti”‘;h such that JM = 0 and an n-dimensional

continuous determinant D of Gr s with values in Tlr(”oih/J such that D(1 — X Frob,) = P,(X) for
allv ¢ S.

Proof. Part (1) follows from the theorem and the definition and compactness of ﬁT\,’(’Fﬂ via [Chenevier 2014,
Example 2.32]; one sets [ = T\;’Fil N ] j 1 ,: j Assertion (2) then follows from (1) and Proposition 5.2.3. [

5.4. Gluing over the reduced eigenvariety. We now finish our construction of a Galois determinant over
the reduced eigenvariety 2™ = %éEd. See Definition A.10 for the definition of the reduced subspace.
Keep the notation of the previous subsection. Let (U, /) be a slope datum. We have a corresponding open
affinoid 2y, € % If m, is a maximal ideal of O(U{) corresponding to the weight « : Ty — L* with
L =0OU)/m, alocal field, then Corollary 4.2.3 gives us a natural identification

(O(Zign) /)™ = (025D /m)™ ZT(AP, KDV,

Fix r. Note that ch,gh = T;”‘;h[l/zzr] is naturally a closed L-subalgebra of T(A”, K”)[U;] . From
Corollary 5.3.2 it follows that we have a Galois determinant into T(A?, K?)[U, ,]L‘f‘}l and therefore into

(O(e%”zfg) /m, ). We record this discussion in the following convenient form:

Lemma 5.4.1. Let (U, h) be a slope datum and let m be a maximal ideal of O(%ng). Then there exists an
n-dimensional continuous determinant D of G s with values in (9(3&”&?2) /m such that D(1 — X Frob,) =
Py(X) forallv ¢ S.

Proof. This follows from the discussion above since the map Spec O(%Lfg) — Spec O(U) sends maximal
ideals to maximal ideals (the map is finite). O

Before we can glue we need some preparations. Let A be a reduced Z,-algebra which is finite
and free as a Z,-module; we equip it with the p-adic topology. Consider the adic space Z*" = A\lqan,
where S =Spa(A[ Xy, ..., Xqll, AL[X1, ..., XqD); here A[ Xy, ..., Xy] carries the (p, X1, ..., X4)-adic

topology. Fix an index i € {1,...,d}. Let T be a coordinate on Aém. We are interested in the open
affinoid subsets V,, = {|p™[, [ X{'|, ..., |XJ| < |X;| #0, |X"T| < 1} of Z*" for m € Z~,. Note that the
union of the V,, is the locus V = {| X;| # 0} € Z?". The ring O(V,,) has a ring of definition
PXE X\
Ru=A[X1, ..., Xgl{ —, oo, — NXP'T
m II 1 d]]< Xi Xi Xi < i )



140 Christian Johansson and James Newton

(with the X;-adic topology), and we have natural maps R, — Ry, for all m. Note that O(V,,,) = R, [1/ X;]
and that O (V,,) is the integral closure of R,, in O(V,,). By Theorem A.5 (and its proof), in fact we have

Ot (V) = O(V,,)° and O(V,,)° is a finite R,,-algebra.
Lemma 5.4.2. The image of Ry 11 in R,/ X} is finite for all m and n. More generally, if M is a finitely
generated Ry, 1-module, then the image of M in M ®g, ., Ry /X is finite.

m+1

Proof. Fix m and n. We start with the first assertion. It suffices to check that the kernel contains the ideal

m—+1\mn Xm—',—l mn Xm+1 mn
Iz(p'"",xq"",...,xg,"",<px ) ( 1 ) ( e ) ,(X;"“T)">
i i i

since it’s straightforward to check that R,,41/1 is finite. It’s also straightforward to check that the given

generators of [ are in the kernel. This finishes the (sketch of) proof of the first assertion. For the second,
there is an integer ¢ > 0 and a surjection R,qn +1 = M of Ry y1-modules, which gives us a commuting

diagram
R~ Rb/X!
M —— M Q®g,., Rn/X!
where the vertical maps are surjections, and the second assertion then follows from the first. O

Proposition 5.4.3. With notation as above, let Y — V = {|X;| # 0} C Z* be a finite morphism of adic
spaces, and assume that Y is reduced. Then O (Y) is compact.

Proof. Write Y,, for the pullback of V,,; these form an increasing cover of Y consisting of open affinoids.
Since Y,, — V,, is finite and O (V,,) = O(V,,)° we know that O" (Y,,) is integral over O(V,,)° (by
definition of a finite morphism). Since O(Y,,) is reduced and O(V,,)° is Nagata (it is finite over R,,, which
is Nagata by the proof of Theorem A.5) it follows that O (Y,,) is finite over O(V,;,)°. In particular, O (Y,,)
is finite over R,,, and hence Noetherian. We may also deduce from Lemma A.2 that O (Y,,) = O(Y;,)°.

For any n the map OF (Y,11) = O1(Y,,)/ X! factors through O (Y,,11) ®r,,,, Rm/ X! and hence
the image is finite by Lemma 5.4.2. It follows that O (Y,,+1), when equipped with the weak topology
with respect to the map OF (Y,11) = O1(Y,,), is compact. We deduce that O (Y) =lim, O*(Y,) is
compact, as desired. U

m+1

Corollary 5.4.4. Assume that X — Z* is a finite morphism of adic spaces, with X reduced. Then O (X)

is compact.

Proof. Foreachi €{l, ..., d} consider the locus Z; = {| X;| # 0} C Z*" (i.e., what was previously denoted
by V) and set Zy = {|p| # 0}. Let X;, fori € {0, ..., d}, denote the corresponding pullbacks to X. Then
we have a strict inclusion 07 (X) C H?:o O (X;) with closed image and the O (X;) are compact (for
i=1,...,d this is Proposition 5.4.3 and for i = 0 this is [Bellaiche and Chenevier 2009, Lemma 7.2.11];
note that X is nested in the terminology of that paper), so O1(X) is compact as well. O
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We may then prove the main result of this section.

Theorem 5.4.5. There is an n-dimensional continuous determinant D of G s with values in O (2 redy
such that

D(1 — X Frob,) = P,(X)
forallv ¢ S.

Proof. Fix a collection {(U/, h)} of slope data such that the %fﬂ cover .2°™4. We then have injections

otz — [T owgrh < [T ]]ow@mn/m,
,h) W, m

where the m range over all maximal ideals of (’)(%ng). Note that we have an injection (’)(%ng) —
[T O(%Lﬁ) /m by Lemma A.1, so the second morphism really is an injection. Then note that O (2" ™)
is compact; since 2" red is finite over Spa(Z,[Toll, Z, 1 Tol)™" x Al this follows from Corollary 5.4.4. To
see that Z,[To]l is of the form A[ X1, ..., X4]l, we write Ty = Tgor X Tgree, where TOtor is the torsion
subgroup of Ty (which is finitely generated) and TOfree = Zf,im 105 a free complement (see, e.g., [Neukirch
1999, Proposition I1.5.7]). Set A = Z,[T;*"]; then

Z,[Tol = A®z, Z,[ Ty 1 = A[X1, ..., X4l
Thus we may glue the determinants from Lemma 5.4.1 into the desired determinant using [Chenevier
2014, Example 2.32]. Il
6. The Coleman—Mazur eigencurve

In this section we give a short discussion of the special case of the Coleman—Mazur eigencurve and the
relationship between our work and that of Andreatta, Iovita and Pilloni [Andreatta et al. 2018] and Liu,
Wan and Xiao [Liu et al. 2017].

6.1. The case G = GLy/q. Let us consider the special case G = GL,,g. We begin by fixing choices of
groups and Hecke algebras/operators. Let B be the upper triangular Borel, / the corresponding Iwahori

and T the diagonal torus. We use the element ¢ = ((1) 2) € X°P'; the corresponding Hecke operator is the

L

{GLQ(@() if 24N,
GL,(Z,) if£¢]|N.

U),-operator. We choose the tame level

Ki(N) = {g € GL,(Z")

with N € Z>s5 prime to p. Put

With these choices, everything else is determined and we use the notation of the main part of the paper.
In this case, overconvergent modular symbols were first constructed in [Stevens 1994], and the
corresponding eigencurve was constructed and shown to agree with the Coleman—Mazur eigencurve
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in [Bellaiche 2010]. Stevens and Bellaiche worked with the compactly supported cohomology Hcl,
which admits a very explicit description in this case (it is given by the functor denoted by Symb in
[Bellaiche 2010; Stevens 1994]). Ordinary cohomology was first considered in [Hansen 2017]. For
ordinary cohomology, one has

H*(K, %) = H (K, 9;)

for all weights «, upon noting that the H' vanish automatically for all i > 2 and that H° vanishes by (a
simpler version of) the argument in the proof of [Chojecki et al. 2017, Lemma 5.4]. A consequence is the

following lemma:

Lemma 6.1.1. Let x : To — R be a weight, and assume that F, has a slope < h-factorization for some
h € Qs (slopes with respect to some multiplicative pseudouniformizer @ € R). Then H' (K, )<, is a
finite projective R-module and is compatible with arbitrary base change.

Proof. Let f : R — S be a continuous homomorphism of complete Tate rings and equip S with a
Banach-Tate Z ,-algebra norm such that f(zo') is a multiplicative pseudouniformizer. Put kg = f ok. By
the vanishing of the H' for i # 1 the Tor-spectral sequence collapses and gives us that

H' (K, 2)<n ®r S = H' (K, Zis) <n,
TorR(HY(K, Z)<p, §) = 0.
The first line is compatibility with base change. Putting S = R/J for an arbitrary ideal J C R (automatically

closed) we see from the second line that H' (K, P)<n 1s a finite flat R-module, and hence is finite

projective. O

If « : Tp — R is a weight, we write «;, i = 1, 2, for the characters Z; — R defined by

K((g 2)) — (@) (d)

! 0) > x. If we consider the eigenvariety 2™"¢ = %gg constructed

x 1
in [Hansen 2017], then it is equidimensional of dimension 2 by Proposition B.1 of that paper since

and we identify N with pZ, via (

H* = H'. This object is usually referred to as the “eigensurface”. If we instead do the eigenvariety
construction over the part ngg of weight space where k, = 1, we obtain an eigenvariety that turns out
to equal the Coleman—Mazur eigencurve; it is in particular reduced, equidimensional of dimension 1,
and flat over W(;ig. Let us denote this eigenvariety by &"¢; the properties of £"¢ stated in the previous
sentence are presumably well known to experts but we will give a brief sketch of the proofs below. To
begin with, it is equidimensional of dimension 1 (by the same argument as above for .2 "¢). For weights
with k» = 1 we conflate ¥ and x|, and we may write the action on <7 explicitly as

c—i—dx)

(fy)(x)=«(a +bX)f<a T hx
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fory = (“%) € My(Z,) such that a € Z%, ¢ € pZ,, (this defines the submonoid A, o of A, generated by
I and 1), and x € pZ, [Hansen 2017, §2.2]. Using the anti-involution

ab a c/p
(£3)= ()

!'in the argument to a function on Z p one sees this right action corresponds

on A, o and rescaling f by p~
to the left action defined in [Stevens 1994]. To prove that &"8 is reduced one uses a criterion of [Chenevier
2005, Proposition 3.9]; see [Bellaiche 2010, Theorem IV.2.1] for the analogous statement for the HC1
Unfortunately, the notion of a “classical structure” in [Chenevier 2005] is based on the input data for the
eigenvariety construction in [Buzzard 2007] and is therefore not directly applicable to the situation in
[Hansen 2017]. Let us state a version of [Chenevier 2005, Proposition 3.9] applicable to the situation in
[Hansen 2017, Definition 4.2.1]. We use the notation and terminology of [Hansen 2017, §4-5] freely; in
particular we use the language of classical rigid geometry for this proposition.

Proposition 6.1.2. Let O = (W, %, #,T, ) be an eigenvariety datum. If (U, h) is a slope datum,
assume that .# (Zy 1) is a projective O(U)-module. Assume moreover that there exists a very Zariski
dense set W' C W such that, if (U, h) is a slope datum, there is a Zariski open and dense subset Wy j, of
' NU such that A (Zy.n)yx IS a semisimple T[T~ "1-module. Here T is the parameter on AL which
naturally acts invertibly on #(27.1,), and the set # ! is given the Zariski topology. Then the eigenvariety
Zo is reduced.

The proof is virtually identical to that of [Chenevier 2005, Proposition 3.9]; we omit it. Using this,
one proves that £™¢ is reduced in the same way as in the proof of [Bellaiche 2010, Theorem IV.2.1(i)],
using the control theorem of Stevens (see [Hansen 2017, Theorem 3.2.5]); recall that our Hecke algebra
T(AP, KP) contains no Hecke operators at primes dividing N. That £"¢ is equal to the Coleman—-Mazur
eigencurve is then proved using the control theorems of Coleman and Stevens and the Eichler—Shimura
isomorphism together with [Hansen 2017, Theorem 5.1.2] (this type of argument is well known to experts;
see for example the proof of [Bellaiche 2010, Theorem 1V.2.1(1)]). The argument for flatness will be
given below. This finishes our review of the basic properties of &"i.

Let us now return to the constructions of this paper. Our eigenvariety construction gives an extension &
of &"¢ defined over the locus Wy € W where «x, = 1. Another such extension &’ was constructed by
Andreatta, Iovita and Pilloni [Andreatta et al. 2018]. Note that W) is naturally the analytic locus of the
formal weight space 2y with k, = 1. We have

Wo = Spa(Z, 121, Z,[Z1).

When p # 2, Zp[[Z;]] is a regular ring. When p = 2 this is no longer the case; we have ZQ[[Z;]] =
Z7[Z /211 X] and Z,[Z/2] is not regular. We will instead work over the normalization A of ZZIIZ;]],
which is isomorphic to Z>[ X] x Z>[ X 1. The normalization map

Dl Z2MMXT — Zo0X1 x 20 XT]
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is explicitly given by

D (an+bag)X" (Z(an +b) X" D (an — bn>X”),

n>0 n>0 n>0

where a,, b, € Z, and g € Z/2 is the nontrivial element. Using this map we get a weight into A, and we let
Q~Uo = Spa(A, A) and put Wo = QNIIS“. We remark that 17V(r)ig = W(;i £ canonically via the normalization map.
To make our notation uniform, we set Wy = W, when p # 2. We may perform our construction over Wos
and one may pull back the Banach modules that are used to construct the eigencurve in [Andreatta et al.
2018] to Wy, and construct the eigencurve over W, instead. Let us denote the corresponding eigenvarieties
by & and g, though we hasten to remark that these should not be thought of as normalizations of &
and &'

Lemma 6.1.3. Let U C W) be a connected open affinoid subset such that O(U) is a Tate ring. Then
OWU) is a Dedekind domain.

Proof. We first show that O(U) is regular of Krull dimension 1. The connected components of )7\/0 are iso-
morphic to Spa(Z,[ X1, Z,[ X1) so we may take I to be an open affinoid subset of Spa(Z,[[ X1, Z,[X1).
Let q be a maximal ideal of O(/) and let p be its preimage in A = Z,[X]. By Proposition A.15 the
natural map A, — O(U)q induces an isomorphism on completions. By Lemma A.13 p defines a closed
point of Spec A\ {(p, X)}. Since A is a regular local ring of dimension 2, it follows that A is a regular
local ring of dimension 1, and hence the same is true for O(U)q (since if R is a Noetherian local ring with
completion R, then R is regular if and only if Ris regular, and dim R = dim R). It follows that O/) is a
product of regular integral domains of dimension 1. Since U/ is connected O(f) does not contain any
nontrivial idempotents, so O(l/) is an integral domain. Il

Let (U, h) be a connected slope datum for & (by which we mean a slope datum for the construction
that produces & such that { is connected; we will use the terminology “(connected) slope datum for &
similarly). Then O(ﬁu,h) is, by definition, an O(Uf)-submodule of Endp ) (H (K, P11)<n)- The latter is
projective by Lemma 6.1.1, so the former is also projective since O(lf) is Dedekind. Thus the natural
map &, — U is finite flat, and hence & — Wy is flat. The same applies to g

Now let (U, h) be a slope datum for & and &' Let (U;)ie; be an open affinoid cover of UM Then the
natural map OU) — [[;c; OWU;) is an injection (since U \ UM does not contain any open subset of Uf)
so tensoring with the finite projective O(1/)-module O(&y,1,) we get an injection

O(Eun) = (l_[ O(Ui)) ®owy OEun) =[] OE ),
iel iel
which in particular shows that O(gu,h) is reduced. The image of O(ﬁu’h) inside ]_[iE I O(égui, ) is equal

to the O(U)-span of the image of T(A?, K?)[U,]in [[,, O(é;ui,h). The same holds replacing & by é;/,
so since we have canonical isomorphisms

Oy Z Oy, 1),
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we obtain a canonical isomorphism O(ﬁu = O(£’u »)> compatible with the way the eigencurves are built.
As a result we have a canonical isomorphism & = & extending the canonical isomorphism & = ((5‘7 )i,
We summarize the discussion above in the following theorem:

Theorem 6.1.4. The eigenvariety & is reduced and flat over Wo. Moreover, it is canonically isomorphic
to the eigencurve &' constructed by Andreatta, lovita and Pilloni [ Andreatta et al. 2018].

Remark 6.1.5. In fact, it is possible to show that & and &” are isomorphic for all p (i.e., including p =2),
using the interpolation theorem [Johansson and Newton 2017, Theorem 3.2.1], since both & and & are
reduced with Zariski dense sets of classical points which naturally match up.

Fix a character n: (Z/q)* — [F; (recall that ¢ =4 if p =2 and g = p otherwise). We have a natural
isomorphism Z; =(Z/q)* x (14+qZ,) defined by z — (z, z/w(z)), where an overline denotes reduction
modulo g and w denotes the Teichmiiller lift. Let us write (z) := z/w(z). Then we may define a character
Ky Z; — Z,[ X1 by

-1
lo
0@ =om@ Y ( Ble >) X",
n=0

We let k,, denote its reduction modulo p. This is a character Z; — [F,((X))* which we may think of as a
character Tp — F,((X))™ with k» = 1. We remark that if p =2 then », and hence i, is unique.
Corollary 6.1.6. There are infinitely many (nonordinary) finite-slope U,,-eigenvectors in H (K, D&,)-
Proof. By Corollary 4.2.3, its analogue for & (which is simpler, and is essentially [Buzzard 2007,
Lemma 5.9]) and Theorem 6.1.4 we see that H!(K, Yk,) and the module M ;n (N) of overconvergent
modular forms of weight k, and tame level N constructed in [Andreatta et al. 2018] contain the same
finite-slope systems of Hecke eigenvalues. By [Bergdall and Pollack 2016, Corollary A.1], M ;n (N) has
infinitely many finite-slope U,-eigenvectors, so we are done. U
Remark 6.1.7. It is possible to prove Corollary 6.1.6 directly from [Bergdall and Pollack 2016, Theo-

rem A] (using the observation in the remark following [loc. cit., Corollary A.2]) without any reference to
[Andreatta et al. 2018].

6.2. Estimates for the Newton polygon of Up. In this and the following section we give a short proof of
the estimates obtained in [Liu et al. 2017, Theorem 3.16] for the Newton polygon of U, acting on spaces
of overconvergent automorphic forms for a definite quaternion algebra over Q.

We fix an odd prime p and assume that we are in the setting of Section 3.3. Suppose that N| = Z p
and fix a topological generator n. Let f be a norm-decreasing R-linear map

t t
P~ @Dg””
i=1 i=1

and recall that we have a compact inclusion

t t
1/p
. r r
@D B
i=1 i=1
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We set U = 1o f. Then U is a compact endomorphism of M = @le D,.. Recall that we have a potential
ON-basis for D given by the elements e, o := @ """Z 1% for a € Z>.
We consider the potential ON-basis for M given by

erl’():(er,()’oa--"o), ey 65’0:(0,...,0,87-,0), elvl =(€r’1,0,...,0),
Lemma 6.2.1. Assume that there is no x € R with 1 <|x| < | |~'. Then U maps ei’a to a sum Zj,ﬂ aéeiﬂ
with
jal| < | " B,
If we define

A0)=0, Ai+1D)=r0)+n0 o, |i/t]))—nG"? @, |i/t]),

the Fredholm series
det(1—TU|M) =) ¢, T" € R{T}
n>0

satisfies |c,| < |@ ™.

Proof. We first prove the estimate on the matrix coefficients of U. Apply f to ei,a. We get a sum
;. g€y, 5 and the fact that f is norm-decreasing is equivalent to

|b113| < |w-|n(r1/p,wﬂ)*n(ﬁwﬂ)r|0¢|*|ﬂ|/[’

for all j, B. Since |w| < || "> Oplal |w|_”(’l/p’w’5)r|ﬁ|/p < 1 by construction, we deduce that
|b/’3| < | |~! for all j, 8. By our assumption on R, it follows that Ib/]g| <1 forall j, 8. We then have

" p)

=B _ rw.B)—n'? . w.p) ,J
nﬁ_wnrwﬂ n(r Wﬁer,ﬁ

J _
Crinp =
so we conclude that
i J
Ue’,’a = E age, g,
J.B

where aé = w"(r,w,ﬁ)—n(rl/p,w,ﬂ)bg, and therefore

la}| < || HmnC D),

In other words, the i-th row of the matrix for U (we begin indexing rows at i = 0) has entries with
norm < | |2 @ Li/th=n(!?.@.1i/1]) We deduce immediately that |c,| < |z |*™, since ¢, is an alternating
sum of products of matrix entries coming from »n distinct rows [Serre 1962, Proposition 7], and each of
these products has norm < | |*™, 0O

6.3. Definite quaternion algebras over (). As an application of Lemma 6.2.1, we give a new proof of
[Liu et al. 2017, Theorem 3.16]. In this section we assume that p is odd. We need to set up things so that
we can apply the machinery of Sections 3.3 and 4. Let D/Q be a definite quaternion algebra, split at p,
and let G be the reductive group over () defined by G(R) = (D ®q R)*, for Q-algebras R. We fix an
isomorphism D, = M>(Q,) and henceforth identify D, with M»(Q,,) via this isomorphism. Let Gz, be
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the Z,-model for G given by Gz,(R) = (M2(Z),) ®z, R)* for Z,-algebras R. We let B be the upper
triangular Borel in Gz, and let T' be the diagonal maximal torus.

Fix a tame level K? = ]_[l#p K; with K; € G(Qy) compact open, let K = K71, and assume that K is
neat.

Fix a character n: Z; — [} and let A = Z,[[Z]l. We have an induced map 7, : A — F, and we
denote its kernel by m,. We write A, for the localization Ap, . We have a universal character

[- 1y :Z; — Af;.
We give the complete local ring A, the m,-adic topology. Fixing a topological generator y of 1+ pZ,

gives an isomorphism
2 XN — Ay, X+ [yl—1.

Let 20, = Spa(A,, A;), denote its analytic locus by W, and let &; C W, be the rational subdomain
of 20,
Uy ={Ipl = IX] #0}.

Pulling back ; to the open unit disc W,;ig gives the “boundary annulus” |X|, > p~ L

We let R, = O(U)). More explicitly, R, = R}[1/X], where R is a ring of definition for Ry, given by
the X-adic completion of Z,[X]|[p/X], with the X-adic topology.
Even more explicitly, we can describe the elements of R as formal power series

{ZanX”

nez

an € Zp, lanlpp™ <1, lan|pp™ — O0asn — —oo}

X is a topologically nilpotent unit in R, and so equipping R, with the norm

lrl=inf{p™" |r € X"R}, n € Z}

makes R, into a Banach—Tate Z ,-algebra. This norm has the explicit description

Zanx"‘ = sup{|a,|,p"}. (6.3.1)

nez
Note that if r € A, we have |r| =inf{p™" | r € m’f], neZ}.
We now define a continuous character

. X
K,].T()—>Rn

Ky (g 2) = [a],.

Lemma 6.3.1. The norm we have defined on R, is adapted to k,. Moreover, for t € Ti we have
iy (1) =11 < 1/p.
Proof. If t e Ty we have k (1) —1 = (1+X)*—1=)_,_, (") X" forsome a € Z,,. So |k, (1) = 1| <1/p. O

by
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We can now apply the theory of Section 4 to the space of overconvergent automorphic forms
HO(K, D,l,{p ). Note that we have the concrete description

HY(K, D7) ={f: D*\(D®A))*/K? — D7 | f(gk) =k~ f(g) fork € I}

and HO(K, D,lr{p) is a Banach R;-module with norm | f| = SUPyc(DRAS)* lf(I/p-
In particular, we consider the action on H%(K, D,% Py of the Hecke operator Uy, attached to the element

((1) 2) € X°PL As a simple consequence of our results, we obtain the following theorem, which is essentially

due to Liu—Wan—Xiao — compare with [Liu et al. 2017, Theorem 3.16, §5.4].

Theorem 6.3.2. The Hecke operator Uy, is compact. Consider the Fredholm series
F.(T)= Z enT" =det(1—TU,, |H°(K, Dgf’)).
n>0
Lett = |D*\(D®A)*/K|. We have ¢, € A, and moreover we have

A(n)

cn €My forn e Zsy,

where A(0) =0, A(1), ... is a sequence of integers determined by
A0)=0, AG+1D=AG)+Li/t]—Li/pt].

Proof. Compactness of Uy, follows from Corollary 3.3.10. The fact that ¢, € A, follows from
Corollary 4.1.5, since Fy, (T') extends to a Fredholm series over W, and O(W,) = A,.

The rest of the theorem follows from Lemma 6.2.1 (note that the norm on R,, satisfies the assump-
tion of that lemma), using the fact that if we choose representatives gy, ..., g; for the double cosets
D*\(D®AY)*/K and r € [p~!, 1) we have an isomorphism of potentially ON-able R,-modules:

HK, D) =D, [ ()i
i=1

We take o = X, and compute that

n(p™ X, Li/t]) = Li/1],
n(p~VP X, lijt]) = L1/pli/t]] =i/ pt]. O
As in Section 6.1, our eigenvariety construction, applied to the modules H°(K, D%) with k; = 1, gives
an eigenvariety &; which is flat over W,. The open subspace @@,Yr'g defined by |p| # O is the eigenvariety
constructed in [Buzzard 2004].

We end this section with our interpretation of [Liu et al. 2017, Theorems 1.3 and 1.5]. First we need
some extra notation. For m < n positive integers we define

Unm = {Ip" < 1X"| #0} W,
We set U = U;.
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For a real number « € (0, 1] we denote by W, ” " the open subspace of W, obtained as the union of

open affinoids
Wy = Unn
m/n<ao
Note that X is a topologically nilpotent unit in OU,y,,,) for all m, n. We denote the pullback of &, to
wy* - by &, . The eigenvariety &, comes equipped with a map to the spectral variety Z(Fj, ), and
therefore it comes equipped with a map to Ag{. Forh=m/n € Q withm € Z and n € Z> we define an
affinoid subspace By, —;, C Ag, by
Bu,=n ={IT"| = 1X""]}.

Similarly, if h =m/n < h’ = m’/n are rational numbers, we define
Bu iy =X " < 1T" < |1X 7]},

Lemma 6.3.3. Let L/Q, be a finite extension and let x € L with |x|, = p~% where 0 < o < 1. Consider
the closed immersion 1 : Spa(L, Or) < U induced by the continuous Z ,-algebra map R, — L sending
X to x. Let By —j, be the pullback of By —p along 1. Then By —j — AlL is the affinoid open defined by

By—n ={IT|,=p "}

Proof. The affinoid B, - is given by {|T"| = [x ™| = |p*™|} C Ai. O
—1

Theorem 6.3.4 [Liu et al. 2017]. The space &, " is a disjoint countable union of adic spaces finite and

—1
flat over W, 7.

Moreover, there is an explicit o depending only on K?, with 0 < a < 1, such that
éc;n>p_ — ]_[ ‘%-7],1.
i>0

with 2, ; finite flat over W,7> P and each piece 2 ; of the eigenvariety has constant slope, in the sense
that each map %2, ; — AIL factors thr_ough the affinoid subspace By —p, C Ag, for some h; € Qxy. In
particular, if we measure slopes on %nrj;.g with the usual p-adic valuation, then the slope of a point in ,%’nlzlf

is given by h;v,(T).

Proof. This follows from Theorems 1.3, 1.5 and Remark 3.25 of [Liu et al. 2017]. Remark 3.25 shows
that, after restricting to W, ” _I, the Fredholm series F}, factorizes as a countable product of multiplicative
polynomials [ ];., P;, with each finite product HINZO P; afactor in a slope factorization over every affinoid
subspace of W, ” "', This establishes the claim about &P "', Theorem 1.5 shows moreover that (for
some explicit «) the restriction of Fj, to W,]> P factorizes as Hi20 Qi, such that the specialization of
Q; at every classical rigid analytic point of W, ” " has constant slope equal to A; for some h; € Q>
(independent of the specialization). We obtain a decomposition of Z(F, ) as a disjoint union of spaces Z;,
finite flat over W, ” w, such that every classical rigid analytic point of Z; is contained in By, —;,. The

space 2, ; is defined to be the inverse image of Z; in &, " . It now remains to show that every point
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of Z; is contained in By —p,. First we check this for rank-1 points: a rank-1 point of Z; which is not in
Bzs,—n, is contained in By (4, for some interval [i, h'] which does not contain /;. But then By (5 1N Z;
is a nonempty open subset in Z; which contains no classical rigid analytic point, which is impossible
since Z; is finite flat over W, 7 - (in particular the map Z; — W, " s open). Let V be an affinoid
open in W, ¥ . Then Z;|y N By, —y, is an affinoid open in Z;|y such that the complement contains no
rank-1 point. We have Z;|y = Spa(A, A°) for some Tate ring A with a Noetherian ring of definition. So
[Huber 1993, Lemma 3.4] (see the proof of Corollary 4.2 of that paper) implies that rank-1 points are
dense in the constructible topology of Spa(A, A°) and we deduce that Z; |y N By =5, = Z;|y. Therefore

Z; is contained in By, —p,, as desired. The final sentence of the theorem follows from Lemma 6.3.3. [

Note that [Liu et al. 2017] proves moreover that the slopes appearing in the above theorem (with
multiplicities) are given by a finite union of arithmetic progressions.

Appendix: Some algebraic properties of Tate rings

In this section we prove some properties of the kinds of Tate rings and adic spaces that we need. We start
with a ring-theoretic lemma.

Lemma A.1. Let R be a complete Tate ring with a Noetherian ring of definition Ry. Then R is Jacobson.

Proof. Let @ € Ry be a topologically nilpotent unit in R. Because Ry is a Zariski ring when equipped
with its @ -adic topology (since it is complete), Spec Ry \ {zw = 0} is a Jacobson scheme by [EGAIV3
1966, (10.5.7)]. But Spec Rp \ {w = 0} = Spec R, so R is Jacobson as desired. O

We record another simple lemma that will prove to be useful.

Lemma A.2. Let R be a complete Tate ring with a Noetherian ring of definition Ry. If S C R is an open
and bounded subring (i.e., a ring of definition) containing Ry, then S is a finitely generated Ry-module,

hence Noetherian, and integral over Ry. Moreover, R° is the integral closure of Ry in R.

Proof. Pick a topologically nilpotent unit = € R contained in Ry. Since S is bounded we have S C & VR,
for some N, and hence S is an Ry-submodule of the cyclic Ry-module @ N Ry. The lemma now follows
since Ry is Noetherian. For the last assertion, first note that the integral closure is contained in R°. Since
R° is the union of all open and bounded subrings and any two open bounded subrings are contained in a
third, the assertion follows from the first part. U

One consequence of the above lemma is a version for Tate rings (with our Noetherian hypothesis) of
[Bosch et al. 1984, 6.3.4/Proposition 1]:

Lemma A.3. Let R be a complete Tate ring with a Noetherian ring of definition. Let S be a finite R-
algebra, equipped with the natural R-module topology. Then S is a complete Tate ring with a Noetherian
ring of definition.

Moreover, the integral closure of R° in S is equal to S°. In particular, the morphism (R, R°) — (S, S°)
is a finite morphism of affinoid rings (see [Huber 1996, 1.4.2]) and Spa(S, §°) — Spa(R, R°) is a finite
morphism of adic spaces (see [loc. cit., 1.4.4]).
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Proof. We let R\ denote a Noetherian ring of definition for R, let zo denote a topologically nilpotent unit
in R and let sy, ..., s, denote R-module generators of S. Each s; is integral over R, and multiplying by
a large enough power of @ we may assume that each s; is integral over Rg. Let Sy be the subring of
S generated by Ry and sq, ..., s,. Now Sy is a finite Rgp-module and is in particular a Noetherian ring.
Moreover Sy with the @ -adic topology is an open subring of S. In particular, S is an f-adic topological
ring, and since @ is a topologically nilpotent unit we see that S is a Tate ring with a Noetherian ring of
definition. Completeness of S follows from completeness of finitely generated modules over Noetherian
adic rings (this is [Huber 1994, Lemma 2.3(ii)]).

Finally we show that the integral closure R° in § is equal to S°. It is clear from the definition of the
topology on § that R° maps to S° so the integral closure of R° in S is contained in §°. Conversely, by
Lemma A.2, §° is the integral closure of Sp in S. Since Sy is integral over Ry, we see that S° is integral
over Ry, and therefore it is integral over R°. O

Next we recall the notion of uniformity. If R is a normed ring, then the spectral seminorm | — [, on R is
defined by |r|sp =1im, o [F"| /7 Tt is well known that this limit exists and defines a power-multiplicative
seminorm. Whenever it is a norm, we will refer to it as the spectral norm on R. Conversely, if we mention
“the spectral norm of R”, we are implicitly stating (or assuming) that the spectral seminorm is a norm.

Definition A.4. Let R be a complete Tate ring. We say that R is uniform if the set of power-bounded
elements R° is bounded. We say that R is stably uniform if any rational localization of R is also uniform.
If R is a Banach-Tate ring, we say that R is uniform if the norm is power-multiplicative.

Note that, if R is Banach—Tate ring whose underlying complete Tate ring is uniform, then the given
norm on R is equivalent to the corresponding spectral norm, which is power-multiplicative. In this case,
[Berkovich 1990, Theorem 1.3] says that the spectral norm is equal to the Gelfand norm sup, ¢ v gy | — |-
If R is in addition stably uniform, then if @ € R is a multiplicative pseudouniformizer and U C X =
Spa(R, R™) is a rational subdomain, we may equate M(Qx (U)) with the rank-1 points in U using @
and equip Ox (U) with the corresponding Gelfand norm.

We may extend the definition of stable uniformity to arbitrary analytic adic spaces, i.e., those that
are locally the adic spectra of complete Tate rings. We say that such an X is stably uniform if there is
a cover of open affinoid subsets U; € X such that Ox (U) is stably uniform. We remark that if R is a
complete sheafy Tate ring such that Spa(R, R™) is stably uniform, then R is stably uniform (this is a
short argument; see [Kedlaya and Liu 2015, Remark 2.8.12]). When R has a Noetherian ring of definition,
many naturally occurring complete Tate rings are stably uniform. Below we will prove some results in
this direction.

Theorem A.5. Let A be a reduced quasiexcellent ring. Let I be an ideal of A and give A the I-adic
topology. If U is a rational subdomain of X = Spa(A, A) and Ox (U) is Tate, then Ox(U) is uniform. In
other words, the analytic locus X*™ C X is stably uniform. We also have O;(U) = Ox(U)"

Moreover, if U C X is an arbitrary open affinoid then (’);an (U)=0Oxan (U)° and Oxan (U)° is bounded
in Oxan (U).
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Proof. Let fi1, ..., fn, 8 € A suchthat fi, ..., f, generate an open ideal and let

U=A{lfil,.... 1 fal =18l #0}.

Put R = Ox(U); recall that R may be constructed as completion of the f-adic ring 7 = A[1/g] with
ring of definition Ty = A[f1/g, ..., f»/g€] € T and ideal of definition J = I[fi/g, ..., f./g] C Tp. Let
Ry be the J-adic completion of Tj; this is a ring of definition of R, with ideal of definition J Ry. Since
A is reduced, so is T and hence Ty; moreover Tj is quasiexcellent since it is finitely generated over A.
Recall that a Noetherian ring is reduced if and only if Serre’s conditions Ry and S; hold (we apologize
for the unfortunate clash of notations). By [EGA IV, 1965, (7.8.3.1)], Ry inherits these properties from
Ty and is therefore reduced. Moreover, T, and hence Tp/J = Ry/J Ry, are Nagata (since they are finitely
generated over A, which is quasiexcellent, and hence Nagata). By [Marot 1975, Proposition 2.3], Ry is
Nagata (note that there is a trivial misprint in the reference).

Pick a topologically nilpotent unit @ € R (recall that R is Tate by assumption); without loss of
generality assume @ € Ry. Then R = Ry[1/@ ], so R is contained in the total ring of fractions Q(Rp)
of Ry. Since Ry is reduced and Nagata, it follows that the integral closure R’ of Ry in R is a finitely
generated Ro-module, and hence is bounded. Now R’ = R° by Lemma A.2, so R° is bounded as desired.

For the assertion about O;(U ), let T denote the integral closure of Ty in 7. By definition, the
completion of Tt is RT := (’))J?(U ). In particular, R™ contains Ry and the assertion now follows from
Lemma A.2.

To check the assertion about an open affinoid U = Spa(Ox (U), O;(U )), note that U has a finite cover
by Tate rational subdomains (U;);c; of X. Since the maps O(U) — O(U;) are bounded (the U; are also
rational subdomains of U), the strict embedding

ow) — [Jown
iel

induces an embedding

o) = oW)N[[ow:)°

iel

but the right-hand side equals

ow)n[lo*w)=0*w)

iel

by the first part of the theorem, so we are done because by definition O (U) € O(U)°, which implies that
we have equality. Finally, the boundedness of Oy (U)° follows from the boundedness of the O(U;)°. [J

Corollary A.6. Let O be a complete discrete valuation ring and let A be a reduced complete Noetherian
adic ring formally of finite type over O, i.e., such that A/ A°° is a finitely generated O-algebra. Then
the analytic locus X*" C X is stably uniform. Moreover, if U C X is an open affinoid subspace then
O;m(U) = Oxan(U)° and Oxax (U)° is bounded in Oxa (U).
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Proof. A is excellent by [Valabrega 1975, Proposition 7; 1976, Theorem 9] (see [Conrad 1999], near the
end of the Introduction). Thus, Theorem A.5 applies. g

We also note that the proof of Theorem A.5 applies essentially verbatim to prove the following similar
result.

Theorem A.7. Let R be a complete Tate ring and assume that R has a ring of definition Ry which is
quasiexcellent and reduced. Then R is stably uniform. Moreover, if X = Spa(R, R°), and U C X is
an open affinoid subspace, then O;(U) = Ox(U)° and Ox(U)° is bounded in Ox (U). In particular,
Ox(U) is reduced.

This theorem also allows us to develop the theory of the nilreduction of an adic space. We only give a
sketch here — one can check that everything in [Bosch et al. 1984, §9.5.1] works in our setting.

Definition A.8. Let X be an adic space. Define the nilradical rad Oy to be the sheaf associated to the
presheaf U +— rad(Ox (U)), where rad(Ox (U)) is the nilradical of the ring Ox (U).

Proposition A.9. Let R be a complete Tate ring and assume that R has a ring of definition Ry which is
quasiexcellent. Let X = Spa(R, R°). Thenrad Ox C Oy is a coherent Ox-ideal, associated to the ideal
rad(R) of R.

More generally, if X is an adic space which is locally of the form Spa(R, R°) where R is a complete
Tate ring with a quasiexcellent ring of definition, then rad Oy is a coherent Ox-ideal.

Proof. The key point is that if U C X = Spa(R, R°) is a rational subdomain, then
Spa(Ox (U)/ rad(R)., (Ox(U)/ rad(R))°) — Spa(R"™, (R"%)°)

is a rational subdomain, so Theorem A.7 implies that Ox(U)/rad(R) is reduced, which implies that
rad(Ox(U)) =rad(R)Ox(U). O

Definition A.10. Let X be an adic space which is locally of the form Spa(R, R°), where R is a complete
Tate ring with a quasiexcellent ring of definition. Then we define X™¢ to be the closed subspace of X cut
out by rad Oy (see [Huber 1996, 1.4]).

In this paper the analytic adic spaces encountered will locally be of the form Spa(R, R°), where R is a
complete Tate ring with a ring of definition Ry which is formally of finite type over Z,. We will need
a few properties of these rings, all of which follow from the material in [Abbes 2010]. We recall the
following definition from that paper, specialized to our Noetherian situation.

Definition A.11. A Noetherian adic ring B is called a 1-valuative order if it is an integral domain which
is local of Krull dimension 1, and has no J-torsion, where J is an ideal of definition (this is independent
of the choice of ideal of definition).

This is [Abbes 2010, Definition 1.11.1], except that we demand that B is Noetherian. If B is a
1-valuative order, then the integral closure B in L = Frac(B) is finite over B and is a complete discrete
valuation ring, so L is a complete discrete valuation field [loc. cit., Proposition 1.11.4]. If A is any
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Noetherian adic ring with an ideal of definition / and p € Spec A, then A/p is a 1-valuative order if and
only if p is a closed point in Spec A \ V (I) [loc. cit., Proposition 1.11.8].

Lemma A.12. Let R be a complete Tate ring with a ring of definition Ry which is formally of finite type
over Z,, and let m C R be a maximal ideal. Then R/m is a local field.

Proof. Let p = RoNm and let @ € Ry be a topologically nilpotent unit. Then p is a closed point in
Spec Ro\ V ((zw)) = Spec R, so Ry/p is a 1-valuative order and hence its fraction field R/m is a complete
discrete valuation field. It remains to prove that the residue field is finite. For this, it suffices to show
that the residue field of the local ring Ry /p is finite since the integral closure of Ry/p in R/m is finite
over Ro/p. Pick an adic surjection A = Z,[[Ty, ..., T, (X1, ..., X,) = Ro for some m,n € Z-(. The
maximal ideal of Ry/p is open and so corresponds to an open maximal ideal of A, and hence to a maximal
ideal of [, [ X, ..., X,] in a way that preserves residue fields. It follows that Ro/p is finite as desired. [

Lemma A.13. Let f : A — B be a morphism of topologically finite type between Noetherian adic rings.
Let I be an ideal of definition of A and assume that A/l is Jacobson. Let J = I B; this is an ideal of
definition of B. If q € Spec B\ V (J) is a closed point, then p = £~ (q) is a closed point in Spec A\ V (I).

Proof. The morphism A — B/q is topologically of finite type and B/q is a 1-valuative order, so by
[Abbes 2010, Proposition 1.11.2] A — B/q is finite. It is then easy to check that this forces A/p to be a
1-valuative order as well, and hence p to be closed in Spec A \ V(1) by [loc. cit., Proposition 1.11.8]. [

Corollary A.14. Let g : R — S be a continuous morphism between two complete Tate rings with a ring
of definition that is formally of finite type over Z,. Then g is topologically of finite type> and pulls back

maximal ideals to maximal ideals.

Proof. Choose a ring of definition Ry for R which is formally of finite type over Z,. By [Huber 1993,
Proposition 1.10] g is adic, and therefore g(Rp) is contained in a ring of definition for S. Since any two
rings of definition are contained in another, we can find a ring of definition Sy for S such that g(Rg) € So
and Sy contains a ring of definition S which is formally of finite type over Z . It follows from Lemma A.2
that Sy is finite over S7, and hence S is also formally of finite type over Z,,.

Let @w € R( be a topologically nilpotent unit in R. Then I = @w Ry and J = g(w)Sy are ideals of
definition, and Rog/I — Sp/J is of finite type. Therefore Ry — S is topologically of finite type; hence
so is g. This proves the first assertion. The second then follows from Lemma A.13, since maximal
ideals of R and S correspond to closed points in Spec R = Spec Ro \ V(1) and Spec S = Spec So \ V (/))
respectively. O

Proposition A.15. Let S be a complete Tate ring with a Noetherian ring of definition Sy and a topologi-
cally nilpotent unit w € Sy such that So/m Sy is Jacobson:

(1) Let A be a Noetherian adic ring with an ideal of definition I such that A/ is Jacobson. Let f : A — S
be a continuous morphism such that the induced map Spa(S, S°) — Spa(A, A) is an open immersion,

SThat is, g factors through a surjective, continuous and open morphism R(X1q, ..., Xy,) — S; see [Huber 1994, Lemma 3.3].
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and let q be a maximal ideal of S with preimage p = f~'(q) in A. Then the natural map Ay — S induces

an isomorphism on completions (with respect to the maximal ideals).

(2) Let R be a complete Tate ring with a Noetherian ring of definition Ry and a topologically nilpotent
unit @ € Ry such that Ry/w is Jacobson. Let h : R — S be a continuous morphism such that the induced
map Spa(S, §°) — Spa(R, R°) is an open immersion, and let ' be a maximal ideal of S with preimage
v =h~'(q") in R. Then the natural map Ry — Sy induces an isomorphism on completions (with respect

to the maximal ideals).

Proof. We prove part (1); the proof of part (2) is virtually identical. Since S/q is a complete discretely
valued field it defines a point v in Spa(S, S°) € Spa(A, A); let U ={| fil, ..., | ful <|g| # 0} be a rational
subdomain of Spa(A, A) which contains this point and is contained in Spa(S§, S°). Let

T =Alfi/g,---, [n/8] S All/g]

and let T be the I T-adic completion of T. Since 7"\[1/ g1 = O(U) we see that the valuation v extends to
a valuation w on ?[1 /gl, and hence q extends to a maximal ideal v = Ker w of 7"\[1 /g]. We will abuse
notation and let v denote its preimage in any of the rings 7, T[1/g] and T as well; then t is a closed point
in Spec T\ V(IT).

By [Abbes 2010, Proposition 1.12.18], the natural map 7, — ﬁ induces an isomorphism of completions.
We claim that the natural maps A, — T; and ﬁ — 7"\[1 /gl are isomorphisms. For the second map this is
clear (by the general fact that if B is any ring, f € B, and P € Spec B[1/f] C Spec B, then the natural
map Bp — B[1/f]p is an isomorphism). For the first map, we have natural maps A, — 7. — T[1/g]. =
A[1/g]: and it is clear that the second map and the composite are isomorphisms, so the first map is an
isomorphism as well. Summing up, we see that the natural map A, — O(U), induces an isomorphism
on completions. By an almost identical argument, the natural map S; — O(U), induces an isomorphism
on completions. It then follows that the natural map A, — S; induces an isomorphism on completions,
as desired. OJ
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