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Abstract Let X be a, possibly non-reduced, analytic space of pure dimension. We
introduce a notion of 3-equation on X and prove a Dolbeault—Grothendieck lemma.
We obtain fine sheaves .A?( of (0, g)-currents, so that the associated Dolbeault complex
yields a resolution of the structure sheaf ’x. Our construction is based on intrinsic
semi-global Koppelman formulas on X.

Mathematics Subject Classification 32A26 - 32A27 - 32B15 - 32C30

1 Introduction

Let X be a smooth complex manifold of dimension n and let z%(()’* denote the sheaf of
smooth (0, x)-forms. It is well-known that the Dolbeault complex
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554 M. Andersson, R. Lirkédng

is exact, and hence provides a fine resolution of the structure sheaf Oy . If X is areduced
analytic space of pure dimension, then there is still a natural notion of “smooth forms”.
In fact, assume that X is locally embedded as i : X — €2, where €2 is a pseudoconvex
domain in CV. If Ker i* denotes the subsheaf of all smooth forms £ in ambient space
such that i*£ = 0 on the regular part X,., of X, then one defines the sheaf &x of
smooth forms on X simply as

Ex = Eq/Keri*.

It is well-known that this definition is independent of the choice of embedding of X.
Currents on X are defined as the duals of smooth forms with compact support. It is
readily seen that the currents © on X so defined are in a one-to-one correspondence
to the currents i = i,u in ambient space such that (i vanish on Ker iy, see, e.g.,
[6]. There is an induced é-operator on smooth forms and currents on X. In particular,
(1.1) is a complex on X but in general it is not exact. In [6], Samuelsson and the first
author introduced, by means of intrinsic Koppelman formulas on X, fine sheaves &7y
of (0, *)-currents that are smooth on X,., and with mild singularities at the singular
part of X, such that

0s0x >SS . S arso (1.2)

is exact, and thus a fine resolution of the structure sheaf ¢’x. An immediate conse-
quence is the representation

0,9 9 0,q9+1
Hq(X,ﬁX):Ker(sz (X) > o (X))

_ L g>1, (1.3)
Im(/04-1(X) > &704(X))

of sheaf cohomology, and so (1.3) is a generalization of the classical Dolbeault iso-
morphism. In special cases more qualitative information of the sheaves ,;af)? are known,
see, e.g., [5,23].

Starting with the influential works [28,29] by Pardon and Stern, there has been a
lot of progress recently on the L2-3 theory on non-smooth (reduced) varieties; see,
e.g., [15,27,31]. The point in these works, contrary to [6], is basically to determine the
obstructions to solve d locally in L2. For a more extensive list of references regarding
the 5-equation on reduced singular varieties, see, e.g., [6].

In [17], a notion of the d-equation on non-reduced local complete intersections was
introduced, and which was further studied in [18]. We discuss below how their work
relates to ours.

The aim of this paper is to extend the construction in [6] to a non-reduced pure-
dimensional analytic space. The first basic problem is to find appropriate definitions of
forms and currents on X. Let X, be the part of X where the underlying reduced space
Z is smooth, and in addition O is Cohen—-Macaulay. On X, the structure sheaf Oy
has a structure as a free finitely generated 'z-module. More precisely, assume that
we have a local embedding i: X — € c CV and coordinates (z, w) in  such that
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The d-equation on a non-reduced analytic space 555

Z = {w = 0}. Let J be the defining ideal sheaf for X on 2. Then there are monomials
1, w¥, ..., w*-! such that each ¢ in Oq/J >~ Ox has a unique representation

=0 @1+ @™ +-- + Py @ WY, (1.4)

where ¢ are in €z. A reasonable notion of a smooth form on X should admit a similar
representation on X,., with smooth forms (;3./ on Z. We first introduce the sheaves
é‘}?’* of smooth (0, *)-forms on X. By duality, we then obtain the sheaf C;L(’* of (n, *)-
currents. We are mainly interested in the subsheaf PM';(’* of pseudomeromorphic
currents, and especially, the even more restricted sheaf W;* of such currents with the
so-called standard extension property, SEP, on X. A current with the SEP is, roughly
speaking, determined by its restriction to any dense Zariski-open subset.

Of special interest is the sheaf @’ C W;‘O of 8-closed pseudomeromorphic (1, 0)-
currents. In the reduced case this is precisely the sheaf of holomorphic (n, 0)-forms
in the sense of Barlet—-Henkin—Passare, see, e.g., [12,16].

We have no definition of “smooth (7, *)-form” on X. In order to define (0, *)-
currents, we use instead the sheaf @’y in the following way. Any holomorphic function
defines a morphism in Hom (@', a)’;(), and it is a reformulation of a fundamental
result of Roos [30], that this morphism is indeed injective, and generically surjec-
tive. In the reduced case, multiplication by a current in W?(* induces a morphism in
Hom (W', W;’*), and in fact W?(’* — Hom (W', W;'(’*) is an isomorphism. In the
non-reduced case, we then take this as the definition of W%*. It turns out that with this
definition, on X, any element of W?(’* admits a unique representation (1.4), where
qAb j are in WO’*, see Sect. 6 below for details.

Given v, ¢ in W™ we say that dv = ¢ if d(v A h) = ¢ A h for all h in @'
Following [6] we introduce semi-global integral formulas and prove that if ¢ is a
smooth d-closed (0, g + 1)-form there is locally a current v in Wg’q such that dv = ¢.
A crucial problem is to verify that the integral operators preserve smoothness on X .¢
so that the solution v is indeed smooth on X ... By an iteration procedure as in [6] we
can define sheaves 424‘ - Wf,)(’k and obtain our main result in this paper.

Theorem 1.1 Let X be an analytic space of pure dimension n. There are sheaves
,Qf)’(‘ C Wg)(’k that are modules over éag’*, coinciding with @”}?’k on Xyeg, and such that
(1.2) is a resolution of the structure sheaf O.

The main contribution in this article compared to [6] is the development of a theory
for smooth (0, *)-forms and various classes of (n, *)- and (0, *)-currents in the non-
reduced case as is described above. This is done in Sects. 4-8. The construction of
integral operators to provide solutions to 9 in Sect. 9 and the construction of the fine
resolution of O in Sect. 11, which proves Theorem 1.1, are done pretty much in the
same way as in [6]. The proof of the smoothness of the solutions of the regular part
in Sect. 10 however becomes significantly more involved in the non-reduced case and
requires completely new ideas. In Sect. 12 we discuss the relation to the results in
[17,18] in case X is a local complete intersection.
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556 M. Andersson, R. Lirkédng

2 Pseudomeromorphic currents

Let 51, ..., sy be coordinates in C™, let & be a smooth form with compact support,
and letay, ..., a, be positive integers, 0 < £ <r < m. Then
9 ! A AD ! A ¢
“ap N “ag a
5] Sgt Span st

is a well-defined current that we call an elementary (pseudomeromorphic) current.
Let Z be a reduced space of pure dimension. A current 7 is pseudomeromorphic on
Z if, locally, it is the push-forward of a finite sum of elementary pseudomeromorphic
currents under a sequence of modifications, simple projections, and open inclusions.
The pseudomeromorphic currents define an analytic sheaf P Mz on Z. This sheaf was
introduced in [8] and somewhat extended in [6]. If nothing else is explicitly stated,
proofs of the properties listed below can be found in, e.g., [6].

If 7 is pseudomeromorphic and has support on an analytic subset V, and 4 is a
holomorphic function that vanishes on V, then ht=0anddh AT =0.

Given a pseudomeromorphic current T and a subvariety V of some open subset
U C Z, the natural restriction to the open set ¢/\V of t has a natural extension to a
pseudomeromorphic current on U that we denote by 1;\y 7. Throughout this paper
we let x denote a smooth function on [0, co) that is 0 in a neighborhood of 0 and 1 in
a neighborhood of co. If 4 is a holomorphic tuple whose common zero set is V, then

Lyt = lim x(h*/e)t. 2.1
e—0t

Notice that 1yt := (1 — 1zp\y)7 is also pseudomeromorphic and has support on V.
If W is another analytic set, then

lvlw‘[ = IVQWr. (2.2)

This action of 1y on the sheaf of pseudomeromorphic currents is a basic tool. In fact
one can extend this calculus to all constructible sets so that (2.2) holds, see [8]. One
readily checks that if £ is a smooth form, then

IvEAT) =£ Ayt 2.3)

If f: Z' — Z is a modification and 7 is in PMy then f,t is in PMz. The same
holds if f is a simple projection and t has compact support in the fiber direction. In
any case we have

1y fut = fu(ly 1), 2.4)

It is not hard to check that if 7 is in PMy and t’ is in PM/, then T ® t’ is in
PMyzyz,see, e.g., [4, Lemma33].IfV CcUU CZand V' CcU C Z,then

v @1yt =lyxy(t @ ). (2.5)
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The d-equation on a non-reduced analytic space 557

Another basic tool is the dimension principle, that states that if 7 is a pseudomero-
morphic (x, p)-current with support on an analytic set with codimension larger than
p, then T must vanish.

A pseudomeromorphic current T on Z has the standard extension property, SEP, if
1yt = 0 for each germ V of an analytic set with positive codimension on Z. The set
Wy of all pseudomeromorphic currents on Z with the SEP is a subsheaf of PM .
By (2.3), Wy is closed under multiplication by smooth forms.

Let f be a holomorphic function (or a holomorphic section of a Hermitian line

bundle), not vanishing identically on any irreducible component of Z. Then 1/f, a
priori defined outside of { f = 0}, has an extension as a pseudomeromorphic current,
the principal value current, still denoted by 1/f, such that 1{y—g;(1/f) = 0. The
current 1/f has the SEP and
= = tim x (/e
f B e—0F X f '
We say that a current a on Z is almost semi-meromorphic if there is a modification
w: Z' — Z, a holomorphic section f of a line bundle L — Z’ and a smooth
form y with values in L such that a = m,(y/f), cf.,, [10, Section 4]. If a is almost
semi-meromorphic, then it is clearly pseudomeromorphic. Moreover, it is smooth
outside an analytic set V C Z of positive codimension, a is in YWz, and in particular,
a = lim._, o+ x(|k|/€)a if h is a holomorphic tuple that cuts out (an analytic set of
positive codimension that contains) V. The Zariski singular support of a is the Zariski
closure of the set where a is not smooth.

One can multiply pseudomeromorphic currents by almost semi-meromorphic cur-
rents; and this fact will be crucial in defining WO’*, when X is non-reduced. Notice
that if a is almost semi-meromorphic in Z then it also is in any open Y C Z.

Proposition 2.1 ([10, Theorem 4.8, Proposition 4.9]) Let Z be a reduced space,
assume that a is an almost semi-meromorphic current in Z, and let V be the Zariski
singular support of a.

() If T is a pseudomeromorphic current in U C Z, then there is a unique pseu-
domeromorphic current a A T in U that coincides with (the naturally defined
current) a A t inU\V and such that 1y (a A t) = 0.

(i) If W C U is any analytic subset, then

ly@nt)=anlyr. (2.6)

Notice that if A is a tuple that cuts out V, then in view of (2.1),

ant= lim x(|h)*/€)a A . 2.7
e—0t

It follows that if £ is a smooth form, then

EA(ant)=(—1)deEdeea, A (& A1), (2.8)
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558 M. Andersson, R. Lirkédng

For future reference we will need the following result.
Proposition 2.2 Let Z be a reduced space. Then PMz = Wy + dW5.

Proof First assume that Z is smooth. Since Wz is closed under multiplication by
smooth forms, so is Wy +3Wy. The statement that PM z = Wy +3dWy is local, and
since both sides are closed under multiplication by cutoff functions, we may consider
a pseudomeromorphic current u with compact support in C”. If i has bidegree (x, 0),
thenitis in Wz in view of the dimension principle. Thus we assume that ;« has bidegree
(*,q) withg > 1. Let

Kpu(z) =/k(§,Z)AM(§), (2.9)
¢

where k is the Bochner—Martinelli kernel. Here (2.9) means that Ku = p,(kApu®1),
where p is the projection (C’{’ x C — C7, (¢, z) = z. Recall that we have the

Koppelman formula u = K + K(dw). It is thus enough to see that K i is in Wy
if i is pseudomeromorphic. Let . = x (|¢ — z|?/€). It is easy to see, by a blowup of
C" x C" along the diagonal, that & is almost semi-meromorphic on C* x C". Thus,
by 2.7), xck N (0n ® 1) = k A (u ® 1). In view of Proposition 2.1 it follows that
k A (u ® 1) is pseudomeromorphic. Finally, if W is a germ of a subvariety of C" of
positive codimension, then by (2.4) and (2.5),

lypitk Ap®l) = 1_1)1})1+ Px (Aensw (Xek A (1 ® 1))
€
= lim py (xek A (lenxwp ® 1))
e—~>0t

= lim py (xek A (o @ 1y 1)) =0,
e—>07t

since 1y 1 = 0. Thus Ky is in Wy.

If Z is not smooth, then we take a smooth modification 7: Z' — Z. For any u in
P Mz there is some i’ in PM 7 such that e’ = w, see [4, Proposition 1.2]. Since
w=t+ du with 7, u in Wy, we have that u = .t + 5n*u. O

2.1 Pseudomeromorphic currents with support on a subvariety

Let © be an open set in CV and let Z be a (reduced) subvariety of pure dimension
n. Let PMé denote the sheaf of pseudomeromorphic currents T on €2 with support
on Z, and let Wé denote the subsheaf of PMSZZ of currents of bidegree (N, *) with
the SEP with respect to Z, i.e., such that 1yt = 0 for all germs W of subvarieties
of Z of positive codimension. The sheaf CHé of Coleff-Herrera currents on Z is the
subsheaf of Wg of d-closed (N, p)-currents, where p = N — n.

Remark 2.3 In [3,6] CH%2 denotes the sheaf of pseudomeromorphic (0, p)-currents
with support on Z and the SEP with respect to Z. If this sheaf is tensored by the
canonical bundle K we get the sheaf C’Hé in this paper. Locally these sheaves are
thus isomorphic via the mapping ¢ — Ao, where « is a non-vanishing holomorphic
(N, 0)-form. O
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The d-equation on a non-reduced analytic space 559

We have the following direct consequence of Proposition 2.1.

Proposition 2.4 Let Z C Q2 be a subvariety of pure dimension, let a be almost semi-
meromorphic in Q, and assume that it is smooth generically on Z. If T is in W, then
anTisin Wé as well.

Assume that we have local coordinates (z, w) € C" x C” in Q such that Z = {w =
0}. We will use the short-hand notation

- dw - dw - dwp
I =0 A Vo1
w wl wpp
for multiindices y = (y1, ..., yp) with y; > 0, and let y! := y;!---y,!. Notice that
1 Z-)dw é__1/8’”&( 0) (2.10)
Qriye w1 T 1 ) wr '

for test forms &. If 7 is in Wz, then it follows by (2.5) and the fact that
supp d(1/w?*1) = {w = 0} that T ® 3(1/w?*!) is in WZ. We have the follow-
ing local structure result, see [11, Proposition 4.1 and (4.3)] and [10, Theorem 3.5].

Proposition 2.5 Assume that we have local coordinates (z, w) such that Z = {w =
0}. Then 7 in VVSZ2 has a unique representation as a finite sum

- dw
r:ZryAdzeaam, T, € Wo¥, 2.11)
14

where dz :=dzy A --- Ndzy. If w is the projection (z, w) —> z, then
T, Adz = Qmi) P (w” 7). (2.12)

If in addition 3t is_in V\ng2 then its coefﬁ_cients in the expansion (2.11) are 513,, cf.,
(2.12). In particular, 7 = 0 if and only if dt, = 0 for all .

Let us now consider the pairing between Wg and germs ¢ at Z of smooth (0, *)-
forms. We assume that Z is smooth and that we have coordinates (z, w) as before, that
Tisin Wé , and that (2.11) holds. Moreover, we assume that ¢ is a smooth (0, *)-form
in a neighborhood of Z in 2. For any positive integer M we have the expansion

p=Y su@@u +0(jw")+ 0w, di), 2.13)
la|<M
where
1 a
$u() =~ (2,0)
al dw
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560 M. Andersson, R. Lirkédng

and 0'(w, dw) denotes a sum of terms, each of which contains a factor w; or dw; for
some j. If M in (2.13) is chosen so that ﬁ(|w|M)r = 0, then

- dw
(/)/\‘E:Zd)a/\‘ry/\dz(g)am,
a=<y
ie.,
- dw
¢AT=ZZ¢yATg+y /\dz®am. (2.14)
>0 y=>0

Thus ¢ A T = 0if and only if Zyzo ¢y N teqy = O forall £ (which is a finite number
of conditions!).

2.2 Intrinsic pseudomeromorphic currents on a reduced subvariety

Currents on a reduced analytic space Z are defined as the dual of the sheaf of test
forms. If i : Z — Y is an embedding of a reduced space Z into a smooth manifold
Y, then the push-forward mapping 7 +— i,.7 gives an isomorphism between currents
T on Z and currents w on Y such that & A u = O for all £ in &y such that i*¢§ = 0.

When defining pseudomeromorphic currents in the non-reduced case it is desirable
that it coincides with the previous definition in case Z is reduced. From [4, Theo-
rem 1.1] we have the following description of pseudomeromophicity from the point
of view of an ambient smooth space.

Proposition 2.6 Assume that we have an embedding i: Z — Y of a reduced space
Z into a smooth manifold Y .

1) Iftisin PMg, then it is in PMy.
(ii) If T is a current on Z such that it is in PMy and 1z, (ixt) = 0, then T is in

PMz.

Since i, (i*x (|h|?/€)T) = x(|h|>/€)i T for any current T on Z, we get by (2.1)
that for a subvariety V. C U C Z,

1y (ix7) = ix(1v 1), (2.15)

i.e., (2.4) holds also for an embedding i : Z — Y. The condition lzxing (iyt) = 01in
(ii) is fulfilled if i, T has the SEP with respect to Z.

Corollary 2.7 We have the isomorphism
it W* — Hom(Oo /T, W),
where [J is the ideal defining Z in Q.

Notice that Hom(Oq/J , Wé ) is precisely the sheaf of u in Wé suchthat 7 = 0.
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The d-equation on a non-reduced analytic space 561

Proof The map i, is injective, since it is injective on any currents, and it maps into
Hom(Oq/ T, WE) by (2.15).

To see that i, is surjective, we take a u in Hom(0q/J , Wgzz ). We assume first that
we are on Zreg, with local coordinates such that Zie; = {w = 0}. If £ is in é“g’* and
i*¢ = 0, then £ is a sum of forms with a factor dw;, w; or w;. Since w; € J, w;
annihilates p by assumption, and since w; vanishes on the support of u, w; and dw
annihilate p since u is pseudomeromorphic. Thus, u.& = 0, so u = it for some
current T on Z. By Proposition 2.6 (ii), T is pseudomeromorphic, and by (2.15), has
the SEP, i.e., 7 is in W™, O

Remark 2.8 We do not know whether it € PMSZZ implies that T € P M. O
By [11, Proposition 3.12 and Theorem 3.14], we get

Proposition 2.9 Let ¢ and ¢1, . . ., ¢ be currentsin Wz. If ¢ = Q0 onthe set on Z, ¢4
where @1, ..., ¢ are smooth, then ¢ = 0.

3 Local embeddings of a non-reduced analytic space

Let X be an analytic space of pure dimension n with structure sheaf 0x and let
Z = X,.q be the underlying reduced analytic space. For any point x € X there is, by
definition, an open set Q2 C CV and an ideal sheaf 7 C Oq of pure dimension n with
zero set Z such that O is isomorphic to O/ 7, and all associated primes of 7 at any
point have dimension . We say that we have a local embedding i: X — Q c CV
at x. There is a minimal such N, called the Zariski embedding dimension N of X at
x, and the associated embedding is said to be minimal. Any two minimal embeddings
are identical up to a biholomorphism, and any embedding i : X — €2 has locally at x
the form

X5Q05Q:=QxU, i=10], 3.1

where j is minimal, I/ is an open subset of C’, m = N — 1\7 and the ideal in Q is
J = j®l+(w1, ..., Wy). Notice that we then also have embeddings Z — Q- Q;
however, the first one is in general not minimal.

Now consider a fixed local embeddingi: X — Q C CN, assume that Z is smooth,
and let (z, w) be coordinates in 2 such that Z = {w = 0}. We can identify &z with
holomorphic functions of z, and we can define an injection

O7 — Ox, $(2)— ¢z, w) = ¢(2).

In this way Oy becomes an &'z-module, which however depends on the choice of
coordinates.

Proposition 3.1 Assume that Z is smooth. Let Ox have the O z-module structure from

a choice of local coordinates as above. Then O is a coherent Oz-module, and O is
a free Oz-module at x if and only if Ox is Cohen—Macaulay at x.
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562 M. Andersson, R. Lirkédng

Recall that fi, ..., fi» € Ris aregular sequence on the R-module M if f; is anon
zero-divisoron M /(f1, ..., fi—1)fori =1,...,m,and (f1, ..., fm)M # M.If Ris
a local ring, then depth, M is the maximal length d of a regular sequence fi, ..., fg
such that f1, ..., fy are contained in the maximal ideal m; furthermore, M is Cohen—
Macaulay if depthy, M = dimgr M, where dimg M = dimg(R/ann gM). If R is
Cohen—Macaulay, and M has a finite free resolution over R, then the Auslander—
Buchsbaum formula, [14, Theorem 19.9], gives that

depthp, M 4 pdp M = dimp R, (3.2)

where pd, M is the length of a minimal free resolution of M over R. In this case, M
is Cohen—Macaulay as an R-module if and only if M has a free resolution over R of
length codim M.

Remark 3.2 Notice that if we have a local embedding i : X — €2 as above, then the
depth and dimension of O , = Oq /J as an Oq ,-module coincide with the depth
and dimension of Oy , as an Ox ,-module. Thus Ox , is Cohen—Macaulay as an
Ox x-module if and only if it is Cohen—Macaulay as an g ,-module, and this holds
in turn if and only if Oq /J has a free resolution of length N — n. O

Proof of Proposition 3.1 By the Nullstellensatz there is an M such that w® is in J
in some neighborhood of x if |¢| = M. Let M C Ogq be the ideal generated by
{w¥; |a| = M}. Then M’ = Oq/ M is a free, finitely generated &'z-module. Thus,
Oq|T ~ M'JTM' is a coherent &'z-module, which we note is generated by the
finite set of monomials w? such that || < M.

We shall now show that

depthy, Ox .« =depthy, Ox x (3.3)

and
dimﬁx,x Ox.x = dimﬁzﬁ Ox x. (3.4)
We claim that a sequence fi, ..., fin in O x is regular (on Oy ) if and only if
Sfis.. fm € Oz« is regular on O ,, where f;(z) = fj(z,0). In fact, since Ox

has pure dimension, a function g € Oy , = Ogq /J is a non zero-divisor if and only
if g is generically non-vanishing on each irreducible component of Z (7). Thus f} is
a non zero-divisor if and only if f1 is. If it is, then Ox x/(f1) = Oq.x/(J + (f1))
again has pure dimension. Thus the claim follows by induction, and the fact that
Z(T 4+ (fis ..o, f) = Z(T + (fi, ..., f©)). The claim immediately implies (3.3).

To see (3.4), we note first that dimg, Ox  is just the usual (geometric) dimen-
sion of X or Z, i.e., in this case, n. Now, ann 5, Ox , = {0}, sodimg, Ox. =
dimg, Oz x/(ann Ozx Oxx) =dimg, Oz, =n.

From (3.3) and (3.4) we conclude that O , is Cohen—Macaulay as an &'z -module
if and only if it is Cohen—Macaulay (as an Ox -module). Hence, by (3.2), with
R=0z and M = Ox ,,

depthy, Ox..+pdg,, Oxx=n,
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The d-equation on a non-reduced analytic space 563

so Oy x is Cohen—-Macaulay as an 0z ,-module if and only if pd Oy Ox x =0, that
is, if and only if Oy , is a free 0z x-module. O

In the proof above, we saw that Oy is generated (locally) as an &'z-module by all
monomials w* with |e| < M for some M.

Corollary 3.3 Assume that 1, w*!, ..., w*~! is a minimal set of generators at a
given point x (clearly 1 must be among the generators!). Then we have a unique
representation (1.4) for each ¢ € Ox  if and only if O  is Cohen—-Macaulay.

By coherence it follows that if Oy , is free as an 0z ,-module, then 07 , is free
as an 0z -module for all x’ in a neighborhood of x, and 1, w®!, ..., w*-! is a basis
at each such x’.

Example 3.4 Let J be the ideal in ct generated by (w%, w%, wiw, W12 — WZ1).
It is readily checked that O is a free &'z-module at a point on Z = {w; = wy = 0}
where z1 or z» is # 0. If, say, z; # 0O, then we can take 1, wy as generators. At the
point z = (0, 0), e.g., 1, wy, wy form a minimal set of generators, and then Oy is not
a free 0'z-module, since there is a non-trivial relation between w; and wy.

We claim that Ox has pure dimension. That is, we claim that there is no embedded
associated prime ideal at (0, 0); since Z is irreducible, this is the same as saying that [/
is primary with respect to Z. To see the claim, let ¢ and v be functions such that ¢y is
in J and v is not in /T . The latter assumption means, in view of the Nullstellensatz,
that v does not vanish identically on Z, i.e., ¥ = a(z) + O(w), where a does not
vanish identically. Since in particular ¢ must vanish on Z it follows that ¢ = O'(w).
It is now easy to see that ¢ is in 7. We conclude that 7 is primary. O

The pure-dimensionality of &y can also be rephrased in the following way: If ¢ is

holomorphic and is O generically, then ¢ = 0. If we delete the generator wjw, from
the definition of 7 in the example, then ¢ = wjwy is 0 generically in Ogq/J but is
not identically zero. Thus J then has an embedded primary ideal at (0, 0).
Example 3.5 Let @ = C2, and J = (w?) so that Z = {w = 0}. Then 1, w is
a basis for Ox = 02/ (w?) so each function ¢ in Oy has a unique representation
ap(z) ® 1 +a1(z) ® w. Let us consider the new coordinates ¢ = z — w, n = w. Then
J = (%) and since

ao(z) + a1(w = ao(& +n) +a1(§ +mn = ao(¢) + (dao/95)(O)n +ar(O)n + T

we have the representation ap(¢) ® 1 + (a1(¢) + dap/9¢)(¢) ® n with respect to
<. n. ]

More generally, assume that, at a given point in X,,, C €2, we have two different
choices (z, w) and (¢, n) of coordinates so that Z = {w = 0} = {n = 0}, and bases
1,...,w*%-tandl,..., 77/3”*1 for Ox as a free module over 0'z. Then thereisa v x v-
matrix L of holomorphic differential operators so that if (a;) is any tuple in (0'z)" and
(bj) = L(aj),thenag® 1+ +a,_1 @W* 1 =by®@ 1 +---+by_1 @nPr-1 + 7.
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4 Smooth (0, *)-forms on a non-reduced space X

Leti: X — € be a local embedding of X. In order to define the sheaf of smooth
(0, x)-forms on X, in analogy with the reduced case, we have to state which smooth
(0, %)-forms & in Q “vanish” on X, or more formally, give a meaning to i*® = 0.
We will see, cf., Lemma 4.8 below, that the suitable requirement is that locally on
Xreg, © belongs to é"QO’*J + éog’*jz + é”g‘*djz, where 7, is the ideal sheaf defining
Z. However, it turns out to be more convenient to represent the sheaf Ker i* of such
forms as the annihilator of certain residue currents, and this is the path we will follow.
Moreover, these currents play a central role themselves later on.

The following classical duality result is fundamental for this paper; see, e.g., [3]
for a discussion.

Proposition 4.1 If 7 has pure dimension, then
J =am g, Hom(Oq/J, CHé). “4.1)

That is, ¢ is in J if and only if ¢ = 0 for all u in Hom(Ogq/J, CHSZZ). It is also
well-known, see, e.g., [3, Theorem 1.5], that

Hom(Oq)TJ,CHE) ~ Ext P (Oq)T, Kq), 4.2)

soHom(Oq/J,C ’Hé) is a coherent analytic sheaf. Locally we thus have a finite num-
ber of generators !, ..., u”. In Example 6.9, we compute explicitly such generators
for the ideal 7 in Example 3.4.

Let & be a smooth (0, x)-form in . Without first giving meaning to i*, we define
the sheaf Cer i* by saying that & is in Ker i* if

EAn=0, peHom(Oq/T,CHE).

Notice that if & is holomorphic, then, in view of the duality (4.1), & is in Ker i* if and
only if £ isin J.

Definition 4.2 We define the sheaf of smooth (0, x)-forms on X as
EYF = EYF Ker i, (4.3)

We will prove below that this sheaf is independent of the choice of embedding and
thus intrinsic on X.

Given ¢ in &2, let i*¢ be its image in (ap)?’*. In particular, i*€ = 0 means that &
belongs to Ker i*, which then motivates this notation. Notice that Ker i* is a two-
sided ideal in éag’*, ie., if ¢ isin @"’8’* and & isin [Cer i*, then ¢ A & and & A ¢ are in
KCer i*. It follows that we have an induced wedge product on éa)?’* such that

(P AE) =i"PANITE.
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Remark 4.3 1t follows from Lemma 4.8 below that in case X = Z is reduced, then &
is in Cer i* if and only its pullback to X, vanishes. Thus our definition of éa)?’* is
consistent with the usual one in that case. O

Lemma 4.4 Using the notation of (3.1),
o H()n’lﬁﬁ(ﬁﬁ/j, WSAZZ) — Hom gy (O T, WE) 4.4

is an isomorphism.

We can realize the mapping in (4.4) as the tensor product 7 — 7 A [w = 0], where
[w = 0] is the Lelong current in 2 associated with the submanifold {w = 0}.

Proof To begin with, ¢, maps pseudomeromorphic (N , D + ¢€)-currents with support
onZcC Qto pseudomeromorphic (N, p + €)-currents with support on Z C . If, in
addition, T has the SEP with respect to Z, then ¢, T has, as well by (2.15). Moreover, if
7 is annihilated by 7, then 1,7 is annihilated by J = Tel+ (w). Thus the mapping
(4.4) is well-defined, and it is injective since ¢ is injective.

Now assume that u is in Hom(Oq/J, Wé). Arguing as in the proof of Corol-
lary 2.7, we see that ; = 1,2 for a current & in VVSAZ2 Since J = ¢*J and Ju =0, it
follows that J i = 0. Thus (4.4) is surjective. O

Since t, is injective, dt = 0 if and only if 91,7 = 0, and thus we get

Corollary 4.5 Using the notation of (3.1),
Ly HOWl/jﬁ(ﬁﬁ/j, C’Hé) — Hom gy (O) T, CHE) 4.5)

is an isomorphism.

Corollary 4.6 Using the notation in (3.1),
" Ker it — £37% /Ker j*, (4.6)

is an isomorphism.

Proof It follows immediately from (4.5) that the mapping (4.6) is well-defined and
injective. Given £ in é"g%*, leté = £®1.Then*& = & and so (4.6) is indeed surjective
as well. O

It follows from (4.6) and (4.3) that the sheaf @”’)?’* is intrinsically defined on X.
Since d maps Ker i* to ICer i*, we have a well-defined operator 3 : co@)?’* — é")(()’*ﬂ
such that 3> = 0. Unfortunately the sheaf complex so obtained is not exact in general,
see, e.g., [6, Example 1.1] for a counterexample already in the reduced case.
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4.1 Local representation on X,., of smooth forms

Recall that X, ., is the open subset of X, where the underlying reduced space is
smooth and O is Cohen—Macaulay. Let us fix some point in X,.g, and assume that
we have local coordinates (z, w) such that Z = {w = 0}. We also choose generators
L w*, ..., w*-! of Ox as a free 0z-module, which exist by Corollary 3.3, and
generators ,ul, o, WM of Hom(Ogq/J, CHé).

Notice that for each smooth (0, *)-form ® in Q, ® > ® A u’ only depends on its
class ¢ in &, 9% and ¢ is in fact determined by these currents. By Proposition 2.5 each
of these currents can (locally) be represented by a tuple of currents in Wg‘*. Putting
all these tuples together, we get a tuple in (Wg’*)M , where M = My +- - -+ My, and
M is the number of indices in (2.11) in the representation of /.

Recall from Corollary 3.3 that ¢ in &x has a unique representative

d=do+d @u '+ + 1 @u, (4.7)
where 43 ; are in Oz. We thus have an ’z-linear morphism
T:(Oy) — (O)M. (4.8)

The morphism is injective by Proposition 4.1, and the holomorphic matrix 7 is there-
fore generically pointwise injective.

Lemma 4.7 Each ¢ in é‘}?’* has a unique representation (4.7) where 43 j are in é"g’*.

Proof To begin with notice that a given smooth ¢ must have at least one such repre-
sentation. In fact, taking the finite Taylor expansion (2.13) we can forget about high
order terms, since they must annihilate all the ,uj , and the terms w and dw annihilate
all the i/ as well since they are pseudomeromorphic with support on {w = 0}. On
the other hand, each w® not in the set of generators must be of the form

w=ap+a @uwW +---+ay_ 1 @UW + 7,

and hence ¢, ® w? is of the form (4.7). Thus the representation exists. To show
uniqueness of the representation, we assume that é is in Ker i*. Then the tuple (¢ i)
is mapped to 0 by the matrix 7', and since T is generically pointwise injective we
conclude that each q’; j vanishes. O

By the above proof we get

Lemma 4.8 A smooth (0, x)-form & in Q is in Ker i* if and only if & is in éag’*j +
é’g’*jz + 6“8’*de on Xyeq, where Jz is the radical sheaf of Z.

Remark 4.9 This is not the same as saying that £ is in &g + &9 Tz + 69 d J7 at

singular points. For a simple counterexample, consider ¢ = xy on the reduced space
Z ={xy=0} c C2

@ Springer



The d-equation on a non-reduced analytic space 567

However, this can happen also when Z is irreducible at a point. For example, the
variety Z = {x?y — z? = 0} C C? is irreducible at 0, but there exist points arbitrarily
close to 0 such that (Z, z) is not irreducible. In this case, the ideal of smooth functions
vanishing on (Z, 0) is strictly larger than éag’ojz,o + é”gg’ojz,o see [26, Proposition 9,
Chapter IV], and [25, Theorem 3.10, Chapter VI]. O

Remark 4.10 Ttis easy to check that if we have the setting as in the discussion at the end
of Sect. 3 but (a;) is instead a tuple in 5’0’*, then we can still define (b;) = L(a;) if we
consider the derivatives in L as Lie derivatives; in fact, since a; has no holomorphic
differentials, L only acts on the smooth coefficients, and it is easy to check that
a1+ F+a_ 1 @w»  andbg® 1+ --- 4+ b,_; ® nP1 are equal modulo
58”'17 + é"g’*jz + éag’*djz, and thus define the same element in é‘}?’*. O

For future needs we prove in Sect. 6.1:
Lemma 4.11 The morphism T is pointwise injective.

We can thus choose a holomorphic matrix A such that
v IooM A oM
0—>0,— 0; - 0y 4.9)
is pointwise exact, and we can also find holomorphic matrices S and B such that

I =TS+ BA. (4.10)

5 Intrinsic (n, %)-currents on X

In analogy with the reduced case we have the following definition when X is possibly
non-reduced.

Definition 5.1 The sheaf Cy? of (n, ¢)-currents on X is the dual sheaf of (0, n — ¢)-
test forms, i.e., forms in g)(;,n—q with compact support.

Here, just as in the case of reduced spaces, cf., for example [19, Section 4.2], the
space of smooth forms éo}(()’"_q is equipped with the quotient topology induced by a
local embedding.

More concretely, this means that given an embedding i: X — €2, currents ¥ in
C;’q precisely correspond to the (N, N —n+q)-currents t on 2 that vanish on Ker i*.

Since Ker i* is a two-sided ideal in é"g’* this holds if and only if £ A 7 = 0 for all &
in Ker i*. It is natural to write T = i,V so that

iE = itE.
Clearly, we get a mapping 9: Cy? — C;"“’l such that % = 0.

Proposition 5.2 If t is in Wé and Jt = 0, then £ At = 0 for all smooth & such
that i*s = 0.
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Proof Because of the SEP itis enough to prove that§ At = 0 on X,.¢. By assumption,
J annihilates 7, and by general properties of pseudomeromorphic currents, since 7 has
support on Z, Jz and d 7z annihilate 7. Thus the proposition follows by Lemma 4.8.

O

Definition 5.3 An (n, *)-current ¥ on X is in W;'(* if iy isin Hom(Cq/J, Wé).

By definition we thus have the isomorphism

it Wy™* = Hom(Oq/ T, W). (5.1

It follows from Lemma 4.4 that W?(* is intrinsically defined.

Remark 5.4 By Corollary 2.7, this definition is consistent with the previous definition
of Wy™ when X is reduced. We cannot define P M’y ™ in the analogous simple way,
cf., Remark 2.8. O

Definition 5.5 If ¢ is in W;Z(* and a is an almost semi-meromorphic (0, x)-current
on €2 that is generically smooth on Z, then the product a A v is a current in W;'(*
defined as follows: By definition, i, is in Hom(Ogq/J , Wé ) and by Proposition 2.4
and (2.8), one can define a A i, in Hom(Ogq/J, WSZZ); now a A v is the unique
current in W;’(* such thati,(a A ¥) = a A i,

By (2.7),
any = 11%1+ x(|h)?/€)a A (5.2)

if i cuts out the Zariski singular support of a.
Definition 5.6 We let @'y be the sheaf of d-closed currents in W?(’O.

This sheaf corresponds via i, to d-closed currents in Hom (0q/ 7, Wgz2 ) so we have
the isomorphism

iv: W% ~ Hom(Oq)T,CHE). (5.3)

When X is reduced @’ is the sheaf of (n, 0)-forms that are d-closed in the Barlet—
Henkin—Passare sense. Let /Ll, ..., u"™ be a et of generators for Hom(Oq/J, CHé).
They correspond via (5.3) to a set of generators h!, ..., h™ for the &y-module ',

We will also need a definition of PM’*. Let Fx be the subsheaf of Cy™* of 7 such
that i, 7 isin PMgzz. If 7 is a section of Fx and W is a subvariety of some open subset
of Z,then 1yi,t isin PME, and by (2.3), 1yi.t is annihilated by Cer i*. Hence we
can define 1y 7 as the unique current in Fy such that i, 1yt = lyi,t. Clearly, 1yt
has support on W and it is easily checked that the computational rule (2.3) holds also
in Fx. Moreover, Fy is closed under 9 since PMSZZ is.

Definition 5.7 The sheaf PM'y™ is the smallest subsheaf of Fy that contains Wy'*
and is closed under 8 and multiplication by 1y for all germs W of subvarieties of Z.

In view of Proposition 2.2 this definition coincides with the usual definition in case
X isreduced. Itis readily checked that the dimension principle holds for Fx, and hence
it also holds for the (possibly smaller) sheaf P M’y ™, and in addition, (2.3) holds for

. 0, * . n,k
forms £ in & and T in PMy".
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6 Structure form on X

Leti: X — © < CV be a local embedding as before, let p = N — n be the
codimension of X, and let 7 be the associated ideal sheaf on 2. In a slightly smaller
set, still denoted €2, there is a free resolution

0— O(Eny) 2% .. Ly 6(5) L 6E)) L 6(E) 6.1)

of Oq/J; here Ej are trivial vector bundles over Q and Ej is the trivial line bundle.
This resolution induces a complex of vector bundles

) - -
0> Eng 28 .. L gy Lo g L gy 6.2)

that is pointwise exact outside Z. Let X be the set where f; does not have optimal
rank. Then

"'CXk+1CXkC"'CXp+1CXp=~~~=X1=Z;

these sets are independent of the choice of resolution and thus invariants of 0 /7.
Since Og/J has pure codimension p,

codimX; > k+1, fork>p+1, (6.3)

see [14, Corollary 20.14]. Thus there is a free resolution (6.1) if and only if X3 = ¢
for k > Np. Unless n = 0 (which is not interesting in relation to the d-equation), we
can thus choose the resolution so that Ny < N — 1. The variety X is Cohen—Macaulay
at a point x, i.e., the sheaf 0'q/J is Cohen—Macaulay at x, if and only if x ¢ X 4.
Notice that Z\(Xyeg)red = Zsing U X p+1. The sets X are independent of the choice
of embedding, see [9, Lemma 4.2], and are thus intrinsic subvarieties of Z = X,.q,
and they reflect the complexity of the singularities of X.

Let us now choose Hermitian metrics on the bundles E;. We then refer to (6.1) as a
Hermitian resolution of Og/J in Q. In Q\ X} we have a well-defined vector bundle
morphism oy41: Ex — Ex41, if we require that oy vanishes on (Im fi+ 1)J-, takes
values in (Ker fk+1)J-, and that fyyj0x4 is the identity on Im fi. Following [7,
Section 2] we define smooth Ej-valued forms

ug = (901) - - - (902)01 = 0k (301 - - - (901) (6.4)
in Q\X; for the second equality, see [7, (2.3)]. We have that

fiur =1, figiuper —dug =0, k>1,
inQ\X.If f := @ frandu := )_ uy, then these relations can be written economically

asVyu =1, where Vy := f — d. To make the algebraic machinery work properly one
has to introduce a superstructure on the bundle £ =: @ Ej so that vectors in Epj are
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even and vectors in Eyy1 are odd; hence f, o := @oy, and u := ) _ uy are odd. For
details, see [7]. It turns out that u has a (necessarily unique) almost semi-meromorphic
extension U to 2. The residue current R is defined by the relation

VU =1-R. (6.5)

It follows directly that R is V ¢-closed. In addition, R has support on Z and is a sum

3" Rk, where Ry is a pseudomeromorphic Ej-valued current of bidegree (0, k). It

follows from the dimension principle that R = R, + Rp4+1 + - - - + Ry. If we choose

a free resolution that ends at level N — 1, then Ry = 0. If X is Cohen—Macaulay and

No = pin (6.1), then R = R, and the V s-closedness implies that R is 9-closed.
If ¢ isin J then R = 0 and in fact, 7 = ann R, see [7, Theorem 1.1].

Remark 6.1 In case J is generated by the single non-trivial function f, then we have

the free resolution 0 — g —f> Oq — Ogq/(f) — 0; thus U is just the principal
value current 1/f and R = d(1/f). More generally, if f = (f1,..., fp)isacomplete
intersection, then

-1 -1
R=0—A---ANO—,
f P f 1
where the right hand side is the so-called Coleff—Herrera product of f, see for example
[1, Corollary 3.5]. O

There are almost semi-meromorphic o in €2, cf., [7, Section 2] and the proof of
[6, Proposition 3.3], that are smooth outside Xy, such that

Riy1 = o1 Ry (6.6)

outside X1 for k > p. In view of (6.3) and the dimension principle, 1x,,, Rx+1 =0
and hence (6.6) holds across Xi1,1.e., Rr+1 is indeed equal to the product o411 Ry in
the sense of Proposition 2.1. In particular, it follows that Ry has the SEP with respect
to Z.

In this section, we let (z1, ..., zny) denote coordinates on CN,andletdz :=dz; A
- Adzy.

Lemma 6.2 There is a matrix of almost semi-meromorphic currents b such that
RAdz=bu, 6.7)

where | is a tuple of currents in Hom(Cq/J, CHSZz).

Proof As in [6, Section 3], see also [32, Proposition 3.2], one can prove that R, =
oF 1, where p is a tuple of currents in Hom(0gq/J, CHé) and o is an almost semi-
meromorphic current that is smooth outside X 4 1.

Let b, = ofF and by = ay---apy10F for k > p + 1. Then each by is almost
semi-meromorphic, cf., [10, Section 4.1]. In view of (6.6) we have that Ry = biu
outside X ;11 since by is smooth there. It follows by the SEP that it holds across X 11
as well since Ry has the SEP with respect to Z. We thentake b = by +bp 41 +---.0
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By Proposition 2.4 we get
Corollary 6.3 The current R A dz is in Hom(Oq/J, W§).

From Lemma 6.2, Corollary 6.3, (5.1), and (5.3) we get the following analogue to
[6, Proposition 3.3]:

Proposition 6.4 Let (6.1) be a Hermitian resolution of Oq/J in 2, and let R be the
associated residue current. Then there exists a (unique) current w in W;* such that

ixw=RANdz. (6.8)

There is a matrix b of almost semi-meromorphic (0, x)-currents in 2, smooth outside
of X p+1, and a tuple ¥ of currents in W' such that

o = bv. (6.9)

More precisely, ® = wo + @1 + -+ + wn, ! where wp € WK(X, Epiy), and if
f? = fpyj, then

P00 =0, fitlwi1—dw; =0, forj>0. (6.10)

We will also use the short-hand notation V e = 0. Asin the reduced case, following
[6], we say that w is a structure form for X. The products in (6.9) are defined according
to Definition 5.5.

Remark 6.5 Recall that X, | = @ if X is Cohen-Macaulay, so in that case @ = by,
where b is smooth. If we take a free resolution of length p, then w = wy, and dwy =
flwlzo,soa)isina)’}(. O

Remark 6.6 1f X = {f = 0} is a reduced hypersurface in €2, then R = 3(1/f) and &
is the classical Poincaré residue form on X associated with f, which is a meromorphic
form on X. More generally, if X is reduced, since forms in @' are then meromorphic,
by (6.9), @ can be represented by almost semi-meromorphic forms on X.

We now consider the case when X is non-reduced. We recall that a differential
operator is a Noetherian operator for an ideal 7 if Lo € T for all o e J. Itis
proved by Bjork, [13], see also [32, Theorem 2.2], that if u € Hom(Cq/J, CHsZz)»
then there exists a Noetherian operator £ for 7 with meromorphic coefficients such
that the action of ¢ on & equals the integral of L& over Z. By (5.3), the action of £ in
W% on & in é}?’* can then be expressed as

h.& =/ch.

I n [6, Proposition 3.3], the sum ends with w,,_1 instead of w;,, which, as remarked above, one can indeed
assume when n > 1 and the resolution is chosen to be of length < N — 1.
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One can then verify using this formula and (6.9) that the action of the structure form
w on a test form & in é‘}?’* equals
wE = / Lé,
z

where £ is now a tuple of Noetherian operators for 7 with almost semi-meromorphic
coefficients, cf., [32, Section 4]. O

Notice that (6.1) gives rise to the dual Hermitian complex

p+1

0 oENL .. o O(E%_)) % ﬁ(E*) (6.11)

Let & = &y A dz be a holomorphic section of the sheaf
Hom(E,, Kq) ~ ﬁ(E;k,) ® O(Kg)

suchthat 77§ = 0. Then d(§owo) = ££0dwy = £& fpr101 = +(f)1160)w1 =0,
so that £yw is in @' . Moreover, if &) = f;n for nin ﬁ(E;‘;_l ), then &ywp = f;‘nwo =
£nfpwo = 0. We thus have a sheaf mapping

HP (Hom(E,, Kq)) — (,!)r;(, o Ndz — &ywo. (6.12)

Proposition 6.7 The mapping (6.12) is an isomorphism, which establishes an intrinsic
isomorphism

ExtP(Oq/T, Ko) =~ 0. (6.13)
Proof 1If h is in @', then iyh is in Hom(Oq/J, CHE o). We have mappings

HP (Hom(E., Kq)) — @Y 3 Hom(Oq /T, CHE a) (6.14)

where the first mapping is (6.12), and the second is & +> ih. In view of (6.8), the
composed mappingis§ = §oAdz — ER, = &R, Adz.? This mapping is an intrinsic
isomorphism

ExtP(0q/T, Kq) ~ Hom(Oq/J,CHE)

according to [3, Theorem 1.5]. It follows that (6.12) also establishes an intrinsic
isomorphism. O

In particular it follows that a)’;( is coherent, and we have:
If Sl, ..., &™ are generators of H”(Hom(E}, Kg))), where ée = Sé A dz, then
ht = éoa)o, ¢ =1,...,m, generate the Ox-module @’ , and // = i.ht = EZRP
generate the Oq- module Hom(Oq/T,CHE).

2 There is a superstructure involved, with respect to which R, has even degree, and therefore dz A Rp =
R A dz, explaining the lack of a sign in the last equality, see [6] or [7].
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Remark 6.8 The isomorphism

HP (Hom(E,., Kg)) 5 Hom(Oq)T,CHE o) (6.15)

was well-known since long ago, the contribution in [3] was the realization & — &R .0

We give here an example where we can explicitly compute generators of

Hom(Oq )T, CHE o)

Example 6.9 Let J be as in Example 3.4. We claim that Hom(0gq/J, CHE o) is gen-
erated by

-1 -1
n1:=0— ANd— AdzAdw and up = (Z18A8+Z28A8>/\dz/\dw.
wi W wi w2 w3

In order to prove this claim, we use the comparison formula for residue currents from
[21], which states that if &'(F,) and O (E,) are free resolutions of 0 /Z and Oq /7,
respectively, where 7 and 7 have codimension > p,and a : Fy — E, is a morphism
of complexes, then there exists a Hom (Fy, Ep1)-valued current M,y such that
Rjao=apR) + fpriMpy1 I € isin Ker f7 .1 we thus get that

ERay=Ea,R). (6.16)

We will apply this with Oq(E,) as the free resolution

0 Oq L5 0% 2 68 s 66— 6017 — 0,
where
w) 22 0 —wy O
| —w | Tz 2 wr —w
fr= 22 |’ fr= 0 —z1 0 wy and
—Z21 —w] —wWy 0 0
fi=[wi wiws wi 2wy —ziw2 ],
and the Koszul complex (F, 6y2) generated by w2 = (wl, ) which is a free

resolution of &'/ (wl, wz) We then take the morphism of complexes a:F, —> E,
given by
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0 10
0 00

a = wy | a) = 01 andaoz[l].
wi 00

Since the current R2F is equal to the Coleff-Herrera product (1/ w%) Ad(1) w%),
cf., Remark 6.1, we thus get by (6.16) and Remark 6.8 that Hom(Oq/J, Cngz) is
generated by

_ 1 _
(Ker f3)azd — A9
wy

S|H
(SIS

A straightforward calculation gives the generators 11 and o above. O

6.1 Proof of Lemma 4.11

Since T is generically injective, it is clearly injective if n = 0. We are going to reduce
to this case. Fix the point 0 € Z and let Z be the ideal generated by z = (z1, ..., Z»).

Let O(E,) be a free Hermitian resolution of g/ J of minimal length p = N —n at
0 and let R be the associated residue current. Recall that the canonical isomorphism
(6.15) is realized by & +— & Rf . Let F, be the Koszul complex generated by z; then
O(F,) is a free resolution of O /7. Since J and Z are Cohen—Macaulay and intersect
properly in €2, the complex Oq((E ® F),) is a free resolution of 0q/(J + I), and
the corresponding residue current is

EQF _ pE F
RE®F = RE AR]

according to [2, Theorem 4.2]. From [3, Theorem 1.5] again it follows that the canon-
ical isomorphism

HY (Hom((E ® F)., Kq)) — Hom(6q/(J +T), CHY)

is given by n — nRE®F

Let u',..., ™ be a minimal set of generators for Hom(Oq/J, CHZ o) at 0.
Then pu/ = &/ R[f, where £/ is a minimal set of generators for H” (Hom(E., Kq)).
Notice that

HY (Hom((E ® F)e, Kq)) = HP (Hom(E,, Kq)) ®¢ H" (Hom(F., 0g)).

Since H" (Hom(F,, 0g)) is generated by 1, it follows that H" (Hom ((E ® F)., Kq))
is generated by £/ ® 1. We conclude that Hom (Cq/(J +I), CH{ }) is generated by
Eel- REARF_MJAM j=1,. mwhereRF—,u—E)(l/zl)

If 1, w*-1 is a basis for ﬁg/] as an 0'z-module, then it is also a basis for
Ox, = ﬁg/(j + 7) as a module over &g =~ C. Since ¢5(1/zl) =¢(0,3(1/zh)
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we have that
Ble vl A = dlew) Y ad (I —er NI
z,wpw Apt =@z, w ay (20— T
U I |

_ J
_¢(O,w)2ae(0)8W/\8—1.

The morphism constructed in (4.8) for X instead of X is then 7o = T (0), where T is
the morphism (4.8) for X. Thus 7' (0) is injective.

7 The intrinsic sheaf W?(’* on X

Our aim is to find a fine resolution of &y and since the complex (1.1) is not exact in
general when X is singular we have to consider larger fine sheaves; we first define
sheaves W?(’* D c%(()’* of (0, x)-currents. Given a local embedding i: X — Q at a
point on X, and local coordinates (z, w) as before, it is natural, in view of Lemma

4.7, to require that an element in Wg’* shall have a unique representation
$=do® 1+ @u + -+ G @u, (7.1)

where $ j are in Wg’*. In view of Remark 4.10 we should expect that the same trans-
formation rules hold as for smooth (0, *)-forms. In particular it is then necessary that
W%* is closed under the action of holomorphic differential operators, which in fact is
true, see Proposition 7.11 below. We must also define a reasonable extension of these
sheaves across X;,,. Before we present our formal definition we make a preliminary
observation.

Lemma 7.1 If ¢ has the form (7.1) and t is in Hom(Cq/J, CH?Z), expressed in the
form (2.11), then

~ - dw
qut::ZZ@/\ry/\dz@am (7.2)
i yza;
is in Hom(Ogq /T, W).

Proof The right hand side defines a current in WZ since ¢; are in Wo* and 7, are
in 0'z. We have to prove that it is annihilated by 7. Take £ in 7. On the subset of Z
where ao, . $u-1 are all smooth, ¢ A 7, as defined above, is just multiplication of
the smooth form ¢ by 7, and thus £¢ A T = 0 there. We have a unique representation

- dw
Epnt = ZaZ(Z) ANdz ® BW,
>0

with ay in Wg’*. Since ay vanish on the set where all a j are smooth, we conclude from
Proposition 2.9 that a, vanish identically. It follows that £¢ A T = 0. O
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If ¢ has the form (7.1) in a neighborhood of some point x € X,., and & is in W',
then we get an element ¢ A b in W™ defined by i (¢ A h) = ¢ A ish. It follows
that ¢ in this way defines an element in Hom g, (%, Wy'™). This sheaf is global and
invariantly defined and so we can make the following global definition.

Definition 7.2 W?{’* = Hom Oy ((1)” , W;l(,*)

If ¢ is in W?(’* and h is in @', we consider ¢ (h) as the product of ¢ and &, and
sometimes write it as ¢ A h.

Since W;’(* are & )?‘*-modules, W?(’* are as well. Before we investigate these sheaves
further, we give some motivation for the definition. First notice that we have a natural
injection, cf., Proposition 4.1,

Ox — Hom (W, W), ¢ (h > ¢h). (7.3)

Theorem 7.3 The mapping (7.3) is an isomorphism in the Zariski-open subset of X
where it is Sy.

This is the subset of X where codim X, > k + 2,k > p + 1, cf,, Sect. 6. Thus
it contains all points x such that Oy  is Cohen—Macaulay. In particular, (7.3) is an
isomorphism in X, ..

Theorem 7.3 is a consequence of the results in [22]. If X has pure dimension p,
there is an injective mapping

Ox — Hom <5xtp(ﬁx, Kq), CHSZZ) , (7.4)

which by [22, Theorem 1.2 and Remark 6.11] is an isomorphism if and only if Oy is
S>. Since the image of such a morphism must be annihilated by J by linearity, it is
indeed a morphism

Oy — Hom (5xz P(Ox, Ka), Hom(Ca/ T, CHé)) . (1.5)

In view of (4.2) and (5.3), (7.5) corresponds to a morphism Oy — Hom (W', '),
and the fact that it is the morphism (7.3) is a rather simple consequence of the definition
of the morphism (7.4) in [22, (6.9)].

As mentioned in the introduction, Theorem 7.3 can be seen as a reformulation of a
classical result of Roos, [30], which is the same statement about the injection

Oa|T — Ext? (ExtP(Oq)T . Ka). Ka): (7.6)

here we assume that the ideal has pure dimension. The equivalence of the morphisms
(7.4) and (7.6) is discussed in [22, Corollary 1.4].

Let us now consider the case when X is reduced. Since sections of @', are mero-
morphic, see [6, Example 2.8], and thus almost semi-meromorphic and generically
smooth, by Proposition 2.4 (with Z = X = ) we can extend (7.3) to a morphism

WY* — Hom (@', Wi™). (1.7)
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Lemma 7.4 When X is reduced (7.7) is an isomorphism.

Thus Definition 7.2 is consistent with the previous definition of W?(’* when X is
reduced.

Proof Clearly each ¢ in W?(’* defines an element « in Hom (', Wy ™) by h +— ¢ Ah.
If we apply this to a generically nonvanishing 4 we see by the SEP that (7.7) is injective.

For the surjectivity, take a in Hom (@', W;*). If 4’ is nonvanishing at a point
on X,.g, then it generates @% and thus « is determined by ¢ := ah’ there. By
[10, Theorem 3.7], ¢ = ¥ A I’ for a unique current v in Wg’* so by Ox-linearity
ah = Y A h for any h. Hence, i is well-defined as a current in W?(’* on Xpeg.

We must verify that v has an extension in W?(’* across Xying. Since such an exten-
sion must be unique by the SEP, the statement is local on X. Thus we may assume that
« is defined on the whole of X and that there is a generically nonvanishing holomorphic
n-form y on X. Then ay is a section of W*"*(X).

Let us choose a smooth modification 77 : X’ — X that is biholomorphic outside
Xsing- Then *y is a holomorphic n-form on X' that is generically non-vanishing.
We claim that there is a current 7 in W”’O(X "y such that 7,7 = ay. In fact, T exists
onx~! (Xreg) since 7 is a biholomorphism there. Moreover, by [4, Proposition 1.2],
ah is the direct image of some pseudomeromorphic current 7 on X’, and is therefore
also the image of the (unique) current 7 = 1,1 X,Eg)f in Wh*(X').

By [10, Theorem 3.7] again 7 is locally of the form & A ds, where & is in Wg)(’,* and
ds = dsy A --- Ads, for some local coordinates s. Hence, t is a K x/-valued section
of WO*(X"), so t/m*y is a section of W*(X’). Now W := 7, (t/m*y) is a section
of W%*(X). On Xreg N{y # 0} wethus have that W Ay = 7,1 =ay =¥ Ay and
so W = v there. By the SEP it follows that W coincides with ¥ on X, and is thus
the desired pseudomeromorphic extension to X. O

In view of (5.1) and (5.3) we have, given alocal embedding i : X — €2, the extrinsic
representation
WO ~ Hom (Hom (ﬁg/j, CHé) , Hom (ﬁg/j, Wé)) Lb > (ixh > in(d A D).
(7.8)

Lemma 7.5 Assume that X,., — S is a local embedding and (z, w) coordinates as
before. Each section ¢ in Wg)(* has a unique representation (7.1) with (/ﬁj in Wg*

A current with a representation (7.1) is considered as an element of Wg’* =
Hom(w', Wy™) in view of the comment after Lemma 7.1.

Proof From (4.9) we get an induced sequence
v T M A M,
0— (W) > (W) S (Wy) (7.9)

which is also exact. In fact, T in (7.9) is clearly injective, and by (4.10), if £ in (Wg’*)M

and A£ =0, then Tn =&, if n = S§.
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Now take ¢ in Hom (@', W;L(*) Let us choose a basis ,u,l, ..., u™ for @' and let
q~5 be the element in (Wg “YM obtained from the coefficients of ¢/ when expressed
as in (2.11), cf., Sect. 4.1. We claim that Aqb = 0. Taking this for granted, by the
exactness of (7.9), ¢ is the i image of the tuple qb = S¢ Now d) Al = ¢l since they
are represented by the same tuple in (WZ M Thus qb gives the desired representation
of ¢.

In view of Proposition 2.9 it is enough to prove the claim where $ is smooth. Let
us therefore fix such a point, say 0, and show that (A¢)(0) = 0. From the proof
of Lemma 4.11, if we let Z be the ideal generated by z, and let X be defined by
Ox, = Oq/(J + 1), then ,ul AUE o, u" /\. u* generate a)‘;(o. If we let ¢9 be the
morphism in Hom(a)())(o, a)(})(o) given by ¢o(u' A u*) = dpu' A pu* (which indeed
gives a well-defined such morphism), then, as in the proof of Lemma4.11, q§0 = (5(0).
In addition, the sequence (4.9) for X is

T A0 ’
(@ oM AQ oM

0—C"
Since X is O-dimensional, the morphism O, — Hom(Wx,, Wx,) is an isomor-
phism by Theorem 7.3, and thus ¢ is given as multiplication by a function in O,
which we also denote by ¢y, i.c., éo = T (0)¢o. Hence, A(0)pg = A(0)T (0)¢o = 0,
and thus (A¢)(0) = 0. O

Example 7.6 (Meromorphic functions) Assume that we have a local embedding X —
Q. Given meromorphic functions ®, ®’ in Q that are holomorphic generically on Z,
we say that ® ~ @’ if and only if ® — @' is in J generically on Z. If ® = A/B
and ® = A’/B’, where B and B’ are generically non-vanishing on Z, the condition
is precisely that AB" — A’B is in J. We say that such an equivalence class is a
meromorphic function ¢ on X, i.e., ¢ is in M. Clearly we have Oy C Myx. We
claim that

Myx C Wg*

To see this, first notice that if we take a representative ® in Mg of ¢, then it can be
considered as an almost semi-meromorphic current on 2 with Zariski-singular support
of positive codimension on Z, since it is generlcally holomorphic on Z. As in Definition
5.5 we therefore have a current ® A b in Wy % for h in @'y . Another representative @’
of ¢ will give rise to the same current generlcally and hence everywhere by the SEP.
Thus ¢ defines a section of Hom (', Wy'™) = W?(’*. o

By definition, a current ¢ in Wg)(* can be multiplied by a current 4 in @', and
the product ¢ A h lies in W;* It will be crucial that we can extend to products by
somewhat more general currents. Notice that @’ is a subsheaf of C?(’*, which is an

é’g’*-module. Thus, we can consider the subsheaf & ,?*a)';( of C;'(’* which consists of
finite sums Y & A h;, where &; are in é"}?’* and h; are in a)’;(
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Lemma 7.7 Each ¢ in W?(’* = Homg, (WY, W;’*) has a unique extension to a
morphism in Hom 0.« (éa)?’*a)" VY.
X

Proof The uniqueness follows by é"g’*—linearity, ie,ifb=&Ah1+---+& Nh,
isin éag’*a)’}(, then one must have

pb =Y (—1) LD g A g, (7.10)

We must check that this is well-defined, i.e., that the right hand side does not depend
on the representation &1 A hy + --- + & A h, of b. By the SEP, it is enough to
prove this locally on X reg; and we can then assume that ¢ has a representation (7.1).
By Proposmon 2.9, it is then enough to prove that it is well-defined assuming that
qbo, .. q)u 1 in (7.1) are all smooth. In this case, the right hand side of (7 10) is
s1mp1y the product of &1 A hy + - - - + & A h, = b by the smooth form ¢ in &O*

this product only depends on b. O

Corollary 7.8 Let ¢ be a current in Wg* and let o be a current in W;* of the form
« = Y a; A hj, where a; are almost semi-meromorphic (0, x)-currents on Q which
are generically smooth on Z, and h; are in @Y. Then one has a well-defined product

pAa =y (—1)dew®ED g A (¢ A ). (7.11)

Proof The right hand side of (7.11) exists as a current in Wy'*, and we must prove is
that it only depends on the current « and not on the representation ) _ a; A h;. Notice
that all the a; are smooth outside some subvariety V of Z and there the right hand side
of (7.11) is the product of ¢ and « in é’}?’*a)” , cf., Lemma 7.7. It follows by the SEP
that the right hand side only depends on «. O

Remark 7.9 Recall from (6.9) that w = b?. If ¢ is in WO’*, then we can define the
product ¢ A w by Corollary 7.8.

Expressed extrinsically, if u = i,9, and if we write R A dz = bu as in
Lemma 6.2, then we can define the product R A dz A ¢ := bu A ¢ as a current
in Hom(Ogq/J, Wé). O

Lemma 7.10 Assume that ¢ is in WO’*, and that ¢ A @ = O for some structure form
w, where the product is defined by Remark 7.9. Then ¢ = 0.

Proof Considering the component with values in E,, we get that ¢ A wp = 0. By
Proposition 6.7, any & in @’ can be written as h = £y, where & is a holomorphic
section of E;‘,, so by O-linearity, p A h =0,i.e.,¢ =0. O

We end this section with the following result, first part of [10, Theorem 3.7]. We
include here a different proof than the one in [10], since we believe the proof here is
instructive.
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Proposition 7.11 If Z is smooth, then Wy is closed under holomorphic differential
operators.

Proof Let t be any current in Wy. It suffices to prove that if ¢ are local coordinates
on Z, then d7/d¢; is in Wyz. Consider the current

- dw
2mwiw?

on the manifold Y := Z x C,,. Clearly 7’ has support on Z, and it follows from (2.5)
that 7/ is in W{. Let

p:z,w)—¢=(21+w,22,...,24),

which is just a change of variables on Y followed by a projection. It follows from (2.4)
that p,t’ is in Wy. Since

dw 0&
“E(w) = F 0)
w

9
2wiw?

it is readily verified that p,t’ = d7/9¢1, so we conclude that d7/9¢) is in Wy. O

8 The d-operator on W?(’*

We already know the meaning of 3 on W™, and we now define  on Wg’*.

Definition 8.1 Assume that ¢, v are in Wg’*, We say that v = ¢ if
dwAR)=¢Ah, hewl. (8.1)

If we have an embedding X — €2, (8.1) means, cf., (7.8), that
WA =dAp, peHom (ﬁg/j, CHé) . (8.2)

In view of Remark 7.9 we can define the product ¢ A w for ¢ in Wg*

Definition 8.2 We say_that v belongs to Dom dx if v is in Dom d, i.e., dv = ¢ for
some ¢ and in addition d (v A w), a priori only in PM’;(’*, isin W;* for each structure
form w from any possible embedding.

‘ If X is Cohen—Macaulay, then any such w is of the form a; !+ et a,, h™, where
h/ are in (x)')'( and a; are smooth, see Remark 6.5, and hence Dom dx coincides with
Dom 9 in this case.
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Example 8.3 Assume that v is in é}?’* and ¢ = v in the sense in Section 4. Then
clearly

VAW =¢ Aw+ (=) A do.

Since dw = fw, and Wy™ is closed under multiplication with forms in & 0% we get
that d(v A w) is in W™, so v is in Dom 0y and dxv = ¢.
If w is in Dom dy and v is in &2*, then

IVAWA®D) =V AWA®+ (=D A J(w A w).

Thus v A w is in Dom dy, and the Leibniz rule d(v A w) = dv A w + (—1)%€8%y A Jw
holds. =

Let x5 = x (|h|?>/8) where h is a tuple of holomorphic functions that cuts out X;, .

Lemma 8.4 If v is in W%*(X), and it is in Dom dx on Xieg, then v is in Dom dx on
all of X if and only if B
oxs N\vAw—0, §—0, (8.3)

for all structure forms w. In this case,
— Vi Aw) = 0vAo. (8.4)

Proof Since W;’(* is closed under multiplication by £, v is in Dom d if and only if
Vi(v A w)isin W;’(* for all structure forms w. Since v is in Dom dx on Xreg, thus
V(v Aw)isin Wg™ on Xreg. By (2.2), V(v A w) is then in W™ on all of X if and
only if

lxregi(v/\a))zvf(v/\a)). (8.5)

By the Leibniz rule,
Vf(x(;v/\a))=—5x5AvAw+x5Vf(vAw). (8.6)

Since visin Wg’*, vAwisin W;’*, so the lefthand side of (8.6) tends to V s (vAw) when
6 — 0, whereas the second term on the right hand side of (8.6) tends to 1 Xreg Vi(wAw).
Thus (8.5) holds if and only if (8.3) does. Thus the first statement in the lemma is
proved.

Recall, cf., (6.9), that @ = b where b is smooth on Xyez and ¥ is in a)';( By the
Leibniz rule thus =V ¢ (v A w) = dv A won Xreg, since Vyw = 0. Therefore, (8.6) is
equivalentto —V(xsv Aw) = dxs Av Aw+ x50v A w. If (8.3) holds, we therefore
get (8.4) when § — 0. O

Remark 8.5 In case X is reduced the definition of dy is precisely the same as in [6].
However, the definition of v = ¢ given here, for v, ¢ in WO’*, does not coincide
with the definition in, e.g., [6]. In fact, that definition means that d(vAh) = ¢ A h for
all smooth h in @', which in general is a strictly weaker condition. For example, for
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any weakly holomorphic function v, we have d(v A h) = 0 for all smooth 4 in w'y,
while if X is a reduced complete intersection, or more generally Cohen—Macaulay,
then (v A k) = 0 for all 4 in " is equivalent to v being strongly holomorphic, see
[33, p. 124] and [2]. O

We conclude this section with a lemma that shows that  means what one should
expect when ¢, v are expressed with respect to a local basis w*/ for &y over 0z as
in Lemma 7.5.

Lemma 8.6 Assume that we have a local embedding X,., — 2 and ¢, v in W?('*
represented as in (1.1). Then dv = ¢ if and only if

3, =¢;, j=0,...,v—1 (8.7)
Proof Let us use the notation from the proof of Lemma 7.5. Recall that 0 = S. In

vigw 0f_(8.2) anq (2.12), v = 37. Since S is holomorphic therefore v = Sdv =
S90 = 9(Sv) = 90.

O

9 Solving du = ¢ on X

We will find local solutions to the d-equation on X by means of integral formulas.
We use the notation and machinery from [6, Section 5]. Leti: X — Q C CN bea
local embedding such that 2 is pseudoconvex, let Q' CC 2 be a relatively compact
subdomain of 2, and let X' = X N Q’.

Theorem 9.1 There are integral operators
K: 8% (X) > WO (X)) N Domdx, P: &Y (X) - £2*(X))
such that, for ¢ € éao’k(X),
¢ =0K¢ + K(3p) + Pg. 9.1)
The operators K and P are described below; they depend on a choice of weight g.
Since 2 is Stein one can find such a weight g that is holomorphic in z, by which we
mean that it depends holomorphically on z € €’ and has no components containing

any dz;, cf., Example 5.1 in [6]. In this case, P¢ is holomorphic when k = 0, and
vanishes when £ > 1, i.e.,

¢ =03Kp+ K@¢), ¢ X)), k=1 9.2)
If9¢ = 0in 2, and k > 1, then K¢ is a solution to dv=¢.Ifk =0,then ¢ = P is
holomorphic. It follows that a smooth d-closed function is holomorphic. In the reduced

case this is a classical theorem of Malgrange [24]. In Sect. 10 we prove that K¢ is
smooth on X.g.
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‘We now turn to the definition of K and P. For future need, in Sect. 11, we define them
acting on currents in WO*(X) and not only on smooth forms. Let  : Q; X SZ — Q’
be the natural projection. Let us choose a holomorphic Hefer form® H, a smooth
weight g with compact support in  with respect to z € Q' CC €, and let B be the
Bochner—Martinelli form. Since we are only are concerned with (0, x)-forms, we will
here assume that H and B only have holomorphic differentials in ¢, i.e., the factors
dn; =d¢ —dz; in H and B in [6] should be replaced by just d¢;.
If y is a current in 2, X Q; we let (y)n be the component of bidegree (N, ) in
and (0, %) in z, and let ¥ (y) be the current such that

P(y) ANdE = (Y)N- 9.3)

Consider now u in Hom(Cgq/J, Wé ) and ¢ in Wg’*. We can give meaning to

(& ANHRE)IN ANP(E) A p(2) 94

as a tensor product of currents in the following way: first of all, by Remark 7.9, we can
form the product R(¢) Ad¢ A ¢ (&) as a current in Wé In view of [11, Corollary 4.7]

the tensor product R(Z) A d¢ A ¢(Z) A u(z) is in WQXXQ,, where Z/ = Z N Q.

Finally, we multiply this with the smooth form ¥ (g A H ) to obtain (9.4). Similarly,
outside of A, the diagonal in Q x €, where B is smooth, we can define

(BAgANHR(E)N AP A u(z) 9.5)

as a tensor product of currents.

Lemma 9.2 For i in Hom(Ogq /T, WZ,/) and ¢ € WO*(X), the current (9.5), a

.o ZxZ\A .
priori defined as a current in We, * Q\/ A has an extension across A. The current (9.4)

and the extension of (9.5) depend Oa /T -bilinearly on . and ¢, and are such that

Ko Api=m((BAgAHRE)IN AD(E) A (D) 9.6)

and

P A :=m.((g NHR)N AP(E) A u(2)) 9.7
are in Hom(Og | T, Wszz;)

It follows that K¢ A i and P A u are C-linear in ¢ and Oy / J -linear in . In view
of (7.8), by considering u in Hom(Og/ /7T, CHé/), we have defined linear operators

K: WO () - WO, P WO (X) - WOH(X)). 9.8)

Proof of Lemma 9.2 In order to define the extension of (9.5) across A, we note first
that since B is almost semi-meromorphic with Zariski singular support A,  (BAgAH)

3 We are only concerned with the component H 0 of this form, so for simplicity we write just H.
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is an almost semi-meromorphic (0, *)-current on £, x Q’, which is smooth outside
the diagonal. We can thus form the current 9 (B AgA H) AR()AAE AP () A u(2)

in Wszz:xzs,z’_ , cf., Proposition 2.4, and this is the extension of (9.5) across A.

From the definitions above, it is clear that (9.4) and the extension of (9.5) are Og,-
bilinear in ¢ and w. Both these currents are annihilated by J; and 7, cf., (2.8), so
they depend Ogq/J -bilinearly. In view of (2.4) we conclude that (9.6) and (9.7) are
in Hom(Oq | T, Wé,,) O

Proposition 9.3 If ¢ € WOK(X), then P$p € &%%(X"), and if in addition g is holo-
morphic in z, then P¢ € O(X') if k = 0 and vanishes if k > 1.

Proof Since ¥ (g A H) is smooth, we get that

m (0 (g A H) ARQ) AdE A A R())
=m.(9(gAH)ARQE)ANAE AP) Apu(z) =m((§ AHR)N A ) A p(2),

cf., for example [20, (5.1.2)]. Thus P (z) = 7« ((g AHR(E)N A ¢) which is smooth
on Q. If g depends holomorphically on z, then P¢ is holomorphic in €' if ¢ is a
(0, 0)-current, and vanishes for degree reasons if ¢ has positive degree. O

We shall now approximate K ¢ by smooth forms. Let B€ = x (|¢ — z|>/€)B.

Proposition 9.4 Forany ¢ € WOk (X), k>1,
K¢ :=m((B°AgAHRE)NA$) =m(0(B AgAH)ARE) N A D)
is in &% =1(X"y and K¢ — K¢ when € — 0.
The last statement means that
KpAu—>KpAu, neHom(Og)T,CHE). 9.9)

Proof Since B€ is smooth, the current we push forward is R(¢) A ¢ (&) times a smooth
form of ¢ and z. Therefore K€¢ is smooth. As in the proof of Proposition 9.3, we
obtain since B€ is smooth that

K9 Apn=m(B°AgAHREIN AP A Q). (9.10)
By (5.2) applied to @ = B we have that
(BANgANHREDON AP A = (BAGAHREIN AP AR (9.11)

which implies (9.9). O
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9.1 Proof of Theorem 9.1

By definition K¢ and P¢ are currents in WO-*(X") such that (9.6) and (9.7) hold for
win Hom(6q )T, CHZ). We claim that

K¢ ARAdz=m,((BAgAHRE)N AP AR(2)Ad2) 9.12)

and
PpARANdz=m.((gANHRE)IN A AR Adz); (9.13)

here the left hand sides are defined in view of Remark 7.9, whereas the right hand sides
have meaning by Lemma 9.2 and the fact that R(z) A dz isin Hom(Og /T, Wé/) by
Corollary 6.3.

Recall from Lemma 6.2 that R A dz = bu, where pu is a tuple of currents in
Hom(Ogy | T, CHé:) and b is an almost semi-meromorphic matrix that is smooth
generically on Z'. Therefore (9.12) and (9.13) hold where b is smooth, in view of
Lemma 7.7, and since both sides are in Hom (O¢y / T, WSZZ,/ ), the equalities hold every-
where by the SEP.

As in [6] we let R* = 8| f|** A U for Re > >> 0. It has an analytic continuation
tol = 0 and R = R*|5—o. Notice that R(z) A B is well-defined since it is a tensor
product with respect to the coordinates z, n = ¢ — z. Also R(z) A R*(¢) A B admits
such an analytic continuation and defines a pseudomeromorphic current* when A = 0.
Let B x—1 be the component of B of bidegree (k, k — 1).

Lemma 9.5 Forall k,
Bik—1 A HR*() A R(2)|5=0 = Bri—1 A HR(Z) A R(2). 9.14)

Proof of Lemma 9.5 Notice that the equality holds outside A. Let T be the left hand
side of (9.14). In view of Proposition 2.1 it is therefore enough to check that 1,7 = 0.
Fix j, k and let

Ty = Bii—1 A HR}(Z) A Re(2)|r=0.

Clearly T, = 0if £ < p so first assume that £ = p. Since H R; has bidegree (j, j)
in ¢, the current vanishes unless j 4+ k < N. Thus the total antiholomorphic degree is
< N —n+ N —1. On the other hand, the current has supporton ANZ x Z >~ Z x {pt}
which has codimension N + N — n. Thus it vanishes by the dimension principle.
We now prove by induction over £ > p that 1o 7, = 0. Note that by (6.6), outside
of Zy, Re(2) = ay(2) Rg—1(2), where oy (z) is smooth. Thus, outside of Z, x 2, T is
a smooth form times Ty_1, and thus, by induction and (2.3), 1A 7 has its support in
AN(Zy x Z) >~ Zy x {pt}, which has codimension > N + £ + 1, see (6.3). On the
other hand, the total antiholomorphic degreeis < ¢+ j+k —1 < £+ N — 1, so the
current vanishes by the dimension principle. We conclude that (9.14) holds. O

4 One can consider this current as R(z) A B multiplied by the residue of the almost semi-meromorphic
current U in (6.5), cf., [10, Section 4.4].
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By the same argument5 as for [6, (5.2)] we have the equality

Vi ((BAGAHRM ) NAR(@)IAAZ) = [A AR()Adz— (g AHRM) N AR(2) Adz,
(9.15)

also for our R, where [A]’ denotes the part of [A] where dn; = d¢; — dz; has been

replaced® by d¢;. In view of (9.14) we can put A = 0 in (9.15), and then we get

Vf(z)((B/\g/\HR({))N/\R(Z)/\dz) = [ATVAR()Adz—(HR(Z)AE)NAR(Z)AdZ.
(9.16)
Multiplying (9.16) by the smooth form ¢, and using (9.12) and (9.13), we get

pARANdz=—-V (K¢ ARAdZ)+ K(@Op) AR ANdz+ PP AR ANdz,
or equivalently,
pAw=-Vi(KdAw)+K(@09) Ao+ PpAw. 9.17)
Multiplying by suitable holomorphic & in E7; such that f; 150 = 0, cf., Proposi-
tion 6.7, we see that ¢ Ah = 9(Kp A h) + K(3¢p) Ah + Pp A h for all b in wy.
Thus by definition (9.1) holds.
Since W?(’* is closed under multiplication by Oy, we get that ¥ in W?(’* is in

Dom dy if and only if V(¥ Aw)isin W;* Thus, we conclude from (9.17) that
K ¢ is in Dom dy since all the other terms but —V (K¢ A ) are in W?(*

9.2 Intrinsic interpretation of K and P

So far we have defined K and P by means of currents in ambient space. We used
this approach in order to avoid introducing push-forwards on a non-reduced space.
However, we will sketch here how this can be done. We must first define the product
space X x X'. Given a local embedding i : X — 2 as before, we have an embedding
(i xi): X x X' -  x Q' such that the structure sheaf is Oqq /(Tx + JTx).
One can check that this sheaf is independent of the chosen embedding, i.e., Oy« x’
is intrinsically defined. Thus we also have definitions of all the various sheaves on
X x X' like é‘}?’:X,. The projection p: X x X’ — X’ is determined by p*¢: Oy —
O« x', which in turn is defined so that p*i*® = (i x i)*7n*® for ® in Og, where
7w Q x Q — Q asbefore. Again one can check that this definition is independent
of the embedding, and also extends to smooth (0, *)-forms ¢. Therefore, we have the
well-defined mapping p. Ci");}f” — Cy", and clearly

i = Ta(i X 1)y (9.18)

5 There is a sign error in [6, (5.2)] due to R(z) A dz being odd with respect to the super structure. Since
we here move R(z) A dz to the right, we get the correct sign.

6 This change is due to the fact that we do the same change of the differentials in the definition of H and
B above.
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As before we have the isomorphism

(i % D)e: Wiy = Hom (Oguar/(Tx + Tx). WESE)
As in the proof of Lemma 9.2 we see that 77, maps a current in V\igz2 :g annihilated by
Jx' to acurrent in Hom(Oq/J, WZ,/). It follows by (9.18) that

. 2n,x+n 7, %
P Wy = Wyl

Now, take & in a)’)’(, and let u = i, h. Then, cf., the proof of Lemma 9.2,
(BAgAHRE)IN AP Ap(z) = (i x D)«(9(BAgAH)A0) APE) Ah).
Thus we can define K ¢ intrinsically by
Ko nh=pe(0BAgANH)AN0(@)NPE) AR(2)). 9.19)
From above it follows that K¢ A & is in WY,*. In the same way we can define P¢ by
PoAh=pi(@(@NH) N0 NP(E) NR(2)). (9.20)

It is natural to write

Ko¢(z) = / V(BAGANH)AN0@Q)ANP(&), PP(z) = / P AH)ANo()ANP(L),
¢ ¢

although the formal meaning is given by (9.19) and (9.20).

10 Regularity of solutions on X,

We have already seen, cf., Proposition 9.3, that P¢ is always a smooth form. We shall
now prove that K preserves regularity on X,.,. More precisely,

Theorem 10.1 If ¢ in Wg’* is smooth near a point x € X;eg, then K ¢ in Theorem 9.1
is smooth near x.

Throughout this section, let us choose local coordinates (¢, ) and (z, w) at x
corresponding to the variables ¢ and z in the integral formulas, sothat Z = {(¢{, 7); T =
0}.

Lemma 10.2 Ler B¢ := x(|¢ — z|>/€) B, and assume that ¢ has compact support in
our coordinate neighborhood. Then K ¢ can be approximated by the smooth forms

K¢ :=m.((B°AgAHR)N A).
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Notice that here we cut away the diagonal A’ in Z x Z’ times C; x C,, in contrast
to Proposition 9.4, where we only cut away the diagonal A in  x €.

Proof Clearly B€ is smooth so that each K€¢ is smooth in a full neighborhood in €’
of x.Let T = u(z, w) A(HR(,T) ABAggN AP, andlet W = A’ x C; x Cy,.
Since u(z, w) ® R(¢, ) has support on {w = v = 0}, T = 1j,—r—0, 7. Therefore,
IwT = 1wljy=r—0yT = 0since WN{w =t =0} C Aand 1oT = 0 by definition,
cf., Proposition 2.1 (i). Now notice that 1y 7 = 0 implies (9.11) and in turn (9.9) with
our present choice of B€. O

We first consider a simple but nontrivial example of Theorem 10.1.

Example 10.3 Let X = C; C C; , and J = (¢”"*!). Then R = 3(1/7"*"). For an
arbitrary point (z, w) we can choose the Hefer form

1 m
= — “kwkdr.
2 Z

From the Bochner—Martinelli form B we only get a contribution from the term

_ 1 € —2dt+ (@ —wydr
C2mi ¢ =zt —w]?

Let Q' CC €2 be open balls with center at the origin, and let ¢ = e(IZ1> +It1*) bea
smooth cutoff function with support in € that is = 1 in a neighborhood of €. Then
we can choose a holomorphic weight g = ¢ + - - -, see, [6, Example 5.1] with respect
to ', and with supportin . Now 1, 7, ..., t™ is a set of generators for Ox over 0.
Assume that

¢ =G0 ® 1+ +du(0) ® T")dC
is a smooth (0, 1)-form. We want to compute K ¢. We know that
Kop=ay(2)®1+ - +auiz)w" (10.1)
with ag(z) in Wg’o. By Lemma 10.2 and its proof, we have smooth K€¢(z, w) in €'

such that 1
K¢/\dz/\dw/\8 —>K¢AdzAdw/\8

(10.2)

It follows that

k

1 0
ar(2) = lim -5 = K (z, ), .
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Notice that

-1
(BAgNANHR())2=B1AgoANHANI—/

.L—m+l
-1 — (¢ —2)d¢ + (T — w)dt
=—pd——n——Y " tyldr A
PO ™ a2 th A T L R
- dt R— (¢ —2)d¢
=—pd—— A —— Y "yt A .
PO ™ a2 gt Y — P —wP

For each fixed € > 0, | — z| > 0 on supp xe, cf., Lemma 10.2, so we have

K¢ (z, w)
R S I G —Ddinde I
/;,f(p(Zﬂi)zg i+l w X€|§—Z|2+|‘L’—w|2 ]§)¢k(§)®f
(10.3)
A simple computation yields that
m
Kp(z.w) =Y af(x) ® wk + O (), (10.4)
k=0

where

. 1 Gk ($)dE A d¢
a,(z) = %/Cfﬂﬂﬂz))(ekT-

Letting € tend to O we get K¢ as in (10.1), where

1 he(0)dE A d
a() = 7 ./go<|f;|2>—¢"(“ Ende
i Je ¢ —

It is well-known that these Cauchy integrals ay (z) are smooth solutions to v = qgde
in Z' = ZN Q. Thus K¢ is smooth. O
Remark 10.4 The terms ¢ (w) in the expansion (10.4) of K€¢ (z, w) do not converge

to smooth functions in general when € — 0. For a simple example, take ¢ = ¢d¢ ®1™.
Then K€¢ (0, w) tends to

m I 1¢Pds ndt
o [t e

which is a smooth function of w plus (a constant times) w™|w|*log|w|?, and
thus not smooth. However, it is certainly in C”. One can check that K¢ (z, w) =
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lim,_, o+ K€¢(z, w) exists pointwise and defines a function in at least C" and that
our solution can be computed from this limit. In fact, by a more precise computation
we get from (10.3) that

" 1 d d 2 J
Kb (z, w)=2/w(|¢|2)x5%“ D)L ndg k2<L> .
k=0"¢

g —zI2 + |w|? g —zI2 + |w|?

It is now clear that we can let ¢ — 0. By a simple computation we then get

Kz w) =) Chi(x) ®w*

k=0
_iv/‘(p(k‘ﬁ)L(ik(;)dE Ad; wk< |U)|2 >m—k+1
Sl )

Lety = ¢q3k. Then the kth term in the second sum is equal to

1 w<z+c)dEAd;wk< w2 )'”"‘“

b , W) = —
@ =5 ), ¢ 12+ |w[2

If we integrate outside the unit disk, then we certainly get a smooth function. Thus it
is enough to consider the integral over the disk. Moreover, if ¥ (z +¢) = 0(|¢|M) for

a large M, then the integral is at least C"". By a Taylor expansion of ¥/ (z + ¢) at the
point z, we are thus reduced to consider

/. g&Eﬂ( |U)|2 m—k+1
lel<t ¢ |§|2+|w|2) '

For symmetry reasons, they vanish, except when « = 8 + 1. Thus we are left with

2 m—k+1 1
28 |w k_ ki, 120m—k+1) sPds
1PN —— w® = Cw"|w - =
1g]<1 121? + |w|? 0 (s + [w]?)ym=k+l

for non-negative integers B. The right hand side is a smooth function of w if 8 <
— k — 1 and a smooth function plus

Cwk|w?P+D 1og |w|?

if B > m — k. The worst case therefore is when & = m and § = 0; then we have
w™|w |2 log |w |2 that we encountered above. O

Proposition 10.5 Let z, w be coordinates at a point x € X, ¢q such that Z = {w = 0}
and x = (0,0). If ¢ is smooth, and has support where the local coordinates are
defined, then
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(2, w>=/x<|c—z|2/e)<HRABAg>NA¢,
¢

is smooth for € > 0, and for each multiindex € there is a smooth form v, such that
5 w0 — v

as currents on Z.
Taking this proposition for granted we can conclude the proof of Theorem 10.1.

Proof of Theorem 10.1 If ¢ = 0 in a neighborhood of x € X/, , then K¢ is smooth

reg’
near x, cf., the proof of Proposition 9.4. Thus, it is sufficient to prove Theorem 10.1

assuming that ¢ is smooth and has support near x.
Recall that given a minimal generating set 1, w*', ..., w*~!, one gets the coeffi-
cients ¥} in the representation

V=0 ® 14 +0)_; @wn!

from 85) v€|w=0, €] < M by aholomorphic matrix, cf., the proof of Lemma 4.7. It thus
follows from Proposition 10.5 that there are smooth 0; such that 05 — 0; as currents

onZ. Letv=00Q@ 1+ -+ 0,1 @ w¥-1. In view of (2.14), v A u — v A u for
all win Hom(Cgq/J, CHSZZ). From Lemma 10.2 we conclude that v A u = K¢ A o

for all such . Thus K¢ = v in W?(’* and hence K ¢ is smooth. O

Proof of Proposition 10.5 Assume that X is embedded in Q C (Cév, - After a suitable
rotation we can assume that Z is the graph t/ = 1/ (¢’). The Bochner—Martinelli kernel
in €2 is rotation invariant, so it is

B=o+a/\50+a/\(5o)2+---,
where

(' =) dg' + (@ i) -dv’
g = .
|§-/ _ Z/|2 + |‘L’/ _ w/|2

We now choose the new coordinates ¢ = ¢', © = v/ — ¥ (¢’) in , so that Z =
{(¢,1); =0}

Recall that on X,., we have that R Adz is a smooth form times u = (i1, . .., i),
where u ; is a generating set for Hom(0gq/J, CHé). Thus we are to compute 85) | w=0
of integrals like

- dt c
3m/\3k NP,z w, T), (10.5)
Z,T

where k < n and ¢ is smooth with compact support near x. It is clear that the symbols
T, w, dT can be omitted in the expression for

B¢ = xeB = x(I¢ —zI*/€)B,
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since 7 and d7 annihilate 3(1/t%*!), and since we only take holomorphic derivatives
with respect to w and set w = 0.

Let us write ¥ (¢) — ¥ (z) = A(¢, z)n, where n := ¢ — z is considered as a column
matrix and A is a holomorphic (N — n) x n-matrix. Then

n*v

o = 5
IE—zP 4+t —w+ (@) — @)

where v is the (1, 0)-form valued column matrix
v=di+ A%t + ¥ ()).
Since n*v is a (1, 0)-form we have that

n*v A ((dn*)v + n*év)ki]
(¢ —z2P 4+t —w+ v @) — ¥ @)DHF

BZZXG

Lemma 10.6 Let

Y Y B
5_5184,14' +$n8§n

be smooth (1, 0)-vector fields, and let L; = Lg[ be the associated Lie derivatives for
i=1,...,p. Let

Vi i= v A ((dn*)v + n*dv)F L

If we have a modification 7 : W — Q x Q such that locally T*n = non’, where ng is
a holomorphic function, then

7*(Ly -+~ Lyyi) = iigh.
where B is smooth.

Recall that if ¢ is a form, then Lga = d(§—a) + £—(da), and that L¢(B—a) =
(£, Bl—a + B—(Lea) if B is another vector field.

Proof Introduce a nonsense basis e and its dual e* and consider the exterior algebra
spanned by e;, ej, and the cotangent bundle. Let

ce=n'e A (dnHe) .
Notice that yy is a sum of terms like
(ve*=)ep A (i av)kt.
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Since Licy = 0 and L;(n*b) = n*L;b it follows after a finite number of applications
of L;’s that we get

(1e*)= - (vee™) e (n*by) - - (" bk—e),
where v; and b; are smooth. Since
mree = iigm) e A (d(n) e) ",
the lemma now follows. O

We note that n*(I + A*A)p = |¢ — z|> + |¥(¢) — ¥ (2)|%. Thus, differentiating
(10.5) with respect to w, setting w = 0, and evaluating the residue with respect to t
using (2.10), we obtain a sum of integrals like

’

/ (m*a) - M*ap ) ANk AN @
¢+ AT A

where ay, ..., a;4+1 are column vectors of smooth functions. We must prove that the
limit of such integrals when € — 0 are smooth in z.

Lemma 10.7 Let

s (*a1) -~ 0 a) O(nl*) 7k A ¢
¢ = Xe Pr+e s

where ay, ..., a, are tuples of smooth functions, yx = Ly - - - Lyyk, where L = Ly
are Lie derivatives with respect to smooth (1,0)-vector fields &' as above for i =
1,..., p, ¢ is a test form with support close to z, and ® := n*(I + A*A)n. If r > 1
andr + s > £ + 1, then we have the relation
\S —1,s —1,5+1 s—1
LYy=0"" 00T+ 0T o)) (10.6)

when € — 0.

Proof 1f
f—al(+ A A"
r a; ’
and L = Lg, then using that ® = ' (I + A*A)'#, one obtains that

L® = n*a, + O(n)?). (10.7)

Thus

‘ - 1 1541
I =/xem*al)~--<n*ar_1)ﬁ(|n|23)yk AL+ 10
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in view of (10.7). We now integrate by parts by L in the integral. If a derivative with
respect to ¢; falls on some n*a;, we get a term Igil’x. If it falls on @(|n|**) we get
either O(|n |2(S —D) times n*b, for some tuple b of smooth functions, and this gives rise

to the term /, "5=Lor 0(|n|*), and this gives rise to another term I ’ ~1S 1f it falls on ¢

or 7 we get an additional term 1, 15 The only possibility left is when the derivative

falls on xc = x(|n|*/€). It remains to show that an integral of the form

*ay) - (*ar—1) (n*b) O(In|**
/x’(|n|2/e>(’7 a) - *ar—1)*b) O(N|* )y A

€ Pk+L

tends to 0, where the factor *b comes from the derivative of |7|>. We now choose
a resolution V. — € x € such that n = non’ where 1’ is non-vanishing and 7 is
(locally) a monomial. Notice that 7*® = 170|>®’ where @' is smooth and strictly
positive. In view of Lemma 10.6 we thus obtain integrals of the form

—r+s—~{

17
1 2 0
- o, 10.8
ﬁX (Inol U/G)E n16+£—s ( )

where v is smooth and strictly positive and « is smooth.
In order to see that the limit of (10.8) tends to 0, we note first that if we let

X(s) =sx'(s) + x(s),

then just as x, x is also a smooth function on [0, co) that is 0 in a neighborhood of 0
and 1 in a neighborhood of co. By assumption, r +s — £ — 1 > 0. Since the principal
value current 1/f" acting on a test form 8 can be defined as

lim /x(|f|2v/e>—

k+l—s

for any cut-off function as above, the principal value current 1/1, acting on
o =l equals
—r+S —1 7—]r+s—2—l
hm v/€e) ————a = lim X ( 2y e) 0.
f |T)0| / k+€ P 0t ‘7X |770| / n/(§+g,S

Taking the difference between the left and right hand side, we conclude that (10.8)
tends to O when e — 0. O

Now we can conclude the proof of Proposition 10.5. From the beginning we have
I f 0 After repeated applications of (10.6) we end up with

0,2 0,6—1 0,0
B+ 1+ 10+ o(D).
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However, any of these integrals has an integrable kernel even when € = 0. This means
that we are back to the case in [6, Lemma 6.2], and so the limit integral is smooth in
zZ. O

11 A fine resolution of Oy

We first consider a generalization of Theorem 9.1.

Lemma 11.1 Assume that ¢ € WOK(X) N é”)?’k(X,eg) N Dom dx and that K ¢ is in
Dom dx (or just in Dom ). Then (9.1) holds on X'

Proof Let x5 be functions as before that cut away Xj;,,. From Koppelman’s formula
(9.1) for smooth forms we have

Xs® ANh = (K (xs¢) N+ K(xs09) ANh+P(xs¢) ANh+K (0 xs A@) AR, h € Wy,

(11.1)
for z € X],,. Clearly the left hand side tends to ¢ A h when § — 0. From Lemma 9.2
it follows that K (xs¢) A h — K¢ A h. Thus the first term on the right hand side of
(11.1) tends to d(K¢) A h. In the same way the second and third terms on the right
hand side tend to K (9¢) A h and P¢ A h, respectively. It remains to show that the last
term tends to 0. If z belongs to a fixed compact subset of X;eg, then B is smooth in
(9.5) when ¢ is in supp d x5 for small 8. Hence it suffices to see that

R(&) AdE AN Oxs Ap() Aixh — 0,
and since this is a tensor product of currents, it suffices to see that
R(E)ANdE ANdxs Ap (L) — 0,

or equivalently, () A dxs A ¢(2) — 0, which follows by Lemma 8.4 since ¢ is in
Dom dy. We have thus proved that

xsd Ah = x50(Kp) A+ xsK () Ah+ xsPo Ah.

The first term on the right hand side is equal to d(xsKp Ah) - dxs A K¢ A h, where
the latter term tends to 0 if K¢ is in Dom dy or just in Dom 0, cf., Lemma 8.4. Thus
we get

pAh=03(KP) ANh+K@Op) Ah+PpAh, hel,

which precisely means that (9.1) holds. O

Definition 11.2 We say that a (0, g)-current ¢ on an open set !/ C X is a section of
,sa/,? over U, ¢ € /1(U), if, for every x € U, the germ ¢, can be written as a finite
sum of terms

EvANKL( & AN K61 A K1(80))),
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where & are smooth (0, *)-forms and K ; are integral operators with kernels k ; (¢, z) at
x, defined as above, and such that & ; has compact supportin the set where z — k; (¢, 2)
is defined.

Clearly 27§ is closed under multiplication by & in é‘}?’*. It follows from (9.8) that
o/ is a subsheaf of W?(’* and from Theorem 10.1 that 7§ = z%(()’* on X,¢q. Clearly
any operator K as above maps 427;(""’1 — Y.

Lemma 11.3 If ¢ is in <y, then ¢ and K ¢ are in Dom dx.

Proof Notice that [6, Lemma 6.4] holds in our case by verbatim the same proof, since
we have access to the dimension principle for (tensor products of) pseudomeromorphic
(n, *x)-currents, and the computation rule (2.3), cf., the comment after Definition 5.7.
Since @7y = 52’* on X it is enough by Lemma 8.4 to check that Ixs AwAp — 0,
and this precisely follows from [6, Lemma 6.4]. O

In view of Lemmas 11.1 and 11.3 we have

Proposition 11.4 Let K, P be integral operators as in Theorem 9.1. Then
K: (X)) > %X, P:g*X) > %X,

and the Koppelman formula (9.1) holds.

Proof of Theorem 1.1 By definition, it is clear that dxk are modules over é")(()’k, and by
Theorem 10.1, 427}]; coincides with éa)?’k on Xreg. Since we have access to Koppelman
formulas, precisely as in the proof of [6, Theorem 1.2] we can verify that ;z{)](‘ —
P

It remains to prove that (1.2) is exact. We choose locally a weight g that is holo-
morphic in z, so the term P¢ vanishes if ¢ is in % k> 1,andis holomorphic in z
when k = 0. Assume that ¢ is in 7§ and 3¢ = 0. If k > 1, then 3K ¢ = ¢, and if
k =0, then ¢ = P¢. O

11.1 Global solvability

Assume that E — X is a holomorphic vector bundle; this means that the transition
matrices have entries in 0. For instance if we have a global embedding i : X —
and a holomorphic vector bundle F — €, then F defines a vector bundle i*F — X.
The sheaves M;(E ) give rise to a fine resolution of the sheaf &y (E), and by standard
homological algebra we have the isomorphisms

3 +1
HIX. 6(E)) — Ker (¢79(X, E) > a/9+1(X, )

Im (791X, E) —5> (X, E))

Thus, if ¢ € g{ g+l (X, E), 5(1) = 0, and its canonical cohomology class vanishes, then
the equation 9y = ¢ has a global solution in &77(X, E). In particular, the equation
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is always solvable if X is Stein. If for instance X is a pure-dimensional projective
variety i : X — PV, then the d-equation is solvable, e.g., if E is a sufficiently ample
line bundle.

12 Locally complete intersections

Let us consider the special case when X locally is a complete intersection, i.e., given a
local embedding i : X — Q C CV there are global sections f jof 0(d)) — PV such
that 7 = (f1,..., fp), where p = N — n. In particular, Z = {f; = --- = f, = 0}.
In this case Hom(Ogq/J,CHg) is generated by the single current

1
A ANI— Adzi N--- ANdzy,

fp fl

see, e.g., [3]. Each smooth (0, ¢)-form ¢ in é@?’q is thus represented by a current ® A p,
where @ is smooth in a neighborhood of Z and i*® = ¢. Moreover, X is Cohen—
Macaulay so X, coincides with the part of X where Z is regular, and d¢ = y if and
only if 3(¢ A ) = ¥ A u.

Henkin and Polyakov introduced, see [17, Definition 1.3], the notion of residual
currents ¢ of bidegree (0, q) on a locally complete intersection X C PV, and the
d-equation 3y = ¢. Their currents ¢ correspond to our ¢ in éa)(()’q and their d-operator
on such currents coincides with ours.

Remark 12.1 In [18] Henkin and Polyakov consider a global reduced complete inter-
section X C PV, They prove, by a global explicit formula, that if ¢ is a global d-closed
smooth (0, q)-fornl with values in O(¢), £ = di + ---d, — N — 1, then there is a
smooth solution to dvy = ¢ atleaston X,,,if 1 < g <n-— 1. When g = n anecessary
obstruction term occurs. However, their meaning of “d-closed” is that locally there is
a representative ® of ¢ and smooth g; such that A0 = g1 fi + -+ gpfp. If this
holds, then clearly 3¢ = 0. The converse implication is not true, see Example 12.2
below. It is not clear to us whether their formula gives a solution under the weaker
assumption that E_)qﬁ = 0, neither do we know whether their solution admits some
intrinsic extension across X;,e as a current on X. O

Example 12.2 Let X = {f = 0} € Q C C"! be a reduced hypersurface, and
assume that df # 0 on X,g, so that 7 = (f). Let ¢ be a smooth (0, g)-form in a
neighborhood of some point x on X such that d¢ = 0. We claim that du = ¢ has a
smooth solution u if and only if ¢ has a smooth representative & in ambient space
such that 3® = fg for some smooth form g. In fact, if such a ® exists then 0 = fog
and thus dg = 0. Therefore, g = 3y for some smooth y (in a Stein neighborhood of
x in ambient space) and hence 3(® — fy) = 0. Thus there is a smooth U such that
U = ® — fv; this means that u = i*U is a smooth solution to ou = ¢. Conversely,
if u is a smooth solution, then u = i*U for some smooth U in ambient space, and thus
® = 3U is a representative of ¢ in ambient space. Thus 9P = fg (with g = 0).
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There are examples of hypersurfaces X where there exist smooth ¢ with dp =0
that do not admit smooth solutions to du = ¢, see, e.g., [6, Example 1.1]. It follows
that such a ¢ cannot have a representative & in ambient space as above. O
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