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Abstract Let X be a, possibly non-reduced, analytic space of pure dimension. We
introduce a notion of ∂-equation on X and prove a Dolbeault–Grothendieck lemma.
We obtain fine sheavesAq

X of (0, q)-currents, so that the associatedDolbeault complex
yields a resolution of the structure sheaf OX . Our construction is based on intrinsic
semi-global Koppelman formulas on X .

Mathematics Subject Classification 32A26 · 32A27 · 32B15 · 32C30

1 Introduction

Let X be a smooth complex manifold of dimension n and let E 0,∗
X denote the sheaf of

smooth (0, ∗)-forms. It is well-known that the Dolbeault complex

0 → OX
i→ E 0,0

X
∂̄→ E 0,1

X
∂̄→ · · · ∂̄→ E 0,n

X → 0 (1.1)
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554 M. Andersson, R. Lärkäng

is exact, and hence provides a fine resolution of the structure sheafOX . If X is a reduced
analytic space of pure dimension, then there is still a natural notion of “smooth forms”.
In fact, assume that X is locally embedded as i : X → �, where � is a pseudoconvex
domain in CN . IfKer i∗ denotes the subsheaf of all smooth forms ξ in ambient space
such that i∗ξ = 0 on the regular part Xreg of X , then one defines the sheaf EX of
smooth forms on X simply as

EX := E�/Ker i∗.

It is well-known that this definition is independent of the choice of embedding of X .
Currents on X are defined as the duals of smooth forms with compact support. It is
readily seen that the currents μ on X so defined are in a one-to-one correspondence
to the currents μ̂ = i∗μ in ambient space such that μ̂ vanish on Ker i∗, see, e.g.,
[6]. There is an induced ∂̄-operator on smooth forms and currents on X . In particular,
(1.1) is a complex on X but in general it is not exact. In [6], Samuelsson and the first
author introduced, by means of intrinsic Koppelman formulas on X , fine sheavesA ∗

X
of (0, ∗)-currents that are smooth on Xreg and with mild singularities at the singular
part of X , such that

0 → OX
i→ A 0

X
∂̄→ A 1

X
∂̄→ · · · ∂̄→ A n

X → 0 (1.2)

is exact, and thus a fine resolution of the structure sheaf OX . An immediate conse-
quence is the representation

Hq(X,OX ) = Ker
(
A 0,q(X)

∂̄→ A 0,q+1(X)
)

Im
(
A 0,q−1(X)

∂̄→ A 0,q(X)
) , q ≥ 1, (1.3)

of sheaf cohomology, and so (1.3) is a generalization of the classical Dolbeault iso-
morphism. In special casesmore qualitative information of the sheavesA q

X are known,
see, e.g., [5,23].

Starting with the influential works [28,29] by Pardon and Stern, there has been a
lot of progress recently on the L2-∂̄ theory on non-smooth (reduced) varieties; see,
e.g., [15,27,31]. The point in these works, contrary to [6], is basically to determine the
obstructions to solve ∂̄ locally in L2. For a more extensive list of references regarding
the ∂̄-equation on reduced singular varieties, see, e.g., [6].

In [17], a notion of the ∂̄-equation on non-reduced local complete intersections was
introduced, and which was further studied in [18]. We discuss below how their work
relates to ours.

The aim of this paper is to extend the construction in [6] to a non-reduced pure-
dimensional analytic space. The first basic problem is to find appropriate definitions of
forms and currents on X . Let Xreg be the part of X where the underlying reduced space
Z is smooth, and in addition OX is Cohen–Macaulay. On Xreg the structure sheaf OX

has a structure as a free finitely generated OZ -module. More precisely, assume that
we have a local embedding i : X → � ⊂ C

N and coordinates (z, w) in � such that
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The ∂̄-equation on a non-reduced analytic space 555

Z = {w = 0}. LetJ be the defining ideal sheaf for X on�. Then there are monomials
1, wα1 , . . . , wαν−1 such that each φ in O�/J � OX has a unique representation

φ = φ̂0 ⊗ 1 + φ̂1 ⊗ wα1 + · · · + φ̂ν−1 ⊗ wαν−1 , (1.4)

where φ̂ j are inOZ . A reasonable notion of a smooth form on X should admit a similar
representation on Xreg with smooth forms φ̂ j on Z . We first introduce the sheaves
E 0,∗
X of smooth (0, ∗)-forms on X . By duality, we then obtain the sheaf Cn,∗

X of (n, ∗)-
currents. We are mainly interested in the subsheaf PMn,∗

X of pseudomeromorphic
currents, and especially, the even more restricted sheafWn,∗

X of such currents with the
so-called standard extension property, SEP, on X . A current with the SEP is, roughly
speaking, determined by its restriction to any dense Zariski-open subset.

Of special interest is the sheafωn
X ⊂ Wn,0

X of ∂̄-closed pseudomeromorphic (n, 0)-
currents. In the reduced case this is precisely the sheaf of holomorphic (n, 0)-forms
in the sense of Barlet–Henkin–Passare, see, e.g., [12,16].

We have no definition of “smooth (n, ∗)-form” on X . In order to define (0, ∗)-
currents, we use instead the sheafωn

X in the following way. Any holomorphic function
defines a morphism in Hom(ωn

X ,ωn
X ), and it is a reformulation of a fundamental

result of Roos [30], that this morphism is indeed injective, and generically surjec-
tive. In the reduced case, multiplication by a current in W0,∗

X induces a morphism in

Hom(ωn
X ,Wn,∗

X ), and in fact W0,∗
X → Hom(ωn

X ,Wn,∗
X ) is an isomorphism. In the

non-reduced case, we then take this as the definition ofW0,∗
X . It turns out that with this

definition, on Xreg , any element ofW0,∗
X admits a unique representation (1.4), where

φ̂ j are inW0,∗
Z , see Sect. 6 below for details.

Given v, φ in W0,∗
X we say that ∂̄v = φ if ∂̄(v ∧ h) = φ ∧ h for all h in ωn

X .
Following [6] we introduce semi-global integral formulas and prove that if φ is a
smooth ∂̄-closed (0, q+1)-form there is locally a current v inW0,q

X such that ∂̄v = φ.
A crucial problem is to verify that the integral operators preserve smoothness on Xreg

so that the solution v is indeed smooth on Xreg . By an iteration procedure as in [6] we
can define sheaves A k

X ⊂ W0,k
X and obtain our main result in this paper.

Theorem 1.1 Let X be an analytic space of pure dimension n. There are sheaves
A k

X ⊂ W0,k
X that are modules over E 0,∗

X , coinciding with E 0,k
X on Xreg, and such that

(1.2) is a resolution of the structure sheaf OX .

The main contribution in this article compared to [6] is the development of a theory
for smooth (0, ∗)-forms and various classes of (n, ∗)- and (0, ∗)-currents in the non-
reduced case as is described above. This is done in Sects. 4–8. The construction of
integral operators to provide solutions to ∂̄ in Sect. 9 and the construction of the fine
resolution of OX in Sect. 11, which proves Theorem 1.1, are done pretty much in the
same way as in [6]. The proof of the smoothness of the solutions of the regular part
in Sect. 10 however becomes significantly more involved in the non-reduced case and
requires completely new ideas. In Sect. 12 we discuss the relation to the results in
[17,18] in case X is a local complete intersection.
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556 M. Andersson, R. Lärkäng

2 Pseudomeromorphic currents

Let s1, . . . , sm be coordinates in C
m , let α be a smooth form with compact support,

and let a1, . . . , ar be positive integers, 0 ≤ 	 ≤ r ≤ m. Then

∂̄
1

sa11
∧ · · · ∧ ∂̄

1

sa	

	

∧ α

sa	+1
	+1 · · · sarr

is a well-defined current that we call an elementary (pseudomeromorphic) current.
Let Z be a reduced space of pure dimension. A current τ is pseudomeromorphic on
Z if, locally, it is the push-forward of a finite sum of elementary pseudomeromorphic
currents under a sequence of modifications, simple projections, and open inclusions.
The pseudomeromorphic currents define an analytic sheafPMZ on Z . This sheaf was
introduced in [8] and somewhat extended in [6]. If nothing else is explicitly stated,
proofs of the properties listed below can be found in, e.g., [6].

If τ is pseudomeromorphic and has support on an analytic subset V , and h is a
holomorphic function that vanishes on V , then h̄τ = 0 and dh̄ ∧ τ = 0.

Given a pseudomeromorphic current τ and a subvariety V of some open subset
U ⊂ Z , the natural restriction to the open set U\V of τ has a natural extension to a
pseudomeromorphic current on U that we denote by 1U\V τ . Throughout this paper
we let χ denote a smooth function on [0,∞) that is 0 in a neighborhood of 0 and 1 in
a neighborhood of ∞. If h is a holomorphic tuple whose common zero set is V , then

1U\V τ = lim
ε→0+ χ(|h|2/ε)τ. (2.1)

Notice that 1V τ := (1 − 1U\V )τ is also pseudomeromorphic and has support on V .
If W is another analytic set, then

1V 1W τ = 1V∩W τ. (2.2)

This action of 1V on the sheaf of pseudomeromorphic currents is a basic tool. In fact
one can extend this calculus to all constructible sets so that (2.2) holds, see [8]. One
readily checks that if ξ is a smooth form, then

1V (ξ ∧ τ) = ξ ∧ 1V τ. (2.3)

If f : Z ′ → Z is a modification and τ is in PMZ ′ then f∗τ is in PMZ . The same
holds if f is a simple projection and τ has compact support in the fiber direction. In
any case we have

1V f∗τ = f∗(1 f −1V τ). (2.4)

It is not hard to check that if τ is in PMZ and τ ′ is in PMZ ′ , then τ ⊗ τ ′ is in
PMZ×Z ′ , see, e.g., [4, Lemma 3.3]. If V ⊂ U ⊂ Z and V ′ ⊂ U ′ ⊂ Z ′, then

(1V τ) ⊗ 1V ′τ ′ = 1V×V ′(τ ⊗ τ ′). (2.5)
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The ∂̄-equation on a non-reduced analytic space 557

Another basic tool is the dimension principle, that states that if τ is a pseudomero-
morphic (∗, p)-current with support on an analytic set with codimension larger than
p, then τ must vanish.

A pseudomeromorphic current τ on Z has the standard extension property, SEP, if
1V τ = 0 for each germ V of an analytic set with positive codimension on Z . The set
WZ of all pseudomeromorphic currents on Z with the SEP is a subsheaf of PMZ .
By (2.3),WZ is closed under multiplication by smooth forms.

Let f be a holomorphic function (or a holomorphic section of a Hermitian line
bundle), not vanishing identically on any irreducible component of Z . Then 1/ f , a
priori defined outside of { f = 0}, has an extension as a pseudomeromorphic current,
the principal value current, still denoted by 1/ f , such that 1{ f =0}(1/ f ) = 0. The
current 1/ f has the SEP and

1

f
= lim

ε→0+ χ(| f |2/ε) 1
f
.

We say that a current a on Z is almost semi-meromorphic if there is a modification
π : Z ′ → Z , a holomorphic section f of a line bundle L → Z ′ and a smooth
form γ with values in L such that a = π∗(γ / f ), cf., [10, Section 4]. If a is almost
semi-meromorphic, then it is clearly pseudomeromorphic. Moreover, it is smooth
outside an analytic set V ⊂ Z of positive codimension, a is inWZ , and in particular,
a = limε→0+ χ(|h|/ε)a if h is a holomorphic tuple that cuts out (an analytic set of
positive codimension that contains) V . The Zariski singular support of a is the Zariski
closure of the set where a is not smooth.

One can multiply pseudomeromorphic currents by almost semi-meromorphic cur-
rents; and this fact will be crucial in defining W0,∗

X , when X is non-reduced. Notice
that if a is almost semi-meromorphic in Z then it also is in any open U ⊂ Z .

Proposition 2.1 ([10, Theorem 4.8, Proposition 4.9]) Let Z be a reduced space,
assume that a is an almost semi-meromorphic current in Z, and let V be the Zariski
singular support of a.

(i) If τ is a pseudomeromorphic current in U ⊂ Z, then there is a unique pseu-
domeromorphic current a ∧ τ in U that coincides with (the naturally defined
current) a ∧ τ in U\V and such that 1V (a ∧ τ) = 0.

(ii) If W ⊂ U is any analytic subset, then

1W (a ∧ τ) = a ∧ 1W τ. (2.6)

Notice that if h is a tuple that cuts out V , then in view of (2.1),

a ∧ τ = lim
ε→0+ χ(|h|2/ε)a ∧ τ. (2.7)

It follows that if ξ is a smooth form, then

ξ ∧ (a ∧ τ) = (−1)deg ξ deg aa ∧ (ξ ∧ τ). (2.8)
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558 M. Andersson, R. Lärkäng

For future reference we will need the following result.

Proposition 2.2 Let Z be a reduced space. Then PMZ = WZ + ∂̄WZ .

Proof First assume that Z is smooth. Since WZ is closed under multiplication by
smooth forms, so isWZ + ∂̄WZ . The statement thatPMZ = WZ + ∂̄WZ is local, and
since both sides are closed under multiplication by cutoff functions, we may consider
a pseudomeromorphic currentμwith compact support inCn . Ifμ has bidegree (∗, 0),
then it is inWZ in view of the dimension principle. Thuswe assume thatμ has bidegree
(∗, q) with q ≥ 1. Let

Kμ(z) =
∫

ζ

k(ζ, z) ∧ μ(ζ ), (2.9)

where k is the Bochner–Martinelli kernel. Here (2.9) means that Kμ = p∗(k∧μ⊗1),
where p is the projection C

n
ζ × C

n
z → C

n
z , (ζ, z) 
→ z. Recall that we have the

Koppelman formula μ = ∂̄Kμ + K (∂̄μ). It is thus enough to see that Kμ is in WZ

if μ is pseudomeromorphic. Let χε = χ(|ζ − z|2/ε). It is easy to see, by a blowup of
C
n × C

n along the diagonal, that k is almost semi-meromorphic on C
n × C

n . Thus,
by (2.7), χεk ∧ (μ ⊗ 1) → k ∧ (μ ⊗ 1). In view of Proposition 2.1 it follows that
k ∧ (μ ⊗ 1) is pseudomeromorphic. Finally, if W is a germ of a subvariety of Cn of
positive codimension, then by (2.4) and (2.5),

1W p∗(k ∧ μ ⊗ 1) = lim
ε→0+ p∗ (1Cn×W (χεk ∧ (μ ⊗ 1)))

= lim
ε→0+ p∗ (χεk ∧ (1Cn×Wμ ⊗ 1))

= lim
ε→0+ p∗ (χεk ∧ (1Cnμ ⊗ 1W1)) = 0,

since 1W1 = 0. Thus Kμ is inWZ .
If Z is not smooth, then we take a smooth modification π : Z ′ → Z . For any μ in

PMZ there is some μ′ in PMZ ′ such that π∗μ′ = μ, see [4, Proposition 1.2]. Since
μ′ = τ + ∂̄u with τ, u inWZ ′ , we have that μ = π∗τ + ∂̄π∗u. ��

2.1 Pseudomeromorphic currents with support on a subvariety

Let � be an open set in C
N and let Z be a (reduced) subvariety of pure dimension

n. Let PMZ
� denote the sheaf of pseudomeromorphic currents τ on � with support

on Z , and let W Z
� denote the subsheaf of PMZ

� of currents of bidegree (N , ∗) with
the SEP with respect to Z , i.e., such that 1W τ = 0 for all germs W of subvarieties
of Z of positive codimension. The sheaf CHZ

� of Coleff–Herrera currents on Z is the
subsheaf of W Z

� of ∂̄-closed (N , p)-currents, where p = N − n.

Remark 2.3 In [3,6] CH�
Z denotes the sheaf of pseudomeromorphic (0, p)-currents

with support on Z and the SEP with respect to Z . If this sheaf is tensored by the
canonical bundle K� we get the sheaf CHZ

� in this paper. Locally these sheaves are
thus isomorphic via themappingμ 
→ μ∧α, where α is a non-vanishing holomorphic
(N , 0)-form. ��
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The ∂̄-equation on a non-reduced analytic space 559

We have the following direct consequence of Proposition 2.1.

Proposition 2.4 Let Z ⊂ � be a subvariety of pure dimension, let a be almost semi-
meromorphic in �, and assume that it is smooth generically on Z. If τ is inW Z

� , then
a ∧ τ is inW Z

� as well.

Assume that we have local coordinates (z, w) ∈ C
n ×C

p in� such that Z = {w =
0}. We will use the short-hand notation

∂̄
dw

wγ+1 := ∂̄
dw1

w
γ1+1
1

∧ · · · ∧ ∂̄
dwp

w
γp+1
p

for multiindices γ = (γ1, . . . , γp) with γ j ≥ 0, and let γ ! := γ1! · · · γp!. Notice that

1

(2π i)p
∂̄

dw

wγ+1 .ξ = 1

γ !
∫

z

∂γ ξ

∂wγ
(z, 0) (2.10)

for test forms ξ . If τ is in WZ , then it follows by (2.5) and the fact that
supp ∂̄(1/wγ+1) = {w = 0} that τ ⊗ ∂̄(1/wγ+1) is in W Z

� . We have the follow-
ing local structure result, see [11, Proposition 4.1 and (4.3)] and [10, Theorem 3.5].

Proposition 2.5 Assume that we have local coordinates (z, w) such that Z = {w =
0}. Then τ inW Z

� has a unique representation as a finite sum

τ =
∑

γ

τγ ∧ dz ⊗ ∂̄
dw

wγ+1 , τγ ∈ W0,∗
Z , (2.11)

where dz := dz1 ∧ · · · ∧ dzn. If π is the projection (z, w) 
→ z, then

τγ ∧ dz = (2π i)−pπ∗(wγ τ). (2.12)

If in addition ∂̄τ is inW Z
� then its coefficients in the expansion (2.11) are ∂̄τγ , cf.,

(2.12). In particular, ∂̄τ = 0 if and only if ∂̄τγ = 0 for all γ .
Let us now consider the pairing between W Z

� and germs φ at Z of smooth (0, ∗)-
forms. We assume that Z is smooth and that we have coordinates (z, w) as before, that
τ is inW Z

� , and that (2.11) holds. Moreover, we assume that φ is a smooth (0, ∗)-form
in a neighborhood of Z in �. For any positive integer M we have the expansion

φ =
∑

|α|<M

φα(z) ⊗ wα + O
(
|w|M

)
+ O(w̄, dw̄), (2.13)

where

φα(z) = 1

α!
∂φ

∂wα
(z, 0)
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560 M. Andersson, R. Lärkäng

and O(w̄, dw̄) denotes a sum of terms, each of which contains a factor w̄ j or dw̄ j for
some j . If M in (2.13) is chosen so that O(|w|M )τ = 0, then

φ ∧ τ =
∑

α≤γ

φα ∧ τγ ∧ dz ⊗ ∂̄
dw

wγ−α+1 ,

i.e.,

φ ∧ τ =
∑

	≥0

∑

γ≥0

φγ ∧ τ	+γ ∧ dz ⊗ ∂̄
dw

w	+1 . (2.14)

Thus φ ∧ τ = 0 if and only if
∑

γ≥0 φγ ∧ τ	+γ = 0 for all 	 (which is a finite number
of conditions!).

2.2 Intrinsic pseudomeromorphic currents on a reduced subvariety

Currents on a reduced analytic space Z are defined as the dual of the sheaf of test
forms. If i : Z → Y is an embedding of a reduced space Z into a smooth manifold
Y , then the push-forward mapping τ 
→ i∗τ gives an isomorphism between currents
τ on Z and currents μ on Y such that ξ ∧ μ = 0 for all ξ in EY such that i∗ξ = 0.

When defining pseudomeromorphic currents in the non-reduced case it is desirable
that it coincides with the previous definition in case Z is reduced. From [4, Theo-
rem 1.1] we have the following description of pseudomeromophicity from the point
of view of an ambient smooth space.

Proposition 2.6 Assume that we have an embedding i : Z → Y of a reduced space
Z into a smooth manifold Y .

(i) If τ is in PMZ , then i∗τ is in PMY .
(ii) If τ is a current on Z such that i∗τ is in PMY and 1Zsing (i∗τ) = 0, then τ is in

PMZ .

Since i∗(i∗χ(|h|2/ε)τ ) = χ(|h|2/ε)i∗τ for any current τ on Z , we get by (2.1)
that for a subvariety V ⊂ U ⊂ Z ,

1V (i∗τ) = i∗(1V τ), (2.15)

i.e., (2.4) holds also for an embedding i : Z → Y . The condition 1Zsing (i∗τ) = 0 in
(ii) is fulfilled if i∗τ has the SEP with respect to Z .

Corollary 2.7 We have the isomorphism

i∗ : Wn,∗
Z → Hom(O�/J ,W Z

�),

where J is the ideal defining Z in �.

Notice thatHom(O�/J ,W Z
�) is precisely the sheaf ofμ inW Z

� such thatJμ = 0.
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The ∂̄-equation on a non-reduced analytic space 561

Proof The map i∗ is injective, since it is injective on any currents, and it maps into
Hom(O�/J ,W Z

�) by (2.15).
To see that i∗ is surjective, we take a μ inHom(O�/J ,W Z

�). We assume first that

we are on Zreg, with local coordinates such that Zreg = {w = 0}. If ξ is in E 0,∗
� and

i∗ξ = 0, then ξ is a sum of forms with a factor dw̄ j , w j or w̄ j . Since w j ∈ J , w j

annihilates μ by assumption, and since w j vanishes on the support of μ, w̄ j and dw̄ j

annihilate μ since μ is pseudomeromorphic. Thus, μ.ξ = 0, so μ = i∗τ for some
current τ on Z . By Proposition 2.6 (ii), τ is pseudomeromorphic, and by (2.15), has
the SEP, i.e., τ is inWn,∗

Z . ��

Remark 2.8 We do not know whether i∗τ ∈ PMZ
� implies that τ ∈ PMZ . ��

By [11, Proposition 3.12 and Theorem 3.14], we get

Proposition 2.9 Let ϕ and φ1, . . . , φm be currents inWZ . If ϕ = 0 on the set on Zreg

where φ1, . . . , φm are smooth, then ϕ = 0.

3 Local embeddings of a non-reduced analytic space

Let X be an analytic space of pure dimension n with structure sheaf OX and let
Z = Xred be the underlying reduced analytic space. For any point x ∈ X there is, by
definition, an open set � ⊂ C

N and an ideal sheaf J ⊂ O� of pure dimension n with
zero set Z such thatOX is isomorphic toO�/J , and all associated primes of J at any
point have dimension n. We say that we have a local embedding i : X → � ⊂ C

N

at x . There is a minimal such N , called the Zariski embedding dimension N̂ of X at
x , and the associated embedding is said to be minimal. Any two minimal embeddings
are identical up to a biholomorphism, and any embedding i : X → � has locally at x
the form

X
j→ �̂

ι→ � := �̂ × U , i = ι ◦ j, (3.1)

where j is minimal, U is an open subset of Cm
w , m = N − N̂ , and the ideal in � is

J = Ĵ ⊗1+(w1, . . . , wm). Notice that we then also have embeddings Z → �̂ → �;
however, the first one is in general not minimal.

Now consider a fixed local embedding i : X → � ⊂ C
N , assume that Z is smooth,

and let (z, w) be coordinates in � such that Z = {w = 0}. We can identify OZ with
holomorphic functions of z, and we can define an injection

OZ → OX , φ(z) 
→ φ̃(z, w) = φ(z).

In this way OX becomes an OZ -module, which however depends on the choice of
coordinates.

Proposition 3.1 Assume that Z is smooth. LetOX have theOZ -module structure from
a choice of local coordinates as above. Then OX is a coherent OZ -module, and OX is
a free OZ -module at x if and only if OX is Cohen–Macaulay at x.
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562 M. Andersson, R. Lärkäng

Recall that f1, . . . , fm ∈ R is a regular sequence on the R-module M if fi is a non
zero-divisor on M/( f1, . . . , fi−1) for i = 1, . . . ,m, and ( f1, . . . , fm)M �= M . If R is
a local ring, then depthR M is the maximal length d of a regular sequence f1, . . . , fd
such that f1, . . . , fd are contained in the maximal idealm; furthermore, M is Cohen–
Macaulay if depthR M = dimR M , where dimR M = dimR(R/ann RM). If R is
Cohen–Macaulay, and M has a finite free resolution over R, then the Auslander–
Buchsbaum formula, [14, Theorem 19.9], gives that

depthR M + pdR M = dimR R, (3.2)

where pdR M is the length of a minimal free resolution of M over R. In this case, M
is Cohen–Macaulay as an R-module if and only if M has a free resolution over R of
length codimM .

Remark 3.2 Notice that if we have a local embedding i : X → � as above, then the
depth and dimension of OX,x = O�,x/J as an O�,x -module coincide with the depth
and dimension of OX,x as an OX,x -module. Thus OX,x is Cohen–Macaulay as an
OX,x -module if and only if it is Cohen–Macaulay as an O�,x -module, and this holds
in turn if and only if O�,x/J has a free resolution of length N − n. ��
Proof of Proposition 3.1 By the Nullstellensatz there is an M such that wα is in J
in some neighborhood of x if |α| = M . Let M ⊂ O� be the ideal generated by
{wα; |α| = M}. Then M′ = O�/M is a free, finitely generated OZ -module. Thus,
O�/J � M′/JM′ is a coherent OZ -module, which we note is generated by the
finite set of monomials wα such that |α| < M .

We shall now show that

depthOX,x
OX,x = depthOZ ,x

OX,x (3.3)

and
dimOX,x OX,x = dimOZ ,x OX,x . (3.4)

We claim that a sequence f1, . . . , fm in OX,x is regular (on OX,x ) if and only if
f̃1, . . . , f̃m ∈ OZ ,x is regular on OX,x , where f̃ j (z) = f j (z, 0). In fact, since OX,x

has pure dimension, a function g ∈ OX,x = O�,x/J is a non zero-divisor if and only
if g is generically non-vanishing on each irreducible component of Z(J ). Thus f1 is
a non zero-divisor if and only if f̃1 is. If it is, then OX,x/( f1) = O�,x/(J + ( f1))
again has pure dimension. Thus the claim follows by induction, and the fact that
Z(J + ( f1, . . . , fk)) = Z(J + ( f̃1, . . . , f̃k)). The claim immediately implies (3.3).

To see (3.4), we note first that dimOX,x OX,x is just the usual (geometric) dimen-
sion of X or Z , i.e., in this case, n. Now, ann OZ ,xOX,x = {0}, so dimOZ ,x OX,x =
dimOZ ,x OZ ,x/(ann OZ ,xOX,x ) = dimOZ ,x OZ ,x = n.

From (3.3) and (3.4) we conclude thatOX,x is Cohen–Macaulay as anOZ ,x -module
if and only if it is Cohen–Macaulay (as an OX,x -module). Hence, by (3.2), with
R = OZ ,x and M = OX,x ,

depthOZ ,x
OX,x + pdOZ ,x

OX,x = n,
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so OX,x is Cohen–Macaulay as an OZ ,x -module if and only if pdOZ ,x
OX,x = 0, that

is, if and only if OX,x is a free OZ ,x -module. ��
In the proof above, we saw that OX is generated (locally) as an OZ -module by all

monomials wα with |α| ≤ M for some M .

Corollary 3.3 Assume that 1, wα1 , . . . , wαν−1 is a minimal set of generators at a
given point x (clearly 1 must be among the generators!). Then we have a unique
representation (1.4) for each φ ∈ OX,x if and only if OX,x is Cohen–Macaulay.

By coherence it follows that if OX,x is free as an OZ ,x -module, then OZ ,x ′ is free
as anOZ ,x ′ -module for all x ′ in a neighborhood of x , and 1, wα1 , . . . , wαν−1 is a basis
at each such x ′.

Example 3.4 Let J be the ideal in C
4 generated by (w2

1, w
2
2, w1w2, w1z2 − w2z1).

It is readily checked that OX is a free OZ -module at a point on Z = {w1 = w2 = 0}
where z1 or z2 is �= 0. If, say, z1 �= 0, then we can take 1, w1 as generators. At the
point z = (0, 0), e.g., 1, w1, w2 form a minimal set of generators, and then OX is not
a free OZ -module, since there is a non-trivial relation between w1 and w2.

We claim that OX has pure dimension. That is, we claim that there is no embedded
associated prime ideal at (0, 0); since Z is irreducible, this is the same as saying thatJ
is primary with respect to Z . To see the claim, let φ andψ be functions such that φψ is
in J and ψ is not in

√J . The latter assumption means, in view of the Nullstellensatz,
that ψ does not vanish identically on Z , i.e., ψ = a(z) + O(w), where a does not
vanish identically. Since in particular φψ must vanish on Z it follows that φ = O(w).
It is now easy to see that φ is in J . We conclude that J is primary. ��

The pure-dimensionality of OX can also be rephrased in the following way: If φ is
holomorphic and is 0 generically, then φ = 0. If we delete the generator w1w2 from
the definition of J in the example, then φ = w1w2 is 0 generically in O�/J but is
not identically zero. Thus J then has an embedded primary ideal at (0, 0).

Example 3.5 Let � = C
2
z,w and J = (w2) so that Z = {w = 0}. Then 1, w is

a basis for OX = OC2/(w2) so each function φ in OX has a unique representation
a0(z) ⊗ 1+ a1(z) ⊗ w. Let us consider the new coordinates ζ = z − w, η = w. Then
J = (η2) and since

a0(z) + a1(z)w = a0(ζ + η) + a1(ζ + η)η = a0(ζ ) + (∂a0/∂ζ )(ζ )η + a1(ζ )η + J

we have the representation a0(ζ ) ⊗ 1 + (a1(ζ ) + ∂a0/∂ζ )(ζ ) ⊗ η with respect to
(ζ, η). ��

More generally, assume that, at a given point in Xreg ⊂ �, we have two different
choices (z, w) and (ζ, η) of coordinates so that Z = {w = 0} = {η = 0}, and bases
1, . . . , wαν−1 and 1, . . . , ηβν−1 forOX as a free module overOZ . Then there is a ν ×ν-
matrix L of holomorphic differential operators so that if (a j ) is any tuple in (OZ )ν and
(b j ) = L(a j ), then a0 ⊗ 1+· · ·+ aν−1 ⊗wαν−1 = b0 ⊗ 1+· · ·+ bν−1 ⊗ ηβν−1 +J .
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4 Smooth (0, ∗)-forms on a non-reduced space X

Let i : X → � be a local embedding of X . In order to define the sheaf of smooth
(0, ∗)-forms on X , in analogy with the reduced case, we have to state which smooth
(0, ∗)-forms � in � “vanish” on X , or more formally, give a meaning to i∗� = 0.
We will see, cf., Lemma 4.8 below, that the suitable requirement is that locally on
Xreg , � belongs to E 0,∗

� J +E 0,∗
� J̄Z +E 0,∗

� dJ̄Z , where Jz is the ideal sheaf defining
Z . However, it turns out to be more convenient to represent the sheaf Ker i∗ of such
forms as the annihilator of certain residue currents, and this is the path we will follow.
Moreover, these currents play a central role themselves later on.

The following classical duality result is fundamental for this paper; see, e.g., [3]
for a discussion.

Proposition 4.1 If J has pure dimension, then

J = ann O�
Hom(O�/J , CHZ

�). (4.1)

That is, φ is in J if and only if φμ = 0 for all μ in Hom(O�/J , CHZ
�). It is also

well-known, see, e.g., [3, Theorem 1.5], that

Hom(O�/J , CHZ
�) � Ext p(O�/J , K�), (4.2)

soHom(O�/J , CHZ
�) is a coherent analytic sheaf. Locally we thus have a finite num-

ber of generators μ1, . . . , μm . In Example 6.9, we compute explicitly such generators
for the ideal J in Example 3.4.

Let ξ be a smooth (0, ∗)-form in �. Without first giving meaning to i∗, we define
the sheaf Ker i∗ by saying that ξ is in Ker i∗ if

ξ ∧ μ = 0, μ ∈ Hom(O�/J , CHZ
�).

Notice that if ξ is holomorphic, then, in view of the duality (4.1), ξ is in Ker i∗ if and
only if ξ is in J .

Definition 4.2 We define the sheaf of smooth (0, ∗)-forms on X as

E 0,∗
X := E 0,∗

� /Ker i∗. (4.3)

We will prove below that this sheaf is independent of the choice of embedding and
thus intrinsic on X .

Given φ in E 0,∗
� , let i∗φ be its image in E 0,∗

X . In particular, i∗ξ = 0 means that ξ

belongs to Ker i∗, which then motivates this notation. Notice that Ker i∗ is a two-
sided ideal in E 0,∗

� , i.e., if φ is in E 0,∗
� and ξ is in Ker i∗, then φ ∧ ξ and ξ ∧ φ are in

Ker i∗. It follows that we have an induced wedge product on E 0,∗
X such that

i∗(φ ∧ ξ) = i∗φ ∧ i∗ξ.
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Remark 4.3 It follows from Lemma 4.8 below that in case X = Z is reduced, then ξ

is in Ker i∗ if and only its pullback to Xreg vanishes. Thus our definition of E 0,∗
X is

consistent with the usual one in that case. ��

Lemma 4.4 Using the notation of (3.1),

ι∗ : HomO�̂
(O�̂/Ĵ ,W Z

�̂
) → HomO�

(O�/J ,W Z
�) (4.4)

is an isomorphism.

We can realize the mapping in (4.4) as the tensor product τ 
→ τ ∧ [w = 0], where
[w = 0] is the Lelong current in � associated with the submanifold {w = 0}.

Proof To begin with, ι∗ maps pseudomeromorphic (N̂ , p̂ + 	)-currents with support
on Z ⊂ �̂ to pseudomeromorphic (N , p + 	)-currents with support on Z ⊂ �. If, in
addition, τ has the SEP with respect to Z , then ι∗τ has, as well by (2.15). Moreover, if
τ is annihilated by Ĵ , then ι∗τ is annihilated by J = Ĵ ⊗1+ (w). Thus the mapping
(4.4) is well-defined, and it is injective since ι is injective.

Now assume that μ is in Hom(O�/J ,W Z
�). Arguing as in the proof of Corol-

lary 2.7, we see that μ = ι∗μ̂ for a current μ̂ inW Z
�̂
. Since Ĵ = ι∗J and Jμ = 0, it

follows that Ĵ μ̂ = 0. Thus (4.4) is surjective. ��

Since ι∗ is injective, ∂̄τ = 0 if and only if ∂̄ ι∗τ = 0, and thus we get

Corollary 4.5 Using the notation of (3.1),

ι∗ : HomO�̂
(O�̂/Ĵ , CHZ

�̂
) → HomO�

(O�/J , CHZ
�) (4.5)

is an isomorphism.

Corollary 4.6 Using the notation in (3.1),

ι∗ : E 0,∗
� /Ker i∗ → E 0,∗

�̂
/Ker j∗, (4.6)

is an isomorphism.

Proof It follows immediately from (4.5) that the mapping (4.6) is well-defined and
injective. Given ξ̂ in E 0,∗

�̂
, let ξ = ξ̂ ⊗1. Then ι∗ξ = ξ̂ and so (4.6) is indeed surjective

as well. ��

It follows from (4.6) and (4.3) that the sheaf E 0,∗
X is intrinsically defined on X .

Since ∂̄ maps Ker i∗ to Ker i∗, we have a well-defined operator ∂̄ : E 0,∗
X → E 0,∗+1

X
such that ∂̄2 = 0. Unfortunately the sheaf complex so obtained is not exact in general,
see, e.g., [6, Example 1.1] for a counterexample already in the reduced case.
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4.1 Local representation on Xreg of smooth forms

Recall that Xreg is the open subset of X , where the underlying reduced space is
smooth and OX is Cohen–Macaulay. Let us fix some point in Xreg , and assume that
we have local coordinates (z, w) such that Z = {w = 0}. We also choose generators
1, wα1 , . . . , wαν−1 of OX as a free OZ -module, which exist by Corollary 3.3, and
generators μ1, . . . , μm of Hom(O�/J , CHZ

�).
Notice that for each smooth (0, ∗)-form � in �, � 
→ � ∧ μ	 only depends on its

class φ in E 0,∗
X , and φ is in fact determined by these currents. By Proposition 2.5 each

of these currents can (locally) be represented by a tuple of currents in W0,∗
Z . Putting

all these tuples together, we get a tuple in (W0,∗
Z )M , where M = M1 + · · · + Mm and

Mj is the number of indices in (2.11) in the representation of μ j .
Recall from Corollary 3.3 that φ in OX has a unique representative

φ̂ = φ̂0 + φ̂1 ⊗ wα1 + · · · + φ̂ν−1 ⊗ wαν−1 , (4.7)

where φ̂ j are in OZ . We thus have an OZ -linear morphism

T : (OZ )ν → (OZ )M . (4.8)

The morphism is injective by Proposition 4.1, and the holomorphic matrix T is there-
fore generically pointwise injective.

Lemma 4.7 Each φ in E 0,∗
X has a unique representation (4.7) where φ̂ j are in E

0,∗
Z .

Proof To begin with notice that a given smooth φ must have at least one such repre-
sentation. In fact, taking the finite Taylor expansion (2.13) we can forget about high
order terms, since they must annihilate all the μ j , and the terms w̄ and dw̄ annihilate
all the μ j as well since they are pseudomeromorphic with support on {w = 0}. On
the other hand, each wα not in the set of generators must be of the form

wα = a0 + a1 ⊗ wα1 + · · · + aν−1 ⊗ wαν−1 + J ,

and hence φα ⊗ wα is of the form (4.7). Thus the representation exists. To show
uniqueness of the representation, we assume that φ̂ is in Ker i∗. Then the tuple (φ̂ j )

is mapped to 0 by the matrix T , and since T is generically pointwise injective we
conclude that each φ̂ j vanishes. ��

By the above proof we get

Lemma 4.8 A smooth (0, ∗)-form ξ in � is in Ker i∗ if and only if ξ is in E 0,∗
� J +

E 0,∗
� J̄Z + E 0,∗

� dJ̄Z on Xreg, where JZ is the radical sheaf of Z.

Remark 4.9 This is not the same as saying that ξ is in E 0,∗
� J +E 0,∗

� J̄Z +E 0,∗
� dJ̄Z at

singular points. For a simple counterexample, consider φ = x ȳ on the reduced space
Z = {xy = 0} ⊂ C

2.
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However, this can happen also when Z is irreducible at a point. For example, the
variety Z = {x2y − z2 = 0} ⊂ C

3 is irreducible at 0, but there exist points arbitrarily
close to 0 such that (Z , z) is not irreducible. In this case, the ideal of smooth functions
vanishing on (Z , 0) is strictly larger than E 0,0

� JZ ,0 +E 0,0
� J̄Z ,0 see [26, Proposition 9,

Chapter IV], and [25, Theorem 3.10, Chapter VI]. ��
Remark 4.10 It is easy to check that if we have the setting as in the discussion at the end
of Sect. 3 but (a j ) is instead a tuple in E

0,∗
Z , then we can still define (b j ) = L(a j ) if we

consider the derivatives in L as Lie derivatives; in fact, since a j has no holomorphic
differentials, L only acts on the smooth coefficients, and it is easy to check that
a0 ⊗ 1 + · · · + aν−1 ⊗ wαν−1 and b0 ⊗ 1 + · · · + bν−1 ⊗ ηβν−1 are equal modulo
E 0,∗

� J + E 0,∗
� J̄Z + E 0,∗

� dJ̄Z , and thus define the same element in E 0,∗
X . ��

For future needs we prove in Sect. 6.1:

Lemma 4.11 The morphism T is pointwise injective.

We can thus choose a holomorphic matrix A such that

0 → Oν
Z

T→ OM
Z

A→ OM ′
Z (4.9)

is pointwise exact, and we can also find holomorphic matrices S and B such that

I = T S + BA. (4.10)

5 Intrinsic (n, ∗)-currents on X

In analogy with the reduced case we have the following definition when X is possibly
non-reduced.

Definition 5.1 The sheaf Cn,q
X of (n, q)-currents on X is the dual sheaf of (0, n − q)-

test forms, i.e., forms in E 0,n−q
X with compact support.

Here, just as in the case of reduced spaces, cf., for example [19, Section 4.2], the
space of smooth forms E 0,n−q

X is equipped with the quotient topology induced by a
local embedding.

More concretely, this means that given an embedding i : X → �, currents ψ in
Cn,q
X precisely correspond to the (N , N−n+q)-currents τ on� that vanish onKer i∗.

Since Ker i∗ is a two-sided ideal in E 0,∗
� this holds if and only if ξ ∧ τ = 0 for all ξ

in Ker i∗. It is natural to write τ = i∗ψ so that

i∗ψ.ξ = ψ.i∗ξ.

Clearly, we get a mapping ∂̄ : Cn,q
X → Cn,q+1

X such that ∂̄2 = 0.

Proposition 5.2 If τ is in W Z
� and J τ = 0, then ξ ∧ τ = 0 for all smooth ξ such

that i∗ξ = 0.
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Proof Because of the SEP it is enough to prove that ξ ∧τ = 0 on Xreg . By assumption,
J annihilates τ , and by general properties of pseudomeromorphic currents, since τ has
support on Z , J̄Z and dJ̄Z annihilate τ . Thus the proposition follows by Lemma 4.8.

��
Definition 5.3 An (n, ∗)-current ψ on X is inWn,∗

X if i∗ψ is inHom(O�/J ,W Z
�).

By definition we thus have the isomorphism

i∗ : Wn,∗
X � Hom(O�/J ,W Z

�). (5.1)

It follows from Lemma 4.4 that Wn,∗
X is intrinsically defined.

Remark 5.4 By Corollary 2.7, this definition is consistent with the previous definition
of Wn,∗

X when X is reduced. We cannot define PMn,∗
X in the analogous simple way,

cf., Remark 2.8. ��
Definition 5.5 If ψ is in Wn,∗

X and a is an almost semi-meromorphic (0, ∗)-current
on � that is generically smooth on Z , then the product a ∧ ψ is a current in Wn,∗

X
defined as follows: By definition, i∗ψ is inHom(O�/J ,W Z

�) and by Proposition 2.4
and (2.8), one can define a ∧ i∗ψ in Hom(O�/J ,W Z

�); now a ∧ ψ is the unique
current inWn,∗

X such that i∗(a ∧ ψ) = a ∧ i∗ψ .

By (2.7),
a ∧ ψ = lim

ε→0+ χ(|h|2/ε)a ∧ ψ (5.2)

if h cuts out the Zariski singular support of a.

Definition 5.6 We let ωn
X be the sheaf of ∂̄-closed currents inWn,0

X .

This sheaf corresponds via i∗ to ∂̄-closed currents inHom(O�/J ,W Z
�) so we have

the isomorphism

i∗ : ωn
X � Hom(O�/J , CHZ

�). (5.3)

When X is reduced ωn
X is the sheaf of (n, 0)-forms that are ∂̄-closed in the Barlet–

Henkin–Passare sense. Letμ1, . . . , μm be a set of generators forHom(O�/J , CHZ
�).

They correspond via (5.3) to a set of generators h1, . . . , hm for the OX -module ωn
X .

We will also need a definition of PMn,∗
X . Let FX be the subsheaf of Cn,∗

X of τ such
that i∗τ is in PMZ

�. If τ is a section of FX andW is a subvariety of some open subset
of Z , then 1W i∗τ is in PMZ

�, and by (2.3), 1W i∗τ is annihilated byKer i∗. Hence we
can define 1W τ as the unique current in FX such that i∗1W τ = 1W i∗τ . Clearly, 1W τ

has support on W and it is easily checked that the computational rule (2.3) holds also
in FX . Moreover, FX is closed under ∂̄ since PMZ

� is.

Definition 5.7 The sheaf PMn,∗
X is the smallest subsheaf of FX that contains Wn,∗

X
and is closed under ∂̄ and multiplication by 1W for all germs W of subvarieties of Z .

In view of Proposition 2.2 this definition coincides with the usual definition in case
X is reduced. It is readily checked that the dimension principle holds forFX , and hence
it also holds for the (possibly smaller) sheaf PMn,∗

X , and in addition, (2.3) holds for

forms ξ in E 0,∗
X and τ in PMn,∗

X .
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6 Structure form on X

Let i : X → � ⊂ C
N be a local embedding as before, let p = N − n be the

codimension of X , and let J be the associated ideal sheaf on �. In a slightly smaller
set, still denoted �, there is a free resolution

0 → O(EN0)
fN0−→ · · · f3−→ O(E2)

f2−→ O(E1)
f1−→ O(E0) (6.1)

of O�/J ; here Ek are trivial vector bundles over � and E0 is the trivial line bundle.
This resolution induces a complex of vector bundles

0 → EN0

fN0−→ · · · f3−→ E2
f2−→ E1

f1−→ E0 (6.2)

that is pointwise exact outside Z . Let Xk be the set where fk does not have optimal
rank. Then

· · · ⊂ Xk+1 ⊂ Xk ⊂ · · · ⊂ X p+1 ⊂ X p = · · · = X1 = Z;

these sets are independent of the choice of resolution and thus invariants of O�/J .
Since O�/J has pure codimension p,

codim Xk ≥ k + 1, for k ≥ p + 1, (6.3)

see [14, Corollary 20.14]. Thus there is a free resolution (6.1) if and only if Xk = ∅
for k > N0. Unless n = 0 (which is not interesting in relation to the ∂̄-equation), we
can thus choose the resolution so that N0 ≤ N −1. The variety X is Cohen–Macaulay
at a point x , i.e., the sheaf O�/J is Cohen–Macaulay at x , if and only if x /∈ X p+1.
Notice that Z\(Xreg)red = Zsing ∪ X p+1. The sets Xk are independent of the choice
of embedding, see [9, Lemma 4.2], and are thus intrinsic subvarieties of Z = Xred ,
and they reflect the complexity of the singularities of X .

Let us now choose Hermitian metrics on the bundles Ek . We then refer to (6.1) as a
Hermitian resolution of O�/J in �. In �\Xk we have a well-defined vector bundle
morphism σk+1 : Ek → Ek+1, if we require that σk+1 vanishes on (Im fk+1)

⊥, takes
values in (Ker fk+1)

⊥, and that fk+1σk+1 is the identity on Im fk+1. Following [7,
Section 2] we define smooth Ek-valued forms

uk = (∂̄σk) · · · (∂̄σ2)σ1 = σk(∂̄σk−1) · · · (∂̄σ1) (6.4)

in �\X ; for the second equality, see [7, (2.3)]. We have that

f1u1 = 1, fk+1uk+1 − ∂̄uk = 0, k ≥ 1,

in�\X . If f := ⊕ fk and u := ∑
uk , then these relations can be written economically

as∇ f u = 1, where∇ f := f − ∂̄ . To make the algebraic machinery work properly one
has to introduce a superstructure on the bundle E =: ⊕Ek so that vectors in E2k are
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even and vectors in E2k+1 are odd; hence f , σ := ⊕σk , and u := ∑
uk are odd. For

details, see [7]. It turns out that u has a (necessarily unique) almost semi-meromorphic
extension U to �. The residue current R is defined by the relation

∇ f U = 1 − R. (6.5)

It follows directly that R is ∇ f -closed. In addition, R has support on Z and is a sum∑
Rk , where Rk is a pseudomeromorphic Ek-valued current of bidegree (0, k). It

follows from the dimension principle that R = Rp + Rp+1 + · · · + RN . If we choose
a free resolution that ends at level N − 1, then RN = 0. If X is Cohen–Macaulay and
N0 = p in (6.1), then R = Rp, and the ∇ f -closedness implies that R is ∂̄-closed.

If φ is in J then φR = 0 and in fact, J = ann R, see [7, Theorem 1.1].

Remark 6.1 In case J is generated by the single non-trivial function f , then we have

the free resolution 0 → O�
f→ O� → O�/( f ) → 0; thus U is just the principal

value current 1/ f and R = ∂̄(1/ f ). More generally, if f = ( f1, . . . , f p) is a complete
intersection, then

R = ∂̄
1

f p
∧ · · · ∧ ∂̄

1

f1
,

where the right hand side is the so-called Coleff–Herrera product of f , see for example
[1, Corollary 3.5]. ��

There are almost semi-meromorphic αk in �, cf., [7, Section 2] and the proof of
[6, Proposition 3.3], that are smooth outside Xk , such that

Rk+1 = αk+1Rk (6.6)

outside Xk+1 for k ≥ p. In view of (6.3) and the dimension principle, 1Xk+1Rk+1 = 0
and hence (6.6) holds across Xk+1, i.e., Rk+1 is indeed equal to the product αk+1Rk in
the sense of Proposition 2.1. In particular, it follows that Rk has the SEP with respect
to Z .

In this section, we let (z1, . . . , zN ) denote coordinates on CN , and let dz := dz1 ∧
· · · ∧ dzN .

Lemma 6.2 There is a matrix of almost semi-meromorphic currents b such that

R ∧ dz = bμ, (6.7)

where μ is a tuple of currents inHom(O�/J , CHZ
�).

Proof As in [6, Section 3], see also [32, Proposition 3.2], one can prove that Rp =
σFμ, where μ is a tuple of currents inHom(O�/J , CHZ

�) and σF is an almost semi-
meromorphic current that is smooth outside X p+1.

Let bp = σF and bk = αk · · ·αp+1σF for k ≥ p + 1. Then each bk is almost
semi-meromorphic, cf., [10, Section 4.1]. In view of (6.6) we have that Rk = bkμ
outside X p+1 since bk is smooth there. It follows by the SEP that it holds across X p+1
as well since Rk has the SEP with respect to Z . We then take b = bp + bp+1 + · · · . ��
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By Proposition 2.4 we get

Corollary 6.3 The current R ∧ dz is inHom(O�/J ,W Z
�).

From Lemma 6.2, Corollary 6.3, (5.1), and (5.3) we get the following analogue to
[6, Proposition 3.3]:

Proposition 6.4 Let (6.1) be a Hermitian resolution of O�/J in �, and let R be the
associated residue current. Then there exists a (unique) current ω inWn,∗

X such that

i∗ω = R ∧ dz. (6.8)

There is a matrix b of almost semi-meromorphic (0, ∗)-currents in �, smooth outside
of X p+1, and a tuple ϑ of currents in ωn

X such that

ω = bϑ. (6.9)

More precisely, ω = ω0 + ω1 + · · · + ωn,1 where ωk ∈ Wn,k(X, Ep+k), and if
f j := f p+ j , then

f 0ω0 = 0, f j+1ω j+1 − ∂̄ω j = 0, for j ≥ 0. (6.10)

Wewill also use the short-hand notation∇ f ω = 0.As in the reduced case, following
[6], we say thatω is a structure form for X . The products in (6.9) are defined according
to Definition 5.5.

Remark 6.5 Recall that X p+1 = ∅ if X is Cohen–Macaulay, so in that case ω = bϑ ,
where b is smooth. If we take a free resolution of length p, then ω = ω0, and ∂̄ω0 =
f 1ω1 = 0, so ω is in ωn

X . ��
Remark 6.6 If X = { f = 0} is a reduced hypersurface in �, then R = ∂̄(1/ f ) and ω

is the classical Poincaré residue form on X associated with f , which is a meromorphic
form on X . More generally, if X is reduced, since forms inωn

X are then meromorphic,
by (6.9), ω can be represented by almost semi-meromorphic forms on X .

We now consider the case when X is non-reduced. We recall that a differential
operator is a Noetherian operator for an ideal J if Lϕ ∈ √J for all ϕ ∈ J . It is
proved by Björk, [13], see also [32, Theorem 2.2], that if μ ∈ Hom(O�/J , CHZ

�),
then there exists a Noetherian operator L for J with meromorphic coefficients such
that the action of μ on ξ equals the integral of Lξ over Z . By (5.3), the action of h in
ωn

X on ξ in E 0,∗
X can then be expressed as

h.ξ =
∫

Z
Lξ.

1 In [6, Proposition 3.3], the sum ends with ωn−1 instead of ωn , which, as remarked above, one can indeed
assume when n ≥ 1 and the resolution is chosen to be of length ≤ N − 1.
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572 M. Andersson, R. Lärkäng

One can then verify using this formula and (6.9) that the action of the structure form
ω on a test form ξ in E 0,∗

X equals

ω.ξ =
∫

Z
L̃ξ,

where L̃ is now a tuple of Noetherian operators for J with almost semi-meromorphic
coefficients, cf., [32, Section 4]. ��

Notice that (6.1) gives rise to the dual Hermitian complex

0 → O(E∗
0 )

f ∗
1→ · · · → O(E∗

p−1)
f ∗
p→ O(E∗

p)
f ∗
p+1−→ · · · . (6.11)

Let ξ = ξ0 ∧ dz be a holomorphic section of the sheaf

Hom(Ep, K�) � O(E∗
p) ⊗ O(K�)

such that f ∗
p+1ξ0 = 0.Then ∂̄(ξ0ω0) = ±ξ0∂̄ω0 = ±ξ0 f p+1ω1 = ±( f ∗

p+1ξ0)ω1 = 0,
so that ξ0ω0 is inωn

X .Moreover, if ξ0 = f ∗
pη for η inO(E∗

p−1), then ξ0ω0 = f ∗
pηω0 =

±η f pω0 = 0. We thus have a sheaf mapping

Hp(Hom(E•, K�)) → ωn
X , ξ0 ∧ dz 
→ ξ0ω0. (6.12)

Proposition 6.7 Themapping (6.12) is an isomorphism,which establishes an intrinsic
isomorphism

Ext p(O�/J , K�) � ωn
X . (6.13)

Proof If h is in ωn
X , then i∗h is inHom(O�/J , CHZ

�). We have mappings

Hp(Hom(E•, K�)) → ωn
X

�→ Hom(O�/J , CHZ
�), (6.14)

where the first mapping is (6.12), and the second is h 
→ i∗h. In view of (6.8), the
composedmapping is ξ = ξ0∧dz 
→ ξ Rp = ξ0Rp∧dz.2 This mapping is an intrinsic
isomorphism

Ext p(O�/J , K�) � Hom(O�/J , CHZ
�)

according to [3, Theorem 1.5]. It follows that (6.12) also establishes an intrinsic
isomorphism. ��

In particular it follows that ωn
X is coherent, and we have:

If ξ1, . . . , ξm are generators of Hp(Hom(E∗• , K�))), where ξ	 = ξ	
0 ∧ dz, then

h	 := ξ	
0ω0, 	 = 1, . . . ,m, generate the OX -module ωn

X , and μ	 = i∗h	 = ξ	Rp

generate the O�-module Hom(O�/J , CHZ
�).

2 There is a superstructure involved, with respect to which Rp has even degree, and therefore dz ∧ Rp =
Rp ∧ dz, explaining the lack of a sign in the last equality, see [6] or [7].
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The ∂̄-equation on a non-reduced analytic space 573

Remark 6.8 The isomorphism

Hp(Hom(E•, K�))
�→ Hom(O�/J , CHZ

�) (6.15)

was well-known since long ago, the contribution in [3] was the realization ξ 
→ ξ Rp.��

We give here an example where we can explicitly compute generators of
Hom(O�/J , CHZ

�).

Example 6.9 Let J be as in Example 3.4. We claim thatHom(O�/J , CHZ
�) is gen-

erated by

μ1 := ∂̄
1

w1
∧ ∂̄

1

w2
∧ dz ∧ dw and μ2 :=

(

z1∂̄
1

w2
1

∧ ∂̄
1

w2
+ z2∂̄

1

w1
∧ ∂̄

1

w2
2

)

∧ dz ∧ dw.

In order to prove this claim, we use the comparison formula for residue currents from
[21], which states that if O(F•) and O(E•) are free resolutions of O�/I and O�/J ,
respectively, where I and J have codimension ≥ p, and a : F• → E• is a morphism
of complexes, then there exists a Hom(F0, Ep+1)-valued current Mp+1 such that
RE
p a0 = apRF

p + f p+1Mp+1. If ξ is in Ker f ∗
p+1, we thus get that

ξ RE
p a0 = ξapR

F
p . (6.16)

We will apply this with O�(E•) as the free resolution

0 → O�
f3−→ O4

�

f2−→ O4
�

f1−→ O� → O�/J → 0,

where

f3 =

⎡

⎢⎢
⎣

w2
−w1
z2

−z1

⎤

⎥⎥
⎦ , f2 =

⎡

⎢⎢
⎣

z2 0 −w2 0
−z1 z2 w1 −w2
0 −z1 0 w1

−w1 −w2 0 0

⎤

⎥⎥
⎦ and

f1 = [
w2
1 w1w2 w2

2 z2w1 − z1w2
]
,

and the Koszul complex (F, δw2) generated by w2 := (w2
1, w

2
2), which is a free

resolution of O/(w2
1, w

2
2). We then take the morphism of complexes a : F• → E•

given by
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574 M. Andersson, R. Lärkäng

a2 =

⎡

⎢⎢
⎣

0
0
w2
w1

⎤

⎥⎥
⎦ , a1 =

⎡

⎢⎢
⎣

1 0
0 0
0 1
0 0

⎤

⎥⎥
⎦ and a0 = [

1
]
.

Since the current RF
2 is equal to the Coleff–Herrera product ∂̄(1/w2

1) ∧ ∂̄(1/w2
2),

cf., Remark 6.1, we thus get by (6.16) and Remark 6.8 that Hom(O�/J , CHZ
�) is

generated by

(Ker f ∗
3 )a2∂̄

1

w2
1

∧ ∂̄
1

w2
2

.

A straightforward calculation gives the generators μ1 and μ2 above. ��

6.1 Proof of Lemma 4.11

Since T is generically injective, it is clearly injective if n = 0. We are going to reduce
to this case. Fix the point 0 ∈ Z and let I be the ideal generated by z = (z1, . . . , zn).

LetO(E•) be a free Hermitian resolution ofO�/J of minimal length p = N−n at
0 and let RE be the associated residue current. Recall that the canonical isomorphism
(6.15) is realized by ξ 
→ ξ RE

p . Let F• be the Koszul complex generated by z; then
O(F•) is a free resolution ofO�/I. SinceJ and I are Cohen–Macaulay and intersect
properly in �, the complex O�((E ⊗ F)•) is a free resolution of O�/(J + I), and
the corresponding residue current is

RE⊗F
N = RE

p ∧ RF
n

according to [2, Theorem 4.2]. From [3, Theorem 1.5] again it follows that the canon-
ical isomorphism

HN (Hom((E ⊗ F)•, K�)) → Hom(O�/(J + I), CH{0}
� )

is given by η 
→ ηRE⊗F
N .

Let μ1, . . . , μm be a minimal set of generators for Hom(O�/J , CHZ
�) at 0.

Then μ j = ξ j RE
p , where ξ j is a minimal set of generators for Hp(Hom(E•, K�)).

Notice that

HN (Hom((E ⊗ F)•, K�)) = Hp(Hom(E•, K�)) ⊗O Hn(Hom(F•,O�)).

SinceHn(Hom(F•,O�)) is generated by 1, it follows thatHN (Hom((E⊗F)•, K�))

is generated by ξ j ⊗ 1. We conclude thatHom(O�/(J + I), CH{0}
� ) is generated by

ξ j ⊗ 1 · RE
p ∧ RF

n = μ j ∧ μz , j = 1, . . . ,m, where RF
n = μz = ∂̄(1/z1).

If 1, . . . , wαν−1 is a basis for O�/J as an OZ -module, then it is also a basis for
OX0 := O�/(J + I) as a module over O{0} � C. Since φ∂̄(1/z1) = φ(0, ·)∂̄(1/z1)
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we have that

φ(z, w)μ j ∧ μz = φ(z, w)
∑

a j
	 (z)∂̄

1

w	+1 ∧ ∂̄
1

z1

= φ(0, w)
∑

a j
	 (0)∂̄

1

w	+1 ∧ ∂̄
1

z1 .

The morphism constructed in (4.8) for X0 instead of X is then T0 = T (0), where T is
the morphism (4.8) for X . Thus T (0) is injective.

7 The intrinsic sheaf W0,∗
X on X

Our aim is to find a fine resolution of OX and since the complex (1.1) is not exact in
general when X is singular we have to consider larger fine sheaves; we first define
sheaves W0,∗

X ⊃ E 0,∗
X of (0, ∗)-currents. Given a local embedding i : X → � at a

point on Xreg and local coordinates (z, w) as before, it is natural, in view of Lemma
4.7, to require that an element inW0,∗

X shall have a unique representation

φ = φ̂0 ⊗ 1 + φ̂1 ⊗ wα1 + · · · + φ̂ν−1 ⊗ wαν−1 , (7.1)

where φ̂ j are inW0,∗
Z . In view of Remark 4.10 we should expect that the same trans-

formation rules hold as for smooth (0, ∗)-forms. In particular it is then necessary that
W0.∗

Z is closed under the action of holomorphic differential operators, which in fact is
true, see Proposition 7.11 below. We must also define a reasonable extension of these
sheaves across Xsing . Before we present our formal definition we make a preliminary
observation.

Lemma 7.1 If φ has the form (7.1) and τ is inHom(O�/J , CHZ
�), expressed in the

form (2.11), then

φ ∧ τ :=
∑

i

∑

γ≥αi

φ̂i ∧ τγ ∧ dz ⊗ ∂̄
dw

wγ−αi+1 (7.2)

is inHom(O�/J ,W Z
�).

Proof The right hand side defines a current in W Z
� since φ̂i are in W0,∗

Z and τγ are
in OZ . We have to prove that it is annihilated by J . Take ξ in J . On the subset of Z
where φ̂0, . . . , φ̂ν−1 are all smooth, φ ∧ τ , as defined above, is just multiplication of
the smooth form φ by τ , and thus ξφ ∧ τ = 0 there. We have a unique representation

ξφ ∧ τ =
∑

	≥0

a	(z) ∧ dz ⊗ ∂̄
dw

w	+1 ,

with a	 inW0,∗
Z . Since a	 vanish on the set where all φ̂ j are smooth, we conclude from

Proposition 2.9 that a	 vanish identically. It follows that ξφ ∧ τ = 0. ��

123



576 M. Andersson, R. Lärkäng

If φ has the form (7.1) in a neighborhood of some point x ∈ Xreg and h is in ωn
X ,

then we get an element φ ∧ h in Wn,∗
X defined by i∗(φ ∧ h) = φ ∧ i∗h. It follows

that φ in this way defines an element inHomOX (ωn
X ,Wn,∗

X ). This sheaf is global and
invariantly defined and so we can make the following global definition.

Definition 7.2 W0,∗
X = HomOX (ωn

X ,Wn,∗
X ).

If φ is in W0,∗
X and h is in ωn

X , we consider φ(h) as the product of φ and h, and
sometimes write it as φ ∧ h.

SinceWn,∗
X areE 0,∗

X -modules,W0,∗
X are aswell. Beforewe investigate these sheaves

further, we give some motivation for the definition. First notice that we have a natural
injection, cf., Proposition 4.1,

OX → Hom
(
ωn

X ,ωn
X

)
, φ 
→ (h 
→ φh). (7.3)

Theorem 7.3 The mapping (7.3) is an isomorphism in the Zariski-open subset of X
where it is S2.

This is the subset of X where codim Xk ≥ k + 2, k ≥ p + 1, cf., Sect. 6. Thus
it contains all points x such that OX,x is Cohen–Macaulay. In particular, (7.3) is an
isomorphism in Xreg .

Theorem 7.3 is a consequence of the results in [22]. If X has pure dimension p,
there is an injective mapping

OX → Hom
(
Ext p(OX , K�), CHZ

�

)
, (7.4)

which by [22, Theorem 1.2 and Remark 6.11] is an isomorphism if and only if OX is
S2. Since the image of such a morphism must be annihilated by J by linearity, it is
indeed a morphism

OX → Hom
(
Ext p(OX , K�),Hom(O�/J , CHZ

�)
)

. (7.5)

In view of (4.2) and (5.3), (7.5) corresponds to a morphism OX → Hom(ωn
X ,ωn

X ),
and the fact that it is themorphism (7.3) is a rather simple consequence of the definition
of the morphism (7.4) in [22, (6.9)].

As mentioned in the introduction, Theorem 7.3 can be seen as a reformulation of a
classical result of Roos, [30], which is the same statement about the injection

O�/J → Ext p (Ext p(O�/J , K�), K�

) ; (7.6)

here we assume that the ideal has pure dimension. The equivalence of the morphisms
(7.4) and (7.6) is discussed in [22, Corollary 1.4].

Let us now consider the case when X is reduced. Since sections of ωn
X are mero-

morphic, see [6, Example 2.8], and thus almost semi-meromorphic and generically
smooth, by Proposition 2.4 (with Z = X = �) we can extend (7.3) to a morphism

W0,∗
X → Hom

(
ωn

X ,Wn,∗
X

)
. (7.7)
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Lemma 7.4 When X is reduced (7.7) is an isomorphism.

Thus Definition 7.2 is consistent with the previous definition of W0,∗
X when X is

reduced.

Proof Clearly eachφ inW0,∗
X defines an elementα inHom(ωn

X ,Wn,∗
X ) by h 
→ φ∧h.

If we apply this to a generically nonvanishing hwe see by the SEP that (7.7) is injective.
For the surjectivity, take α in Hom(ωn

X ,Wn,∗
X ). If h′ is nonvanishing at a point

on Xreg , then it generates ωn
X and thus α is determined by φ := αh′ there. By

[10, Theorem 3.7], φ = ψ ∧ h′ for a unique current ψ in W0,∗
X so by OX -linearity

αh = ψ ∧ h for any h. Hence, ψ is well-defined as a current in W0,∗
X on Xreg.

We must verify that ψ has an extension inW0,∗
X across Xsing . Since such an exten-

sion must be unique by the SEP, the statement is local on X . Thus we may assume that
α is defined on thewhole of X and that there is a generically nonvanishing holomorphic
n-form γ on X . Then αγ is a section of Wn,∗(X).

Let us choose a smooth modification π : X ′ → X that is biholomorphic outside
Xsing . Then π∗γ is a holomorphic n-form on X ′ that is generically non-vanishing.
We claim that there is a current τ in Wn,0(X ′) such that π∗τ = αγ . In fact, τ exists
on π−1(Xreg) since π is a biholomorphism there. Moreover, by [4, Proposition 1.2],
αh is the direct image of some pseudomeromorphic current τ̃ on X ′, and is therefore
also the image of the (unique) current τ = 1π−1(Xreg)

τ̃ inWn,∗(X ′).
By [10, Theorem 3.7] again τ is locally of the form ξ ∧ ds, where ξ is inW0,∗

X ′ and
ds = ds1 ∧ · · · ∧ dsn for some local coordinates s. Hence, τ is a KX ′ -valued section
of W0,∗(X ′), so τ/π∗γ is a section of W0,∗(X ′). Now � := π∗(τ/π∗γ ) is a section
ofW0,∗(X). On Xreg ∩ {γ �= 0} we thus have that � ∧ γ = π∗τ = αγ = ψ ∧ γ and
so � = ψ there. By the SEP it follows that � coincides with ψ on Xreg and is thus
the desired pseudomeromorphic extension to X . ��

In view of (5.1) and (5.3)we have, given a local embedding i : X → �, the extrinsic
representation

W0,∗
X � Hom

(
Hom

(
O�/J , CHZ

�

)
,Hom

(
O�/J ,W Z

�

))
, φ 
→ (i∗h 
→ i∗(φ ∧ h)).

(7.8)

Lemma 7.5 Assume that Xreg → � is a local embedding and (z, w) coordinates as

before. Each section φ inW0,∗
X has a unique representation (7.1) with φ̂ j inW0,∗

Z .

A current with a representation (7.1) is considered as an element of W0,∗
X =

Hom(ωn
X ,Wn,∗

X ) in view of the comment after Lemma 7.1.

Proof From (4.9) we get an induced sequence

0 →
(
W0,∗

Z

)ν T−→
(
W0,∗

Z

)M A−→
(
W0,∗

Z

)M ′
, (7.9)

which is also exact. In fact, T in (7.9) is clearly injective, and by (4.10), if ξ in (W0,∗
Z )M

and Aξ = 0, then Tη = ξ , if η = Sξ .
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Now take φ inHom(ωn
X ,Wn,∗

X ). Let us choose a basis μ1, . . . , μm forωn
X and let

φ̃ be the element in (W0,∗
Z )M obtained from the coefficients of φμ j when expressed

as in (2.11), cf., Sect. 4.1. We claim that Aφ̃ = 0. Taking this for granted, by the
exactness of (7.9), φ̃ is the image of the tuple φ̂ = Sφ̃. Now φ̂ ∧μ j = φμ j since they
are represented by the same tuple in (W0,∗

Z )M . Thus φ̂ gives the desired representation
of φ.

In view of Proposition 2.9 it is enough to prove the claim where φ̃ is smooth. Let
us therefore fix such a point, say 0, and show that (Aφ̃)(0) = 0. From the proof
of Lemma 4.11, if we let I be the ideal generated by z, and let X0 be defined by
OX0 := O�/(J + I), then μ1 ∧ μz, . . . , μm ∧ μz generate ω0

X0
. If we let φ0 be the

morphism in Hom(ω0
X0

,ω0
X0

) given by φ0(μ
i ∧ μz) := φμi ∧ μz (which indeed

gives a well-defined such morphism), then, as in the proof of Lemma 4.11, φ̃0 = φ̃(0).
In addition, the sequence (4.9) for X0 is

0 → C
ν T (0)→ C

M A(0)→ C
M ′

.

Since X0 is 0-dimensional, the morphism OX0 → Hom(ωX0 ,ωX0) is an isomor-
phism by Theorem 7.3, and thus φ0 is given as multiplication by a function in OX0 ,
which we also denote by φ0, i.e., φ̃0 = T (0)φ̂0. Hence, A(0)φ̃0 = A(0)T (0)φ̂0 = 0,
and thus (Aφ̃)(0) = 0. ��
Example 7.6 (Meromorphic functions) Assume that we have a local embedding X →
�. Given meromorphic functions �,�′ in � that are holomorphic generically on Z ,
we say that � ∼ �′ if and only if � − �′ is in J generically on Z . If � = A/B
and �′ = A′/B ′, where B and B ′ are generically non-vanishing on Z , the condition
is precisely that AB ′ − A′B is in J . We say that such an equivalence class is a
meromorphic function φ on X , i.e., φ is in MX . Clearly we have OX ⊂ MX . We
claim that

MX ⊂ W0,∗
X .

To see this, first notice that if we take a representative � in M� of φ, then it can be
considered as an almost semi-meromorphic current on�with Zariski-singular support
of positive codimension on Z , since it is generically holomorphic on Z . As inDefinition
5.5 we therefore have a current �∧ h inWn,0

X for h inωn
X . Another representative �′

of φ will give rise to the same current generically and hence everywhere by the SEP.
Thus φ defines a section of Hom(ωn

X ,Wn,∗
X ) = W0,∗

X . ��

By definition, a current φ in W0,∗
X can be multiplied by a current h in ωn

X , and
the product φ ∧ h lies in Wn,∗

X . It will be crucial that we can extend to products by
somewhat more general currents. Notice that ωn

X is a subsheaf of Cn,∗
X , which is an

E 0,∗
X -module. Thus, we can consider the subsheaf E 0,∗

X ωn
X of Cn,∗

X which consists of

finite sums
∑

ξi ∧ hi , where ξi are in E
0,∗
X and hi are in ωn

X .
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Lemma 7.7 Each φ in W0,∗
X = HomOX (ωn

X ,Wn,∗
X ) has a unique extension to a

morphism inHomE 0,∗
X

(E 0,∗
X ωn

X ,Wn,∗
X ).

Proof The uniqueness follows by E 0,∗
X -linearity, i.e., if b = ξ1 ∧ h1 + · · · + ξr ∧ hr

is in E 0,∗
X ωn

X , then one must have

φb =
∑

i

(−1)(deg ξi )(degφ)ξi ∧ φhi . (7.10)

We must check that this is well-defined, i.e., that the right hand side does not depend
on the representation ξ1 ∧ h1 + · · · + ξr ∧ hr of b. By the SEP, it is enough to
prove this locally on Xreg, and we can then assume that φ has a representation (7.1).
By Proposition 2.9, it is then enough to prove that it is well-defined assuming that
φ̂0, . . . , φ̂ν−1 in (7.1) are all smooth. In this case, the right hand side of (7.10) is
simply the product of ξ1 ∧ h1 + · · · + ξr ∧ hr = b by the smooth form φ in E 0,∗

X , and
this product only depends on b. ��
Corollary 7.8 Let φ be a current inW0,∗

X and let α be a current inWn,∗
X of the form

α = ∑
ai ∧ hi , where ai are almost semi-meromorphic (0, ∗)-currents on � which

are generically smooth on Z, and hi are in ωn
X . Then one has a well-defined product

φ ∧ α =
∑

(−1)(deg ai )(degφ)ai ∧ (φ ∧ hi ). (7.11)

Proof The right hand side of (7.11) exists as a current inWn,∗
X , and we must prove is

that it only depends on the current α and not on the representation
∑

ai ∧ hi . Notice
that all the ai are smooth outside some subvariety V of Z and there the right hand side
of (7.11) is the product of φ and α in E 0,∗

X ωn
X , cf., Lemma 7.7. It follows by the SEP

that the right hand side only depends on α. ��
Remark 7.9 Recall from (6.9) that ω = bϑ . If φ is in W0,∗

X , then we can define the
product φ ∧ ω by Corollary 7.8.

Expressed extrinsically, if μ = i∗ϑ , and if we write R ∧ dz = bμ as in
Lemma 6.2, then we can define the product R ∧ dz ∧ φ := bμ ∧ φ as a current
inHom(O�/J ,W Z

�). ��

Lemma 7.10 Assume that φ is inW0,∗
X , and that φ ∧ ω = 0 for some structure form

ω, where the product is defined by Remark 7.9. Then φ = 0.

Proof Considering the component with values in Ep, we get that φ ∧ ω0 = 0. By
Proposition 6.7, any h in ωn

X can be written as h = ξω0, where ξ is a holomorphic
section of E∗

p, so by O-linearity, φ ∧ h = 0, i.e., φ = 0. ��
We end this section with the following result, first part of [10, Theorem 3.7]. We

include here a different proof than the one in [10], since we believe the proof here is
instructive.
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Proposition 7.11 If Z is smooth, then WZ is closed under holomorphic differential
operators.

Proof Let τ be any current in WZ . It suffices to prove that if ζ are local coordinates
on Z , then ∂τ/∂ζ1 is inWZ . Consider the current

τ ′ = τ ⊗ ∂̄
dw

2π iw2

on the manifold Y := Z ×Cw. Clearly τ ′ has support on Z , and it follows from (2.5)
that τ ′ is inW Z

Y . Let

p : (z, w) 
→ ζ = (z1 + w, z2, . . . , zn),

which is just a change of variables on Y followed by a projection. It follows from (2.4)
that p∗τ ′ is inWZ . Since

∂̄
dw

2π iw2 · ξ(w) = ∂ξ

∂w
(0)

it is readily verified that p∗τ ′ = ∂τ/∂ζ1, so we conclude that ∂τ/∂ζ1 is inWZ . ��

8 The ∂̄-operator on W0,∗
X

We already know the meaning of ∂̄ on Wn,∗
X , and we now define ∂̄ on W0,∗

X .

Definition 8.1 Assume that φ, v are inW0,∗
X , We say that ∂̄v = φ if

∂̄(v ∧ h) = φ ∧ h, h ∈ ωn
X . (8.1)

If we have an embedding X → �, (8.1) means, cf., (7.8), that

∂̄(v ∧ μ) = φ ∧ μ, μ ∈ Hom
(
O�/J , CHZ

�

)
. (8.2)

In view of Remark 7.9 we can define the product φ ∧ ω for φ inW0,∗
X .

Definition 8.2 We say that v belongs to Dom ∂̄X if v is in Dom ∂̄ , i.e., ∂̄v = φ for
some φ and in addition ∂̄(v∧ω), a priori only inPMn,∗

X , is inWn,∗
X , for each structure

form ω from any possible embedding.

If X is Cohen–Macaulay, then any such ω is of the form a1h1 +· · ·+amhm , where
h j are in ωn

X and a j are smooth, see Remark 6.5, and hence Dom ∂̄X coincides with
Dom ∂̄ in this case.
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Example 8.3 Assume that v is in E 0,∗
X and φ = ∂̄v in the sense in Section 4. Then

clearly

∂̄(v ∧ ω) = φ ∧ ω + (−1)deg vv ∧ ∂̄ω.

Since ∂̄ω = f ω, and Wn,∗
X is closed under multiplication with forms in E 0,∗

X , we get
that ∂̄(v ∧ ω) is inWn,∗

X , so v is in Dom ∂̄X and ∂̄Xv = φ.

If w is in Dom ∂̄X and v is in E 0,∗
X , then

∂̄(v ∧ w ∧ ω) = ∂̄v ∧ w ∧ ω + (−1)deg vv ∧ ∂̄(w ∧ ω).

Thus v ∧w is in Dom ∂̄X , and the Leibniz rule ∂̄(v ∧w) = ∂̄v ∧w + (−1)deg vv ∧ ∂̄w

holds. ��
Let χδ = χ(|h|2/δ)where h is a tuple of holomorphic functions that cuts out Xsing .

Lemma 8.4 If v is in W0,∗(X), and it is in Dom ∂̄X on Xreg, then v is in Dom ∂̄X on
all of X if and only if

∂̄χδ ∧ v ∧ ω → 0, δ → 0, (8.3)

for all structure forms ω. In this case,

− ∇ f (v ∧ ω) = ∂̄v ∧ ω. (8.4)

Proof Since Wn,∗
X is closed under multiplication by f , v is in Dom ∂̄X if and only if

∇ f (v ∧ ω) is in Wn,∗
X for all structure forms ω. Since v is in Dom ∂̄X on Xreg, thus

∇ f (v ∧ ω) is inWn,∗
X on Xreg. By (2.2), ∇ f (v ∧ ω) is then inWn,∗

X on all of X if and
only if

1Xreg∇ f (v ∧ ω) = ∇ f (v ∧ ω). (8.5)

By the Leibniz rule,

∇ f (χδv ∧ ω) = −∂̄χδ ∧ v ∧ ω + χδ∇ f (v ∧ ω). (8.6)

Sincev is inW0,∗
X ,v∧ω is inWn,∗

X , so the left hand sideof (8.6) tends to∇ f (v∧ω)when
δ → 0,whereas the second term on the right hand side of (8.6) tends to 1Xreg∇ f (v∧ω).
Thus (8.5) holds if and only if (8.3) does. Thus the first statement in the lemma is
proved.

Recall, cf., (6.9), that ω = bϑ where b is smooth on Xreg and ϑ is in ωn
X . By the

Leibniz rule thus −∇ f (v ∧ ω) = ∂̄v ∧ ω on Xreg, since ∇ f ω = 0. Therefore, (8.6) is
equivalent to −∇ f (χδv ∧ ω) = ∂̄χδ ∧ v ∧ ω + χδ∂̄v ∧ ω. If (8.3) holds, we therefore
get (8.4) when δ → 0. ��
Remark 8.5 In case X is reduced the definition of ∂̄X is precisely the same as in [6].
However, the definition of ∂̄v = φ given here, for v, φ in W0,∗

X , does not coincide
with the definition in, e.g., [6]. In fact, that definition means that ∂̄(v ∧ h) = φ ∧ h for
all smooth h in ωn

X , which in general is a strictly weaker condition. For example, for
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any weakly holomorphic function v, we have ∂̄(v ∧ h) = 0 for all smooth h in ωn
X ,

while if X is a reduced complete intersection, or more generally Cohen–Macaulay,
then ∂̄(v ∧ h) = 0 for all h in ωn

X is equivalent to v being strongly holomorphic, see
[33, p. 124] and [2]. ��

We conclude this section with a lemma that shows that ∂̄ means what one should
expect when φ, v are expressed with respect to a local basis wα j for OX over OZ as
in Lemma 7.5.

Lemma 8.6 Assume that we have a local embedding Xreg → � and φ, v in W0,∗
X

represented as in (7.1). Then ∂̄v = φ if and only if

∂̄ v̂ j = φ̂ j , j = 0, . . . , ν − 1. (8.7)

Proof Let us use the notation from the proof of Lemma 7.5. Recall that v̂ = Sṽ. In
view of (8.2) and (2.12), ˜̄∂v = ∂̄ ṽ. Since S is holomorphic therefore ̂̄∂v = S ˜̄∂v =
S∂̄ ṽ = ∂̄(Sṽ) = ∂̄ v̂. ��

9 Solving ∂̄u = φ on X

We will find local solutions to the ∂̄-equation on X by means of integral formulas.
We use the notation and machinery from [6, Section 5]. Let i : X → � ⊂ C

N be a
local embedding such that � is pseudoconvex, let �′ ⊂⊂ � be a relatively compact
subdomain of �, and let X ′ = X ∩ �′.

Theorem 9.1 There are integral operators

K : E 0,∗+1(X) → W0,∗(X ′) ∩ Dom ∂̄X , P : E 0,∗(X) → E 0,∗(X ′)

such that, for φ ∈ E 0,k(X),

φ = ∂̄Kφ + K (∂̄φ) + Pφ. (9.1)

The operators K and P are described below; they depend on a choice of weight g.
Since � is Stein one can find such a weight g that is holomorphic in z, by which we
mean that it depends holomorphically on z ∈ �′ and has no components containing
any dz̄i , cf., Example 5.1 in [6]. In this case, Pφ is holomorphic when k = 0, and
vanishes when k ≥ 1, i.e.,

φ = ∂̄Kφ + K (∂̄φ), φ ∈ E 0,k(X), k ≥ 1. (9.2)

If ∂̄φ = 0 in �, and k ≥ 1, then Kφ is a solution to ∂̄v = φ. If k = 0, then φ = Pφ is
holomorphic. It follows that a smooth ∂̄-closed function is holomorphic. In the reduced
case this is a classical theorem of Malgrange [24]. In Sect. 10 we prove that Kφ is
smooth on Xreg .
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Wenow turn to the definition of K and P . For future need, inSect. 11,wedefine them
acting on currents inW0,∗(X) and not only on smooth forms. Let π : �ζ ×�′

z → �′
z

be the natural projection. Let us choose a holomorphic Hefer form3 H , a smooth
weight g with compact support in � with respect to z ∈ �′ ⊂⊂ �, and let B be the
Bochner–Martinelli form. Since we are only are concerned with (0, ∗)-forms, we will
here assume that H and B only have holomorphic differentials in ζ , i.e., the factors
dηi = dζi − dzi in H and B in [6] should be replaced by just dζi .

If γ is a current in �ζ × �′
z we let (γ )N be the component of bidegree (N , ∗) in ζ

and (0, ∗) in z, and let ϑ(γ ) be the current such that

ϑ(γ ) ∧ dζ = (γ )N . (9.3)

Consider now μ inHom(O�/J ,W Z
�) and φ inW0,∗

X . We can give meaning to

(g ∧ HR(ζ ))N ∧ φ(ζ ) ∧ μ(z) (9.4)

as a tensor product of currents in the following way: first of all, by Remark 7.9, we can
form the product R(ζ )∧ dζ ∧φ(ζ ) as a current inW Z

� . In view of [11, Corollary 4.7]

the tensor product R(ζ ) ∧ dζ ∧ φ(ζ ) ∧ μ(z) is in W Z×Z ′
�ζ ×�′

z
, where Z ′ = Z ∩ �′.

Finally, we multiply this with the smooth form ϑ(g ∧ H) to obtain (9.4). Similarly,
outside of �, the diagonal in � × �′, where B is smooth, we can define

(B ∧ g ∧ HR(ζ ))N ∧ φ(ζ ) ∧ μ(z) (9.5)

as a tensor product of currents.

Lemma 9.2 For μ in Hom(O�′/J ,W Z ′
�′ ) and φ ∈ W0,∗(X), the current (9.5), a

priori defined as a current inW Z×Z ′\�
�ζ ×�′

z\� has an extension across �. The current (9.4)

and the extension of (9.5) depend O�/J -bilinearly on μ and φ, and are such that

Kφ ∧ μ := π∗
(
(B ∧ g ∧ HR(ζ ))N ∧ φ(ζ ) ∧ μ(z)

)
(9.6)

and
Pφ ∧ μ := π∗

(
(g ∧ HR(ζ ))N ∧ φ(ζ ) ∧ μ(z)

)
(9.7)

are inHom(O�′/J ,W Z ′
�′ ).

It follows that Kφ∧μ and Pφ∧μ areC-linear in φ andO�′/J -linear inμ. In view
of (7.8), by considering μ inHom(O�′/J , CHZ ′

�′), we have defined linear operators

K : W0,∗+1(X) → W0,∗(X ′), P : W0,∗(X) → W0,∗(X ′). (9.8)

Proof of Lemma 9.2 In order to define the extension of (9.5) across �, we note first
that since B is almost semi-meromorphicwithZariski singular support�,ϑ(B∧g∧H)

3 We are only concerned with the component H0 of this form, so for simplicity we write just H .
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is an almost semi-meromorphic (0, ∗)-current on �ζ × �′
z , which is smooth outside

the diagonal. We can thus form the current ϑ(B ∧ g∧ H)∧ R(ζ )∧ dζ ∧φ(ζ )∧μ(z)
inW Z×Z ′

�ζ ×�′
z
, cf., Proposition 2.4, and this is the extension of (9.5) across �.

From the definitions above, it is clear that (9.4) and the extension of (9.5) are O�-
bilinear in φ and μ. Both these currents are annihilated by Jz and Jζ , cf., (2.8), so
they depend O�/J -bilinearly. In view of (2.4) we conclude that (9.6) and (9.7) are
inHom(O�′/J ,W Z ′

�′ ). ��

Proposition 9.3 If φ ∈ W0,k(X), then Pφ ∈ E 0,k(X ′), and if in addition g is holo-
morphic in z, then Pφ ∈ O(X ′) if k = 0 and vanishes if k ≥ 1.

Proof Since ϑ(g ∧ H) is smooth, we get that

π∗
(
ϑ(g ∧ H) ∧ R(ζ ) ∧ dζ ∧ φ ∧ μ(z)

)

= π∗
(
ϑ(g ∧ H) ∧ R(ζ ) ∧ dζ ∧ φ

) ∧ μ(z) = π∗
(
(g ∧ HR)N ∧ φ

) ∧ μ(z),

cf., for example [20, (5.1.2)]. Thus Pφ(z) = π∗
(
(g∧HR(ζ ))N ∧φ

)
which is smooth

on �′. If g depends holomorphically on z, then Pφ is holomorphic in �′ if φ is a
(0, 0)-current, and vanishes for degree reasons if φ has positive degree. ��

We shall now approximate Kφ by smooth forms. Let Bε = χ(|ζ − z|2/ε)B.

Proposition 9.4 For any φ ∈ W0,k(X), k ≥ 1,

K εφ := π∗
(
(Bε ∧ g ∧ HR(ζ ))N ∧ φ

) = π∗
(
ϑ(Bε ∧ g ∧ H) ∧ R(ζ ) ∧ dζ ∧ φ

)

is in E 0,k−1(X ′) and K εφ → Kφ when ε → 0.

The last statement means that

K εφ ∧ μ → Kφ ∧ μ, μ ∈ Hom(O�′/J , CHZ ′
�′). (9.9)

Proof Since Bε is smooth, the current we push forward is R(ζ )∧φ(ζ ) times a smooth
form of ζ and z. Therefore K εφ is smooth. As in the proof of Proposition 9.3, we
obtain since Bε is smooth that

K εφ ∧ μ = π∗
(
(Bε ∧ g ∧ HR(ζ ))N ∧ φ ∧ μ(z)

)
. (9.10)

By (5.2) applied to a = B we have that

(Bε ∧ g ∧ HR(ζ ))N ∧ φ ∧ μ(z) → (B ∧ g ∧ HR(ζ ))N ∧ φ ∧ μ(z) (9.11)

which implies (9.9). ��
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9.1 Proof of Theorem 9.1

By definition Kφ and Pφ are currents inW0,∗(X ′) such that (9.6) and (9.7) hold for
μ inHom(O�′/J , CHZ ′

�′). We claim that

Kφ ∧ R ∧ dz = π∗
(
(B ∧ g ∧ HR(ζ ))N ∧ φ ∧ R(z) ∧ dz

)
(9.12)

and
Pφ ∧ R ∧ dz = π∗

(
(g ∧ HR(ζ ))N ∧ φ ∧ R(z) ∧ dz

); (9.13)

here the left hand sides are defined in view of Remark 7.9, whereas the right hand sides
have meaning by Lemma 9.2 and the fact that R(z) ∧ dz is inHom(O�′/J ,W Z ′

�′ ) by
Corollary 6.3.

Recall from Lemma 6.2 that R ∧ dz = bμ, where μ is a tuple of currents in
Hom(O�′/J , CHZ ′

�′) and b is an almost semi-meromorphic matrix that is smooth
generically on Z ′. Therefore (9.12) and (9.13) hold where b is smooth, in view of
Lemma 7.7, and since both sides are inHom(O�′/J ,W Z ′

�′ ), the equalities hold every-
where by the SEP.

As in [6] we let Rλ = ∂̄| f |2λ ∧ U for Re λ � 0. It has an analytic continuation
to λ = 0 and R = Rλ|λ=0. Notice that R(z) ∧ B is well-defined since it is a tensor
product with respect to the coordinates z, η = ζ − z. Also R(z) ∧ Rλ(ζ ) ∧ B admits
such an analytic continuation and defines a pseudomeromorphic current4 when λ = 0.
Let Bk,k−1 be the component of B of bidegree (k, k − 1).

Lemma 9.5 For all k,

Bk,k−1 ∧ HRλ(ζ ) ∧ R(z)|λ=0 = Bk,k−1 ∧ HR(ζ ) ∧ R(z). (9.14)

Proof of Lemma 9.5 Notice that the equality holds outside �. Let T be the left hand
side of (9.14). In view of Proposition 2.1 it is therefore enough to check that 1�T = 0.
Fix j, k and let

T	 = Bk,k−1 ∧ HRλ
j (ζ ) ∧ R	(z)|λ=0.

Clearly T	 = 0 if 	 < p so first assume that 	 = p. Since HR j has bidegree ( j, j)
in ζ , the current vanishes unless j + k ≤ N . Thus the total antiholomorphic degree is
≤ N −n+N −1. On the other hand, the current has support on�∩ Z× Z � Z×{pt}
which has codimension N + N − n. Thus it vanishes by the dimension principle.

We now prove by induction over 	 ≥ p that 1�T	 = 0. Note that by (6.6), outside
of Z	, R	(z) = α	(z)R	−1(z), where α	(z) is smooth. Thus, outside of Z	 × �, T	 is
a smooth form times T	−1, and thus, by induction and (2.3), 1�T	 has its support in
� ∩ (Z	 × Z) � Z	 × {pt}, which has codimension ≥ N + 	 + 1, see (6.3). On the
other hand, the total antiholomorphic degree is ≤ 	 + j + k − 1 ≤ 	 + N − 1, so the
current vanishes by the dimension principle. We conclude that (9.14) holds. ��

4 One can consider this current as R(z) ∧ B multiplied by the residue of the almost semi-meromorphic
current U in (6.5), cf., [10, Section 4.4].
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By the same argument5 as for [6, (5.2)] we have the equality

∇ f (z)
(
(B∧g∧HRλ(ζ ))N ∧R(z)∧dz

) = [�]′∧R(z)∧dz−(g∧HRλ)N ∧R(z)∧dz,
(9.15)

also for our R, where [�]′ denotes the part of [�] where dηi = dζi − dzi has been
replaced6 by dζi . In view of (9.14) we can put λ = 0 in (9.15), and then we get

∇ f (z)
(
(B∧g∧HR(ζ ))N ∧R(z)∧dz

) = [�]′∧R(z)∧dz−(HR(ζ )∧g)N ∧R(z)∧dz.
(9.16)

Multiplying (9.16) by the smooth form φ, and using (9.12) and (9.13), we get

φ ∧ R ∧ dz = −∇ f (Kφ ∧ R ∧ dz) + K (∂̄φ) ∧ R ∧ dz + Pφ ∧ R ∧ dz,

or equivalently,

φ ∧ ω = −∇ f (Kφ ∧ ω) + K (∂̄φ) ∧ ω + Pφ ∧ ω. (9.17)

Multiplying by suitable holomorphic ξ0 in E∗
p such that f ∗

p+1ξ0 = 0, cf., Proposi-

tion 6.7, we see that φ ∧ h = ∂̄(Kφ ∧ h) + K (∂̄φ) ∧ h + Pφ ∧ h for all h in ωX .
Thus by definition (9.1) holds.

Since W0,∗
X is closed under multiplication by OX , we get that ψ in W0,∗

X is in
Dom ∂̄X if and only if −∇ f (ψ ∧ ω) is in Wn,∗

X . Thus, we conclude from (9.17) that

Kφ is in Dom ∂̄X since all the other terms but −∇ f (Kφ ∧ ω) are inW0,∗
X .

9.2 Intrinsic interpretation of K and P

So far we have defined K and P by means of currents in ambient space. We used
this approach in order to avoid introducing push-forwards on a non-reduced space.
However, we will sketch here how this can be done. We must first define the product
space X × X ′. Given a local embedding i : X → � as before, we have an embedding
(i × i) : X × X ′ → � × �′ such that the structure sheaf is O�×�′/(JX + JX ′).
One can check that this sheaf is independent of the chosen embedding, i.e., OX×X ′
is intrinsically defined. Thus we also have definitions of all the various sheaves on
X × X ′ like E 0,∗

X×X ′ . The projection p : X × X ′ → X ′ is determined by p∗φ : OX ′ →
OX×X ′ , which in turn is defined so that p∗i∗� = (i × i)∗π∗� for � in O�′ , where
π : � × �′ → �′ as before. Again one can check that this definition is independent
of the embedding, and also extends to smooth (0, ∗)-forms φ. Therefore, we have the
well-defined mapping p∗ : C2n,∗+n

X×X ′ → Cn,∗
X ′ , and clearly

i∗ p∗ = π∗(i × i)∗. (9.18)

5 There is a sign error in [6, (5.2)] due to R(z) ∧ dz being odd with respect to the super structure. Since
we here move R(z) ∧ dz to the right, we get the correct sign.
6 This change is due to the fact that we do the same change of the differentials in the definition of H and
B above.
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As before we have the isomorphism

(i × i)∗ : W2n,∗
X×X ′ � Hom

(
O�×�′/(JX + JX ′),W Z×Z ′

�×�′
)

.

As in the proof of Lemma 9.2 we see that π∗ maps a current inW Z×Z ′
�×�′ annihilated by

JX ′ to a current in Hom(O�/J ,W Z ′
�′ ). It follows by (9.18) that

p∗ : W2n,∗+n
X×X ′ → Wn,∗

X ′ .

Now, take h in ωn
X ′ and let μ = i∗h. Then, cf., the proof of Lemma 9.2,

(B ∧ g ∧ HR(ζ ))N ∧ φ(ζ ) ∧ μ(z) = (i × i)∗
(
ϑ(B ∧ g ∧ H) ∧ ω(ζ ) ∧ φ(ζ ) ∧ h

)
.

Thus we can define Kφ intrinsically by

Kφ ∧ h = p∗ (ϑ(B ∧ g ∧ H) ∧ ω(ζ ) ∧ φ(ζ ) ∧ h(z)) . (9.19)

From above it follows that Kφ ∧ h is inWn,∗
X ′ . In the same way we can define Pφ by

Pφ ∧ h = p∗ (ϑ(g ∧ H) ∧ ω(ζ ) ∧ φ(ζ ) ∧ h(z)) . (9.20)

It is natural to write

Kφ(z) =
∫

ζ

ϑ(B ∧ g ∧ H) ∧ ω(ζ ) ∧ φ(ζ ), Pφ(z) =
∫

ζ

ϑ(g ∧ H) ∧ ω(ζ ) ∧ φ(ζ ),

although the formal meaning is given by (9.19) and (9.20).

10 Regularity of solutions on Xreg

We have already seen, cf., Proposition 9.3, that Pφ is always a smooth form. We shall
now prove that K preserves regularity on Xreg . More precisely,

Theorem 10.1 If φ inW0,∗
X is smooth near a point x ∈ X ′

reg, then Kφ in Theorem 9.1
is smooth near x.

Throughout this section, let us choose local coordinates (ζ, τ ) and (z, w) at x
corresponding to the variables ζ and z in the integral formulas, so that Z = {(ζ, τ ); τ =
0}.
Lemma 10.2 Let Bε := χ(|ζ − z|2/ε)B, and assume that φ has compact support in
our coordinate neighborhood. Then Kφ can be approximated by the smooth forms

K εφ := π∗
(
(Bε ∧ g ∧ HR)N ∧ φ

)
.
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Notice that here we cut away the diagonal �′ in Z × Z ′ times Cτ ×Cw in contrast
to Proposition 9.4, where we only cut away the diagonal � in � × �′.

Proof Clearly Bε is smooth so that each K εφ is smooth in a full neighborhood in �′
of x . Let T = μ(z, w) ∧ (HR(ζ, τ ) ∧ B ∧ g)N ∧ φ, and let W = �′ × Cτ × Cw.
Since μ(z, w) ⊗ R(ζ, τ ) has support on {w = τ = 0}, T = 1{w=τ=0}T . Therefore,
1WT = 1W1{w=τ=0}T = 0 sinceW ∩{w = τ = 0} ⊂ � and 1�T = 0 by definition,
cf., Proposition 2.1 (i). Now notice that 1WT = 0 implies (9.11) and in turn (9.9) with
our present choice of Bε . ��

We first consider a simple but nontrivial example of Theorem 10.1.

Example 10.3 Let X = Cζ ⊂ C
2
ζ,τ and J = (τm+1). Then R = ∂̄(1/τm+1). For an

arbitrary point (z, w) we can choose the Hefer form

H = 1

2π i

m∑

j=0

τm−kwkdτ.

From the Bochner–Martinelli form B we only get a contribution from the term

B1 = 1

2π i

(ζ̄ − z̄)dζ + (τ̄ − w̄)dτ

|ζ − z|2 + |τ − w|2 .

Let �′ ⊂⊂ � be open balls with center at the origin, and let ϕ = ϕ(|ζ |2 + |τ |2) be a
smooth cutoff function with support in � that is ≡ 1 in a neighborhood of �′. Then
we can choose a holomorphic weight g = ϕ + · · · , see, [6, Example 5.1] with respect
to �′, and with support in �. Now 1, τ, . . . , τm is a set of generators forOX overOZ .
Assume that

φ = (φ̂0(ζ ) ⊗ 1 + · · · + φ̂m(ζ ) ⊗ τm)d ζ̄

is a smooth (0, 1)-form. We want to compute Kφ. We know that

Kφ = a0(z) ⊗ 1 + · · · + am(z) ⊗ wm (10.1)

with ak(z) in W0,0
Z . By Lemma 10.2 and its proof, we have smooth K εφ(z, w) in �′

such that

K εφ ∧ dz ∧ dw ∧ ∂̄
1

wm+1 → Kφ ∧ dz ∧ dw ∧ ∂̄
1

wm+1 . (10.2)

It follows that

ak(z) = lim
ε→0

1

k!
∂k

∂wk
K εφ(z, w)

∣∣
w=0.
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Notice that

(B ∧ g ∧ HR(τ ))2 = B1 ∧ g0,0 ∧ H ∧ ∂̄
1

τm+1

= −ϕ∂̄
1

τm+1 ∧ 1

(2π i)2

m∑

	=0

τm−	w	dτ ∧ (ζ̄ − z̄)dζ + (τ̄ − w̄)dτ

|ζ − z|2 + |τ − w|2

= −ϕ∂̄
dτ

τm+1 ∧ 1

(2π i)2

m∑

	=0

τm−	w	 ∧ (ζ̄ − z̄)dζ

|ζ − z|2 + |τ − w|2 .

For each fixed ε > 0, |ζ − z| > 0 on suppχε , cf., Lemma 10.2, so we have

K εφ(z, w)

=
∫

ζ,τ

ϕ
1

(2π i)2

m∑

	=0

∂̄
dτ

τ 	+1 ∧ w	χε

(ζ̄ − z̄)d ζ̄ ∧ dζ

|ζ − z|2 + |τ − w|2 ∧
m∑

k=0

φ̂k(ζ ) ⊗ τ k .

(10.3)

A simple computation yields that

K εφ(z, w) =
m∑

k=0

aε
k (z) ⊗ wk + O(w̄), (10.4)

where

aε
k (z) = 1

2π i

∫

ζ

ϕ(|ζ |2)χε

φ̂k(ζ )d ζ̄ ∧ dζ

ζ − z
.

Letting ε tend to 0 we get Kφ as in (10.1), where

ak(z) = 1

2π i

∫

ζ

ϕ(|ζ |2) φ̂k(ζ )d ζ̄ ∧ dζ

ζ − z
.

It is well-known that these Cauchy integrals ak(z) are smooth solutions to ∂̄v = φ̂kd z̄
in Z ′ = Z ∩ �′. Thus Kφ is smooth. ��
Remark 10.4 The terms O(w̄) in the expansion (10.4) of K εφ(z, w) do not converge
to smooth functions in generalwhen ε → 0. For a simple example, takeφ = ζd ζ̄⊗τm .
Then K εφ(0, w) tends to

wm
∫

ϕ(|ζ |2) 1

2π i

|ζ |2d ζ̄ ∧ dζ

|ζ |2 + |w|2

which is a smooth function of w plus (a constant times) wm |w|2 log |w|2, and
thus not smooth. However, it is certainly in Cm . One can check that Kφ(z, w) =
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limε→0+ K εφ(z, w) exists pointwise and defines a function in at least Cm and that
our solution can be computed from this limit. In fact, by a more precise computation
we get from (10.3) that

K εφ(z, w) =
m∑

k=0

∫

ζ

ϕ(|ζ |2)χε

1

2π i

(ζ̄ − z̄)φ̂k(ζ )d ζ̄ ∧ dζ

|ζ − z|2 + |w|2 wk
m−k∑

j=0

( |w|2
|ζ − z|2 + |w|2

) j

.

It is now clear that we can let ε → 0. By a simple computation we then get

Kφ(z, w) =
m∑

k=0

Cφ̂k(z) ⊗ wk

−
m∑

k=0

∫

ζ

ϕ(|ζ |2) 1

2π i

φ̂k(ζ )d ζ̄ ∧ dζ

ζ − z
wk

( |w|2
|ζ − z|2 + |w|2

)m−k+1

.

Let ψ = ϕφ̂k . Then the kth term in the second sum is equal to

b(z, w) = 1

2π i

∫

ζ

ψ(z + ζ )d ζ̄ ∧ dζ

ζ
wk

( |w|2
|ζ |2 + |w|2

)m−k+1

.

If we integrate outside the unit disk, then we certainly get a smooth function. Thus it
is enough to consider the integral over the disk. Moreover, if ψ(z+ ζ ) = O(|ζ |M ) for
a large M , then the integral is at least Cm . By a Taylor expansion of ψ(z + ζ ) at the
point z, we are thus reduced to consider

∫

|ζ |<1

ζ αζ̄ β

ζ

( |w|2
|ζ |2 + |w|2

)m−k+1

.

For symmetry reasons, they vanish, except when α = β + 1. Thus we are left with

∫

|ζ |<1
|ζ |2β

( |w|2
|ζ |2 + |w|2

)m−k+1

wk = Cwk |w|2(m−k+1)
∫ 1

0

sβds

(s + |w|2)m−k+1

for non-negative integers β. The right hand side is a smooth function of w if β ≤
m − k − 1 and a smooth function plus

Cwk |w|2(β+1) log |w|2

if β ≥ m − k. The worst case therefore is when k = m and β = 0; then we have
wm |w|2 log |w|2 that we encountered above. ��
Proposition 10.5 Let z, w be coordinates at a point x ∈ Xreg such that Z = {w = 0}
and x = (0, 0). If φ is smooth, and has support where the local coordinates are
defined, then
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vε(z, w) =
∫

ζ

χ(|ζ − z|2/ε)(HR ∧ B ∧ g)N ∧ φ,

is smooth for ε > 0, and for each multiindex 	 there is a smooth form v	 such that

∂	
wvε |w=0 → v	

as currents on Z.

Taking this proposition for granted we can conclude the proof of Theorem 10.1.

Proof of Theorem 10.1 If φ ≡ 0 in a neighborhood of x ∈ X ′
reg, then Kφ is smooth

near x , cf., the proof of Proposition 9.4. Thus, it is sufficient to prove Theorem 10.1
assuming that φ is smooth and has support near x .

Recall that given a minimal generating set 1, wα1 , . . . , wαν−1 , one gets the coeffi-
cients v̂ε

j in the representation

vε = v̂ε
0 ⊗ 1 + · · · + v̂ε

ν−1 ⊗ wαν−1

from ∂	
wvε |w=0, |	| ≤ M by a holomorphic matrix, cf., the proof of Lemma 4.7. It thus

follows from Proposition 10.5 that there are smooth v̂ j such that v̂ε
j → v̂ j as currents

on Z . Let v = v̂0 ⊗ 1 + · · · + v̂ν−1 ⊗ wαν−1 . In view of (2.14), vε ∧ μ → v ∧ μ for
all μ in Hom(O�/J , CHZ

�). From Lemma 10.2 we conclude that v ∧ μ = Kφ ∧ μ

for all such μ. Thus Kφ = v inW0,∗
X and hence Kφ is smooth. ��

Proof of Proposition 10.5 Assume that X is embedded in� ⊂ C
N
ζ ′,τ ′ . After a suitable

rotation we can assume that Z is the graph τ ′ = ψ(ζ ′). The Bochner–Martinelli kernel
in � is rotation invariant, so it is

B = σ + σ ∧ ∂̄σ + σ ∧ (∂̄σ )2 + · · · ,

where

σ = (ζ̄ ′ − z̄′) · dζ ′ + (τ̄ ′ − w̄′) · dτ ′

|ζ ′ − z′|2 + |τ ′ − w′|2 .

We now choose the new coordinates ζ = ζ ′, τ = τ ′ − ψ(ζ ′) in �, so that Z =
{(ζ, τ ); τ = 0}.

Recall that on Xreg we have that R∧dz is a smooth form timesμ = (μ1, . . . , μm),
whereμ j is a generating set forHom(O�/J , CHZ

�). Thus we are to compute ∂	
w|w=0

of integrals like ∫

ζ,τ

∂̄
dτ

τα+1 ∧ Bε
k ∧ φ(ζ, z, w, τ), (10.5)

where k ≤ n and φ is smooth with compact support near x . It is clear that the symbols
τ̄ , w̄, d τ̄ can be omitted in the expression for

Bε = χεB = χ(|ζ − z|2/ε)B,
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since τ̄ and d τ̄ annihilate ∂̄(1/τα+1), and since we only take holomorphic derivatives
with respect to w and set w = 0.

Let us write ψ(ζ )−ψ(z) = A(ζ, z)η, where η := ζ − z is considered as a column
matrix and A is a holomorphic (N − n) × n-matrix. Then

σ = η∗ν
|ζ − z|2 + |τ − w + ψ(ζ ) − ψ(z)|2 ,

where ν is the (1, 0)-form valued column matrix

ν = dζ + A∗d(τ + ψ(ζ )).

Since η∗ν is a (1, 0)-form we have that

Bε
k = χε

η∗ν ∧ ((dη∗)ν + η∗∂̄ν)k−1

(|ζ − z|2 + |τ − w + ψ(ζ ) − ψ(z)|2)k .

Lemma 10.6 Let

ξ i = ξ i1
∂

∂ζ1
+ · · · + ξ in

∂

∂ζn

be smooth (1, 0)-vector fields, and let Li = Lξ i be the associated Lie derivatives for
i = 1, . . . , ρ. Let

γk := η∗ν ∧ ((dη∗)ν + η∗∂̄ν)k−1.

If we have a modification π : W̃ → � × � such that locally π∗η = η0η
′, where η0 is

a holomorphic function, then

π∗(L1 · · · Lργk) = η̄k0β,

where β is smooth.

Recall that if a is a form, then Lξa = d(ξ¬a) + ξ¬(da), and that Lξ (β¬a) =
[ξ, β]¬a + β¬(Lξa) if β is another vector field.

Proof Introduce a nonsense basis e and its dual e∗ and consider the exterior algebra
spanned by e j , e∗

	 , and the cotangent bundle. Let

c	 = η∗e ∧ ((dη∗)e)	−1.

Notice that γk is a sum of terms like

(νe∗¬)	c	 ∧ (η∗∂̄ν)k−	.
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The ∂̄-equation on a non-reduced analytic space 593

Since Lic	 = 0 and Li (η
∗b) = η∗Lib it follows after a finite number of applications

of Li ’s that we get

(ν1e
∗)¬ · · · (ν	e

∗)¬c	(η
∗b1) · · · (η∗bk−	),

where ν j and b j are smooth. Since

π∗c	 = η̄	
0(η

′)∗e ∧ (d(η′)∗e)	−1,

the lemma now follows. ��
We note that η∗(I + A∗A)η = |ζ − z|2 + |ψ(ζ ) − ψ(z)|2. Thus, differentiating

(10.5) with respect to w, setting w = 0, and evaluating the residue with respect to τ

using (2.10), we obtain a sum of integrals like

∫

ζ

χε

(η∗a1) · · · (η∗at+1) ∧ γk ∧ φ

(η∗(I + A∗A)η)k+t+1 ,

where a1, . . . , at+1 are column vectors of smooth functions. We must prove that the
limit of such integrals when ε → 0 are smooth in z.

Lemma 10.7 Let

I r,s	 =
∫

χε

(η∗a1) · · · (η∗ar )O(|η|2s)γ̃k ∧ φ

�k+	
,

where a1, . . . , ar are tuples of smooth functions, γ̃k = L1 · · · Lργk , where Li = Lξi

are Lie derivatives with respect to smooth (1, 0)-vector fields ξ i as above for i =
1, . . . , ρ, φ is a test form with support close to z, and � := η∗(I + A∗A)η. If r ≥ 1
and r + s ≥ 	 + 1, then we have the relation

I r,s	+1 = I r−1,s
	 + I r−1,s+1

	+1 + I r,s−1
	 + o(1) (10.6)

when ε → 0.

Proof If

ξ = atr (I + A∗A)−t ∂

∂ζ
,

and L = Lξ , then using that � = ηt (I + A∗A)t η̄, one obtains that

L� = η∗ar + O(|η|2). (10.7)

Thus

I r,s	+1 =
∫

χε(η
∗a1) · · · (η∗ar−1)O(|η|2s)γ̃k ∧ φL

1

�k+	
+ I r−1,s+1

	+1
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594 M. Andersson, R. Lärkäng

in view of (10.7). We now integrate by parts by L in the integral. If a derivative with
respect to ζ j falls on some η∗ai , we get a term I r−1,s

	 . If it falls on O(|η|2s) we get
eitherO(|η|2(s−1)) times η∗b, for some tuple b of smooth functions, and this gives rise
to the term I r,s−1

	 orO(|η|2s), and this gives rise to another term I r−1,s
	 . If it falls on φ

or γ̃k we get an additional term I r−1,s
	 . The only possibility left is when the derivative

falls on χε = χ(|η|2/ε). It remains to show that an integral of the form

∫

ζ,z
χ ′(|η|2/ε) (η

∗a1) · · · (η∗ar−1)(η
∗b)

ε

O(|η|2s)γk ∧ φ

�k+	

tends to 0, where the factor η∗b comes from the derivative of |η|2. We now choose
a resolution Ṽ → � × � such that η = η0η

′ where η′ is non-vanishing and η0 is
(locally) a monomial. Notice that π∗� = |η0|2�′ where �′ is smooth and strictly
positive. In view of Lemma 10.6 we thus obtain integrals of the form

∫

Ṽ
χ ′(|η0|2v/ε)

1

ε

η̄r+s−	
0

ηk+	−s
0

α, (10.8)

where v is smooth and strictly positive and α is smooth.
In order to see that the limit of (10.8) tends to 0, we note first that if we let

χ̃ (s) = sχ ′(s) + χ(s),

then just as χ , χ̃ is also a smooth function on [0,∞) that is 0 in a neighborhood of 0
and 1 in a neighborhood of ∞. By assumption, r + s − 	 − 1 ≥ 0. Since the principal
value current 1/ f m acting on a test form β can be defined as

lim
ε→0+

∫
χ(| f |2v/ε)

β

f m

for any cut-off function as above, the principal value current 1/ηk+	−s
0 acting on

η̄r+s−	−1
0 α equals

lim
ε→0+

∫

Ṽ
χ

(
|η0|2v/ε

) η̄r+s−	−1
0

ηk+	−s
0

α = lim
ε→0+

∫

Ṽ
χ̃

(
|η0|2v/ε

) η̄r+s−	−1
0

ηk+	−s
0

α.

Taking the difference between the left and right hand side, we conclude that (10.8)
tends to 0 when ε → 0. ��

Now we can conclude the proof of Proposition 10.5. From the beginning we have
I 	,0
	 . After repeated applications of (10.6) we end up with

I 0,		 + I 0,	−1
	−1 + · · · + I 0,00 + o(1).
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However, any of these integrals has an integrable kernel even when ε = 0. This means
that we are back to the case in [6, Lemma 6.2], and so the limit integral is smooth in
z. ��

11 A fine resolution of OX

We first consider a generalization of Theorem 9.1.

Lemma 11.1 Assume that φ ∈ W0,k(X) ∩ E 0,k
X (Xreg) ∩ Dom ∂̄X and that Kφ is in

Dom ∂̄X (or just in Dom ∂̄). Then (9.1) holds on X ′.

Proof Let χδ be functions as before that cut away Xsing . From Koppelman’s formula
(9.1) for smooth forms we have

χδφ∧h = ∂̄(K (χδφ))∧h+K (χδ∂̄φ)∧h+ P(χδφ)∧h+K (∂̄χδ ∧φ)∧h, h ∈ ωn
X ,

(11.1)
for z ∈ X ′

reg . Clearly the left hand side tends to φ ∧ h when δ → 0. From Lemma 9.2
it follows that K (χδφ) ∧ h → Kφ ∧ h. Thus the first term on the right hand side of
(11.1) tends to ∂̄(Kφ) ∧ h. In the same way the second and third terms on the right
hand side tend to K (∂̄φ)∧ h and Pφ ∧ h, respectively. It remains to show that the last
term tends to 0. If z belongs to a fixed compact subset of X ′

reg, then B is smooth in

(9.5) when ζ is in supp ∂̄χδ for small δ. Hence it suffices to see that

R(ζ ) ∧ dζ ∧ ∂̄χδ ∧ φ(ζ ) ∧ i∗h → 0,

and since this is a tensor product of currents, it suffices to see that

R(ζ ) ∧ dζ ∧ ∂̄χδ ∧ φ(ζ ) → 0,

or equivalently, ω(ζ ) ∧ ∂̄χδ ∧ φ(ζ ) → 0, which follows by Lemma 8.4 since φ is in
Dom ∂̄X . We have thus proved that

χδφ ∧ h = χδ∂̄(Kφ) ∧ h + χδK (∂̄φ) ∧ h + χδPφ ∧ h.

The first term on the right hand side is equal to ∂̄(χδKφ ∧ h) − ∂̄χδ ∧ Kφ ∧ h, where
the latter term tends to 0 if Kφ is in Dom ∂̄X or just in Dom ∂̄ , cf., Lemma 8.4. Thus
we get

φ ∧ h = ∂̄(Kφ) ∧ h + K (∂̄φ) ∧ h + Pφ ∧ h, h ∈ ωn
X ,

which precisely means that (9.1) holds. ��
Definition 11.2 We say that a (0, q)-current φ on an open set U ⊂ X is a section of
A

q
X over U , φ ∈ A q(U), if, for every x ∈ U , the germ φx can be written as a finite

sum of terms

ξν ∧ Kν(· · · ξ2 ∧ K2(ξ1 ∧ K1(ξ0))),
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where ξ j are smooth (0, ∗)-forms and K j are integral operators with kernels k j (ζ, z) at
x , defined as above, and such that ξ j has compact support in the set where z 
→ k j (ζ, z)
is defined.

Clearly A ∗
X is closed under multiplication by ξ in E 0,∗

X . It follows from (9.8) that

A ∗
X is a subsheaf of W0,∗

X and from Theorem 10.1 that A k
X = E 0,∗

X on Xreg . Clearly
any operator K as above maps A ∗+1

X → A ∗
X .

Lemma 11.3 If φ is in AX , then φ and Kφ are in Dom ∂̄X .

Proof Notice that [6, Lemma 6.4] holds in our case by verbatim the same proof, since
we have access to the dimension principle for (tensor products of) pseudomeromorphic
(n, ∗)-currents, and the computation rule (2.3), cf., the comment after Definition 5.7.
SinceA ∗

X = E 0,∗
X on Xreg it is enough by Lemma 8.4 to check that ∂̄χδ ∧ω ∧φ → 0,

and this precisely follows from [6, Lemma 6.4]. ��
In view of Lemmas 11.1 and 11.3 we have

Proposition 11.4 Let K , P be integral operators as in Theorem 9.1. Then

K : A k+1(X) → A k(X ′), P : A k(X) → E 0,k(X ′),

and the Koppelman formula (9.1) holds.

Proof of Theorem 1.1 By definition, it is clear thatA k
X are modules over E 0,k

X , and by

Theorem 10.1, A k
X coincides with E 0,k

X on Xreg. Since we have access to Koppelman
formulas, precisely as in the proof of [6, Theorem 1.2] we can verify that ∂̄ : A k

X →
A k+1

X .
It remains to prove that (1.2) is exact. We choose locally a weight g that is holo-

morphic in z, so the term Pφ vanishes if φ is in A k
X , k ≥ 1, and is holomorphic in z

when k = 0. Assume that φ is in A k
X and ∂̄φ = 0. If k ≥ 1, then ∂̄Kφ = φ, and if

k = 0, then φ = Pφ. ��

11.1 Global solvability

Assume that E → X is a holomorphic vector bundle; this means that the transition
matrices have entries in OX . For instance if we have a global embedding i : X → �

and a holomorphic vector bundle F → �, then F defines a vector bundle i∗F → X .
The sheavesA ∗

X (E) give rise to a fine resolution of the sheafOX (E), and by standard
homological algebra we have the isomorphisms

Hq(X,O(E)) = Ker (A q(X, E)
∂̄→ A q+1(X, E))

Im (A q−1(X, E)
∂̄→ A q(X, E))

, q ≥ 1.

Thus, if φ ∈ A q+1(X, E), ∂̄φ = 0, and its canonical cohomology class vanishes, then
the equation ∂̄ψ = φ has a global solution in A q(X, E). In particular, the equation
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is always solvable if X is Stein. If for instance X is a pure-dimensional projective
variety i : X → P

N , then the ∂̄-equation is solvable, e.g., if E is a sufficiently ample
line bundle.

12 Locally complete intersections

Let us consider the special case when X locally is a complete intersection, i.e., given a
local embedding i : X → � ⊂ C

N there are global sections f j of O(d j ) → P
N such

that J = ( f1, . . . , f p), where p = N − n. In particular, Z = { f1 = · · · = f p = 0}.
In this caseHom(O�/J , CH�) is generated by the single current

μ = ∂̄
1

f p
∧ · · · ∧ ∂̄

1

f1
∧ dz1 ∧ · · · ∧ dzN ,

see, e.g., [3]. Each smooth (0, q)-form φ in E 0,q
X is thus represented by a current�∧μ,

where � is smooth in a neighborhood of Z and i∗� = φ. Moreover, X is Cohen–
Macaulay so Xreg coincides with the part of X where Z is regular, and ∂̄φ = ψ if and
only if ∂̄(φ ∧ μ) = ψ ∧ μ.

Henkin and Polyakov introduced, see [17, Definition 1.3], the notion of residual
currents φ of bidegree (0, q) on a locally complete intersection X ⊂ P

N , and the
∂̄-equation ∂̄ψ = φ. Their currents φ correspond to our φ in E 0,q

X and their ∂̄-operator
on such currents coincides with ours.

Remark 12.1 In [18] Henkin and Polyakov consider a global reduced complete inter-
section X ⊂ P

N . They prove, by a global explicit formula, that if φ is a global ∂̄-closed
smooth (0, q)-form with values in O(	), 	 = d1 + · · · dp − N − 1, then there is a
smooth solution to ∂̄ψ = φ at least on Xreg , if 1 ≤ q ≤ n−1.When q = n a necessary
obstruction term occurs. However, their meaning of “∂̄-closed” is that locally there is
a representative � of φ and smooth g j such that ∂̄� = g1 f1 + · · · + gp f p. If this
holds, then clearly ∂̄φ = 0. The converse implication is not true, see Example 12.2
below. It is not clear to us whether their formula gives a solution under the weaker
assumption that ∂̄φ = 0, neither do we know whether their solution admits some
intrinsic extension across Xsing as a current on X . ��
Example 12.2 Let X = { f = 0} ⊂ � ⊂ C

n+1 be a reduced hypersurface, and
assume that d f �= 0 on Xreg , so that J = ( f ). Let φ be a smooth (0, q)-form in a
neighborhood of some point x on X such that ∂̄φ = 0. We claim that ∂̄u = φ has a
smooth solution u if and only if φ has a smooth representative � in ambient space
such that ∂̄� = f g for some smooth form g. In fact, if such a � exists then 0 = f ∂̄g
and thus ∂̄g = 0. Therefore, g = ∂̄γ for some smooth γ (in a Stein neighborhood of
x in ambient space) and hence ∂̄(� − f γ ) = 0. Thus there is a smooth U such that
∂̄U = � − f γ ; this means that u = i∗U is a smooth solution to ∂̄u = φ. Conversely,
if u is a smooth solution, then u = i∗U for some smoothU in ambient space, and thus
� = ∂̄U is a representative of φ in ambient space. Thus ∂̄� = f g (with g = 0).
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There are examples of hypersurfaces X where there exist smooth φ with ∂̄φ = 0
that do not admit smooth solutions to ∂̄u = φ, see, e.g., [6, Example 1.1]. It follows
that such a φ cannot have a representative � in ambient space as above. ��
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