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ABSTRACT

Transcription factors (TF) are central to transcrip-
tional regulation, but they are often studied in relative
isolation and without close control of the metabolic
state of the cell. Here, we describe genome-wide
binding (by ChIP-exo) of 15 yeast TFs in four chemo-
stat conditions that cover a range of metabolic
states. We integrate this data with transcriptomics
and six additional recently mapped TFs to identify
predictive models describing how TFs control gene
expression in different metabolic conditions. Contri-
butions by TFs to gene regulation are predicted to be
mostly activating, additive and well approximated by
assuming linear effects from TF binding signal. No-
tably, using TF binding peaks from peak finding al-
gorithms gave distinctly worse predictions than sim-
ply summing the low-noise and high-resolution TF
ChIP-exo reads on promoters. Finally, we discover
indications of a novel functional role for three TFs;
Gcn4, Ert1 and Sut1 during nitrogen limited aerobic
fermentation. In only this condition, the three TFs
have correlated binding to a large number of genes
(enriched for glycolytic and translation processes)
and a negative correlation to target gene transcript
levels.

INTRODUCTION

The relationship between transcription factor (TF) bind-
ing to DNA and gene transcription in eukaryotes is com-
plex. This is highlighted in several studies integrating chro-
matin immunoprecipitation (ChIP)-based TF binding data

with transcriptomics from knockout or knockdown exper-
iments of the TF with the goal of defining regulatory tar-
gets. Studies of transcriptional response to hormones found
that in mice with the TF glucocorticoid receptor knocked
out, only 11% of the differently expressed genes were tar-
geted by the TF (1) and a similar study of human estro-
gen receptor function found only 6% of differentially ex-
pressed genes to be targeted (2). Integration of a large-scale
study using microarray transcriptomics in yeast TFs dele-
tion strains (3) with previously generated ChIP-chip data
(4) for 188 TFs showed even less overlap with an average
3% of differentially expressed genes being targeted by the
corresponding TF (5). Thus, combining ChIP methods with
transcriptomics to understand transcriptional regulation in
eukaryotic systems gives disappointing results compared to
the demonstrated successes of this approach in bacteria (6).

The increased difficulty in understanding eukaryal gene
regulation in comparison to bacteria may be explained
by the additional levels of regulation present, such as
nucleosome-TF interactions, histone modifications and
long-range effects of binding. The impressive ENCODE
dataset containing TF binding, transcriptomics as well as
other chromatin features (7) has been used to explore the
contributions of different features of human promoters to
gene regulation. Using machine learning approaches, strong
predictive models were created and analysis of the models
suggested a highly interconnected regulatory system where
TF binding has functional interactions with both nucleo-
some occupancy and histone modifications to regulate tran-
scriptional outcomes (8). A different approach to create
predictive models of transcriptional regulation based only
on TF binding was to build a model from TF-association
scores that includes both the strength of the binding event
and the distance from a given gene in data collected from
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mouse embryonic stem cells (9). For 12 TFs, these scores
were combined into principal components and using linear
regressions on the principal components it was possible to
predict an impressive 65% of the variation in gene expres-
sion genome wide (9). Such complex analysis methods will
be important tools to fully understand eukaryal transcrip-
tional regulation and may allow cell engineering relying on
predictably changes in gene transcription.

While binding has been mapped for most central yeast
TFs in one of the impressive large-scale studies (4,10-12),
the majority of this data is captured only in a single state of
the cell; exponential growth in nutrient excess. Here we per-
formed a large-scale study of mapping TF binding of multi-
ple yeast TFs known to be involved in metabolic regulation
by ChIP-exo (chromatin immunoprecipitation with lambda
exonuclease) in four distinct metabolic states of the yeast
cell. We integrate TF binding data with transcriptomics of
the same metabolic conditions with the goal of building
predictive models using relatively simple statistical meth-
ods that allow full transparency for insights into contribu-
tions of different TFs to gene expression. Using ChIP-exo
allowed us to study TF binding with high resolution and
minimal background and using yeast as a model organism
allowed us to study metabolic gene regulation utilizing a va-
riety of nutrients with a constant growth rate in chemostats.

MATERIALS AND METHODS
Yeast strains and media

The host strain for all experiments contained in this
study was Saccharomyces cerevisiae CEN.PK 113-5D
(URA-). CEN.PK 113-5D with Kluyveromyces lactis
URA3 (KiURAD3) re-integrated was used as control strain
for transcriptome analysis. Strains for ChIP-exo were cre-
ated by amplifying either a TAP tag or a 9xMyc tag with
KiURA3 and homology arms for recombination into the
C-terminal end of the TF coding sequence.

The components of the chemostat media that were dif-
ferent between the experimental conditions are as follows:
Nitrogen limited media — 1 g/I (NH4)>SO4, 5.3 g/1 K,SO4,
150 ml/1 glucose 40%, 12 drops Antifoam204. Ethanol lim-
ited media — 5 g/1 (NHy4)2SOy4, 6.67 ml/1 Ethanol 96%,
12 drops Antifoam204. Respiratory glucose limited me-
dia — 5 g/1 (NHy4),SOy4, 18.75 ml/I glucose 40%, 12 drops
Antifoam204. Anaerobic glucose limited media — 5 g/1
(NH4)2SO4, 25 ml/l glucose 40%, 4 ml/l ergosterol in
Tween80 (2.6 g/1), 16 drops Antifoam204. In addition to
the previously stated components changing between the me-
dia, all media have the following: 14.4 g/ KH,POy, 0.5
g/l MgSOy, 1 ml/l of 1000x vitamin and 1000x trace
metal stock solutions. The 1000x stocks contains the fol-
lowing: Vitamins — 0.05 g/1 biotin, 0.2 g/I 4-aminobenzoic
acid, 1 g/l nicotinic acid, 1 g/l calcium pantothenate,
1 g/l pyridoxine HCI, 1 g/l thiamine HCI, and 25 g/l
myo-inositol. Trace metals — 15.0 g/l EDTA-Na,, 4.5 g/1
ZnS04-7H,0, 0.84 g/1 MnCl,-2H;0, 0.3 g/1 CoCl,-6H,0,
0.3 g/l CuSO4-5H;0, 0.4 g/l NaMoO4-2H,0, 4.5 g/l
CaCl,-2H,0, 3 g/l FeSO4-7H,0, 1g/1 H3;BO; and 0.1 g/1
KI. pH of the media was adjusted by adding KOH pellets
to get media pH of 6.0-6.5 that result in a final pH of all
chemostat cultures close to 5.5.
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Chemostat cultivation

Cells were cultivated in chemostats with a dilution rate of
0.1 h~! at 30c. Stirring and aeration was performed by ei-
ther N2 (fermentative glucose metabolism) or pressurized
air (for the three other conditions) supplied to the cultures
(13). Cultures were sampled for either ChIP-exo or tran-
scriptomics after steady state was achieved for 4860 h.

ChIP-exo

When chemostat cultures were measured to be stable for
48-60 h, formaldehyde with a final concentration of 1%
(wt/vol) and distilled water were added to the cultures to
create a final ODyg of 1.0 and a total volume of 100ml. Cells
were incubated in formaldehyde for 12 min at room temper-
ature followed by quenching by addition of L-glycine to a fi-
nal concentration of 125 mM. Cells were then washed twice
with cold TBS and snap-frozen with liquid N;. ChIP-exo
was then performed according to a protocol based on the
originally established protocol (14) with certain modifica-
tions, as described in (15). Presentation of the ChIP-exo raw
data and replicates is included in Supplementary Data 1.

Peak finding and target gene identification

Peak detection was performed by GEM (16) with default
parameters. A peak signal threshold of >2-fold peak signal
over the local genomic noise was applied and peaks were
annotated to a gene if it was found within —500 to +500 bp
of a given genes TSS, as defined by (17). The full list of peaks
detected by GEM (without peak signal threshold) for each
TF is included in Supplementary Data 2.

RNA sequencing

From chemostats at steady-state, 10 ODggy from three bio-
logical replicates were collected into tubes and put directly
onice. Cells were washed twice in cold TBS and snap-frozed
in liquid N2. RNA extraction was performed as described
in the manual for the RNeasy® Mini kit (QIAGEN). RNA
quality was inspected by Nanodrop, Qubit and Bioanalyzer
before proceeding with sample preparation for Illumina se-
quencing and following sequencing on the NextSeq 500 sys-
tem (2 x 75 bp, mid-output mode; [llumina). The RNA se-
quencing read counts per gene in each metabolic condition
is included in Supplementary Data 3.

Sequencing data processing

For both the ChIP-exo data and transcriptomics, the raw
sequencing output (.fastq) was mapped to a recently pub-
lished CEN.PK genome (18) using Bowtie2 (19) with the -U
parameter. Samtools (20) was then used to generate sorted
and indexed .bam files by first creating .bam files by the
‘view’ command with parameters —bS —q 20 and further the
‘sort’ and ‘index’ commands.

For the ChIP-exo data, the read count covering each nu-
cleotide position genome-wide was determined from .bam
files using the genomecov function of BEDTools (21), where
a read length of 10 was used for all TFs. The read counts of
biological duplicate were then averaged and output as .wig
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files that can be found in our Mendeley Data archives as
described under the Data Availability section. All further
processing of ChIP-exo data is through import of .wig files
into R (22) and executable scripts to reproduce all figures
are included in Supplementary Data 6. We also supply in
Supplementary Data 4 processed versions of the .wig data,
containing only the total TF read counts for each gene pro-
moter (TSS —500 to TSS +500 bp) for each metabolic con-
dition. These files can be used directly as inputs to replicate
our linear regression analysis.

For RNA sequencing data analysis, Subread (23) was
used to map the aligned reads (.bam) to gene annotations.
The resulting output of transcript read counts for the repli-
cates from Subread (171206_CENPK _subOut_wt.txt) can
be found in Supplementary Data 3. Using R (22), genes
were first filtered to only include those with minimum 1
read detected in all samples and then the edgeR (24) pack-
age was used to calculate FPKM values before averaging
the triplicates. All subsequent analysis using the transcrip-
tomics data in the manuscript can be reproduced using the
R scripts supplied in Supplementary Data 6.

Linear regressions

The mathematical expression of a simple linear regression
using one explanatory variable (TF binding of a single TF
in this case) to model the relationship to the dependent vari-
able (FPKM transcript level in our case) is Y; = Bo + B Xi;
+ ¢;. Y;is the FPKM of gene i, B¢ is the intercept (common
to all genes in the regression), Xj; is the amount of TF bind-
ing to gene i, B is the coefficient that is selected to give the
best fit together with the intercept to the transcript levels
(common to all genes in the regression) and €; is the error
of the prediction for gene i.

In multiple linear regressions, several predictors are
added together, each with their own coefficient. The equa-
tion then takes the format: Y; = B¢ + B X1; + ... + B Xu
+ g; where in our case k indicates the index of a TF. While
our analysis using TF binding contains 21 TFs, we always
use variable selection (TF selection) from the earth pack-
age (25) in R for multiple linear regressions, in which only
the most predictive set of TFs will be included and added
together for predictions of transcript levels of a given set
of genes. In some of our analysis we also allow the earth
scripts to introduce splines (earth() parameters ‘linpreds =
F’ and ‘endspan = 100’), effectively allowing the algorithm
to model regions where it is advantageous to have nonlin-
earities in the explanatory variables.

RESULTS

Most yeast metabolic TFs show large changes in genes tar-
gets in different metabolic states

To get information about several distinctly different states
of yeast metabolism we decided to analyze gene expression
regulation in chemostat cultures operated at the same spe-
cific growth rate, but still causing a range of different types
of metabolism; aerobic fermentation using nitrogen limita-
tion, respiratory glucose metabolism using glucose limita-
tion, fermentative glucose metabolism using anaerobic con-
ditions, and gluconeogenic respiration using ethanol limita-

tion. These four states of metabolism should involve large
changes in central carbon metabolism and hence we focused
on TFs that have enriched binding (relative to all other
binding targets) to central carbon metabolism enzymes. To
define a list of TFs to focus on we started from the land-
mark dataset collected by Harbison et al. containing TF
promoter enrichment genome-wide for a majority of yeast
TFs mapped by ChIP-chip in batch cultures with rich media
(4). All TFs that had >50 total targeted genes and >5% en-
richment of central carbon metabolism genes were selected
as candidates, as well as certain additional TFs suggested
from other studies to be important for controlling central
carbon metabolism. The criteria and process of selecting
TFs for this study is described in more detail in Supplemen-
tary Data 5.

To map and quantify TF binding, strains were created
with TFs tagged by a C-terminal TAP or 9xMyc tag. All
strains were validated for presence of the tag as well as func-
tional binding of the tagged TF to a known target gene’s
promoter by ChIP-qPCR. The successfully validated strains
were cultivated as biological duplicates in the four differ-
ent chemostat conditions and genome-wide binding events
were mapped and quantified by ChIP-exo. This method
is an improvement over ChIP-seq, including exonuclease
treatment of the cross-linked TF-DNA complex to increase
the resolution and reduce unspecific background binding
(14). A demonstration of our raw data and replicates is
shown for each TF in Supplementary Data 1.

Peaks were identified by GEM (16), the duplicates aver-
aged, and a signal threshold of >2 peak signal relative to the
noise of the local genomic context was applied. Comparing
to what degree the targeted genes overlap between the ex-
perimental conditions (Figure 1A), only two of the 15 TFs
first reported in this study show a relatively stable set of tar-
gets between the studied nutrient limited conditions: Cbf1
and Gerl. For the remaining TFs there are large changes in
which genes are being targeted between conditions. By an-
alyzing the targeted genes for the most relatively enriched
gene ontology (GO) term, we confirm many well-known
metabolic roles for these TFs, but also find indications for
new functions such as drug transport for Ertl and carbohy-
drate transport for Sutl (Figure 1A).

For further analysis of the relationship between TF bind-
ing and transcriptional outcomes, we combined binding in-
formation of the 15 TFs reported here with data for an ad-
ditional 6 TFs obtained with the same experimental con-
ditions and using the same protocols (Ino2, Ino4, Hapl,
Oafl and Pip2 from Bergenholm ez al. (26) and Stb5 from
Ouyang et al. (27) (Supplementary Figure S1A). We first
explored the general distribution of peaks on promoters
relative to the TSS and we found the expected strong en-
richment upstream of the TSS for all metabolic conditions
(Supplementary Figure S1b). Notably, when comparing the
number of peaks detected for each condition, we discov-
ered a significant decrease in count of peaks for most of the
studied TFs in aerobic fermentation (Supplementary Fig-
ure S1C).

To look for an explanation for the broad changes in which
genes are targeted between conditions we compared the
most enriched DNA motif bound by the TFs for the dif-
ferent metabolic conditions. For most TFs, we found only
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minor differences in the enriched motif between conditions
(Supplementary Figure S2A). There are a few notable situa-
tions where the most enriched motif may be different in one
condition, for example Gen4 and Rtgl in aerobic fermen-
tation, but we cannot conclude if these cases are from a true
change of DNA preference for the TF or if it is due to noisy
variation from the TF having fewer peaks in aerobic fer-
mentation. For the lipid metabolism TFs Ino2, Ino4, Hapl,
Oafl and Pip2, this analysis was performed in Bergenholm
et al. (26), with similar conclusions.

Our data and peak detection was further compared to
two previously published datasets. We focused on eight TFs
that are first reported in this manuscript where binding in
multiple conditions was reported by Harbison et al. (4)
and we also compared to the refined peak definitions re-
ported in the Maclsaac er al. (28). We see strong over-
lap for many TFs and generally stronger overlap with the
Harbison et al. experiments using synthetic media (Supple-
mentary Figure S2B), an expected observation because this
media more closely resembles our experimental conditions.
Two TFs show relatively poor overlap with existing datasets,
Rtgl and Rtg3, but we do see a strong enrichment of both
TFs to genes involved in amino acid biosynthesis (Figure
1A), which is a role for these TFs that is thoroughly demon-
strated (29,30) and makes us confident in the quality of our
data also for these TFs.

While the selection of TFs was focused on finding TFs en-
riched for binding to central carbon metabolism genes, we
decided to expand the gene sets for further studies of how
the TFs are affecting transcriptional regulation to cover all
metabolic genes. Metabolic genes were defined as being in-
cluded in the latest published yeast genome-scale model,
v7.6 (31); in total 849 genes from the model that have a
clearly defined TSS (17) and where we also have robust gene
expression data from transcriptomics were selected for fur-
ther analysis. Using all metabolic genes was a compromise
to have enough genes for strong statistical power and re-
liable observations from predictive models, but also retain
the property of having relatively good TF-coverage of the
genes. Our experimental approach is summarized in Figure
1B.

Comparing predictive models of transcriptional regulation

We next compared performance of different types of pre-
processing of the TF binding data in predicting transcript
levels (measured by RNA sequencing) using multiple linear
regressions. The regressions assume a linear relationship be-
tween TF binding and effects on transcriptional regulation
and we build a model where TFs binding signal is multiplied
by a coefficient and added together to predict transcript lev-
els. We first tested different signal /noise ratio (SNR) thresh-
olds for TF peak binding signal, but found only a mini-
mal effect on performance of the predictive models (Figure
2A). A different numeric representation of TF binding is
to sum TF binding over an interval of DNA and we found
that summing all binding -50 to +50bp around the identified
peaks gave stronger predictive power to transcriptional out-
comes (Figure 2A). We further tested an even simpler sum-
mation of the whole promoter region and found that this
gave even better predictive power (Figure 2A). We think this

improvement is most likely driven by contributions to tran-
scriptional regulation from relatively weaker TF binding
events that are not strong enough to be detected by a peak
finding algorithm. The reduced background of ChIP-exo is
here leveraged to be able to detect such weaker events over
background noise. The promoter signal sum data format
was also tested with multivariate adaptive regression splines
(MARS) (32). In MARS, if it is advantageous for prediction
performance, the algorithm can introduce splines in the lin-
ear regressions, effectively allowing a type of peak definition
where the peak threshold (spline) is introduced to create a
linear relationship between TF binding and transcript levels
only for a certain range of TF binding strength. We found
that with MARS, the performance of the predictions fur-
ther increased.

We were curious to see where in the promoter region TF
binding is most strongly contributing to gene regulation. We
tested the predictive power of binding in segments of the
promoter using linear regressions and found that binding
signal upstream of the TSS (where we also detect the ma-
jority of strong TF-binding peaks, Supplementary Figure
S1B) is predicted to be most consequential for transcrip-
tional regulation (Supplementary Figure S2C), but with a
notable influence also from binding directly downstream of
the TSS. Comparing the conditions, it appears that there is
a relative increase in influence of TF binding directly down-
stream of the TSS in aerobic fermentation (Supplementary
Figure S2c¢; highest point of red line is downstream of TSS
while highest point of the other conditions is upstream of
TSS). To select a region of a gene’s promoter which captures
as much as possible of the consequential TF binding for fur-
ther analysis, we started with the assumption of a symmet-
rical region around the TSS (assumed based on Supplemen-
tary Figure S2¢) and tested extensions of this region in 50 bp
increments for predicting transcript levels (Supplementary
Figure S2d). The performance of predictions increase until
it reaches —500 to +500 around the TSS, after which there
is no further increase, indicating that this region contains a
majority of the consequential TF binding.

MARS define a set of core TFs for different conditions and re-
veal general quantitative features of the relationship between
TF binding and transcriptional regulation

Based on the finding that MARS provided the best pre-
dictions of transcript levels from TF binding (Figure 2A),
we explored what we could learn about the roles and func-
tions of TFs from MARS regressions. For multiple linear
regressions, the interesting parameters to describe TF func-
tion are the coefficients, which can tell us if the TF is an
activator (positive correlation between binding and tran-
script levels) or a repressor (negative correlation between
binding and transcript levels). The MARS algorithm can
also introduce splines to improve prediction performance,
which can be another parameter of TF function, describ-
ing the range of TF binding where there is a linear relation-
ship with transcriptional outcomes. Finally, variable selec-
tion in MARS will select only the best combination of TFs
to predict as much as possible while penalizing increasing
the complexity of the model. To define a set of TFs that are
most strongly predictive of transcriptional regulation for
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Figure 2. Comparing performance of TF binding data preprocessing in linear regressions to predict transcript levels and details of multivariate adaptive
regression splines (MARS) models. (A) Correlations between predicted transcript levels and real transcript levels for the different formats of TF binding
data. The black line indicates the mean of the four metabolic conditions. (B-E) MARS used to predict metabolic gene transcript levels of the different
conditions from the amount of TF binding per gene promoter. The boxes shown below the predictions plots represent the different TFs that are selected
by MARS to give strongest predictive performance in the conditions and how their signal is contributing to predictions in the model.

each condition, we used MARS with cross validation for the
TF and spline selection to ensure that only the most robust
TFs and splines were included in the final model (model
building is illustrated in Supplementary Figure S3A). The
resulting predictions of transcript levels from TF binding
using MARS for the four metabolic conditions are shown
in Figure 2B-E. Using these conservative MARS models,

we could predict 34-43% of the variation in expression lev-
els of metabolic genes at the four metabolic conditions we
investigated. We judged this predictive power as being suf-
ficiently good to assume that the parameters given to the
TFs in these predictive models can give insights into how
the TFs are contributing to gene regulation in metabolism.
Typical quality control checks of the MARS models pre-
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sented in Figure 2B-E, such as the distribution of residuals
and QQ plots are shown in Supplementary Figure S3B.

The details of how TFs are contributing at different TF
binding strengths in these predictive models are shown in
the lower panels of Figure 2B-E. The coefficient of the TFs
from the regressions are illustrated here by either an up-
ward slope (activation) or a downward slope (repression).
A striking observation from these models is that of the 22
TF-transcript level correlations selected by MARS over the
four metabolic conditions, the linear correlations were all
positive, suggesting a predominance of activation in yeast
metabolic gene regulation by TFs. MARS can also create
segments where there is no correlation between TF binding
and transcript levels if that is advantageous for the predic-
tions. The most common way that the MARS algorithms
created splines from TF binding (15/22 cases) is to intro-
duce a threshold after which there is a linear relationship
between TF binding and transcript level. MARS also found
relationships between TF binding and transcription that
show a saturation effect, where more binding does not lead
to higher expression (6/22 cases). Of these six cases, four
of them are from the well-known interaction partners Ino2
and Ino4, suggesting that nonlinearity between binding and
functional outcomes may be a general feature of this TF
complex.

Contributions from several TFs on gene regulation are gen-
erally additive, but exploring collinear TFs indicates cases of
more complex functional interactions

In multiple linear regressions, correlation between explana-
tory variables (here TFs) leads to multicollinearity, a redun-
dancy in the information contained in explanatory variables
which may complicate the interpretation of the model, In
our data, collinearity between TFs could be due to TFs
interacting in a common protein complex, or responding
independently to the same cellular cues that regulate TF-
DNA binding. A feature of the TF selection in MARS is
that if there is collinearity between two TFs that are both
strongly predictive of transcript levels, only the TF that
gives slightly better predictions will be included while the
other TF will not be visible. To look for such collinear
TFs we first mapped the correlations in binding signal over
metabolic genes and calculated significance of the correla-
tions (Figure 3A-D). To find cases in the MARS models of
collinearity where a TF is not included because there is a
slightly better predictor selected, we tested if all included
TFs could be substituted by other TFs with significantly
correlated binding. Such cases are shown with black borders
in Figure 3A-D and they are TF pairs predicted to regulate
similar sets of genes in similar ways, indicating overlapping
functions and/or possibly more complex TF-TF interac-
tions. This analysis revealed several known cases of TF in-
teractions such as Ino2-Ino4, Gerl-Ger2-Tye7 and Cat8-
Sip4, but also novel potential interactions such as Gcn4-
Rtgl and Ertl-Ino4.

In the MARS models shown in Figure 2B-E, the contri-
bution of TFs binding to each gene is multiplied by a coef-
ficient and then added to get the final predicted transcript
level for that gene. We further looked for TF-TF interac-
tions that contribute to transcriptional regulation in ways

that are numerically more complex than simple addition.
All the significantly correlated TFs were tested if the multi-
plication of the signal of two collinear TFs give additional
predictive power compared to addition of the two TFs (Fig-
ure 3E-H). Most collinear TF pairs do not show a strong
improvement in predictive power by including a multiplica-
tive interaction term, for example the mentioned potential
TF interactions of Cat8-Sip4 and Gcen4-Rtgl during glu-
coneogenic respiration which only gave a 3% and 4% in-
crease in predictive power, respectively (Figure 3F, percent-
age improvement calculated by (multiplicative R2 increase
(y-axis) + additive R2 (x-axis))/additive R2 (x-axis)). The
TF pair that shows the clearest indications of having a more
complex functional interaction is Ino2-Ino4, having 19%,
11%, 39% and 20% improvement (Figure 3E-H) in predic-
tive power in the tested metabolic conditions by including a
multiplication of the binding signals. TF pairs that together
explain >10% of the metabolic gene variation using an only
additive regression and also show minimum 10% improved
predictive power when allowing multiplication are indicated
in red in Figure 3E-H. For Ino2-Ino4, the strongest effect
of the multiplication term is seen during fermentative glu-
cose metabolism with 39% improved predictive power (Fig-
ure 3G). The plot for how the multiplied Ino2-Ino4 signal
is contributing to the regression in this condition reveal that
in the genes where both TFs bind strongest together, there
is a predicted reduced activation as compared to interme-
diate binding strengths of both TFs, and a similar trend is
seen for the Ino2-Ino4 pair for other metabolic conditions
(Supplementary Figure S3c).

Clustering metabolic genes based on their relative change in
expression gives a strong enrichment of metabolic processes
and improved predictive power of TF binding in linear regres-
sions

Linear regressions of metabolic genes with TF selection
through MARS defined a small set of TFs that were
robustly associated with transcriptional changes over all
metabolic genes (Figure 2B-E), but TFs that only regu-
late a smaller group of genes would be unlikely to get se-
lected by this method. We clustered genes by their sum-of-
squares normalized expression between conditions to get
smaller clusters of genes with a range of gene expression lev-
els that are appropriate for predictive modeling by multiple
linear regressions. The motivation for clustering genes into
smaller groups is to be able to link TFs to specific patterns of
gene expression changes between the tested metabolic con-
ditions and to functionally connected groups of genes— thus
allowing more detailed predictions about the TFs’ biologi-
cal roles. The optimal number of clusters to maximize the
separation of the normalized expression values of metabolic
genes was 16, as determined by Bayesian information crite-
rion (Supplementary Figure S4A). Genes were sorted into
16 clusters by k-means clustering and we found that most
clusters then show significant enrichment of metabolic pro-
cesses, represented by GO categories (Figure 4). We further
selected four clusters (indicated by black frames in Figure
4) that are both enriched for genes of central metabolic pro-
cesses and have large transcriptional changes across the dif-
ferent metabolic conditions for further studies of how TFs
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Figure 3. Exploring contributions of collinear TF pairs to transcriptional regulation. (A-D) Correlation plots illustrating Pearsons correlations (in color)
between TF binding in promoters of metabolic genes. Significance (Pearson’s product moment correlation coefficient) is illustrated for TF pairs with P
< 0.05, by one or several asterisks, as indicated. Pairs of significantly collinear TFs that are interchangeable in the MARS TF selection in Figure 2B-E
are indicated by a stronger border in (A-D). (E-H) Linear regressions of collinear TF pairs were tested with and without allowing a multiplication of TF
signals of the two TFs. TF pairs indicated in red and with larger fonts have an R? of the additive regression >0.1 and increased performance with including
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Figure 4. Clustering genes by their relative change in expression (sum of squares normalization) over the four experimental conditions gives enrichment of
functional groups of genes. For clusters which have one or several significantly (FDR-adj P < 0.01) enriched GO terms, the top GO term is indicated with
p-adj-value. Clusters containing central metabolic processes selected for further analysis with linear regressions in Figure 5 are indicated by a black frame.

are affecting gene regulation in these clusters through multi-
ple linear regressions. While the introduction of splines was
highly stable for linear regressions over all metabolic genes,
we found the process of model building with MARS using
splines to be less stable in smaller groups of genes (mean
cluster size with 16 clusters is 55 genes). For the multiple
linear regressions in the clusters, we retained TF selection
(by variable selection in the MARS algorithm) to define the
most important TFs, but without introduction of splines.
Using this framework of multiple linear regression, pre-
dictions of transcriptional regulation on the clustered genes
gives an improvement in predictive power compared to pre-
dictions of all metabolic genes (Figure SE-H, R2: 0.57—
0.68). To compare the importance of different TFs for the
predictions of transcript levels in the groups over different
conditions, we calculate the ‘TF importance’ by multiply-
ing R2 of the multiple linear regression predictions with the
relative contribution of the TF in the linear regression (0—
1, calculated by model construction algorithm) and also a
coefficient for activation or repression (+1 or —1, respec-
tively). Some TFs were found to regulate a certain process
over several conditions, such as Hap1 for Cluster 4, enriched
for ergosterol biosynthesis genes (Figure 5A), but Cluster
4 is generally an example of a cluster with relatively large
changes in importance of different TFs for gene regulation
in different conditions. To get information about the com-
plete set of TFs regulating these clusters of genes, we also
included collinear TFs that were not initially included in

the variable selection, but could replace a significantly cor-
related TF (illustrated by a red link under the TF’s names
in the heatmaps of Figure 5). For Cluster 4, Oafl was not
selected during TF selection for this cluster and was thus
not used in the predictions illustrated in the prediction plot
of Figure SE, but was included in the heatmap because it
was correlated to the Hapl binding and when excluding
Hapl from the TF selection, Oafl was included. Because
the contribution of each TF is linear in these regressions,
the heatmaps give a complete view of how each gene is pre-
dicted to be regulated by different TFs. For Cluster 4 in fer-
mentative glucose metabolism, the main contributors to er-
gosterol genes (ERG27, ERG26, ERG11, ERG25, ERG3)
are predicted to be Ertl, Hapl and Oafl (Figure SE).
Cluster 15 is highly enriched for glycolytic processes and
across conditions we see that the TFs predicted to be most
important in several conditions are the well-known gly-
colytic regulators Gerl, Ger2 and Tye7 (Figure 5B). In res-
piratory glucose metabolism, Gerl, Hapl, Ertl and Rtgl
are included by variable selection and together these TFs
are able to explain 66% of the variation in the cluster (Fig-
ure 5F). Both Ger2 and Tye7 were found to be collinear
and able to replace Gerl if it was excluded and these three
TFs together are predicted to be regulating the glycolytic
genes TPI1, CDC19, TDH2, ENO2, PGK 1, PGI1, FBAI,
TDH3, GPM1, PFK2, TDH1 and PFK1 (Figure 5F). We
next focused on Cluster 7, containing genes with relatively
higher expression in the two respiratory conditions (seen
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Figure 5. Clustering genes by relative expression gives strong predictive models of the clustered genes. (A-D) All significant (P.adj < 0.05) GO terms for the
clustered genes and the relative importance of the TFs selected to give the strongest predictions of transcript levels for the genes in the clusters in different
conditions. Linear regressions (without splines) are used and importance is calculated by R2 (of regression with selected TFs) *relative importance of each
TF (0 to 1) *sign of coefficient (+1 is activation, —1 is repression). (E-H) Prediction plots showing the predicted transcript levels compared to the real
transcript levels from using the selected TFs (written in subtitle of plots). R2 of predicted transcript levels compared to real transcript level is shown in
red text. Heatmaps demonstrate the real transcript levels as well as binding signal of each TF normalized column-wise (Z-score). TFs linked by a red line
under the heatmap have significant collinearity over the cluster genes and were demonstrated to be able replace the other(s) in the variable selection, thus
having overlapping functions in regulation of genes in a given cluster.
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in Figure 4) and most strongly enriched for genes of mito-
chondrial ATP biosynthesis (Figure 5C). The most impor-
tant TF for predictions in this cluster for both the condi-
tions with mostly respiratory metabolism is the well-known
mitochondrial regulator Hap4 (Figure 5C). During glu-
coneogenic respiration, Hap4 and Hapl are predicted to
both contribute to the regulation of most electron transport
chain genes such as SHD1, NDI1, COX5A, COX6, QCR6,
RIP1, QCR7 and ATP14 (Figure 5G). Several subunits of
the ATP synthase (ATP17, ATP1 and ATP16) as well as cer-
tain TCA cycle enzymes (KGD1, KGD2) are predicted to be
regulated by Hap4 without Hapl. Oaf1 also contributes to
regulation of various genes of the cluster to a lesser extent,
in some cases alone, or together with Hapl and/or Hap4.
We also demonstrate the same analysis for Cluster 16, most
enriched for containing genes of fatty acid beta-oxidation
(Figure 5D). While most of the predicted effects of TF bind-
ing on transcriptional regulation explored thus far has been
activation, from the importance of TFs in the different con-
ditions of Cluster 16, three TFs showed negative correla-
tion to transcriptional changes during aerobic fermentation
(Figure 5D). The TF selection used three TFs — Gen4, Hapl
and Gerl to predict 60% of the variation in the cluster dur-
ing aerobic fermentation (Figure SH). Ertl and Sutl were
further included in the analysis because they were found
to be collinear and able to replace Gen4d in TF selection.
Exploring the contributions of the TFs to expression lev-
els of beta-oxidation genes in the heatmap supports an in-
verse relationship between Sutl-Gen4-Ertl binding an ex-
pression levels of several beta-oxidation genes, most notably
for PXAI, DCI1, CTAl, CLDI1, PXA2 and IDP3 (Figure
5H).

The influence of TFs on gene regulation from different regions
of the promoter changes between metabolic conditions

In the analysis shown in Supplementary Figure S2C we no-
ticed that there were apparent differences in importance of
different regions of the promoter between the conditions,
most notably a predicted shift towards more consequential
TF binding downstream of the TSS during aerobic fermen-
tation. We reasoned that this could be because TFs with
more consequential binding downstream of the TSS could
be more important at this condition, or it could be because
TFs shift their importance from one region of the promoter
to another between conditions. To distinguish these two
possibilities we performed simple linear regressions using
the binding signal for each TF individually in 75 bp regions
of the promoter to look for potential changes in TF im-
portance in different regions of the promoter between the
metabolic conditions. Comparing the resulting profiles of
the explanatory power of TF binding in the experimental
conditions revealed a distinctly different profile during aer-
obic fermentation compared to the other three metabolic
conditions (Figure 6A compared to Figure 6B-D). Impor-
tantly, the differences during aerobic fermentation do not
appear to be driven by one or a few TFs that regulate from
downstream of the TSS with stronger importance during
this condition, but rather a shift of where in the promoter
several TFs are most consequential to regulation (Compare
Gerl, Ino2, Ino4, Stb5, Cbfl in Figure 6A to B-D).

Another striking observation from the importance of TFs
during aerobic fermentation was a negative correlation be-
tween transcriptional changes and binding of three TFs
from an overlapping region upstream of the TSS; Sutl,
Gcend and Ertl (Figure 6A). These regressions were of all
metabolic genes, suggesting that the negative correlation
seen with these TFs on beta-oxidation genes, as seen in Fig-
ure SH, may be a more general phenomena of aerobic fer-
mentation. To see if these three TFs are acting on the same
genes or separately we compared the binding of the three
TFs in the region 250-450 upstream of the TSS together
with expression levels over all metabolic genes to look for
groups of genes where binding of Sutl, Gen4 and Ertl are
correlated to each other and anti-correlated to expression
levels (Figure 6E). In aerobic fermentation, we found two
distinct groups of genes where all three TFs are generally
correlated to each other, one with low binding of the three
TFs and high expression levels and another group with rel-
atively higher binding of all three TFs and relatively lower
expression levels. Interestingly, the group of genes where the
three TFs have the strongest negative correlation to tran-
script levels is slightly enriched for genes of translation pro-
cesses (Figure 6E, Group 1), genes that are likely closely
controlled due to the nitrogen limitation of these cultures.
We also looked for similar relationships between binding of
Sutl-Gen4-Ertl and transcript levels for the other experi-
mental conditions (Supplementary Figure S4B-D), but we
found no coordinated changes in the other conditions, sug-
gesting this phenomena is specific to aerobic fermentation.
We summarize some of our main findings from Figures 5
and 6A-E regarding how TFs regulate difference metabolic
processes in different conditions in Figure 6F.

DISCUSSION

The latest count of known and putative yeast TFs is 264
(33). With coverage of 21 TFs we only see part of the sys-
tem of gene regulation by TFs, but by selecting the TFs most
enriched to binding metabolic genes and building predic-
tive models of metabolic gene regulation we achieved good
TF coverage per gene. Through various types of analysis
we discovered surprisingly large changes between the stud-
ied metabolic conditions, first encountered when comparing
sets of target genes for the TFs between conditions shown in
Figure 1A. To explain the changing sets of gene targets be-
tween conditions, we hypothesized that the TFs could have
changes in preference of DNA motifs between different con-
ditions. We cannot exclude changes in motif preference in
certain cases such as Rtgl and Gen4 in aerobic fermenta-
tion (Supplementary Figure S2a), but in general the changes
in motif preference between conditions are small and we
think this is not a major determinant of changes in which
genes are being targeted between conditions. We think the
most likely alternative explanation is that there are changes
in nucleosome occupancy or histone modifications that al-
low more or less binding to different sets of genes over the
different conditions studied and that binding site preference
is only partly driven by the recognized DNA motif. This
idea is generally supported by the complex two-way inter-
actions that have been suggested between TF binding and
histones in eukaryotic gene regulation (8).
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promoters, against the expression levels. Lines are labeled by the TF name near the highest absolute y-axis value. (E) Two groups of genes where binding
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and Figure 6A-E.
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Based on the success of multiple linear regressions as pre-
dictive models of gene regulation from TF binding data, we
propose that a large portion of transcriptional regulation
by TFs in yeast is achieved from a linear effect of TF bind-
ing on transcriptional outcome. Our predictions also sug-
gest that a large amount of the contributions to gene reg-
ulation from several metabolic TFs are additive. However,
by allowing multiplication of TF binding signal, we do de-
tect cases that indicate more complex contributions from
pairs of TFs to gene regulation than a simple addition of
the two TFs binding signal can capture. Most noteworthy
is the relationship between Ino2 and Ino4, where the addi-
tive contribution from both TFs seem to saturate at a cer-
tain strength of binding (Supplementary Figure S3c). The
Ino2-Ino4 relationship is best known for being required for
phospholipid biosynthesis and Ino2 is described as most im-
portant for transcriptional activation of the targeted genes,
but Ino2 also depends on Ino4 for translocation into the
nucleus (34). There is additional complexity in the regula-
tion of this complex by involvement of the Opil repressor,
which can bind Ino2 to inhibit activation by the complex
(35). We cannot conclude on why we see a saturation effect
in the transcriptional activation due to increased binding of
both Ino2 and Ino4, but it could be due to TF-TF competi-
tion of the complex with other components of the transcrip-
tional machinery, or other nonlinear relationships between
binding of the TFs and transcriptional outcomes. In aero-
bic fermentation we detect several additional TF pairs for
which there may be more complex relationships than simple
addition of the contributing signal. Of these, both Ertl and
Gcend have relationships to Ino2 and Ino4 binding where
a multiplication of the binding signal clearly improves pre-
dictive power (Figure 3E). It is striking that Ertl and Gen4
are two of only a few TFs that show this kind of complex-
ity seen together with the negative correlation seen between
transcript levels and binding of Sutl, Gen4 and Ertl in aer-
obic fermentation, but we do not know if these observations
are related.

The main advantage of using linear regressions, as com-
pared to more complex machine learning analysis, is that
each TF’s contribution in the predictions can be fully de-
scribed. We highlight this feature of our analysis in Fig-
ure 5, where the groups of genes are biologically linked and
small enough to illustrate the amount of binding from each
selected TF in the individual genes of the clusters. In this
analysis we confirm several previously demonstrated regu-
lators of important cellular processes such as Hapl activat-
ing ergosterol biosynthesis (36), Gerl-Ger2-Tye7 activating
glycolytic genes (37) and Hap4 activating respiratory pro-
cesses (38). We also propose previously unknown contribu-
tions from other TFs to these processes such as Ert1 activat-
ing ergosterol biosynthesis at anaerobic conditions (Figure
SE).

The minimal media used in all chemostats of this study
are without added amino acids, meaning that the feedback
controls activating amino acid biogenesis should generally
be activated. Gen4 is best known as an activator of amino
acid biosynthesis, but also demonstrated in several stud-
ies to be a repressor of ribosomal protein expression by an
unknown mechanism (39,40). The mechanistic details on
how Gcené4 can activate some genes and repress others re-

main mostly unknown, but the repression has been linked
to functional interactions with the repressive TF Rapl and
histone acetyltransferase Esal (41). A recent study of the
yeast strain Y. lipolytica, describing increased lipid accumu-
lation of this strain during nitrogen limitation, found that
beta-oxidation genes were down-regulated in this condition
(42). In that study, they also noted that genes with the Gen4
motif in their promoter tended to be down-regulated dur-
ing nitrogen limitation, an observation that they could not
explain, but is in line with the negative correlation we ob-
serve between Gend binding and transcript levels for beta
oxidation genes during nitrogen limitation (Figure SH). We
propose that a similar mechanism as was observed in Y.
lipolytica exists in S. cerevisiae and further extend it to af-
fect a larger set of genes (Figure 6E) and to also involve
Sutl and Ertl. Sutl is previously described to interact with
the co-repressor complex Cyc8-Tupl (43) while Ertl is pre-
viously described to function as both an activator and re-
pressor with the major described functional role being reg-
ulating genes driving the diauxic shift (44). Our data does
not give any further insight into the mechanism of the Sut1-
Ert1-Gen4 repression, but based on the generally reduced
number of peaks (Supplementary Figure SIC) and changes
in importance of different regions of the promoter (Supple-
mentary Figure S2C, Figure 6A-D) during aerobic fermen-
tation, we speculate that Sutl-Ert1-Gen4 binding is corre-
lated to changes to the nucleosomes on each side of the
TSS in certain genes, for example histone modifications or
changes in nucleosome occupancy. If the changes in bind-
ing of these three TFs is not driven by changes in their pref-
erence for motifs, but instead by nucleosomes, it is also not
necessarily the case that the three TFs are directly repressing
— the correlation between TF binding and transcriptional
regulation could potentially be a secondary effect of nucleo-
some changes that are also causing transcriptional changes.
In conclusion, our experimental design using chemostats
to capture stable states of metabolism reveals large changes
in functional roles of different TFs between metabolic
states. The previously demonstrated difficulties in defining
the regulatory targets of eukaryal TFs through transcrip-
tomics after TF deletion could be partly explained by this
highly dynamic nature of eukaryal TF function. If the dele-
tion of the TF changes cellular conditions enough to shift
the regulatory roles of a range of one or several other TFs,
the following secondary transcriptional changes could be a
source of significant changes in genes not targeted directly
by the deleted TF. Our framework of using multiple lin-
ear regressions for full transparency of TF contributions to
transcriptional regulation without relying on TF deletion
will be equally applicable for future larger-scale studies as
binding data for more TFs with condition-matched tran-
scriptomics accumulate to gradually build a system-level
understanding of eukaryotic transcriptional regulation.

DATA AVAILABILITY

ChIP-exo raw sequencing data (.fastq) can be retrieved
form Arrayexpress accession E-MTAB-6673: https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-6673/. A
processed format of the ChIP-exo data, summarized as
TF reads per gene promoter is included in Supplementary
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Data 4. RNA sequencing raw sequencing data (.fastq)
can be retrieved from Arrayexpress accession E-MTAB-
6657: https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-6657/. The number of reads annotated to each gene
are found in Supplementary Data 3 and our processing of
read counts to get to FPKM values that are used for all
relevant analysis of this study can be reproduced through
the R scripts included in Supplementary Data 6.
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