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Abstract
We give a direct proof for the asymptotic faithfulness of the quantum SU (n) representations
of themapping class group using peak sections in Kodaira embedding.We give also estimates
on the norm of the parallell transport of the projective connection on the Verlinde bundle. The
faithfulness has been proved earlier by J. E. Andersen using Toeplitz operators on compact
Kähler manifolds and by J. Marché and M. Narimannejad using skein theory.

Keywords Mapping class group · Representation · Faithfulness · Norm estimates · Peak
sections.

Mathematics Subject Classification 14D21 · 57R56 · 53C55

1 Introduction

Let � be a closed oriented surface of genus g ≥ 2 and p ∈ �. We consider the moduli
space M of flat SU (n)-connections P on �\{p} with fixed holonomy a center element
d ∈ Z/nZ ∼= ZSU (n) of SU (n). We assume that n and d are coprime, in the case of g = 2
we also allow (n, d) = (2, 0), namely the SU (2)-connections with trivial holonomy.

There is a canonical symplectic form ω on M obtained by integrating wedge product of
Lie algebra su(n)-valued connection forms. The natural action of the mapping class group
� of � on (M, ω) is symplectic. Let L be the Hermitian line bundle over M and ∇ the
compatible connection in L constructed by Freed [8]. By [8, Proposition 5.27], the curvature
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of ∇ is
√−1
2π ω. Given any element σ in the Teichmüller space T the symplectic manifold M

can be equipped with a Kähler structure so that L becomes a holomorphic ample line bundle
Lσ . The Verlinde bundle Vk is defined by

Vk = H0(Mσ ,Lk
σ ).

It is known by theworks of Axelrod et al. [5] andHitchin [10] that the projective bundleP(Vk)

is equipped with a natural flat connection. Since there is an action of the mapping class group
� of� onVk covering its action on T , which preserves the flat connection inP(Vk), we get for
each k, a finite dimensional projective representation of �. This sequence of projective repre-
sentations π

n,d
k , k ∈ N+, is the quantum SU (n) representation of the mapping class group�.

Turaev [16] conjectured that there should be no nontrivial element φ of the mapping class
group in the kernel of π

n,d
k for all k, keeping (n, d) fixed. This property is called asymptotic

faithfulness of the quantum SU (n) representations π
n,d
k . In [1, Theorem 1], J. E. Andersen

proved Turaev’s conjecture, namely the following

Theorem 1.1 ([1], Theorem 1) Let πn,d
k be the projective representation of the mapping class

group. Assume that n and d are coprime or that (n, d) = (2, 0) when g = 2, then

∞⋂

k=1

Ker(πn,d
k ) =

{ {1, H}, g = 2, (n, d) = (2, 0)
{1}, otherwise,

(1.1)

where H is the hyperelliptic involution on genus g = 2 surfaces.

This theorem is proved in [1] by considering the action of the mapping class group on
functions onM as symbols of Toeplitz operators on holomorphic sections ofLk

σ for large k. A
different proof using skein theorem is given in [12]; see also [2–4] and references therein for
further developments. The existing proofs seem rather involved. We shall give a somewhat
more direct and elementary proof using peak sections in the Kodaira embedding.

We describe briefly our approach. Write π
n,d
k as πk throughout the rest of the paper. The

action of an element φ ∈ � on σ ∈ T and p ∈ M will be all denoted by the same, φ(σ) and
φ(p).

Let φ ∈ �, σ ∈ T , and σ(t) : [0, 1] → T be a smooth curve connecting φ(σ) and σ .
Denote by Pφ(σ),σ (t) the parallel transport from φ(σ) to σ(t) with respect to the projective
flat connection (2.1) below. For any s ∈ H0(Mσ ,Lk

σ ), set

s(t) := Pφ(σ),σ (t) ◦ φ∗(s) ∈ H0
(
Mσ(t),Lk

σ(t)

)
.

Here φ∗ is the induced action of φ on the total space of the Verlinde bundle. For any positive
smooth function ρ : M → (0, 1] define a Hermitian structure on the trivial bundle Hk =
T × C∞(M,Lk) by

〈s1, s2〉ρ =
∫

M
ρ · (s1, s2)

ωm

m! , ‖s‖2ρ = 〈s, s〉ρ. (1.2)

We shall study the variation of ‖s(t)‖2ρ and obtain

e− Cρ+kC
k+n ‖s‖2

ρ◦φ−1 ≤ ‖Pφ(σ),σ φ∗(s)‖2ρ ≤ e
Cρ+kC
k+n ‖s‖2

ρ◦φ−1; (1.3)
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see Proposition 3.2 below. Here Cρ and C are positive constants independent of k. We prove
that ifφ ∈ ⋂∞

k=1 Kerπk then the induced action ofφ onM is the identity. First of all it follows
that the representation φ → Pφ(σ),σ ◦ φ∗ is projectively trivial on the space H0(Mσ ,Lk

σ ),

Pφ(σ),σ ◦ φ∗ = πk(φ) = ckId

for some constant ck = ck(φ) �= 0. By taking ρ = 1 and using (1.3), we get a lower bound

of c2k , i.e. c
2
k ≥ e− C1+kC

k+n , which converges to e−C as k → ∞, so c2k > c for some constant
c > 0. If φ on M is not the identity, say φ(p) �= p we can construct appropriate weight

function ρ and peak section s at p so that the right hand side e
Cρ+kC
k+n ‖s‖2

ρ◦φ−1 is arbitrarily

smaller than e−C while as ‖Pφ(σ),σ ◦ φ∗(s)‖2ρ = c2k‖s‖2ρ has a uniform lower bound e−C ,
a contradiction to (1.3). Thus φ acts as identity on M , and it follows further by standard
arguments that φ itself is the identity element in � under the assumption on {g, n, d} or a
hyperelliptic involution for genus g = 2 surfaces.

We note that even though our proof is simpler thanAndersen’s proof [1] but the underlying
ideas are very much related; indeed Andersen used the result of Bordemann et al. [6] on norm
estimates of Teoplitz operators T f which are based on coherent states, namely specific kinds
of peak sections. Finally we mention that constructing representations of the mapping class
group and the study of faithfulness of the corresponding representations are ofmuch interests;
see [9,12] and references therein.

This article is organized as follows. In Sect. 2 we fix notation and recall some basic facts
on the Verlinde bundle, the projective flat connection and peak sections. Theorem 1.1. is
proved in Sect. 3.

We would like to thank Jorgen Ellegaard Andersen for some informative explanation of
his results.

2 Preliminaries

The results in this section can be found in [1,5,10,11,15] and references therein.
Let � be a closed oriented surface of genus g ≥ 2 and p0 ∈ �. Let d ∈ Z/nZ ∼=

ZSU (n) = {cI , cn = 1}, the center of SU (n). We assume that n and d are coprime, in the
case of g = 2 we also allow (n, d) = (2, 0). Let M be the moduli space of flat SU (n)-
connections P on �\{p0} with fixed holonomy d around p0. M is then a compact smooth
manifold of dimension m = (n2 − 1)(g − 1) with tangent vectors given by the Lie algebra
su(n)-valued connection 1-forms.

There is a canonical symplectic form ω on M by taking the trace of the integration of
products of 1-forms, the natural action of the mapping class group � on M is symplectic. Let
L be the Hermitian line bundle over M and ∇ the compatible connection in Lwith curvature√−1
2π ω; see [8, Proposition 5.27]. The induced connection in Lk will also be denoted by ∇.
Let T be the Teichmüller space of � parametrizing all marked complex structures on �.

By a classical result of Narasimhan and Seshadri [13] each σ ∈ T induces a Kähler structure
on M and thus a Kähler manifold Mσ . By using the (0, 1)-part of ∇, the bundle L is then
equipped with a holomorphic structure, which we denote by Lσ . Thus the manifold T also
parameterizes Kähler structures Iσ , σ ∈ T on (M, ω) and the holomorphic line bundles Lσ .
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For any positive integer k the Verlinde bundle Vk is a finite dimensional subbundle of the
trivial bundle Hk = T × C∞(M,Lk) given by

Vk(σ ) = H0(Mσ ,Lk
σ ), σ ∈ T .

By the results of Axelrod et al. [5] and Hitchin [10], there is a projective flat connection in
Vk given by

∇̂v = ∇̂ t
v − u(v), v ∈ T (T ), (2.1)

where ∇̂ t is the trivial connection inHk . The second term u(v) is given by [1, Formula (7)],

u(v) = 1

2(k + n)

(
R∑

r=1

∇Xr (v)∇Yr (v) + ∇Z(v) + nv[F]
)

− 1

2
v[F], (2.2)

where F : T → C∞(M) is a smooth function such that F(σ ) is real-valued on M for all
σ ∈ T , {Xr (v), Yr (v), Z(v)} ⊂ C∞(Mσ , T ) are a finite set of vector fields of Mσ taking
value in the holomorphic tangent space T of Mσ .

Since Lσ is an ample line bundle over Mσ , one may take a large k such that Lk
σ is a very

ample line bundle. Then the Kodaira embedding is given by

	k
σ : M → P(H0(Mσ ,Lk

σ )∗), p �→ 	k
σ (p) = {s ∈ H0(Mσ ,Lk

σ ), s(p) = 0}.
A peak section skp ∈ H0(Mσ ,Lk

σ ) of Lk
σ at a point p ∈ M is a unit norm generator of the

orthogonal complement of 	k
σ (p) such that

|skp(p)|2 =
Nk∑

i=1

|si (p)|2,

where Nk = dimH0(Mσ ,Lk
σ ) and {si }1≤i≤Nk is an orthonormal basis of H0(Mσ ,Lk

σ ) with
respect to the standard L2-metric; see [11, Definition 5.1.7]. The existence of peak sections
is well-known, and for any sequence {rk} with rk → 0 and rk

√
k → ∞, one has

∫

B(p,rk )
|skp(x)|2

ωn

n! = 1 − o(1), for k → ∞; (2.3)

see e. g. [11, Formula (5.1.25)] and [15, Lemma 1.2].

3 A direct approach to the asymptotic faithfulness

In this section, we will present an elementary proof of Theorem 1.1 using peak sections.
Fix σ ∈ T . For any φ ∈ �, the mapping class group of �, let σ(t) : [0, 1] → T be a

smooth curve with σ(0) = φ(σ), σ(1) = σ . For any s ∈ H0(Mσ ,Lk
σ ), set

s(t) := Pφ(σ),σ (t) ◦ φ∗(s) ∈ H0(Mσ(t),Lk
σ(t)), (3.1)

where Pφ(σ),σ (t) is the parallel transport from φ(σ) to σ(t) with respect to the projective
flat connection (2.1). For any positve smooth function ρ : M → (0, 1] we define a rescaled
Hermitian structure on Hk by

〈s1, s2〉ρ =
∫

M
ρ · (s1, s2)

ωm

m! , (3.2)
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and denote ‖s‖2ρ = 〈s, s〉ρ , where (·, ·) denotes the pointwise inner product of the Hermitian
line bundle Lk . (We note that the question of projectiveness of the norm (3.2) with respect
to the connection (2.1) is systematically studied in [14].)

For a (1, 0)-vector field X on Mσ let X∗ denote the dual 1-form of X such that X∗(X) =
|X |2ω. Denote 
t the adjoint of multiplication operator ω ∧ • by the Kähler metric ω; note
that 
t and ∂̄t all depend on σ(t).

Lemma 3.1 We have the following estimate for the differential operator u along σ(t),

∣∣〈u(σ ′(t))s(t), s(t)〉ρ
∣∣ ≤ Cρ + kC

2(k + n)
‖s(t)‖2ρ,

where the constants C = max[0,1]×M

∣∣∣ ∂F(σ (t))
∂t

∣∣∣ and

Cρ = max[0,1]×M
|
t ∂̄t (Z(σ ′(t))∗ρ)ρ−1|

+
R∑

r=1

max[0,1]×M

∣∣
t ∂̄t
(
Yr (σ

′(t))∗
t ∂̄t (Xr (σ
′(t))∗ρ)

)
ρ−1

∣∣

are independent of k.

Proof By (2.2) and (3.2) we have

∣∣〈u(σ ′(t))s(t), s(t)〉ρ
∣∣ =

∣∣∣∣
∫

M
(ρu(σ ′(t))s(t), s(t))ω

m

m!
∣∣∣∣

≤ 1

2(k + n)

∣∣∣∣
∫

M

(∇Z(σ ′(t))s(t), ρs(t)
) ωm

m!
∣∣∣∣

+ 1

2(k + n)

∣∣∣∣∣

∫

M

(
R∑

r=1

∇Xr (σ ′(t))∇Yr (σ ′(t))s(t), ρs(t)

)
ωm

m!

∣∣∣∣∣

+ k

2(k + n)

∣∣∣∣
∫

M
ρ ·

(
∂F(σ (t))

∂t
s(t), s(t)

)
ωm

m!
∣∣∣∣ .

(3.3)

The tangent vectors X , Y , Z are (1, 0)-vectors and ∇ above can all be replaced by ∇(1,0),
which we still denote by ∇. By [7, Chapter VII, Theorem (1.1)], the adjoint of ∇ on forms
is ∇(1,0),∗ = √−1[
t , ∂̄t ], and so it is ∇(1,0),∗ = √−1
t ∂̄t on (0, 1)-forms.

The first term in the RHS of (3.3) can be estimated as
∣∣∣∣
∫

M

(∇Z(σ ′(t))s(t), ρs(t)
) ωm

m!
∣∣∣∣ = ∣∣〈∇Z(σ ′(t))s(t), ρs(t)〉

∣∣

= ∣∣〈s(t),∇∗(Z(σ ′(t))∗ρs(t))〉∣∣
=

∣∣∣〈s(t),√−1
t ∂̄t (Z(σ ′(t))∗ρ)ρ−1 · ρs(t)〉
∣∣∣

≤ max[0,1]×M
|
t ∂̄t (Z(σ ′(t))∗ρ)ρ−1| · ‖s(t)‖2ρ,

(3.4)

where the third equality holds since s(t) is a holomorphic section of Lk
σ(t), i.e. ∂̄t s(t) = 0.

Similarly the second term is bounded by
∣∣∣∣∣

∫

M

(
R∑

r=1

∇Xr (σ ′(t))∇Yr (σ ′(t))s(t), ρs(t)

)
ωm

m!

∣∣∣∣∣
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≤
R∑

r=1

∣∣〈∇Xr (σ ′(t))∇Yr (σ ′(t))s(t), ρs(t)
〉∣∣

=
R∑

r=1

∣∣〈s(t),∇∗Yr (σ ′(t))∗∇∗Xr (σ
′(t))∗ρs(t)

〉∣∣ (3.5)

=
R∑

r=1

∣∣〈s(t),−
t ∂̄t
(
Yr (σ

′(t))∗
t ∂̄t (Xr (σ
′(t))∗ρ)

)
ρ−1 · ρs(t)〉∣∣

≤
R∑

r=1

max[0,1]×M

∣∣
t ∂̄t
(
Yr (σ

′(t))∗
t ∂̄t (Xr (σ
′(t))∗ρ)

)
ρ−1

∣∣ · ‖s(t)‖2ρ.

For the last term in the RHS of (3.3), we have
∣∣∣∣
∫

M
ρ ·

(
∂F(σ (t))

∂t
s(t), s(t)

)
ωm

m!
∣∣∣∣ ≤ max[0,1]×M

∣∣∣∣
∂F(σ (t))

∂t

∣∣∣∣ · ‖s(t)‖2ρ. (3.6)

Substituting (3.4), (3.5) and (3.6) into (3.3), we obtain
∣∣〈u(σ ′(t))s(t), s(t)〉ρ

∣∣

≤ 1

2(k + n)
max[0,1]×M

|
t ∂̄t (Z(σ ′(t))∗ρ)ρ−1| · ‖s(t)‖2ρ

+ 1

2(k + n)

R∑

r=1

max[0,1]×M

∣∣
t ∂̄t
(
Yr (σ

′(t))∗
t ∂̄t (Xr (σ
′(t))∗ρ)

)
ρ−1

∣∣ · ‖s(t)‖2ρ

+ k

2(k + n)
max[0,1]×M

∣∣∣∣
∂F(σ (t))

∂t

∣∣∣∣ · ‖s(t)‖2ρ

= Cρ + kC

2(k + n)
‖s(t)‖2ρ,

completing the proof. ��

Proposition 3.2 Wehave the following estimate for the normof the parallel transport Pφ(σ),σ ,

e− Cρ+kC
k+n ‖s‖2

ρ◦φ−1 ≤ ‖Pφ(σ),σ φ∗(s)‖2ρ ≤ e
Cρ+kC
k+n ‖s‖2

ρ◦φ−1 , (3.7)

for all s ∈ H0(Mσ ,Lk
σ ).

Proof Using the definition of s(t) in (3.1) we have

∇̂σ ′(t)s(t) = 0. (3.8)

By (2.1) and (3.8) we deduce that

d

dt
‖s(t)‖2ρ = 〈∇̂ t

σ ′(t)s(t), s(t)〉ρ + 〈s(t), ∇̂ t
σ ′(t)s(t)〉ρ

=
∫

M
(ρu(σ ′(t))s(t), s(t)) + (s(t), ρu(σ ′(t))s(t))ω

m

m!
= 2Re〈u(σ ′(t))s(t), s(t)〉ρ.
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This is treated in Lemma 3.1 and we find

−Cρ + kC

k + n
‖s(t)‖2ρ ≤ d

dt
‖s(t)‖2ρ ≤ Cρ + kC

k + n
‖s(t)‖2ρ.

Hence

e− Cρ+kC
k+n ‖s(0)‖2ρ ≤ ‖s(1)‖2ρ ≤ e

Cρ+kC
k+n ‖s(0)‖2ρ. (3.9)

Now σ(t) is a curve from φ(σ) to σ , Pφ(σ),σ (0) = Pφ(σ),φ(σ ) = Id, σ(1) = σ , and

s(0) = φ∗(s), s(1) = Pφ(σ),σ φ∗(s). (3.10)

The norm of s(0) is given by

‖s(0)‖2ρ = ‖φ∗s‖2ρ =
∫

M
ρ|φ∗s|2 ωm

m! =
∫

M
ρ|s ◦ φ|2 ωm

m!
=

∫

M
ρ ◦ φ−1|s|2 ωm

m! = ‖s‖2
ρ◦φ−1 .

(3.11)

Here we have used the fact that φ induces a symplectomorphism of M , i.e. φ∗ω = ω.
Combining (3.10) and (3.9) we find the estimate

e− Cρ+kC
k+n ‖s‖2

ρ◦φ−1 ≤ ‖Pφ(σ),σ φ∗(s)‖2ρ ≤ e
Cρ+kC
k+n ‖s‖2

ρ◦φ−1 .

��

We prove now Theorem 1.1.

The proof of Theorem 1.1 We consider first the case of g ≥ 3, n and d are coprime. Suppose
φ ∈ ⋂∞

k=1 Kerπk . We prove that φ is the identity mapping of �.
The projective representation of the mapping class group � is defined via the flat connec-

tion, in particular � acts on the space of covariant constant sections over Teichmüller space,
and

Pφ(σ),σ ◦ φ∗ = πk(φ) = ckId, ck �= 0, (3.12)

when acting on the element of H0(Mσ ,Lk
σ ).

By taking ρ = 1 and using Proposition 3.2, we get

e− C1+kC
k+n ≤ c2k ≤ e

C1+kC
k+n . (3.13)

We prove first φ acts on M as identity. Otherwise suppose φ �= Id as mappings of M .
Then there exists a point p ∈ M such that p �= φ−1(p). Let Vp,Up ⊂ M be two small
neighborhoods of p with

p ∈ Vp � Up, φ−1(Vp) ⊂ M −Up. (3.14)

Let ρ : M → (0, 1] be a smooth function on M satisfying

ρ(x) =
{
1, x ∈ Vp,

1
e2C+1

, x ∈ M −Up.
(3.15)
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For each large k we take the initial section s to be the peak section skp of the point p. By
(3.12), (3.13), (3.15) and (2.3), we find

‖Pφ(σ),σ ◦ φ∗(skp)‖2ρ = c2k

∫

M
ρ|skp|2

ωm

m!
≥ e− C1+kC

k+n

∫

Vp

|skp|2
ωm

m!
≥ e− C1+kC

k+n (1 − o(1)).

(3.16)

On the other hand, by (3.14), (3.15) and (2.3), we have also

‖skp‖2ρ◦φ−1 =
∫

M
ρ ◦ φ−1|skp|2

ωm

m!
=

∫

Vp

ρ ◦ φ−1|skp|2
ωm

m! +
∫

M−Vp

ρ ◦ φ−1|skp|2
ωm

m!
≤ 1

e2C + 1

∫

Vp

|skp|2
ωm

m! +
∫

M−Vp

|skp|2
ωm

m!
≤ 1

e2C + 1
+ o(1).

(3.17)

Substituting (3.16) and (3.17) into (3.7) we obtain

e− C1+kC
k+n (1 − o(1)) ≤ e

Cρ+kC
k+n

(
1

e2C + 1
+ o(1)

)
.

As k → ∞ it gives

e−C ≤ eC · 1

e2C + 1
= e−C

1 + e−2C < e−C ,

which is a contradiction. So φ acts on M as the identity. It follows then from the standard
argument [1] that φ itself is the identity element in � (as equivalence class of mappings of
�).

Now in the case g = 2, (n, d) = (2, 0), the same proof above concludes that if φ ∈⋂∞
k=1 Ker(π

2,0
k ) then it acts trivially on M . It is then either the identity or the hyper-elliptic

involution H ; see [1]. On the other hand H indeed acts trivially under allπ2,0
k by its definition.

Thus
⋂∞

k=1 Ker(π
2,0
k ) = {1, H}. ��

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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