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Abstract: Weexamine the structure of gauge transformations in extended geometry, the
framework unifying double geometry, exceptional geometry, etc. This is done by giving
the variations of the ghosts in a Batalin–Vilkovisky framework, or equivalently, an L∞
algebra. The L∞ brackets are given as derived brackets constructed using an underlying
Borcherds superalgebra B(gr+1), which is a double extension of the structure algebra
gr . The construction includes a set of “ancillary” ghosts. All brackets involving the
infinite sequence of ghosts are given explicitly. All even brackets above the 2-brackets
vanish, and the coefficients appearing in the brackets are given by Bernoulli numbers.
The results are valid in the absence of ancillary transformations at ghost number 1.
We present evidence that in order to go further, the underlying algebra should be the
corresponding tensor hierarchy algebra.
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1. Introduction

The ghosts in exceptional field theory [1], and generally in extended field theory with an
extended structure algebra gr [2], are known to fall intoB+(gr ), the positive levels of a
Borcherds superalgebraB(gr ) [3,4]. We use the concept of ghosts, including ghosts for
ghosts etc., as a convenient tool to encode the structure of the gauge symmetry (structure
constants, reducibility and so on) in a classical field theory using the (classical) Batalin–
Vilkovisky framework.

It was shown in Ref. [3] how generalised diffeomorphisms for Er have a natural
formulation in terms of the structure constants of the Borcherds superalgebraB(Er+1).
This generalises to extended geometry in general [2]. The more precise rôle of the
Borcherds superalgebra has not been spelt out, and one of the purposes of the present
paper is to fill this gap. The gauge structure of extended geometry will be described
as an L∞ algebra, governed by an underlying Borcherds superalgebra B(gr+1). The
superalgebraB(gr+1) generalisesB(Er+1) in Ref. [3], and is obtained from the structure
algebra gr by adding two more nodes to the Dynkin diagram, as will be explained in
Section 2. In cases where the superalgebra is finite-dimensional, such as double field
theory [5–19], the structure simplifies to an Ln<∞ algebra [20–22], and the reducibility
becomes finite.

It is likely that a consistent treatment of quantum extended geometry will require a
full Batalin–Vilkovisky treatment of the ghost sector, which is part of the motivation
behind our work. Another, equally strong motivation is the belief that the underlying
superalgebras carrymuch information about themodels—also concerning physical fields
and their dynamics—and that this can assist us in the future when investigating extended
geometries bases on infinite-dimensional structure algebras.

The first 8− r levels inB(Er ) consist of Er -modules for form fields in exceptional
field theory [1,23–40], locally describing eleven-dimensional supergravity. Inside this
window, there is a connection-free but covariant derivative, taking an element in Rp at
level p to Rp−1 at level p−1 [31]. Above thewindow, themodules, when decomposed as
gl(r)modules with respect to a local choice of section, start to containmixed tensors, and
covariance is lost. For E8, the window closes, not even the generalised diffeomorphisms
are covariant [39] and there are additional restricted local E8 transformations [38].
Such transformations were named “ancillary” in ref. [2]. In the present paper, we will
not treat the situation where ancillary transformations arise in the commutator of two
generalised diffeomorphisms, butwewill extend the concept of ancillary ghosts to higher
ghost number. It will become clear from the structure of the doubly extended Borcherds
superalgebraB(gr+1) why and when such extra restricted ghosts appear, and what their
precise connection to e.g. the loss of covariance is.

A by-product of our construction is that all identities previously derived on a case-by-
case basis, relating to the “form-like” properties of the elements in the tensor hierarchies
[31,41], are derived in a completely general manner.

Although the exceptional geometries are the most interesting cases where the struc-
ture has not yet been formulated, we will perform all our calculations in the general
setting with arbitrary structure group (which for simplicity will be taken to be simply
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laced, although non-simply laced groups present no principal problem). The general for-
mulation of ref. [2] introduces no additional difficulty compared to any special case, and
in fact provides the best unifying formalism also for the different exceptional groups.We
note that the gauge symmetries of exceptional generalised geometry have been dealt with
in the L∞ algebra framework earlier [42]. However, this was done in terms of a formal-
ismwhere ghosts are not collected intomodules of Er , but consist of the diffeomorphism
parameter together with forms for the ghosts of the tensor gauge transformations (i.e.,
in generalised geometry, not in extended geometry).

In Section 2, details about the Borcherds superalgebraB(gr+1) are given. Especially,
the double grading relevant for our purposes is introduced, and the (anti-)commutators
are given in this basis. Section 3 introduces the generalised Lie derivative and the section
constraint in terms of the Borcherds superalgebra bracket. In Section 4 we show how
the generalised Lie derivative arises naturally from a nilpotent derivative on the B(gr )
subalgebra, and how ancillary terms/ghosts fit into the algebraic structure. Some further
operators related to ancillary terms are introduced, and identities between the operators
are derived. Section 5 is an interlude concerning L∞ algebras and Batalin–Vilkovisky
ghosts. The non-ancillary part of the L∞ brackets, i.e., the part where ghosts and brackets
belong to the B+(gr ) subalgebra, is derived in Section 6. The complete non-ancillary
variation (S,C) = ∑∞

n=1[[Cn]] can formally be written as

(S,C) = dC + g(adC)LCC, (1.1)

where g is the function

g(x) = 2

1 − e−2x − 1

x
, (1.2)

containing Bernoulli numbers in its Maclaurin series. Ancillary ghosts are introduced in
Section 7, and the complete structure of the L∞ brackets is presented in Section 8. Some
examples, including ordinary diffeomorphisms (the algebra of vector fields), double
diffeomorphisms and exceptional diffeomorphisms, are given in Section 9.We conclude
with a discussion, with focus on the extension of the present construction to situations
where ancillary transformations are present already in the commutator of two generalised
diffeomorphisms.

2. The Borcherds Superalgebra

For simplicity we assume the structure algebra gr to be simply laced, and we normalise
the inner product in the real root space by (αi , αi ) = 2. We let the coordinate module,
which we denote R1 = R(−λ), be a lowest weight module1 with lowest weight −λ.
Then the derivative module is a highest weight module R(λ) with highest weight λ, and
R(−λ) = R(λ).

As explained in ref. [3] we can extend gr to a Lie algebra gr+1 or to a Lie superalgebra
B(gr ) by adding a node to the Dynkin diagram. In the first case, the additional node is
an ordinary “white” node, the corresponding simple root α0 satisfies (α0, α0) = 2, and
the resulting Lie algebra gr+1 is a Kac–Moody algebra like gr itself. In the second case,

1 In refs. [2,40], the coordinate module was taken to be a highest weight module. We prefer to reverse
these conventions (in agreement with ref. [3]). With the standard basis of simple roots in the superalgebra, its
positive levels consists of lowestweight gr -modules. In the present paper the distinction is not essential, since
the cases treated all concern finite-dimensional gr and finite-dimensional gr -modules.
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Fig. 1. Dynkin diagrams ofB(Er+1) together with our notation for the simple roots represented by the nodes

the additional node is “grey”, corresponding to a simple root β0. It satisfies (β0, β0) = 0,
and is furthermore a fermionic (i.e., odd) root, whichmeans that the associated Chevalley
generators e0 and f0 belong to the fermionic subspace of the resulting Lie superalgebra
B(gr ). In both cases, the inner product of the additional simple root with those of gr is
given by the Dynkin labels of λ, with a minus sign,

−λi = −(λ, αi ) = (α0, αi ) = (β0, βi ), (2.1)

where we have set αi = βi (i = 1, 2, . . . , r ).
We can extend gr+1 andB(gr ) further to a Lie superalgebraB(gr+1) by adding one

more node to the Dynkin diagrams.2 We will then get two different Dynkin diagrams
(two different sets of simple roots) corresponding to the same Lie superalgebraB(gr+1).
These are shown in Figure 1 in the case when g = Er and λ is the highest weight of the
derivative module in exceptional geometry. The line between the two grey nodes in the
second diagram indicate that the inner product of the two corresponding simple roots is
(β−1, β0) = 1, not −1 as when one or both of the nodes are white.

The two sets of simple roots are related to each other by

γ−1 = −β−1, γ0 = β−1 + β0, γi = βi . (2.2)

This corresponds to a “generalised Weyl transformation” or “odd Weyl reflection” [43],
which provides amap between the two sets of Chevalley generatorsmapping the defining
relations to each other, thus inducing an isomorphism.

In spite of the notation B(gr+1) we choose to consider this algebra as constructed
from the second Dynkin diagram in Figure 1, which means that we let e0, f0 and h0 be
associated to β0 rather than γ0. For β−1, we drop the subscript and write the associated
generators simply as e, f and h. They satisfy the (anti-)commutation relations

[h, e] = [h, f ] = 0 [e, f ] = h. (2.3)

Acting with h on e0 and f0 we have

[h, e0] = e0, [h, f0] = − f0. (2.4)

2 In ref. [2], the algebras gr+1, B(gr ) and B(gr+1) were called A , B and C , respectively.
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Throughout the paper the notation [·, ·] is used for the Lie super-bracket of the superalge-
bra, disregarding the statistics of the generators. Thus, we do not use a separate notation
(e.g. {·, ·}, common in the physics literature) for brackets between a pair of fermionic
elements.

Let k be an element in the Cartan subalgebra of B(gr ) that commutes with gr and
satisfies [k, e] = e and [k, f ] = − f when we extend B(gr ) to B(gr+1). In the Cartan
subalgebra of B(gr+1), set k̃ = k + h, so that [e, f ] = h = k̃ − k. We then have

[k, e0] = −(λ, λ)e0, [k, e] = e,

[k, f0] = (λ, λ) f0, [k, f ] = − f, (2.5)

[̃k, e0] = (1 − (λ, λ))e0, [̃k, e] = e,

[̃k, f0] = ((λ, λ) − 1) f0, [̃k, f ] = − f. (2.6)

The Lie superalgebraB(gr+1) can be given a (Z×Z)-grading with respect to β0 and
β−1. It is then decomposed into a direct sum of gr modules

B(gr+1) =
⊕

(p,q)∈Z×Z

R(p,q), (2.7)

where R(p,q) is spanned by root vectors (together with the Cartan generators if p =
q = 0) such that the corresponding roots have coefficients p and q for β0 and β−1,
respectively, when expressed as linear combinations of the simple roots. We will refer
to the degrees p and q as level and height, respectively. They are the eigenvalues of the
adjoint action of h = k̃ − k and the Cartan element

q = (1 − (λ, λ))k + (λ, λ)̃k = k + (λ, λ)h, (2.8)

respectively. Thus

[q, e0] = [q, f0] = 0, [q, e] = e, [q, f ] = − f. (2.9)

In the same way as the Lie superalgebra B(gr+1) can be decomposed with respect to
β0 and β−1, it can also be decomposed with respect to γ0 and γ−1. Then the degrees m
and n, corresponding to γ0 and γ−1, respectively, are related to the level and height by
m = p and n = p − q. The L∞ structure on B(gr+1) that we are going to introduce is
based on yet another Z-grading,

B(gr+1) =
⊕

�∈Z
L�, (2.10)

where the degree � of an element in R(p,q) is given by � = p + q. The L∞ structure is
then defined on (a part of) the subalgebra ofB(gr+1) corresponding to positive levels �,
and all the brackets have level � = −1. It is important, however, to note that the subset
ofB(gr+1) on which the ghosts live is not closed under the superalgebra bracket, so the
space on which the L∞ algebra is defined will not support a Lie superalgebra structure.
The subset in question consists of the positive levels of the subalgebraB(gr ) at p > 0,
q = 0, together with a subset of the elements at p > 0, q = 1. See further Sections 7
and 8. The ghost number is identified with the level � = p + q in Table 1.

FollowingRef. [3],we let EM and FM be fermionic basis elements of R(1,0) = R1 and
R(−1,0) = R1, respectively, in the subalgebraB(gr ), while ẼM and F̃ M are bosonic basis
elements of R(1,1) = R1 and R(−1,−1) = R1 in the subalgebra gr+1. Furthermore, we
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Table 1. The general structure of the superalgebraB(gr+1)

The blue lines are the L∞-levels, given by � = p + q. We also have m = p. Red lines are the usual levels
in the level decomposition of B(gr+1), and form gr+1 modules. Tables with specific examples are given in
Section 9, and use the same gradings as this table

let Tα be generators of gr , and (tα)M
N representation matrices in the R1 representation.

Adjoint indices will be raised and lowered with the Killing metric ηαβ and its inverse.
Then the remaining (anti-)commutation relations of generators at levels −1, 0 and 1 in
the “local superalgebra” (i.e., where also the right hand side belongs to level −1, 0 or 1)
that follow from the Chevalley–Serre relations are

[Tα, EM ] = −(tα)M
N EN , [Tα, ẼM ] = −(tα)M

N ẼN ,

[k, EM ] = −(λ, λ)EM , [̃k, ẼM ] = (2 − (λ, λ))ẼM ,

[̃k, EN ] = (1 − (λ, λ))EN , [k, ẼN ] = (1 − (λ, λ))ẼN ,

[e, EN ] = ẼN , [e, ẼN ] = 0,

[ f, EN ] = 0, [ f, ẼN ] = EN , (2.11)

[Tα, FN ] = (tα)M
N FM , [Tα, F̃ N ] = (tα)M

N F̃M ,

[k, FN ] = (λ, λ)FN , [̃k, F̃ N ] = ((λ, λ) − 2)F̃ N ,

[̃k, FN ] = ((λ, λ) − 1)FN , [k, F̃ N ] = ((λ, λ) − 1)F̃ N ,

[e, FN ] = 0, [e, F̃ N ] = FN ,

[ f, FN ] = −F̃ N , [ f, F̃ N ] = 0, (2.12)

[EM , FN ] = −(tα)M
NTα + δM

Nk, [ẼM , F̃ N ] = −(tα)M
NTα + δM

N k̃,

[EM , F̃ N ] = δM
N f, [ẼM , FN ] = −δM

Ne. (2.13)

From this we get

[[EM , FN ], EP ] = fM
N
P
QEQ , [[ẼM , F̃ N ], ẼP ] = f̃M

N
P
Q ẼQ ,

[[EM , FN ], ẼP ] = δM
N ẼP + fM

N
P
Q ẼQ , [[ẼM , F̃ N ], EP ] = δM

N EP + fM
N
P
QEQ ,

[[EM , F̃ N ], EP ] = 0, [[ẼM , FN ], ẼP ] = 0,

[[EM , F̃ N ], ẼP ] = δM
N EP , [[ẼM , FN ], EP ] = −δM

N ẼP , (2.14)
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where

fM
N
P
Q = (tα)M

N (tα)P
Q − (λ, λ)δM

N δP
Q, (2.15)

and

f̃M
N
P
Q = (tα)M

N (tα)P
Q +

(
2 − (λ, λ)

)
δM

N δP
Q . (2.16)

In particular we have the identities

[[EM , FN ], EP ] = [[ẼM , F̃ N ], EP ] + [[EM , F̃ N ], ẼP ],
[[ẼM , F̃ N ], ẼP ] = [[EM , FN ], ẼP ] − [[ẼM , FN ], EP ], (2.17)

which follow from acting with e and f on [[EM , F̃ N ], EP ] = 0 and [[ẼM , FN ], ẼP ] =
0, respectively.

Continuing to level 2, the generators EM and ẼM fulfil certain “covariantised Serre
relations”, following from the Serre relations for e0 and [e, e0], the generators corre-
sponding to the roots β0 and γ0, respectively. The Serre relation in theB(gr ) subalgebra
states that [EM , EN ] only spans a submodule R2 of the symmetric product of two R1’s.
The complement of R2 in the symmetric product is R(−2λ), the only module appearing
in the square of an object in a minimal orbit. Similarly, the Serre relation in the gr+1
subalgebra states that [ẼM , ẼN ] only spans R̃2, the complement of which is the highest
module in the antisymmetric product of two R1’s. The bracket [EM , ẼN ] spans R2⊕ R̃2.
The conjugate relations apply to FM and F̃ M . We thus have

[EM , EN ] ∈ R2, [FM , FN ] ∈ R2,

[EM , ẼN ] ∈ R2 ⊕ R̃2, [FM , F̃ N ] ∈ R2 ⊕ R̃2,

[ẼM , ẼN ] ∈ R̃2, [F̃ M , F̃ N ] ∈ R̃2. (2.18)

The modules R2 and R̃2 are precisely the ones appearing in the symmetric and antisym-
metric parts of the section constraint in Section 3. Formore details, e.g. on the connection
to minimal orbits and to a denominator formula for the Borcherds superalgebra, we refer
to refs. [2–4]. The (anti-)commutation relations with generators at level ±1 acting on
those in (2.18) at level ∓2 follow from Eqs. (2.14) by the Jacobi identity.

An important property ofB(gr+1) is that any non-zero level decomposes into doublets
of the Heisenberg superalgebra spanned by e, f and h. This follows from Eqs. (2.3). An
element at positive level and height 0 is annihilated by ad f . It can be “raised” to height
1 by ad e and lowered back by ad f . We define, for any element at a non-zero level p,

A	 = 1

p
[A, e], (2.19)

A
 = −[A, f ]. (2.20)

Then A = A	
 + A
	. Occasionally, for convenience, we will write raising and lowering
operators acting on algebra elements. We then use the same symbols for the operators:

A = A
 and 	A = A	.

As explained aboveB(gr+1) decomposes into gr modules, where we denote the one
at level p and height q by R(p,q). Every gr -module Rp = R(p,0) at level p > 0 and
height 0 exists also at height 1. In addition there may be another module. We write
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R(p,1) = Rp ⊕ R̃p. Sometimes, R̃p may vanish. The occurrence of non-zero modules
R̃p is responsible for the appearance of “ancillary ghosts”.3

Let A and B be elements at positive level and height 0 (or more generally, annihilated
by ad f ), and denote the total statistics of an element A by |A|. The notation is such
that |A| takes the value 0 for a totally bosonic element A and 1 for a totally fermionic
one. “Totally” means statistics of generators and components together, so that a ghost C
always has |C | = 0, while its derivative (to be defined in Eq. (4.1) below) has |dC | = 1.
This assignment is completely analogous to the assignment of statistics to components
in a superfield. To be completely clear, our conventions are such that also fermionic
components and generators anticommute, so that if e.g. A = AMEM and B = BMEM
are elements at level 1 with |A| = |B| = 0, then [A, B] = [AMEM , BN EN ] =
−AM BN [EM , EN ]. A bosonic gauge parameter AM at level 1 sits in an element A with
|A| = 1.

Some useful formulas involving raising and lowering operators are easily derived:

[A, B	]
 = [A, B], (2.21)

[A, B	]	 = −(−1)|B|(ad h)−1[[h, A	], B	]. (2.22)

Note that [A	, B	] has height 2 and lies in R̃pA+pB , if pA, pB are the levels of A, B. The
decomposition

[A, B	] = [A, B]	 − (−1)|B|(ad h)−1[[h, A	], B	]
 (2.23)

provides projections of R(p,1) = Rp ⊕ R̃p on the two subspaces.
We will initially consider fields (ghosts) in the positive levels ofB(gr ), embedded in

B(gr+1) at zero height. They can thus be characterised as elementswith positive (integer)
eigenvalues of ad h and zero eigenvalue of the adjoint action of the element q in Eq.
(2.8). Unless explicitly stated otherwise, elements in B(gr+1) will be “bosonic”, in the
sense that components multiplying generators that are fermions will also be fermionic,
as in a superfield. This agrees with the statistics of ghosts. With such conventions, the
superalgebra bracket [·, ·] is graded antisymmetric, [C,C] = 0 when |C | = 0.

3. Section Constraint and Generalised Lie Derivatives

We will consider elements in certain subspaces of the algebra B(gr+1) which are also
functions of coordinates transforming in R1 = R(−λ), the coordinates of an extended
space. The functional dependence is such that a (strong) section constraint is satisfied.
A derivative is in R1 = R(λ). Given the commutation relations between FM and F̃ M

(which both provide bases of R1), the section constraint can be expressed as

[FM , FN ]∂M ⊗ ∂N = 0,

[FM , F̃ N ]∂M ⊗ ∂N = 0,

[F̃ M , F̃ N ]∂M ⊗ ∂N = 0. (3.1)

The first equation expresses the vanishing of R2 in the symmetric product of two deriva-
tives (acting on the same or different fields), the last one the vanishing of R̃2 in the

3 The notation R̃p was used differently in ref. [3]. There, R̃1, R̃2, R̃3, . . . correspond to R1, R̃2,
˜̃R3, . . .

here, i.e., the representations on the diagonal n = 0 in Table 1. Thus it is only for p = 2 that the meanings of
the notation coincide.
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antisymmetric product, and the second one contains both the symmetric and antisym-
metric constraint. The first and third constraints come from the subalgebras B(gr ) and
gr+1, respectively, which gives a simple motivation for the introduction of the double
extension. By the Jacobi identity, they imply

[[x, FM ], FN ]∂(M ⊗ ∂N ) = 0,

[[x, F̃ M ], F̃ N ]∂[M ⊗ ∂N ] = 0 (3.2)

for any element x ∈ B(gr+1). We refer to refs. [2,3] for details concerning e.g. the
importance of Eqs. (3.1) for the generalised Lie derivative, and the construction of
solutions to the section constraint.

The generalised Lie derivative, acting on an element in R1, has the form

LUV
M = UN ∂NV

M + ZPQ
MN ∂NU

PV Q, (3.3)

where the invariant tensor Z has the universal expression [2,40]

σ Z = −ηαβ t
α ⊗ tβ + (λ, λ) − 1 (3.4)

(σ is the permutationoperator), i.e., ZPQ
MN = −ηαβ(tα)P

N (tβ)Q
M+((λ, λ)−1)δNP δMQ .

With the help of the structure constants of B(gr+1) it can now be written [3]

LUV = [[U, F̃ N ], ∂NV 	] − [[∂NU 	, F̃ N ], V ], (3.5)

where U = UMEM , V = V MEM , with UM and V M bosonic. The two terms in this
expression corresponds to the first and second terms in Eq. (3.3), respectively, using the
fourth and seventh equations in (2.14). It becomes clear that the superalgebra B(gr )
does not provide the structure needed to construct a generalised Lie derivative, but that
B(gr+1) does. In the following Section we will show that this construction not only is
made possible, but that the generalised Lie derivative arises naturally from considering
the properties of a derivative.

We introduce the following notation for the antisymmetrisation, which will be the
2-bracket in the L∞ algebra,

2[[U, V ]] = LUV − LVU = [[U, F̃ N ], ∂NV 	] − [[∂NU 	, F̃ N ], V ] − (U ↔ V ).

(3.6)

For the symmetric part we have

2�U, V � = LUV +LVU

= [[U, F̃ N ], ∂NV 	] − [[∂NU 	, F̃ N ], V ]
+ [[V, F̃ N ], ∂NU 	] − [[∂NV 	, F̃ N ],U ]

= [[U, ∂MV 	], F̃ M ] − [[∂MU 	, V ], F̃ M ], (3.7)

where we have used the Jacobi identity. If R̃2 = 0, then

[ẼM , EN ] = [ẼN , EM ] = −[EM , ẼN ] (3.8)

so that [∂MŨ , V ] = −[∂MU, Ṽ ] and 2�U, V � = ∂M [[U, Ṽ ], F̃ M ].
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In the cases where LULV − LULV = L[[U,V ]] we get

2�[[U, V ]],W � = L[[U,V ]]W +LW [[U, V ]]
= 2LULVW +LWLUV = 3LULVW

= 3(2LULVW − LWLUV )

= 3(L[[U,V ]]W − LW [[U, V ]]) = 6[[[[U, V ]],W ]] (3.9)

antisymmetrised in U, V,W . These expressions, and their generalisations, will return
with ghosts as arguments in Section 6. Note however thatU and V have bosonic compo-
nents. They will be replaced by fermionic ghosts, which together with fermionic basis
elements build bosonic elements. The bracket will be graded symmetric.

4. Derivatives, Generalised Lie Derivatives and Other Operators

In this Section, we will start to examine operators on elements at height 0, which are
functions of coordinates in R1. Beginning with a derivative, and attempting to get as
close as possible to a derivation property, we are naturally led to the generalised Lie
derivative, extended to all positive levels. The generalised Lie derivative is automatically
associatedwith a graded symmetry, as opposed to the graded antisymmetry of the algebra
bracket. This will serve as a starting point for the L∞ brackets. Other operators arise
as obstructions to various desirable properties, and will represent contributions from
ancillary ghosts. Various identities fulfilled by the operators will be derived; they will
all be essential to the formulation of the L∞ brackets and the proof of their identities.

4.1. The derivative. Define a derivative d: R(p,0) → R(p−1,0) (p > 0) by

d A =
{

0, A ∈ R(1,0),

[∂M A	, F̃ M ], A ∈ R(p,0), p > 1.
(4.1)

It fulfils d2 = 0 thanks to the section constraint. At levels p > 1 (and height 0),

d Ap = 1

p
[∂M A, FM ]. (4.2)

This follows from

[A	
p, F̃

M ] = 1
p [[Ap, e], F̃ M ] = 1

p [Ap, F
M ] + 1

p [[Ap, F̃
M ], e], (4.3)

where [Ap, F̃ M ] = 0 for p > 1.
Only insisting on having a nilpotent derivative does not determine the relative coeffi-

cients depending on the level p in Eq. (4.2). The subsequent considerations will however
depend crucially on the coefficient.
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4.2. Generalised Lie derivative from“almost derivation”. The derivative is not a deriva-
tion, but its failure to be one is of a useful form. It consists of two parts, one being
connected to the generalised Lie derivative, and the other to the appearance of modules
R̃p. The almost-derivation property is derived using Eq. (2.22), which allows moving
around raising operators at the cost of introducing height 1 elements. Let pA, pB be the
levels of A, B. One can then use the two alternative forms

[A, B]	 =
{ [A, B	] + (−1)|B| pA

pA+pB
[A	, B	]
,

(−1)|B|[A	, B] − (−1)|B| pB
pA+pB

[A	, B	]
 (4.4)

to derive

d[A, B] = [[A, ∂M B]	, F̃ M ] + [[∂M A, B]	, F̃ M ]
= [[A, ∂M B	], F̃ M ] + (−1)|B| pA

pA + pB
[[A	, ∂M B	]
, F̃ M ]

+ (−1)|B|[[∂M A	, B], F̃ M ] − (−1)|B| pB
pA + pB

[[∂M A	, B	]
, F̃ M ]
= [[A, F̃ M ], ∂M B	] + [A, [∂M B	, F̃ M ]]
+ (−1)|B|[∂M A	, [B, F̃ M ]] + (−1)|B|[[∂M A	, F̃ M ], B]

+ (−1)|B| pA∂
(B)
M − pB∂

(A)
M

pA + pB
[[A	, B	], F̃ M ]


= [[A, F̃ M ], ∂M B	] + [A, dB] + δpB ,1[A, [∂M B	, F̃ M ]]
+ (−1)|B|[∂M A	, [B, F̃ M ]] + (−1)|B|[d A, B] + δpA,1(−1)|B|[[∂M A	, F̃ M ], B]

+ (−1)|B| pA∂
(B)
M − pB∂

(A)
M

pA + pB
[[A	, B	], F̃ M ]


= [A, dB] + (−1)|B|[d A, B]
+ δpA,1

(
[[A, F̃ M ], ∂M B	] + (−1)|B|[[∂M A	, F̃ M ], B]

)

− (−1)|A||B|δpB ,1

(
[[B, F̃ M ], ∂M A	] + (−1)|A|[[∂M B	, F̃ M ], A]

)

+ (−1)|B| pA∂
(B)
M − pB∂

(A)
M

pA + pB
[[A	, B	], F̃ M ]
 (4.5)

where superscript on derivatives indicate on which field they act. We recognise the
generalised Lie derivative from Eq. (3.5) in the second and third lines in the last step,
and we define, for arbitrary A, B,

LAB = δpA,1

(
[[A, F̃ M ], ∂M B	] + (−1)|B|[[∂M A	, F̃ M ], B]

)
. (4.6)

The extension is natural: a parameter A with pA > 1 generates a vanishing transforma-
tion, while the action on arbitrary elements is the one which follows from demanding
a Leibniz rule for the generalised Lie derivative. Note that bosonic components at level
1 implies fermionic elements, hence the signs in Eqs. (3.5) and (4.6) agree. The last
term in Eq. (4.5) is present only if R̃pA+pB is non-empty, since [A	, B	] is an element at
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height 2 with [A	, B	]	 = 0. We will refer to such terms as ancillary terms, and denote
them −R
(A, B), i.e.,

R
(A, B) = −(−1)|B| pA∂
(B)
M − pB∂

(A)
M

pA + pB
[[A	, B	], F̃ M ]
. (4.7)

A generic ancillary element will be an element K 
 ∈ Rp at height 0 (or raised to K at
height 1) obtained from an element BM ∈ R̃p+1 at height 1 as K 
 = [BM , F̃ M ]. The
extra index on BM is assumed to be “in section”. See Section 7 for a more complete
discussion.

The derivative is thus “almost” a derivation, but the derivation property is broken by
two types of terms, the generalised Lie derivative and an ancillary term:

d[A, B] − [A, dB] − (−1)|B|[d A, B] = LAB − (−1)|A||B|LB A − R
(A, B). (4.8)

The relative factor with which the derivative acts on different levels is fixed by the
existence of the almost derivation property.

Equation (4.8) states that the symmetry ofLAB is graded symmetric, modulo terms
with “derivatives”, which in the end will be associated with exact terms. This is good,
since it means that we, roughly speaking, have gone from the graded antisymmetry
of the superalgebra bracket to the desired symmetry of an L∞ bracket. The graded
antisymmetric part of the generalised Lie derivative appearing in Eq. (4.8) represents
what, for bosonic parameters U, V , would be the symmetrised part LUV +LVU , and
it can be seen as responsible for the violation of the Jacobi identities (antisymmetry and
the Leibniz property imply the Jacobi identities [8]). The generalised Lie derivative (at
level 1) will be the starting point for the L∞ 2-bracket in Sections 6 and 8.

We note that Ld AB = 0,L[A,B]C = 0, and that LA fulfils a Leibniz rule,

LA[B,C] = (−1)|C|[LAB,C] + (−1)|A||B|[B,LAC]. (4.9)

Consider the expression (4.6) for the generalisedLie derivative. It agreeswithEq. (3.5)
when pA = pB = 1 and |A| = |B| = 1. It is straightforward to see that the expression
contains a factor (−1)|B|+1 compared to the usual expression for the generalised Lie
derivative when expressed in terms of components.

In the present paper, we will assume that the generalised Lie derivative, when acting
on an element inB+(gr ), close. This is not encoded in the Borcherds superalgebra. We
will indicate in the Conclusions what we think will be the correct procedure if this is not
the case. We thus assume

(LALB + (−1)|A||B|LBLA)C = (−1)|C|+1L 1
2 (LAB+(−1)|A||B|LB A)C, (4.10)

where the sign comes from the consideration above. When all components are bosonic
and level 1, this becomes the usual expression (LALB−LBLA)C = L 1

2 (LAB−LB A)C .
If we instead consider a ghost C with |C | = 0, then

LCLCC = − 1
2LLCCC. (4.11)
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4.3. “Almost covariance” and related operators. The generalised Lie derivative anti-
commutes with the derivative, modulo ancillary terms. This can be viewed as covariance
of the derivative, modulo ancillary terms. Namely, combining Eq. (4.8) with entries A
and dB with the derivative of Eq. (4.8) gives the relation

dLAB +LAdB = (−1)|B|([d A, dB] − d[d A, B]) + (−1)|A||B|dLB A

+ dR
(A, B) + R
(A, dB). (4.12)

The left hand side can only give a non-vanishing contribution for pA = 1 and pB > 1.
But then the non-ancillary part of the right hand side vanishes. Therefore, we can define
an ancillary operator XAB as

dLAB +LAdB = −X 

AB. (4.13)

The explicit form of XA is

X 

AB = −(dLA +LAd)B = − 1

2δpA,1[[[∂M∂N A	, B	], F̃ M ], F̃ N ]. (4.14)

The notation X 

AB means (XAB)
. Thus, XAB is an element in RpB−1 at height 1.

It will be natural to extend the action of the derivative and generalised Lie derivative to
elements K at height 1 by

dK = −(dK 
)	,

LC K = −(LC K

)	. (4.15)

Then, d
 + 
d = 0 and LC
 + 
LC = 0.
Note that XdAB = 0 and X[A,B]C = 0, directly inherited from the generalised Lie

derivative. In addition, we always have

L
X 

AB

C = 0. (4.16)

If R̃2 = 0 this statement is trivial. If R̃2 is non-empty (as e.g. for gr = E7), X


AB repre-

sents a parameter which gives a trivial transformation without being a total derivative,
thanks to the section constraint.

4.4. More operator identities. The operator X 

A obeys the important property

dX 

AB − X 


AdB = 0. (4.17)

It follows from the definition of X 

A and the nilpotency of d as

dX 

AB − X 


AdB = −d(dLAB +LAdB) + (dLA +LAd)dB = 0. (4.18)

It can also be verified by the direct calculation

dX 

AB − X 


AdB = − 1
2δpA,1[[[∂P [∂M∂N A	, B	], F̃ M ], F̃ N ]	, F̃ P ]	


+ 1
2δpA,1[[[∂M∂N A	, [∂P B	, F̃ P ]	], F̃ M ], F̃ N ]	


= δpA,1

(pB − 1)(pB − 2)

(
[[[∂P [∂M∂N A	, B	], F̃ M ], FN ], FP ]

+[[[∂M∂N A	, [∂P B	, FP ]], F̃ M ], FN ]
)
, (4.19)
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where the action of the raising operators have been expanded. In the first term, ∂P
must hit B, the other term vanishes due to the section constraint. In the second term,
[∂M∂N A	, [∂P B	, FP ]] = [[∂M∂N A	, ∂P B	], FP ], and the two terms cancel. Note that
we are now dealing with identities that hold exactly, not only modulo ancillary terms
(they are identities for ancillary terms).

An equivalent relation raised to height 1 is

(dXA + XAd)B = 0. (4.20)

A relation for the commutator of X 
 with L is obtained directly from the definition
(4.13) of X ,

(
LAX



B − X 


ALB + (−1)|A||B|(LB X


A − X 


BLA)
)
C

= (−1)|C|X 

1
2 (LAB+(−1)|A||B|LB A)

C, (4.21)

or
(
LAXB + XALB + (−1)|A||B|(LB XA − XBLA)

)
C

= (−1)|C|+1X 1
2 (LAB+(−1)|A||B|LB A)C. (4.22)

For a ghost C the relation reads

LC X


CC − X 


CLCC = 1
2 X




LCC
C, (4.23)

or equivalently,

(LC XC + XCLC )C = − 1
2 XLCCC. (4.24)

Further useful relations expressing derivation-like properties, derived using the def-
initions of XAB and R(A, B), together with Eq. (4.10), are:

dR(A, B) − R(A, dB) − (−1)|B|R(d A, B) = XAB − (−1)|A||B|XB A (4.25)

and

LAR(B,C) − (−1)|A||B|R(B,LAC) − (−1)|C|R(LAB,C)

= −XA[B,C] + (−1)|A||B|[B, XAC] + (−1)|C|[XAB,C]. (4.26)

Although R(A, B) is non-vanishing for A and B at all levels (as long as R̃pA+pB is
non-empty), we will sometimes use the notation RAB = R(A, B). Thanks to the Jacobi
identity for the Borcherds superalgebra and the Leibniz property of the generalised Lie
derivative, R(A, B) satisfies a cyclic identity,

0 = R(A, [B,C]) − R([A, B],C) − (−1)|A||B|R(B, [A,C])
+ [A, R(B,C)] − [R(A, B),C] − (−1)|A||B|[B, R(A,C)]. (4.27)
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5. Batalin–Vilkovisky Ghost Actions and L∞ Algebras

Let C ∈ V be a full set of ghosts, including ghosts for ghosts etc. If the “algebra” of
gauge transformations does not contain any field dependence, the Batalin–Vilkovisky
(BV) action [44] can be truncated to ghosts and their antifields C. We denote this ghost
action S(C,C), and assume further that it is linear in C. The ghost action S can be
(formally, if needed) expanded as a power series in C ,

S(C,C) =
∞∑

n=1

〈C, [[Cn]]〉, (5.1)

where 〈·, ·〉 is the natural scalar product on the vector space of the ghosts and its dual,
and where

[[Cn]] = [[C,C, . . . ,C
︸ ︷︷ ︸

n

]] (5.2)

is a graded symmetric map from ⊗nV to V . This map is, roughly speaking, the L∞
n-bracket. The 1-bracket is the BRST operator. The BV variation of C is

(S,C) =
∞∑

n=1

[[Cn]]. (5.3)

The BV master equation (S, S) = 0 becomes, phrased as the nilpotency of the transfor-
mation (S, ·), the relation (S, (S,C)) = 0, which in the series expansion turns into a set
of identities for the brackets [21,45–47],

n−1∑

i=0

(i + 1)[[Ci , [[Cn−i ]]]] = 0. (5.4)

Often, L∞ algebras are presentedwith other conventions (see ref. [21] for anoverview).
This includes a shifted notion of level, equalling ghost number minus 1. Then the n-
bracket carries level n − 2. In our conventions, all L∞ brackets carry ghost number −1,
and the superalgebra bracket preserves ghost number. Also, the properties of the brack-
ets under permutation of elements are sometimes presented as governed by “Koszul
sign factors”. In our conventions, the L∞ brackets are simply graded symmetric and
the statistics of the ghosts, inherited from the superalgebra, is taking care of all signs
automatically.

Since the relation between the BV ghost variation and the L∞ brackets seems to be
established, but not common knowledge among mathematical physicists, we would like
to demonstrate the equivalence explicitly. (See also refs. [21,48].

In order to go from the compact form (5.4) to a version with n arbitrary elements, let
C = ∑∞

k=1 Ck and take the part of the identity containing each of the terms in the sum
once. We then get

∑

i, j≥1
i+ j=n+1

j
∑

σ

[[Cσ(i+1), . . . ,Cσ(n), [[Cσ(1), . . . ,Cσ(i)]]]] = 0, (5.5)
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where the inner sum is over all permutations σ of {1, . . . , n}. The standard definition of
the L∞ identities does not involve the sum over all permutations, but over the subset of
“unshuffles”, permutations which are ordered inside the two subsets:

σ(1) < · · · < σ(i),

σ (i + 1) < · · · < σ(n). (5.6)

Reexpressing the sum in terms of the sum over unshuffles gives a factor i !(n− i)!, which
combined with the factor j in Eq. (5.5) gives i ! j !, Rescaling the brackets according to

n![[C1, . . . ,Cn]] = �̄(C1, . . . ,Cn) (5.7)

turns the identity into

∑

i, j≥1
i+ j=n+1

∑

σ

′
�̄(Cσ(1), . . . ,Cσ( j−1), �̄(Cσ( j), . . . ,Cσ(n))) = 0, (5.8)

where the primed inner sum denotes summation over unshuffles.
It remains to investigate the sign factors induced by the statistics of the elements in the

superalgebra. We therefore introduce a basis {ci } which consists of fermionic elements
with odd ghost numbers and bosonic elements with even ghost numbers. Since a ghost
is always totally bosonic, this means that ghosts with odd ghost numbers have fermionic
components in this basis and ghosts with even ghost numbers have bosonic components.
Furthermore,we include the x-dependence of the ghosts in the basis elements ci (“DeWitt
notation”) and thus treat the components as constants that we can move out of the
brackets. Then, our identities take the form

∑

i, j≥1
i+ j=n+1

∑

σ

′
ϕ j−1(σ ; c)�̄(cσ(1), . . . , cσ( j−1), �̄(cσ( j), . . . , cσ(n))) = 0, (5.9)

where ϕ j−1(σ ; c) is the sign factor for the permutation σ in the graded symmetrisation
of the elements {c1, . . . , cn, F} to {cσ(1), . . . , cσ( j−1), F, cσ( j), . . . , cσ(n)}. Here, F is
a fermionic element used to define the sign factor, which comes from the fact that the
brackets are fermionic.

We now turn to the standard definition of L∞ identities. The Koszul sign factor
ε(σ ; x) for a permutation σ of n elements {x1, . . . , xn} is defined inductively by an
associative and graded symmetric product

xi ◦ x j = (−1)|xi ||x j |x j ◦ xi , (5.10)

where |xi | = 0 for “bosonic” xi and 1 for “fermionic”. Then,

xσ(1) ◦ . . . ◦ xσ(n) = ε(σ ; x) x1 ◦ · · · ◦ xn . (5.11)

Multiplying by a factor (−1)σ gives a graded antisymmetric product, which can be seen
as a wedge product of super-forms,

xσ(1) ∧ · · · ∧ xσ(n) = (−1)σ ε(σ ; x) x1 ∧ . . . ∧ xn . (5.12)
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The standard form of the identities for an L∞ bracket is

∑

i, j≥1
i+ j=n+1

(−1)i( j−1)
∑

σ

′
(−1)σ ε(σ ; x)�(�(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0.

(5.13)

The two equations (5.9) and (5.13) look almost identical. However, the assignment of
“bosonic” and “fermionic” for the c’s is opposite to the one for the x’s. On the other hand,
the brackets of x’s are graded antisymmetric, while those of c’s are graded symmetric.
Seen as tensors, such products differ in sign when exchanging bosonic with fermionic
indices. There is obviously a difference between a tensor being graded antisymmetric (the
“x picture”) and “graded symmetric with opposite statistics” (the “c picture”). The two
types of tensors are however equivalent as modules (super-plethysms) of a general linear
superalgebra. As a simple example, a 2-index tensor which is graded antisymmetric can
be represented as a matrix

(
a α

−αt s

)

, (5.14)

where a is antisymmetric and s symmetric, while a 2-index tensor which is graded
symmetric in the opposite statistics is

(
a′ α′

(α′)t s′
)

. (5.15)

The tensor product V ⊗ V of a graded vector space V with itself can always be decom-
posed as the sum of the two plethysms, graded symmetric and graded antisymmetric,
i.e., in the sum of the two super-plethysms. Equivalently, the same decomposition, as
modules of the general linear superalgebra gl(V ), is the sum of the graded antisymmetric
and graded symmetric modules with the opposite assignment of statistics. The same is
true for higher tensor products ⊗nV .

This means that, as long as the brackets � and �̄ are taken to be proportional up to
signs, the equations (5.9) and (5.13) contain the same number of equations in the same
g-modules, but not that the signs for the different terms in the identities are equivalent.
In order to show this, one needs to introduce an explicit invertible map, a so called
suspension, from the “x picture” to the “c picture”, i.e., between the two presentations
of the plethysms of the general linear superalgebra.

Let us use a basis where all basis elements are labelled by an index A = (a, α),
where aand and α correspond to fermionic and bosonic basis elements, respectively. We
choose an ordering where the a indices are “lower” than the α ones. Any unshuffle then
has the index structure {a1 . . . akα1 . . . αk′ , ak+1 . . . a�αk′+1 . . . α�′ }. If the brackets � and
�̄ are expressed in terms of structure constants,

�(xA1 , . . . , xAn ) = f A1...An
BxB,

�̄(cA1 , . . . , cAn ) = f̄ A1...An
BcB, (5.16)
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the respective identities contain terms of the forms

(−1)i( j−1)(−1)σ ε(a1 . . . akα1 . . . αk′ak+1 . . . a�αk′+1 . . . α�′)

× fa1...akα1...αk′
B fBak+1...a�αk′+1...α�′

A,

(−1)mϕ j−1(am+1 . . . a�αm′+1 . . . α�′a1 . . . amα1 . . . αm′)

× f̄am+1...a�αm′+1...α�′
B f̄a1...amα1...αm′ B

A, (5.17)

where k +m = �, k′ +m′ = �′, k + k′ = i , m +m′ = j − 1 (i, j being the same variables
as in the sums (5.9) and (5.13)). Now, both expressions need to be arranged to the same
index structure, which we choose as a1 . . . a�α1 . . . α�′ . This gives a factor (−1)k

′m for
the f 2 term, and (−1)km for f̄ 2. In order to compare the two brackets, we also need to
move the summation index B to the right on f when B = β and to the left on f̄ when
B = b. All non-vanishing brackets have a total odd number of “a indices”, including
the upper index, so B = b when k is even, and B = β when k is odd. This gives a factor
(−1)m for the f 2 expression when k is odd, and (−1)m for f̄ 2 when k is even.

The task is now to find a relation

f̄a1...akα1...αk′
B = �(k, k′) fa1...akα1...αk′

B (5.18)

for some sign �(k, k′). The resulting relative sign between the two expressions in
Eq. (5.17) must then be the same for all terms in an identity, i.e., it should only de-
pend on � = k + m and �′ = k′ + m′. Taking the factors above into consideration, this
condition reads

k even: (−1)(k+k
′)m′

�(k, k′)�(m + 1,m′) = τ(k + m, k′ + m′),
k odd: (−1)(k+k

′)m′
�(k, k′)�(m,m′ + 1) = τ(k + m, k′ + m′). (5.19)

This is satisfied for

�(k, k′) = (−1)
1
2 k

′(k′−1), (5.20)

with τ(�, �′) = �(�, �′). The last relation is natural, considering that the equations in
turn belong to the two different presentations of the same super-plethysm. This gives
the explicit translation between the two pictures.

All structure constants carry an odd number of a indices (including the upper one).
This is a direct consequence of the fact that all brackets are fermionic in the c picture
(since the BV antibracket is fermionic). The relation between the structure constants in
the two pictures implies, among other things, that

f̄a
β = fa

β,

f̄α
b = fα

b,

f̄a1a2
b = fa1a2

b,

f̄aα
β = faα

β,

f̄α1α2
b = − fα1α2

b. (5.21)

The first two of these equations relate the 1-bracket (derivative) in the two pictures, and
the remaining three the 2-bracket. Using these relations we can give an explicit example
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of how identities in the two pictures are related to each other. Let us write |ca | = 1 and
|cα| = 0. We then have

�̄(cA, cB) = (−1)|cA||cB |�̄(cB, cA), �(xA, xB) = −(−1)(|cA|+1)(|cB |+1)�(xB, xA).

(5.22)

Furthermore, the relations (5.21) imply that under the inverse of the suspension,

�̄(cA) �→ �(xA),

�̄(cA, cB) �→ (−1)|cA|+1�(xA, xB). (5.23)

In the c picture, we have the identity

�̄(�̄(cA, cB)) + (−1)|cA|�̄(cA, �̄(cB)) + (−1)(|cA|+1)|cB |�̄(cB, �̄(cA)) = 0. (5.24)

Moving the inner 1-bracket to the left, the left hand side is equal to the expression

�̄(�̄(cA, cB)) + (−1)|cA||cB |�̄(�̄(cB), cA) + �̄(�̄(cA), cB), (5.25)

which, according to (5.23), is mapped to

(−1)|cA|+1�(�(xA, xB)) + (−1)(|cA|+1)|cB |�(�(xB), xA) + (−1)|cA|�(�(xA), xB)

= (−1)|cA|+1(�(�(xA, xB)) + (−1)(|cA|+1)(|cB |+1)�(�(xB), xA) − �(�(xA), xB)
)

= (−1)|cA|+1
(

�(�(xA, xB)) −
(
�(�(xA), xB) − (−1)(|cA|+1)(|cB |+1)�(�(xB), xA)

))

.

(5.26)

Setting this to zero gives the identity in the x picture corresponding to the identity (5.24)
in the c picture.

Note that the issue with the two pictures arises already when constructing a BRST
operator in a situation where one has a mixture of bosonic and fermionic constraints. In
the rest of the paper, we stay within the c picture, i.e., we work with ghosts with graded
symmetry.

6. The L∞ Structure, Ignoring Ancillary Ghosts

The following calculation will first be performed disregarding ancillary ghosts, i.e., as
if all R̃p = 0. The results will form an essential part of the full picture, but the structure
does not provide an L∞ subalgebra unless all R̃p = 0.

We use a ghost C which is totally bosonic, i.e., |C | = 0, and which is a general
element ofB+(gr ), i.e., a height 0 element ofB+(gr+1). This gives the correct statistics
of the components, namely the same as the basis elements in the superalgebra. All signs
are taken care of automatically by the statistics of the ghosts. While the superalgebra
bracket is graded antisymmetric, the L∞ brackets (by which wemean the brackets in the
c picture of the previous Section, before the rescaling of Eq. (5.7)) are graded symmetric.
The a index of the previous Section labels ghosts with odd ghost number, and the α index
those with even ghost number, and include also the coordinate dependence.
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6.1. Some low brackets. The 1-bracket acting on a ghosts at height 0 is taken as

[[C]] = dC. (6.1)

Then the 1-bracket identity [[[[C]]]] = 0 (the nilpotency of theBRSToperator) is satisfied.
The 2-bracket on level 1 elements c is

[[c, c]] = Lcc, (6.2)

in order to reproduce the structure of the generalised diffeomorphisms. This already
assumes that there are no ancillary transformations, which also would appear on the
right hand side of this equation, and have their corresponding ghosts (we will comment
on this situation in the Conclusions). It is natural to extend this to arbitrary levels by
writing

[[C,C]] = LCC. (6.3)

Given the relations (5.21) between low brackets in the two pictures in the previous
Section, this essentially identifies the 1- and 2-brackets between components with the
ones in the traditional L∞ language (the x picture). Recall, however, that our ghosts C
are elements in the superalgebra, formed as sums of components times basis elements,
which lends a compactness to the notation, which becomes index-free.

There are potentially two infinities to deal with, one being the level of the ghosts, the
other the number of arguments in a bracket. In order to deal with the first one, we are
trying to derive a full set of 2-brackets before going to higher brackets. Of course, the
existence of higher level ghosts is motivated by the failure of higher identities, so it may
seem premature to postulate Eq. (6.3) before we have seen this happen. However, it is
essential for us to be able to deal with brackets for arbitrary elements, without splitting
them according to level. The identity for the 2-bracket is then satisfied, since

[[[[C,C]]]] + 2[[C, [[C]]]] = dLCC + 2 · 1
2LCdC = 0. (6.4)

Notice that this implies that the 2-bracket between ghosts which are both at level 2 or
higher vanishes.

There is of course a choice involved every time a new bracket is introduced, and the
choices differ by something exact. The choice will then have repercussions for the rest of
the structure. The first choice arises when the need for a level 2 ghost C2 becomes clear
(from the 3-bracket identity as a modification of the Jacobi identity), and its 2-bracket
with the level 1 ghost is to be determined. Instead of choosing [[c,C2]] = 1

2LcC2,
corresponding to Eq. (6.4), we could have taken [[c,C2]] = − 1

2 [c, dC2], since the
derivative of the two expressions are the same (modulo ancillary terms) according to
Eq. (4.8). The latter is the type of choice made in e.g. Ref. [21]. Any linear combination
of the two choices with weight 1 is of course also a solution. However, it turns out that
other choices than the one made here lead to expressions that do not lend themselves
to unified expressions containing C as a generic element in B+(gr ). Thus, this initial
choice and its continuation are of importance.

We now turn to the 3-bracket. The identity is

[[[[C,C,C]]]] + 2[[C, [[C,C]]]] + 3[[C,C, [[C]]]] = 0. (6.5)
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The second term (the Jacobiator) equalsLC [[C,C]] +L[[C,C]]C . Here we must assume
the closure of the transformations, acting on something, i.e., the absence of ancillary
transformations in the commutator of two level 1 transformations. Then,

LC [[C,C]] = LCLCC = − 1
2L[[C,C]]C, (6.6)

and the second term in Eq. (6.5) can be written expressed in terms of the (graded)
antisymmetric part instead of the symmetric one, so that the derivation property may be
used:

2[[C, [[C,C]]]] = − 1
3 (LCLCC − LLCCC)

= − 1
3 (d[C,LCC] − [C, dLCC] + [dC,LCC])

= − 1
3 (d[C,LCC] + [C,LCdC] + [dC,LCC]) (6.7)

(modulo ancillary terms). If one takes

[[C,C,C]] = 1
3 [C,LCC], (6.8)

the identity is satisfied, since then

[[[[C,C,C]]]] = 1
3d[C,LC ], (6.9)

and

3[[C,C, [[C]]]] = 3 · 1
3

( 1
3 [C,LCdC] + 1

3 [dC,LCC]). (6.10)

Starting from the 4-bracket identity

[[[[C,C,C,C]]]] + 2[[C, [[C,C,C]]]] + 3[[C,C, [[C,C]]]] + 4[[C,C,C, [[C]]]] = 0,
(6.11)

a calculation gives at hand that the second and third terms cancel (still modulo ancillary
terms). This would allow [[C,C,C,C]] = 0. The calculation goes as follows. We use
the brackets and identities above to show

[[C, [[C,C,C]]]] = 1
3 [[C, [C,LCC]]] = 1

6LC [C,LCC]
= − 1

6 [LCC,LCC] + 1
6 [C,LCLCC]

= − 1
6 [LCC,LCC] − 1

12 [C,LLCCC] (6.12)

and

[[C,C, [[C,C]]]] = 1
9

([LCC,LCC] + [C,LLCCC] + [C,LCLCC])

= 1
9 [LCC,LCC] + 1

18 [C,LLCCC]. (6.13)

This does not imply that all higher brackets vanish. Especially, the middle term
3[[C,C, [[C,C,C]]]] in the 5-bracket identity is non-zero, which requires a 5-bracket.
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6.2. Higher brackets. In order to go further, we need to perform calculations at arbitrary
order. There is essentially one possible form for the n-bracket, namely

[[Cn]] = kn(adC)n−2LCC. (6.14)

It turns out that the constants kn are given by Bernoulli numbers,

kn+1 = 2n B+
n

n! , (6.15)

where B+
n = (−1)n Bn (which only changes the sign for n = 1, since higher odd

Bernoulli numbers are 0).
We will first show that it is consistent to set all [[C2n]] = 0, n ≥ 2. Then the 2(n +1)-

identity reduces to

0 = 2[[C, [[C2n+1]]]] + (2n + 1)[[C2n, [[C,C]]]]. (6.16)

Evaluating the two terms gives

[[C, [[C2n+1]]]] = [[C, k2n+1(adC)2n−1LCC]]
= 1

2 k2n+1LC (adC)2n−1LCC

= 1
2 k2n+1

(
(adC)2n−1LCLCC −

2n−2∑

i=0

(adC)iadLCC(adC)2n−2−iLCC
)

= 1
2 k2n+1

(
− 1

2 (adC)2n−1LLCCC −
2n−2∑

i=0

(adC)iadLCC(adC)2n−2−iLCC
)
,

(6.17)

[[C2n, [[C,C]]]] = k2n+1
2n + 1

(
(adC)2n−1LCLCC + (adC)2n−1LLCCC

+
2n−2∑

i=0

(adC)iadLCC(adC)2n−2−iLCC
)

= k2n+1
2n + 1

(
1
2 (adC)2n−1LLCCC +

2n−2∑

i=0

(adC)iadLCC(adC)2n−2−iLCC
)
,

(6.18)

which shows that Eq. (6.16) is fulfilled.
We then turn to the general n-identities, n ≥ 2 (the remaining ones are those with

odd n). They are

0 = [[[[Cn]]]] +
n−2∑

i=1

(i + 1)[[Ci , [[Cn−i ]]]] + n[[Cn−1, [[C]]]]. (6.19)
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The first term equals knd(adC)n−2LCC . Repeated use of Eq. (4.8) (without the ancillary
term) gives

d(adC)n−2LCC = −
n−3∑

i=0

(adC)iad dC(adC)n−i−3LCC

− n
2 (adC)n−3LLCCC −

n−4∑

i=0

(i + 1)(adC)iadLCC(adC)n−i−4LCC. (6.20)

The first sum cancels the last term in Eq. (6.19).We now evaluate the middle terms under
the summation sign in Eq. (6.19).

[[Ci , [[Cn−i ]]]] = ki+1kn−i

i + 1

(
− 1

2 (adC)n−3LLCCC

+
i−2∑

j=0

(adC) jad ((adC)n−i−2LCC)(adC)i− j−2LCC

−
n−i−3∑

j=0

(adC)i+ j−1adLCC(adC)n−i− j−3LCC
)
. (6.21)

Here we have ignored the insertion of the 2-bracket in the argument of the generalised
Lie derivative in the (n−1)-bracket (which changes the sign of the term withLLCCC),
since this already has been taken care of in Eqs. (6.17) and (6.18). It does not appear in
the identity for odd n.

Let n = 2m + 1 and i = 2 j . There is a single term containing LLCCC , namely

−k2 j+1k2(m− j)+1

2(2 j + 1)
(adC)2m−2LLCCC. (6.22)

The total coefficient of this term in Eq. (6.19) demands that

k2n+1 = − 1
2n+1

n−1∑

j=1

k2 j+1k2(n− j)+1. (6.23)

It is straightforward to show that the Bernoulli numbers satisfy the identity

m−1∑

j=1

B2 j B2(m− j)

(2 j)!(2(m − j))! = −(2m + 1)
B2m

(2m)! . (6.24)

It follows from the differential equation d
dt [t ( f − t2

12 )] + f 2 = 0, satisfied by

f (t) = t

et − 1
+
t

2
− 1, where

t

et − 1
=

∞∑

n=0

Bn

n! t
n . (6.25)

The (2m + 1)-identity (6.19) then is satisfied with the coefficients given by Eq. (6.15).
The initial value k3 = 1

3 fixes the coefficients to the values in Eq. (6.15). Bernoulli
numbers as coefficients of L∞ brackets have been encountered earlier [49,50].
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In order to show that the identities are satisfied at all levels, we use themethod devised
by Getzler [50] (although our expressions seem to be quite different from the ones in that
paper). All expressions remaining after using the derivation property and identifying the
coefficients using the LLCCC terms are of the form

Zn, j,k = (adC)n−4− j−k[(adC) jLCC, (adC)kLCC]. (6.26)

There are however many dependencies among these expressions. First one observes that,
sinceLCC is fermionic, Zn, j,k = Zn,k, j . Furthermore, the Jacobi identity immediately
gives

Zn, j,k = Zn, j+1,k + Zn, j,k+1 (6.27)

for j + k < n − 4. If one associates the term Zn, j,k with the monomial s j tk , the Jacobi
identity implies s j tk ≈ s j+1tk + s j tk+1, i.e., (s + t − 1)s j tk ≈ 0. We can then replace
s by 1 − t , so that s j tk becomes (1 − t) j t k . The symmetry property is taken care of by
symmetrisation, so that the final expression corresponding to Zn, j,k is

1
2 ((1 − t) j t k + t j (1 − t)k). (6.28)

All expressions are reduced to polynomials of degree up to n − 4 in one variable,
symmetric under t ↔ 1 − t . An independent basis consists of even powers of t − 1

2 . In
addition to the equations with LLCCC that we have already checked, there are m − 1
independent equations from the terms with (LCC)2 in the (2m + 1)-identity, involving
k2m+1 and products of lower odd k’s.

Wewill now show that all identities are satisfied by translating them into polynomials
with Getzler’s method, using the generating function for the Bernoulli numbers.

Take the last sum in Eq. (6.20). It represents the contribution from the first and last
terms in the identity. It translates into the polynomial

−kn

n−4∑

i=0

(i + 1)tn−i−4 = −kn
n − 3 − (n − 2)t + tn−2

(1 − t)2
. (6.29)

The terms from the middle terms in the identity (Eq. (6.21)) translate into

n−2∑

i=1

ki+1kn−i

( i−2∑

j=0

sn−i−2t i− j−2 −
n−i−3∑

j=0

tn−i− j−3
)

=
n−2∑

i=1

ki+1kn−i

(
sn−i−2 1 − t i−1

1 − t
− 1 − tn−i−2

1 − t

)
. (6.30)

Let f (x) be the generating function for the coefficients kn , i.e.,

f (x) =
∞∑

n=2

knx
n =

∞∑

n=1

2n B+
n

n! xn+1 = 2x2

1 − e−2x − x

= x2 + 1
3 x

3 − 1
45 x

5 + 2
945 x

7 − 1
4 725 x

9 + 2
93 555 x

11 − 1 382
638 512 875 x

13 + · · · (6.31)
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We now multiply the contributions from Eqs. (6.29) and (6.30), symmetrised in s and t ,
by xn and sum over n, identifying the function f when possibility is given. This gives

1

2(1 − t)2

(
−(1 − t)x f ′(x) + (3 − 2t) f (x) − f (t x)

t2

)

+
1

2(1 − t)x

(
− f (x)2 +

f (x) f (sx)

s2
+

f (x) f (t x)

t2
− f (sx) f (t x)

s2t2

)
+ (s ↔ t).

(6.32)

When the specific function f is used, this becomes, after some manipulation,

φ(s, t, x) = (s + t − 1)x

2st
− (s + t − 1)(2 − s)x2

2t (1 − s)2
sinh((1 − s)x)

sinh x sinh(sx)

− (s + t − 1)(2 − t)x2

2s(1 − t)2
sinh((1 − t)x)

sinh x sinh(t x)

+
(s + t − 2)x3

2(1 − s)(1 − t)

1

sinh2 x

(
1 − sinh((1 − s)x) sinh((1 − t)x)

sinh(sx) sinh(t x)

)
. (6.33)

This expression clearly vanishes when s + t − 1 = 0, which proves that the identities
for the brackets hold to all orders.

The functionφ(s, t, x) = ∑∞
n=2 φn(s, t), with the coefficient functionsφn(s, t) given

by the sum of Eqs. (6.29) and (6.30), symmetrised in s and t , will appear again in many
of the calculations for the full identities in Section 8.

The complete variation (S,C) = ∑∞
n=1[[Cn]] can formally be written as

(S,C) = dC + g(adC)LCC, (6.34)

where g is the function

g(x) = 1

x2
f (x) = 2

1 − e−2x − 1

x
. (6.35)

Then (S, (S,C)) = 0. This concludes the analysis in the absence of ancillary terms.

7. Ancillary Ghosts

We have already encountered “ancillary terms”, whose appearance in various identities
for the operators, such as the deviation of d from being a derivation and the deviation of
d from being covariant, rely on the existence of modules R̃p. Note that the Borcherds
superalgebra always has R̃1 = ∅, i.e., R(1,1) = R1; this is what prevents us from
treating situations where already the gauge “algebra” of generalised Lie derivatives
contains ancillary transformations. The ancillary terms at level p appear as [B	

M , F̃ M ]
 =
[BM , F̃ M ], where BM is an element in R̃p+1 at height 1 (i.e., B


M = 0). BM carries an
extra R1 index, which is “in section”, meaning that the relations (3.1) are fulfilled also
when one or two ∂M ’s are replaced by a BM .

The appearance of ancillary terms necessitates the introduction of ancillary ghosts.
We will take them as elements Kp ∈ Rp at height 1 constructed as above. The idea is
then to extend the 1-bracket to include the operator 
, which makes it possible to cancel
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Table 2. The typical structure of the action of the 1-bracket between the ghost modules, with ancillary ghosts
appearing from level p0 ≥ 1

Kp0




��

��
d

K p0+1




��

��
d

K p0+2




��

��
d

· · ·

0 ��
d

C1 ��
d

· · · ��
d

Cp0−1 ��
d

Cp0
��

d
Cp0+1

��
d

Cp0+2
��

d
· · ·

ancillary terms in identities (ignored in the previous Section) by a “derivative” 
 of other
terms at height 1.

The derivative d and the generalised Lie derivative LC are extended to level 1 as in
Section 4.3. This implies that 
 anticommutes with d and with LC . Since d2 = 0 and
d
 + 
d = 0 on elements in Rp at height 0 and 1, it can be used in the construction of a
1-bracket, including the ancillary ghosts. The generic structure is shown in Table 2.

Ancillary elements form an ideal A of B+(gr ). Let K 
 = [BM , F̃ M ] as above, and
let A ∈ B+(gr ). Then,

[A, K 
] = [[A, BM ], F̃ M ] + (−1)|A||B|[BM , [A, F̃ M ]]. (7.1)

The first term is ancillary, since the height 1 element [A, BM ] is an element in R̃pA+pB ,
thanks to [A, BM ]
 = 0, and the section property of the M index remains. The second
term has [A, F̃ M ] �= 0 only for pA = 1, but vanishes thanks to [BM , f ] = 0. This
shows that [B+(gr ),A ] ⊂ A . An explicit example of this ideal, for the E5 exceptional
field theory in the M-theory section, is given in Section 9, Table 7.

Let us consider the action of d on ancillary ghosts K at height 1. Let BM ∈ R̃p+1 with

height 1, and let K 
 = [B	
M , F̃ M ]
 ∈ Rp at height 0. We will for the moment assume

that

[B	
M , FM ] = 0. (7.2)

This is a purely algebraic condition stating that Rp but not R̃p is present in the tensor

product R̃p+1 ⊗ R1 in BM . Then, K = [B	
M , F̃ M ]. Acting with the derivative gives

dK = 1
p−1 [[∂N B	

M , F̃ M ], FN ] = 1
p−1 [[∂N B	

M , FN ], F̃ M ] = [B ′	
M , F̃ M ], (7.3)

where B ′	
M = 1

p−1 [∂N B	
M , FN ]. The derivative preserves the structure, thanks to the

section constraint. Also, the condition (7.2) for B ′, [B ′	
M , FM ] = 0, is automatically

satisfied.
The appearance ofmodules R̃p can be interpreted in severalways.One is as a violation

of covariance of the exterior derivative, as above. Another is as a signal that Poincaré’s
lemma does not hold. In this sense, ancillary modules encode the presence of “local
cohomology”, i.e., cohomology present in an open set. It will be necessary to introduce
ghosts removing this cohomology.

Let the lowest level p for which R̃p+1 is non-empty be p0. Then it follows that an

ancillary element Kp0 at level p0 will be closed, dKp0 = 0, and consequently dK 

p0 = 0.

However, Kp0 does not need to be a total derivative, since BM does not need to equal
∂M�. Indeed, our ancillary terms are generically not total derivatives. An ancillary
element at level p0 represents a local cohomology, a violation of Poincaré’s lemma.
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The algebraic condition (7.2)was used to show that the ancillary property is preserved
under the derivative. Consider the expression XAB from Eq. (4.14). Raised to height 1
it gives an expression

K = [[βMN , FN ], F̃ M ] = [B	
M , F̃ M ] (7.4)

with B	
M = [βMN , FN ], where βMN is symmetric and where both its indices are in

section. Then, [B	
M , FM ] = 0, and the condition is satisfied. The same statement can

not be made directly for any term R(A, B), since it contains only one derivative. One
can however rely the identities (4.25) and (4.26), which immediately show (in the latter
case also using the property that ancillary expressions form an ideal) that the derivatives
and generalised Lie derivatives of an ancillary expression (expressed as R
(A, B)) is
ancillary. This is what is needed to consistently construct the brackets in the following
Section.

The section property of BM implies thatLK 
 A = 0 when K 
 is an ancillary expres-
sion (see Eq. (4.16)). This identity is also used in the calculations for the identities of
the brackets.

8. The Full L∞ Structure

We will now display the full L∞ structure, including ancillary ghosts. The calculations
for the L∞ brackets performed in Section 6 will be revised in order to include ancillary
terms.

8.1. Some low brackets. The 1-bracket, which now acts on the ghosts C at height 0, and
also on ancillary ghosts K at height 1, is d + 
:

[[C + K ]] = dC + K 
 + dK . (8.1)

Since d2 = 
2 = d
 + 
d = 0, the identity [[[[C + K ]]]] = 0 is satisfied. The ancillary
ghost at lowest level is automatically annihilated by d.

The 2-bracket identitywas based on “dLCC+LCdC = 0”,which only holdsmodulo
ancillary terms. We need to modify the 2-bracket to

[[C,C]] = LCC + XCC,

[[C, K ]] = 1
2LC K ,

[[K , K ]] = 0. (8.2)

Then,

[[[[C,C]]]] + 2[[C, [[C]]]]
= [[LCC + XCC]] + 2[[C, dC]]
= dLCC + X 


CC + dXCC +LCdC + XCdC = 0 (8.3)

thanks to Eqs. (4.13) and (4.20), and

[[[[C, K ]]]] + 2 · 1
2 [[C, [[K ]]]] + 2 · 1

2 [[K , [[C]]]]
= 1

2

(
dLC K + (LC K )
 +LCdK +LC K


 + XCK


) = 0. (8.4)
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The terms at height 1 cancel using XCK 
 = X 

C K , where the sign follows from 
 passing

both a d and an LC . Here, we have of course used LK 
 = 0. Note that the height 0
identity involving one K is trivial, while the identity at height 1 identity with one K is
equivalent to the height 0 identity with no K ’s. These are both general features, recurring
in all bracket identities. In addition [[K , K 
]] = 1

2LK 
K = 0, implying that the bracket
with two K ’s consistently can be set to 0.

Consider themiddle term in the 3-bracket identity. Including ancillary terms, we have

2[[C, [[C,C]]]] = 2[[C,LCC + XCC]]
= LCLCC + XCLCC +LLCCC + XLCCC +LC XCC

= 1
2 (LLCCC + XLCCC). (8.5)

We know that [[C,C,C]] contains the non-ancillary term 1
3 [C,LCC]. Calculating the

contribution from this term to [[[[C,C,C]]]] + 3[[C,C, [[C]]]] gives
1
3d[C,LCC] + [C,LCdC] + [dC,LCC]

= 1
3

(− 3
2LLCC − [C, XCC]
 − R
(C,LCC)

)
. (8.6)

There is still no sign of something cancelling the second term in Eq. (8.5), but the
presence of lowered ancillary terms implies that it is necessary to include the ancillary
terms 1

3 ([C, XCC] + R(C,LCC)) in the 3-bracket. The term in [[[[C,C,C]]]] from the

 part of the 1-bracket will then cancel these. We still need to check the terms at height
1. The height 1 contribution to [[[[C,C,C]]]] + 3[[C,C, [[C]]]] from 1

3 [C, XCC] is
1
3

(
d[C, XCC] + [C, XCdC] + [dC, XCC]) = 1

3

(
LC XCC + R(C, X 


CC)
)
, (8.7)

and from 1
3 R(C,LCC), using Eq. (4.25):

1
3

(
dR(C,LCC) + R(C,LCdC) + R(dC,LCC)

)

= 1
3

(
XCLCC − XLCCC − R(C, X 


CC)
)
. (8.8)

The complete height 1 terms in the 3-bracket identity become
( 1
2 − 1

3

)
XLCCC + 1

3 (LC XC + XCLC )C = 0. (8.9)

Checking the 3-bracket identity with two C’s and one K becomes equivalent to the
height 0 identity for the bracket with three C’s when

[[C,C, K ]] = 1
9 ([C,LC K ] + [K ,LCC]). (8.10)

There is also a height 0 part of the CCK identity, which is trivial since 
 generates no
ancillary terms. Again, there is no need for a bracket with CKK , since

[[C, K , K 
]] = 1
18 ([K 
,LC K ] + [K ,LC K


]) = 0. (8.11)

These properties will be reflected at all orders, and we do not necessarily mention them
every time.

The 4-bracket identity with four C’s reads

[[[[C,C,C,C]]]] + 2[[C, [[C,C,C]]]] + 3[[C,C, [[C,C]]]] + 4[[C,C,C, [[C]]]] = 0.
(8.12)
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We will now show that the vanishing of the 4-bracket persists when ancillary terms are
taken into account. The height 1 terms in 2[[C, [[C,C,C]]]] are

1
3

(
XC [C,LC ] +LC [C, XCC] +LC R(C,LCC)

)
, (8.13)

and those in 3[[C,C, [[C,C]]]] become

1
3

([C, XCLCC] + [C,LC XCC] + [C, XLCCC] + 2[LCC, XCC]
+ 1

2 R(C,LLCCC) + R(LCC,LCC)
)
. (8.14)

The terms cancel, using Eqs. (4.26) and (4.24).

8.2. Higher brackets. The structure encountered so far can be extended to arbitrarily
high brackets. Knowing the height 0 part of [[Cn]] = kn(adC)n−2LCC enables us to
deduce the ancillary part. Namely, keeping ancillary terms when applying Eq. (4.8)
sequentially, calculating the first and last terms in the n-bracket identity gives, apart
from the second row of Eq. (6.20),

d(adC)n−2LCC = · · · −
(
(adC)n−2XcC +

n−3∑

i=0

(adC)i RC (adC)n−i−3LCC
)


.

(8.15)

This forces the n-bracket to take the form

[[Cn]] = kn
(
(adC)n−2(LCC + XCC) +

n−3∑

i=0

(adC)i RC (adC)n−i−3LCC
)
. (8.16)

It is then reasonable to assume that [[Cn−1, K ]] is obtained from the symmetrisation of
the height 0 part of [[Cn]], i.e.,

[[Cn−1, K ]] = kn
n

(
(adC)n−2LC K +

n−3∑

i=0

(adC)iad K (adC)n−i−3LCC
)
, (8.17)

and that brackets with more than one K vanish.
We will show that the set of non-vanishing brackets above is correct and complete.

The height 0 identity with only C’s is already satisfied, thanks to the contribution from 


in [[[[Cn]]]]. The height 1 identity with one K contains the same calculation. The height 0
identity with one K is trivial, and just follows frommoving 
’s in and out of commutators
and through derivatives and generalised Lie derivatives. The vanishing of the brackets
with more than one K is consistent with the vanishing of [[Cn−2, K 
, K ]]. Lowering this
bracket gives [[Cn−2, K 
, K 
]] which vanishes by statistics, since K 
 is fermionic.

The only remaining non-trivial check is the height 1 part of the identity with only
C’s. This is a lengthy calculation that relies on all identities exposed in Section 4. We
will go through the details by collecting the different types of terms generated, one by
one.

A first result of the calculation is that all terms containing more than one ancillary
expression X or R cancel. This important consistency condition relies on the precise
combination of terms in the n-bracket, but not on the relation between the coefficients
kn . It could have been used as an alternative means to obtain possible brackets.
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We then focus on the terms containing X . In addition to its appearance in the brackets,
X ariseswhen a derivative or a generalisedLie derivative is taken through an R, according
to Eqs. (4.25) and (4.26). It turns out that all terms where XC appears in an “inner”
position in terms of the type (adC)i XC (adC)n−i−3LCC , with n − i > 3, cancel. This
again does not depend on the coefficients kn . Collecting terms (adC)n−3LC XCC and
(adC)n−3XCLCC , the part [[[[Cn]]]] + n[[Cn−1, [[C]]]] gives a contribution

kn(n − 2)(adC)n−3LC XCC (8.18)

from the X term in the bracket, and

kn
(
(n − 2)(adC)n−3XCLCC − (adC)n−3XLCCC

)
(8.19)

from the R term, together giving

−n

2
kn(adC)n−3XLCCC. (8.20)

A middle term in the identity, [[Ci , [[Cn−i ]]]] contains
− 1

2ki+1kn−i (adC)n−3XLCCC. (8.21)

The total contribution cancels, thanks to the relation (6.23) between the coefficients.
The remaining terms with X are of the types (adC) jadLCC(adC)n−4− j XCC and

(adC) jad XCC(adC)n−4− jLCC and similar. The first and last term in the identity gives
a contribution

−kn

n−4∑

j=0

( j + 1)(adC) jadLCC(adC)n−4− j XCC (8.22)

from the X term in the n-bracket, and

−kn

n−4∑

j=0

( j + 1)(adC) jad XCC(adC)n−4− jLCC (8.23)

from the R term. A middle term [[Ci , [[Cn−i ]]]] gives

ki+1kn−i

(
−

n−i−3∑

j=0

(adC)i+ j−1adLCC(adC)n−i− j−3XCC

−
n−i−3∑

j=0

(adC)i+ j−1ad XCC(adC)n−i− j−3LCC

+
i−2∑

j=0

(adC) jad ((adC)n−i−2LCC)(adC)i− j−2XCC

+
i−2∑

j=0

(adC) jad ((adC)n−i−2XCC)(adC)i− j−2LCC
)
. (8.24)
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Note the symmetry between XC and LC in all contributions. We can now represent
a term (adC)n−4− j−k[(adC) jLCC, (adC)k XCC] by a monomial s j tk , exactly as in
Section 6.2. Since we have the symmetry under s ↔ t , the same rules apply as in that
calculation. Indeed, precisely the same polynomials are generated as in Eqs. (6.29) and
(6.30). The terms cancel.

Finally, there are terms of various structure with one R and two L ’s. One such
structure is (adC) j RC (adC)n− j−4LLCCC . For each value of j , the total coefficient of
the term cancels thanks to nkn +

∑
i ki+1kn−i = 0. Of the remaining terms, many have

C as one of the two arguments of R, but some do not. In order to deal with the latter,
one needs the cyclic identity (4.27). Let

Fj = (adC) jLCC and Sn, j,k = (adC)n− j−k−4R(Fj , Fk). (8.25)

Taking the arguments in the cyclic identity as C , Fj and Fk turns it into

Sn, j,k − Sn, j+1,k − Sn, j,k+1 = −(adC)n− j−k−5(RC [Fj , Fk] − 2[F( j , RC Fk)]
)
.

(8.26)

We need to verify that terms containing Sn, j,k , i.e., not havingC as one of the arguments
of R, combine into the first three terms of this equations, and thus can be turned into
expressions with RC . Note that this relation is analogous to Eq. (4.27) for Zn, j,k in
Section 6.2, but with a remainder term. We now collect such terms. They are

−kn

n−4∑

j=0

(n − 3 − j)Sn, j,0 +
n−2∑

i=2

ki+1kn−i

( i−2∑

j=0

Sn, j,n−i−2 −
n−i−3∑

j=0

Sn, j,0

)
. (8.27)

This is the combination encountered earlier (Eqs. (6.29) and (6.30)), which means that
these terms can be converted to termswith RC . However, since the “s+t−1 ≈ 0” relation
in the form (8.26) now holds only modulo RC terms, we need to add the corresponding
RC terms to the ones already present.

Let us now proceed to the last remaining terms. They are of two types:

Un,r, j,k = (adC)r RC (adC)n−r− j−k−5[(adC) jLCC, (adC)kLCC],
Vn,r, j,k = (adC)n−r− j−k−5[(adC) jLCC, (adC)k RC (adC)rLCC]. (8.28)

If the j and k indices in both expressions are translated into monomials s j tk as before,
both expressions should be calculated modulo s + t − 1 ≈ 0 as before. In U , symmetry
under s ↔ t can be used, but not in V . Both types of terms need to cancel for all values
of r , since there is no identity that allows us to take adC past RC .

The terms of type Un,r, j,k obtained directly from [[[[Cn]]]] + n[[Cn−1, [[C]]]] are

−kn

n−5∑

r=0

n−r−5∑

k=0

(n − k − 3)Un,r,0,k, (8.29)

and those from [[Ci , [[Cn−i ]]]] are

ki+1kn−i

( i−3∑

r=0

i−r−3∑

k=0

Un,r,n−i−2,k −
i−2∑

r=0

n−i−3∑

k=0

Un,r,0,k −
n−5∑

r=i−1

n−r−5∑

k=0

Un,r,0,k

)
. (8.30)
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To these contributions must be added the remainder term corresponding to the first term
on the right hand side of Eq. (8.26), with the appropriate coefficients from Eq. (8.27).
LetUn,r, j,k correspond to the monomial s j tkur . According to Eq. (8.26), the remainder
terms then become

un−5 φn(
s
u , t

u )
s
u + t

u − 1
≈ un−4

1 − u
φn

( s

u
,
t

u

)
, (8.31)

where φ(s, t, x) = ∑∞
n=2 φn(s, t)xn , and where s + t − 1 ≈ 0 has been used in the last

step. The total contribution to the n-bracket identity then is

1
2

[
kn

(
−

n−5∑

r=0

n−r−5∑

k=0

(n − k − 3)ur tk − un−4

1 − u

n−4∑

k=0

(n − k − 3)
( t

u

)k
)

+
n−2∑

i=1

ki+1kn−i

( i−3∑

r=0

i−r−3∑

k=0

sn−i−2tkur −
i−2∑

r=0

n−i−3∑

k=0

tkur −
n−5∑

r=i−1

n−r−5∑

k=0

tkur

+
un−4

1 − u

i−2∑

k=0

( s

u

)n−i−2( t

u

)k − un−4

1 − u

n−i−3∑

k=0

( t

u

)k
)]

+ (s ↔ t)

= 1
2

[
−kn

n − 3 − (n − 2)t + tn−2

(1 − t)2(1 − u)

+
n−2∑

i=1

ki+1kn−i
(1 − t i−1)sn−i−2 − (1 − tn−i−2)

(1 − t)(1 − u)

]
+ (s ↔ t)

= φn(s, t)

1 − u
. (8.32)

The Un,r,s,t terms thus cancel for all values of r .
The terms of type Vn,r,s,t obtained directly from [[[[Cn]]]] + n[[Cn−1, [[C]]]] are

−kn

n−5∑

r=0

n−r−5∑

k=0

(n − r − k − 4)Vn,r,0,k (8.33)

and the ones from [[Ci , [[Cn−i ]]]] are

ki+1kn−i

(
−

n−i−4∑

r=0

n−i−r−4∑

k=0

Vn,r,0,k +
i−2∑

j=0

n−i−3∑

k=0

Vn,n−i−k−3, j,k

+
i−3∑

r=0

i−r−3∑

k=0

Vn,r,n−i−2,k

)
. (8.34)

In addition, there is a remainder term from the second term on the right hand side of
Eq. (8.26). If Vn,r, j,k is represented by s j tkur , the remainder term becomes

−2
φn(s, u)

s + u − 1
. (8.35)
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The total contribution of terms of type V to the n-bracket is then represented by the
function vn(s, t, u):

vn(s, t, u) = −kn

n−5∑

r=0

n−r−5∑

k=0

(n − r − k − 4)tkur

+
n−2∑

i=1

ki+1kn−i

(
−

n−i−4∑

r=0

n−i−r−4∑

k=0

tkur +
i−2∑

j=0

n−i−3∑

k=0

s j tkun−i−k−3

+
i−3∑

r=0

i−r−3∑

k=0

sn−i−2tkur
)

+
1

s + u − 1

[
kn

n−4∑

�=0

(n − � − 3)(s� + u�)

+
n−2∑

i=1

ki+1kn−i

(n−i−3∑

�=0

(s� + u�) −
i−2∑

�=0

(sn−i−2u� + s�un−i−2)
)]

. (8.36)

Performing the sums, except the ones over i , and replacing s by 1− t , this function turns
into

vn(1 − t, t, u) = 2
φn(1 − t, t)

t − u
. (8.37)

Therefore, these terms cancel. Note that the symmetrisation s ↔ t in φn is automatic,
and not imposed by hand. This concludes the proof that all the identities are satisfied.

The series
∑∞

n=2 kn(adC)n−2 appearing in the variation of the ghosts, the sum of
all brackets, can be written in the concise form g(adC), where g(x) = 2

1−e−2x − 1
x .

Likewise, the sum
∑∞

n=2
kn
n (adC)n−2 becomes h(adC), where

h(x) = 1

x2

x∫

0

dy yg(y) = 1 − 1

x
+ log(1 − e−2x ) − 1

x2
(
Li2(e

−2x ) − π2

12

)
. (8.38)

The terms in the brackets containing sums of type
∑n−3

i=0 (adC)iO(adC)n−i−3 can be
formally rewritten, e.g.,

∞∑

n=2

kn

n−3∑

i=0

(adC)iO(adC)n−i−3 =
∞∑

n=2

kn
(adC)n−2

L − (adC)n−2
R

(adC)L − (adC)R
O

= g((adC)L) − g((adC)R)

(adC)L − (adC)R
O, (8.39)

where subscripts L , R stands for action to the left or to the right of the succeeding
operator (O). Then, the full ghost variation takes the functional form

(S,C + K ) = (d + 
)(C + K ) + g(adC)(LC + XC )C + h(adC)LC K

+
[g((adC)L) − g((adC)R)

(adC)L − (adC)R
RC

]
LCC +

[h((adC)L) − h((adC)R)

(adC)L − (adC)R
ad K

]
LCC.

(8.40)
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9. Examples

The criterion that no ancillary transformations appear in the commutator of two gen-
eralised diffeomorphisms is quite restrictive. It was shown in ref. [2] that this happens
if and only if gr is finite-dimensional and the derivative module is R(λ) where λ is a
fundamental weight dual to a simple root with Coxeter label 1. The complete list is

(i) gr = Ar , λ = �p, p = 1, . . . , r (p-form representations);
(ii) gr = Br , λ = �1 (the vector representation);
(iii) gr = Cr , λ = �r (the symplectic-traceless r -form representation);
(iv) gr = Dr , λ = �1,�r−1,�r (the vector and spinor representations);
(v) gr = E6, λ = �1,�5 (the fundamental representations);
(vi) gr = E7, λ = �1 (the fundamental representation).

If gr+1 has a 5-grading or higher with respect to the subalgebra gr (in particular, if it is
infinite-dimensional), R̃2 will be non-empty (see Table 1), and there will be ancillary
ghosts starting from level 1 (ghost number 2).

Ordinary diffeomorphisms provide a simple and quite degenerate example, where
gr = Ar and λ = �1. In this case, both R2 and R̃2 are empty, so both gr+1 and B(gr )
are 3-gradings. Still, the example provides the core of all other examples. The algebra
of vector fields in r + 1 dimensions is constructed using the structure constants of

B(Ar+1) ≈ A(r + 1|0) ≈ sl(r + 2|1). (9.1)

There is of course neither any reducibility nor any ancillary ghosts, and the only ghosts are
the ones in the vector representation v in R(1,0). The double grading of the superalgebra
is given in Table 3.

The double diffeomorphisms, obtained from gr = Dr , have a singlet reducibility,
and no ancillary transformations. The L∞ structure (truncating to an L3 algebra) was
examined in ref. [21]. The Borcherds superalgebra is finite-dimensional,

B(Dr+1) ≈ D(r + 1|0) ≈ osp(r + 1, r + 1|2). (9.2)

The double grading of this superalgebra is given in Table 4. The only ghosts are the
(double) vector in R(1,0) and the singlet in R(2,0).

The extended geometry based on gr = Br follows an analogous pattern, and is also
describedbyTable 4, butwith the doubly extended algebra B(r+1, 0) ≈ osp(r+1, r+2|2)
being decomposed into modules of B(r) ≈ so(r, r + 1).

Together with the ordinary diffeomorphisms, these are the only cases with finite
reducibility and without ancillary transformations at ghost number 1. In order for the
reducibility to be finite, it is necessary that B(gr ) is finite-dimensional. The remaining
finite-dimensional superalgebras in the classification by Kac [51] are not represented by
Dynkin diagramswhere the grey node connects to a nodewithCoxeter label 1. Therefore,
even if there are other examples with finite-dimensional B(gr ), they all have ancillary
transformations appearing in the commutator of two generalised Lie derivatives. Such

Table 3. The decomposition of A(r + 1|0) ≈ sl(r + 2|1) in A(r) ≈ sl(r + 1) modules

p = −1 p = 0 p = 1
q = 1 1 v
q = 0 v 1 ⊕ adj ⊕ 1 v
q = −1 v 1
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Table 4. The decomposition of D(r + 1|0) ≈ osp(r + 1, r + 1|2) in D(r) ≈ so(r, r) modules

p = −2 p = −1 p = 0 p = 1 p = 2
q = 1 1 v 1
q = 0 1 v 1 ⊕ adj ⊕ 1 v 1
q = −1 1 v 1

Table 5. Part of the decomposition ofB(E6(6)) in E5(5) ≈ so(5, 5)modules. Note the appearance ofmodules
R̃p for p ≥ 4

p = −1 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
q = 2 1 16
q = 1 1 16 10 16 45 ⊕ 1 144 ⊕ 16
q = 0 16 1 ⊕ 45 ⊕ 1 16 10 16 45 144
q = −1 16 1

Table 6. Part of the decomposition ofB(E8(8)) in E7(7) modules

p = 0 p = 1 p = 2 p = 3 p = 4
q = 3 1
q = 2 1 56 1539 ⊕ 133 ⊕ 2 · 1
q = 1 1 56 133 ⊕ 1 912 ⊕ 56 8645 ⊕ 2 · 133 ⊕ 1539 ⊕ 1
q = 0 1 ⊕ 133 ⊕ 1 56 133 912 8645 ⊕ 133
q = −1 1

Table 7. Part of the decomposition of Rp for the E5(5) exceptional geometry with respect to a section sl(5)

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
v = 6 (15 ⊕ 40) ⊗ �5
v = 5 24 ⊗ �5 24 ⊗ �4 ⊕ (5 ⊕ 45) ⊗ �5
v = 4 10 ⊗ �5 10 ⊗ �4 ⊕ 15 ⊗ �5 10 ⊗ �3 ⊕ 15 ⊗ �4 ⊕ 5 ⊗ �5
v = 3 5 ⊗ �5 5 ⊗ �4 5 ⊗ �3 5 ⊗ �2
v = 2 �5 �4 �3 �2 �1 �0
v = 1 �2 �1 �0
v = 0 �4
The derivative acts horizontally to the left and�k denote the k-formmodules of sl(5), such that�1, �2, . . . =
5, 10, . . . and �0 = �5 = 1. The degree v is such that the relative weights in the extension to gl(5) are given
by 3v + 4p. The �4 in the lower left corner is the vector module corresponding to the ordinary coordinates
with this choice of section

examples may be interesting to investigate in the context of the tensor hierarchy algebra
(see the discussion in Section 10).

We now consider the cases gr = Er for r ≤ 7. The level decompositions of the
Borcherds superalgebras are described in Ref. [4]. There are always ancillary ghosts,
starting at level 8 − r (ghost number 9 − r ). In Table 5, we give the double grading in
the example gr = E5(5) ≈ so(5, 5). Modules R̃p are present for p ≥ 4, signalling an
infinite tower of ancillary ghost from ghost number 4. Table 6 gives the corresponding
decomposition for gr = E7(7). This is as far as the construction of the present paper
applies. Note that for gr = E7(7) already R̃2 = 1, which leads to ancillary ghosts in the
56 at (p, q) = (1, 1).

In Table 7, we have divided the modules Rp for the E5(5) example of Table 5 into A4
modules with respect to a choice of section. Below the solid dividing line are the usual
sequences of ghosts for diffeomorphisms and 2-form and 5-form gauge transformations.
Above the line are sequences that contain tensor products of forms with some other
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modules, i.e., mixed tensors. All modules above the line are effectively cancelled by the
ancillary ghosts. They are however needed to build modules of gr . In the example, there
is nothing below the line for p ≥ 7, which means that the 
 operation from ancillary to
non-ancillary ghosts at these levels becomes bijective.

Reducibility is of course not an absolute concept; it can depend on the amount of
covariance maintained. If a section is chosen, the reducibility can be made finite by
throwing away all ghosts above the dividing line. One then arrives at the situation in ref.
[42]. If full covariance is maintained, reducibility is infinite. Since the modules above
the line come in tensor products of some modules with full sets of forms of alternating
statistics, they do not contribute to the counting of the degrees of freedom. This shows
why the counting of refs. [1,4], using only the non-ancillary ghosts, gives the correct
counting of the number of independent gauge parameters.

This picture of the reduction of themodules Rp in a grading with respect to the choice
of section also makes the characterisation of ancillary ghosts clear. They are elements
in Rp above a certain degree (for which the degree of the derivative is 0). The dotted
line in the table indicates degree 0. If we let A be the subalgebra of ancillary elements
above the solid line, it is clear that A forms an ideal inB+(gr ) (which was also shown
on general grounds in Section 7). The grading coincides with the grading used in ref.
[2] to show that the commutator of two ancillary transformations again is ancillary.

As an aside, the regularised dimension, twisted with fermion number, of B+(gr+1)
can readily be calculated using the property that all modules at p �= 0 come in doublets
under the superalgebra generated by e and f , without need of any further regularisation
(e.g. through analytic continuation). Using the cancellation of these doublets, inspection
of Table 1 gives at hand that the “super-dimension” (where fermionic generators count
with a minus sign)

−sdim (B+(gr+1)) = 1 + dim (R1) + dim (R̃2) + dim (˜̃R3) + · · ·
= 1 + dim (gr+1,+), (9.3)

where gr+1,+ is the positive level part of the grading of gr+1 with respect to gr . This
immediately reproduces the counting of the effective number of gauge transformations
in ref. [1]. In the exampleB(E6) above, we get 1+16 = 17, which is the correct counting
of gauge parameters for diffeomorphisms, 2- and 5-form gauge transformations in 6
dimensions.

10. Conclusions

We have provided a complete set of bracket giving an L∞ algebra for generalised dif-
feomorphisms in extended geometry, including double geometry and exceptional geom-
etry as special cases. The construction depends crucially on the use of the underlying
Borcherds superalgebra B(gr+1), which is a double extension of the structure algebra
gr . This superalgebra is needed in order to form the generalised diffeomorphisms, and
has a natural interpretation in terms of the section constraint. It also provides a clear
criterion for the appearance of ancillary ghosts.
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The full list of non-vanishing brackets is:

[[C]] = dC,

[[K ]] = dK + K 
,

[[Cn]] = kn
(
(adC)n−2(LCC + XCC) +

n−3∑

i=0

(adC)i RC (adC)n−i−3LCC
)

[[Cn−1, K ]] = kn
n

(
(adC)n−2LC K +

n−3∑

i=0

(adC)iad K (adC)n−i−3LCC
)
, (10.1)

where the coefficients have the universal model-independent expression in terms of
Bernoulli numbers

kn+1 = 2n B+
n

n! , n ≥ 1. (10.2)

All non-vanishing brackets except the 1-bracket contain at least one level 1 ghost c. No
brackets contain more than one ancillary ghost.

The violation of covariance of the derivative, that modifies already the 2-bracket,
has a universal form, encoded in XC in Eq. (4.14). It is not unlikely that this makes it
possible to covariantise the whole structure, as in ref. [39]. However, we think that it is
appropriate to let the algebraic structures guide us concerning such issues.

The characterisation of ancillary ghosts is an interesting issue, that may deserve
further attention. Even if the construction in Section 7 makes the appearance of ancillary
ghosts clear (from the existence of modules R̃p) it is indirect and does not contain
an independent characterisation of the ancillary ghosts, in terms of a constraint. This
property is shared with the construction of ancillary transformations in ref. [40]. The
characterisation in Section 9 in terms of the grading induced by a choice of section is a
direct one, in this sense, but has the drawback that it lacks full covariance. In addition,
there may be more than one possible choice of section. This issue may become more
important when considering situations with ancillary ghosts at ghost number 1 (see
below). Then, with the exception of some simpler cases with finite-dimensional gr ,
ancillary transformations are not expected to commute.

We have explicitly excluded from our analysis cases where ancillary transformations
appear already at ghost number 1 [38–40,52]. The canonical example is exceptional
geometry with structure group E8(8). If we should trust and extrapolate the results of the
present paper, this would correspond to the presence of a module R̃1. However, there is
never such a module in the Borcherds superalgebra. If we instead turn to the tensor hier-
archy algebra [53–55] we find that a module R̃1 indeed appears in cases when ancillary
transformations are present in the commutator of two generalised diffeomorphisms.

As an example, Table 8 contains a part of the double grading of the tensor hierarchy
algebraW (E9) (following the notation of ref. [54]), which we believe should be used in
the construction of an L∞ algebra for E8 generalised diffeomorphisms. The E8 modules
that are not present in theB(E9) superalgebra are marked in blue colour. The singlet at
(p, q) = (1, 1) is the extra element appearing at level 0 in W (E9) that can be identified
with the Virasoro generator L1 (as can be seen in the decomposition under gl(9) [55]).
The elements at q − p = 1 come from the “big” module at level −1 in W (E9) (the
embedding tensor or big torsion module). For an affine gr+1 this is a shifted fundamental
highest weight module, with its highest weight at (p, q) = (1, 2), appearing inW (gr+1)
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Table 8. Part of the decomposition of the tensor hierarchy algebraW (E9) into E8 modules. The modules not
present in B(E9) are marked italic

p = −1 p = 0 p = 1 p = 2
q = 2 1 248
q = 1 1 ⊕ 3875 ⊕ 248 1 ⊕ 248 248 ⊕ 1 1 ⊕ 3875 ⊕ 248
q = 0 248 ⊕ 1 ⊕ 3875 ⊕ 248 1 ⊕ 248 ⊕ 1 248 1 ⊕ 3875
q = −1 248 1
Note the presence of R̃1 = 1

in addition to the unshifted one with highest weight at (p, q) = (0, 1) appearing also in
the Borcherds superalgebraB(gr+1). In the E8 example, it contains the 248 at (p, q) =
(0, 1)whichwill accommodate parameters of the ancillary transformations. In situations
when ancillary transformations are absent at ghost number 1 (the subject of the present
paper), using W (gr+1) is equivalent to using B(gr+1), so all results derived here will
remain unchanged.

We take this as a very strong sign that the tensor hierarchy algebra is the correct
underlying algebra, and hope that a generalisation of the present approach to the use of an
underlying tensor hierarchy algebra will shed new light on the properties of generalised
diffeomorphisms in situations where ancillary transformations are present.

Acknowledgements Wewould like to thankDavid Berman andCharles Strickland-Constable for collaboration
in an early stage of this project. We also acknowledge discussions with Alex Arvanitakis, Klaus Bering, Olaf
Hohm, and Barton Zwiebach. This research is supported by the Swedish Research Council, project no. 2015-
04268.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

1. Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C.: The gauge structure of generalised
diffeomorphisms. JHEP 01, 064 (2013). arXiv:1208.5884

2. Cederwall, M., Palmkvist, J.: Extended geometries. JHEP 02, 071 (2018). arXiv:1711.07694
3. Palmkvist, J.: Exceptional geometry and Borcherds superalgebras. JHEP 11, 032 (2015).

arXiv:1507.08828
4. Cederwall, M., Palmkvist, J.: Superalgebras, constraints and partition functions. JHEP 08, 036 (2015).

arXiv:1503.06215
5. Tseytlin, A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350,

395–440 (1991)
6. Siegel, W.: Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453–5459

(1993). arXiv:hep-th/9302036
7. Siegel, W.: Manifest duality in low-energy superstrings. In International Conference on Strings 93 Berke-

ley, California, May 24–29, 1993, pp. 353–363 (1993). arXiv:hep-th/9308133
8. Hitchin, N.: Lectures on generalized geometry. arXiv:1008.0973
9. Hull, C.M.: A geometry for non-geometric string backgrounds. JHEP 10, 065 (2005).

arXiv:hep-th/0406102
10. Hull, C.M.: Doubled geometry and T-folds. JHEP 07, 080 (2007). arXiv:hep-th/0605149
11. Hull, C., Zwiebach, B.: Double field theory. JHEP 09, 099 (2009). arXiv:0904.4664
12. Hohm, O., Hull, C., Zwiebach, B.: Background independent action for double field theory. JHEP 07, 016

(2010). arXiv:1003.5027

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1208.5884
http://arxiv.org/abs/1711.07694
http://arxiv.org/abs/1507.08828
http://arxiv.org/abs/1503.06215
http://arxiv.org/abs/hep-th/9302036
http://arxiv.org/abs/hep-th/9308133
http://arxiv.org/abs/1008.0973
http://arxiv.org/abs/hep-th/0406102
http://arxiv.org/abs/hep-th/0605149
http://arxiv.org/abs/0904.4664
http://arxiv.org/abs/1003.5027


L∞ Algebras for Extended Geometry from Borcherds Superalgebras 759

13. Hohm, O., Hull, C., Zwiebach, B.: Generalized metric formulation of double field theory. JHEP 08, 008
(2010). arXiv:1006.4823

14. Jeon, I., Lee, K., Park, J.-H., Suh, Y.: Stringy unification of type IIA and IIB supergravities under N = 2
D = 10 supersymmetric double field theory. Phys. Lett. B 723, 245–250 (2013). arXiv:1210.5078

15. Park, J.-H.: Comments on double field theory and diffeomorphisms. JHEP 06, 098 (2013).
arXiv:1304.5946

16. Berman, D.S., Cederwall, M., Perry, M.J.: Global aspects of double geometry. JHEP 09, 066 (2014).
arXiv:1401.1311

17. Cederwall, M.: The geometry behind double geometry. JHEP 09, 070 (2014). arXiv:1402.2513
18. Cederwall, M.: T-duality and non-geometric solutions from double geometry. Fortsch. Phys. 62, 942–949

(2014). arXiv:1409.4463
19. Cederwall, M.: Double supergeometry. JHEP 06, 155 (2016). arXiv:1603.04684
20. Deser, A., Sämann, C.: Extended Riemannian geometry I: local double field theory. arXiv:1611.02772
21. Hohm, O., Zwiebach, B.: L∞ algebras and field theory. Fortsch. Phys. 65, 1700014 (2017).

arXiv:1701.08824
22. Deser, A., Sämann, C.: Derived brackets and symmetries in generalized geometry and double field theory.

In 17thHellenic School andWorkshops onElementary Particle Physics andGravity (CORFU2017)Corfu,
Greece, September 2–28, 2017. (2018). arXiv:1803.01659

23. Hull, C.: Generalised geometry for M-theory. JHEP 0707, 079 (2007). arXiv:hep-th/0701203
24. Pacheco, P.P.,Waldram, D.:M-theory, exceptional generalised geometry and superpotentials. JHEP 0809,

123 (2008). arXiv:0804.1362
25. Hillmann, C.: E7(7) and d = 11 supergravity. arXiv:0902.1509. PhD thesis, Humboldt-Universität zu

Berlin (2008)
26. Berman, D.S., Perry,M.J.: Generalized geometry andM theory. JHEP 1106, 074 (2011). arXiv:1008.1763
27. Berman, D.S., Godazgar, H., Perry, M.J.: SO(5, 5) duality in M-theory and generalized geometry. Phys.

Lett. B 700, 65–67 (2011). arxiv:1103.5733
28. Coimbra, A., Strickland-Constable, C., Waldram, D.: Ed(d) ×R

+ generalised geometry, connections and
M theory. JHEP 1402, 054 (2014). arXiv:1112.3989

29. Coimbra,A., Strickland-Constable, C.,Waldram,D.: Supergravity as generalised geometry II: Ed(d)×R
+

and M theory. JHEP 1403, 019 (2014). arXiv:1212.1586
30. Park, J.-H., Suh, Y.: U-geometry : SL(5). JHEP 04, 147 (2013). arXiv:1302.1652
31. Cederwall, M., Edlund, J., Karlsson, A.: Exceptional geometry and tensor fields. JHEP 07, 028 (2013).

arXiv:1302.6736
32. Cederwall, M.: Non-gravitational exceptional supermultiplets. JHEP 07, 025 (2013). arXiv:1302.6737
33. Aldazabal,G.,Graña,M.,Marqués,D., Rosabal, J.: Extended geometry and gaugedmaximal supergravity.

JHEP 1306, 046 (2013). arXiv:1302.5419
34. Hohm,O., Samtleben, H.: Exceptional form of D = 11 supergravity. Phys. Rev. Lett. 111, 231601 (2013).

arXiv:1308.1673
35. Blair, C.D., Malek, E., Park, J.-H.: M-theory and type IIB from a duality manifest action. JHEP 1401,

172 (2014). arXiv:1311.5109
36. Hohm, O., Samtleben, H.: Exceptional field theory I: E6(6) covariant form of M-theory and type IIB.

Phys. Rev. D 89, 066016 (2014). arXiv:1312.0614
37. Hohm, O., Samtleben, H.: Exceptional field theory II: E7(7). Phys. Rev. D 89, 066017 (2014).

arXiv:1312.4542
38. Hohm, O., Samtleben, H.: Exceptional field theory. III. E8(8). Phys. Rev. D 90, 066002 (2014).

arXiv:1406.3348
39. Cederwall, M., Rosabal, J.A.: E8 geometry. JHEP 07, 007 (2015). arXiv:1504.04843
40. Bossard,G., Cederwall,M.,Kleinschmidt, A., Palmkvist, J., Samtleben,H.:Generalized diffeomorphisms

for E9. Phys. Rev. D 96, 106022 (2017). arXiv:1708.08936
41. Wang, Y.-N.: Generalized Cartan calculus in general dimension. JHEP 07, 114 (2015). arXiv:1504.04780
42. Baraglia, D.: Leibniz algebroids, twistings and exceptional generalized geometry. J. Geom. Phys. 62,

903–934 (2012). arXiv:1101.0856
43. Dobrev, V.K., Petkova, V.B.: Group theoretical approach to extended conformal supersymmetry: Function

space realizations and invariant differential operators. Fortsch. Phys. 35, 537 (1987)
44. Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. 102B, 27–31 (1981)
45. Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087–1104

(1993). arXiv:hep-th/9209099
46. Zwiebach, B.: Closed string field theory: quantum action and the B–V master equation. Nucl. Phys. B

390, 33–152 (1993). arXiv:hep-th/9206084
47. Roytenberg, D., Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras.

arXiv:math/9802118

http://arxiv.org/abs/1006.4823
http://arxiv.org/abs/1210.5078
http://arxiv.org/abs/1304.5946
http://arxiv.org/abs/1401.1311
http://arxiv.org/abs/1402.2513
http://arxiv.org/abs/1409.4463
http://arxiv.org/abs/1603.04684
http://arxiv.org/abs/1611.02772
http://arxiv.org/abs/1701.08824
http://arxiv.org/abs/1803.01659
http://arxiv.org/abs/hep-th/0701203
http://arxiv.org/abs/0804.1362
http://arxiv.org/abs/0902.1509
http://arxiv.org/abs/1008.1763
http://arxiv.org/abs/1103.5733
http://arxiv.org/abs/1112.3989
http://arxiv.org/abs/1212.1586
http://arxiv.org/abs/1302.1652
http://arxiv.org/abs/1302.6736
http://arxiv.org/abs/1302.6737
http://arxiv.org/abs/1302.5419
http://arxiv.org/abs/1308.1673
http://arxiv.org/abs/1311.5109
http://arxiv.org/abs/1312.0614
http://arxiv.org/abs/1312.4542
http://arxiv.org/abs/1406.3348
http://arxiv.org/abs/1504.04843
http://arxiv.org/abs/1708.08936
http://arxiv.org/abs/1504.04780
http://arxiv.org/abs/1101.0856
http://arxiv.org/abs/hep-th/9209099
http://arxiv.org/abs/hep-th/9206084
http://arxiv.org/abs/math/9802118


760 M. Cederwall, J. Palmkvist

48. Stasheff, J.: The (Secret?) homological algebra of the Batalin–Vilkovisky approach. Contemp.Math. 219,
195–210 (1998). arXiv:hep-th/9712157

49. Bering, K.: On non-commutative Batalin-Vilkovisky algebras, strongly homotopy Lie algebras and the
Courant bracket. Commun. Math. Phys. 274, 297–341 (2007). arXiv:hep-th/0603116

50. Getzler, E.: Higher derived brackets. arXiv:1010.5859
51. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)
52. Hohm, O., Samtleben, H.: U-duality covariant gravity. JHEP 09, 080 (2013). arXiv:1307.0509
53. Palmkvist, J.: The tensor hierarchy algebra. J. Math. Phys. 55, 011701 (2014). arXiv:1305.0018
54. Carbone, L., Cederwall, M., Palmkvist, J.: Generators and relations for Lie superalgebras of Cartan type

(to appear in J. Phys. A) arXiv:1802.05767
55. Bossard, G., Kleinschmidt, A., Palmkvist, J., Pope, C.N., Sezgin, E.: Beyond E11. JHEP 05, 020 (2017).

arXiv:1703.01305

Communicated by C. Schweigert

http://arxiv.org/abs/hep-th/9712157
http://arxiv.org/abs/hep-th/0603116
http://arxiv.org/abs/1010.5859
http://arxiv.org/abs/1307.0509
http://arxiv.org/abs/1305.0018
http://arxiv.org/abs/1802.05767
http://arxiv.org/abs/1703.01305

	Linfty Algebras for Extended Geometry from Borcherds Superalgebras
	Abstract:
	1 Introduction
	2 The Borcherds Superalgebra
	3 Section Constraint and Generalised Lie Derivatives
	4 Derivatives, Generalised Lie Derivatives and Other Operators 
	4.1 The derivative
	4.2 Generalised Lie derivative from ``almost derivation''
	4.3 ``Almost covariance'' and related operators
	4.4 More operator identities

	5 Batalin–Vilkovisky Ghost Actions and Linfinity Algebras
	6 The BV Structure, Ignoring Ancillary Ghosts
	6.1 Some low brackets
	6.2 Higher brackets

	7 Ancillary Ghosts
	8 The Full BV Structure
	8.1 Some low brackets
	8.2 Higher brackets

	9 Examples
	10 Conclusions
	Acknowledgements
	References




