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A multi-�delity surrogate model for highly nonlinear multiscale problems is proposed.

It is based on the introduction of two different surrogate models and an adaptive

on-the-�y switching. The two concurrent surrogates are built incrementally starting from

a moderate set of evaluations of the full order model. Therefore, a reduced order model

(ROM) is generated. Using a hybrid ROM-preconditioned FE solver additional effective

stress-strain data is simulated while the number of samples is kept to a moderate

level by using a dedicated and physics-guided sampling technique. Machine learning

(ML) is subsequently used to build the second surrogate by means of arti�cial neural

networks (ANN). Different ANN architectures are explored and the features used as

inputs of the ANN are �ne tuned in order to improve the overall quality of the ML model.

Additional ML surrogates for the stress errors are generated. Therefore, conservative

design guidelines for error surrogates are presented by adapting the loss functions of the

ANN training in pure regression or pure classi�cation settings. The error surrogates can be

used as quality indicators in order to adaptively select the appropriate�i.e., ef�cient yet

accurate�surrogate. Two strategies for the on-the-�y switching are investigated and a

practicable and robust algorithm is proposed that eliminates relevant technical dif�culties

attributed to model switching. The provided algorithms and ANN design guidelines can

easily be adopted for different problem settings and, thereby, they enable generalization

of the used machine learning techniques for a wide range of applications. The resulting

hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase

composite with pseudo-plastic micro-constituents. Numerical examples highlight the

performance of the proposed approach.

Keywords: reduced order modeling (ROM), machine learning, arti�cial neural networks (ANN), surrogate modeling,

error control, on-the-�y model adaptivity, multiscale simulations

1. INTRODUCTION

In computer-assisted materials design and in the simulation of complex materials with rich
microstructure major challenges remain to be solved despite the outstanding advances made in
recent years. For example, the discretization of all microstructural features in a monolithic �nite
element (FE) simulation is unfeasible due to the various length scales involved that range from
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micrometers up to the meters. These would lead to a ludicrous
complexity of the resulting overall model. By accounting for a
separation of length scales, the FE2 ansatz (Feyel, 1999; Miehe,
2002) can lead to some savings over the monolithic approach
by replacing the heterogeneous material by microscopic FE
problems at the macroscopic integration points, leading to a
partial decoupling of microscopic and macroscopic degrees of
freedom. Still the number of overall unknowns is prohibitive and
calls for massively improved computational e�ciency in terms
of CPU time, memory savings and information compression.
Novel strategies contributing to the vision of a fully connected
investigation of materials and aspiring the prediction process-
structure-property relationships across multiple length and time
scales are, thus, much sought-after, see, e.g., Schmitz and
Prahl (2016). Due to the rapid growth of available material
and simulation data, data-integrated approaches that exploit
information from di�erent sources in order to complement
or substitute simulations and experiments are experiencing
increased attention, see, e.g., Kalidindi and De Graef (2015),
Kalidindi (2015), and Ramakrishna et al. (2018).

Due to novel improvements in machine learning and
computational resources, a zoo of data-driven methods
comprising, e.g., kernel methods, principal component analysis,
and arti�cial neural networks, have developed immense
momentum over the last years. The successful implementation
of these techniques in materials research is an active �eld. For
instance, in Chupakhin et al. (2017) arti�cial neural networks
and �nite element computations have been combined in order
to predict the in�uence of plasticity on the residual stress �eld
measured by hole drilling. Principal component analysis of n-
point microstructure statistics have shown excellent performance
in order to examine microstructure-property relationships, see,
e.g., ˙eçen et al. (2014), Gupta et al. (2015), and Altschuh et al.
(2017). In BØlisle et al. (2015), several machine learning methods
have been considered in the context of molecular dynamics.
Liu et al. (2015) show how data mining and machine learning
are combined in order to e�ciently approximate the elastic
localization in voxelized microstructures. Another branch of
data-driven materials research exploring the use of convolutional
neural networks and deep learning in order to deliver accurate
structure-property linkages is currently in heavy development,
see, e.g., ˙eçen et al. (2018) and Yang et al. (2018).

While data-driven approaches have their appeal, the structure
of the underlying physical problem can be accounted for
only in parts. For instance, established balanced laws and
thermodynamic principles are hard to be incorporated in
the aforementioned methods. Reduced order models for the
microscopic problem o�er an advantageous compromise
between physics-informed modeling and computational
e�ciency. Purely data-driven surrogates lack accuracy (i) if the
amount of training data is limited, (ii) if the validity domain is
left, or (iii) if the error of the surrogate in respect to the reference
solution is to be estimated. In these scenarios, reduced order
models following physical principles o�er, in general, better
accuracy and robustness. For example, in Fritzen and Leuschner
(2013) a highly e�cient potential based reduced order model has
been developed. This ansatz has a natural physical supporting

argument, since a reduced basis for the solution �eld is generated
based on snapshot data of FE computations. The approach has
been demonstrated to achieve substantial speed-ups and memory
savings, see also Fritzen et al. (2014) and Fritzen and Hodapp
(2016). Other developments in this �eld comprise the NTFA (e.g.,
Michel and Suquet, 2003) and NTFA-TSO (Michel and Suquet,
2016) or hyper-reduced simulations and related schemes
(Ryckelynck, 2009; Soldner et al., 2017). In order to improve the
incorporation of surrogates obtained from reduced order models
a goal-oriented error estimation or quality indication is required.
The quantity of interest (QoI) is the e�ective stress and its
accuracy (up to a prescribed tolerance) is essential for reliability
of the overall predictions. In Lu et al. (2018), for example,
neural networks have been successfully trained to approximate
the microscopic nonlinear microscopic electric material law of
graphene/polymer nanocomposites, but without error control
or model adaptivity in macroscopic simulations. A macroscopic
goal-oriented approach combining reduced order modeling and
machine learning techniques has been demonstrated in Trehan
et al. (2017) for two-dimensional oil-water subsurface �ow
systems and in Freno and Carlberg (2018) for three-dimensional
mechanical problems. The approach considers a reduced
order model and an a posteriori correction through machine
learning methods. The ansatz shows promising results, but it
requires the evaluation of the reduced order model. For twoscale
simulations with a macroscopic and a microscopic problem,
even the evaluation of a reduced order model for the microscopic
problem may not be always viable due to the large number of
needed evaluations in the macroscopic problem. It is, therefore,
necessary to seek e�cient alternatives incorporating a hierarchy
of surrogate models of di�erent computational complexity and
di�erent accuracy in the QoI. Hereby, one may also take into
consideration physics-informed arti�cial neural networks, as
done in Raissi et al. (2018), in order to obtain the �eld solution
of the balance equations for the microscopic physical problem
at hand and then computing the QoI for the macroscopic scale.
Such approaches are highly attractive, but not suitable for the
objectives of twoscale computations, since the surrogate for the
microscopic model is only required to return the QoI for the
macroscale and additional calibration of the arti�cial neural
networks for the microscopic solution �eld would only increase
the computational costs without any bene�ts for the convergence
of the macroscopic problem.

The present work aims in mechanical multiscale FE
simulations at the adaptive combination of the physics-informed
reduced order model (ROM) of Fritzen and Kunc (2018), for
nonlinear hyperelastic problems (i.e., no history dependency),
with arti�cial neural networks (ANNs), for which feedforward
neural networks are considered. Hereby, the ANNs are trained
based on FE computation of the full three-dimensional
microstructure and material at hand for a set of loading strains
(input quantity). The QoI (output quantity) is the e�ective stress,
which the ANNs are trained for. The trained ANNs are then
used as a highly e�cient constitutive relation surrogate for the
nonlinear material at hand. For macroscopic FE computations,
the ANN material law surrogate is to be used, if possible,
at every integration point for given e�ective strain. Based on
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quality indicators, as accuracy or range of validity, the ANN
constitutive relation surrogate may be inaccurate or insecure for
given strain. The present work, therefore, further considers the
error modeling of trained ANNs and discusses guidelines in order
to induce conservative properties to the error models, which are
calibrated through ANNs in standard regression or classi�cation
approaches. Additionally, strategies are proposed for an adaptive
ANN-ROM schemes, where the more accurate but expensive
ROM is only called at an integration point, if the quality indicator
demands it.

The manuscript is organized as follows: In section 2,
two concurrent surrogate models for the QoI obtained by
reduced order modeling and from purely data-driven ANNs
are described. The twoscale mechanical problem is introduced
and the challenges in the goal-oriented error estimation of
derived quantities of interest remaining in nonlinear reduced
order modeling are detailed. Then, the data generation for the
training of the ANNs is illustrated, followed by the guidelines
for the material law and error approximation. At the end of the
section, adaptive twoscale simulation strategies including on-the-
�y model switching are presented. Section 3 o�ers numerical
examples for a three-phase pseudo-plastic material: The ANN
is used for the direct surrogation of the QoI. This is adaptively
complemented by a more robust and reliable reduced order
model based on the concept of quality indicators. Multiscale
FE simulations comparing the di�erent multiscale simulation
techniques are presented. The manuscript ends with a concluding
summary of the results in section 4.

2. REDUCED ORDER MODELING AND
ARTIFICIAL NEURAL NETWORKS

2.1. Twoscale Framework
2.1.1. Problem Setting
The simulation of microstructured solids with a su�cient
separation of length scales is investigated. More precisely, a
macroscopic domain 
 � R

3 with characteristic length L and
an attached microstructure with characteristic length L� � L are
considered. The microstructure is assumed to be ergodic and the
existence of a periodic Representative Volume Element (RVE) 


is assumed. In the following, macroscopic �elds are overlined �.
The twoscale problem consists of the concurrent solution of the
macroscopic boundary value problem (BVP)

(P) : div
�

N� ( N")
�

D 0 with " D sym grad(u) + BC (1)

and, for each macroscopic point x 2 
 , of the solution of the
RVE problem

(P) : div
�

� (")
�

D 0 with " D sym grad(u)

and
1

j
j

Z




" dV D N". (2)

Here u, u denote displacements, ", N" are in�nitesimal strain
tensors and � , N� denote the stress �elds on the microscopic and
macroscopic domain, respectively. The solution of (P) de�nes the

FIGURE 1 | Twoscale mechanical problem in the context of FE2 for a material

with a microstructure composed of three material phases: at every integration

point of the macroscopic problem ( NP) the microscopic problem (P) is solved in

the FOM through a microscopic FE computation for prescribed N", the resulting

effective stress N� , and corresponding gradient NC D @ N�=@ N" are then computed

and returned to the macroscopic integration point.

missing constitutive relation for the macroscopic stress � via the
volume average

N� D
1

j
j

Z




� dV . (3)

The two BVPs are strongly coupled since the solution u of (P)
de�nes the boundary condition for (P) via N", while the solution of
(P) implicitly provides the missing constitutive equation via (3).

A straight-forward yet computationally costly approach to
solving the twoscale problem is given in terms of the FE2 method
(Feyel, 1999; Miehe, 2002): Here the microscopic problem is
solved at each macroscopic integration point and the e�ective
tangent operator is used in order to allow for Newton-Raphson
iterations of the nonlinear macroscopic BVP. In the following,
the solution of the microscopic BVP using Finite Elements is
considered as the reference solution, i.e., it denotes the Full Order
Model (FOM). In Figure 1 the macroscopic and microscopic
problems are illustrated in the context of FE2.

2.1.2. Reduced Order Model (ROM)
Given the massive computational demands of the FE2 technique
and the limited availability of computational resources, the
use of nowadays established reduced order models (ROM), in
order to replace the costly microscopic BVP evaluations, has
become an accepted alternative for dissipative and pseudo-plastic
hyperelastic materials (Radermacher and Reese, 2016; Fritzen
and Kunc, 2018). The reduced basis of dimension N obtained
from the snapshot Proper Orthogonal Decomposition (POD,
Sirovich, 1987) can be expressed in terms of a matrix U(x),
where each column represents a displacement �eld. The reduced
parameterization of the solution is then given in vector notation
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via (i D 1, : : : ,N)

u(x) D " x C U(x) � , "(x) D " C E(x) � ,
�

E(x)
�

�i
D vec

�

sym grad
��

U(x)
�

�i

��

, (4)

where (A)�i refers to the ith column of the corresponding matrix.
Here, the matrix and vector notation of the e�ective strain N" are
used concurrently for convenience. In the following, attention
is limited to pseudo-plastic materials, i.e., to strongly nonlinear
hyperelastic solids for which the stress � and the sti�ness C

are de�ned as the gradients of a free energy function W(")
according to

� � � D
@W(")

@"

, C � C D
@2W(")

@" @"

. (5)

Following Fritzen and Kunc (2018) the reduced problem is to �nd
the coe�cients � 2 R

N solving

r(", � ) D

Z




ET� dV
!

D 0. (6)

While the e�ective stress is obtained from simple volume
averaging of � , the e�ective tangent sti�ness is computed via

C D
1

j
j

0

@

Z




C dV � KT J�1K

1

A with K D

Z




C E dV ,

J D

Z




ETC E dV , (7)

which follows from straight-forward linearization of (6). The
accuracy of the ROM depends on the quality and amount of
the snapshots and of the reduced dimension N. It shall be noted
that the Galerkin ROM inherits the properties of classical Finite
Elements, i.e., the solution is Galerkin orthogonal and, thus,
energy optimal. It follows the basic physical principle of energy
minimization. From a theoretical perspective this motivates the
robustness and accuracy of the ROM even beyond the considered
parameters used during the generation of the snapshot data, i.e.,
the ROM can be considered to generalize.

2.2. Goal-Oriented Error Estimation
For the microscopic BVP, using the ROM (or any other
approximation of the FOM) naturally introduces an error into
the solution of the problem, and into the quantity of interest
(QoI). In this work the latter is the e�ective stress. Hence, in
order to enable error control for the macroscopic boundary
value problem, it is crucial to estimate the error in the QoI,
see, e.g., Larsson and Runesson (2011). For this purpose, we
de�ne the error in displacements on the microscale as e(x) D

uF(x) � uRN(x), where uF and uRN are the solutions to the
microscopic problem (2) using the FOM and N-dimensional
ROM, respectively. In view of the reduced kinematics (4), we can
parameterize the error in the ROM as

e(x) D UF(x)�
e
, (8)

where UF denotes the (�nite element) shape functions pertinent
to the FOM and �

e
denotes the nodal values of the fully

resolved error. The FOM and N-dimensional ROM e�ective
stress functions are referred to for clarity as

N� F(N") D e�ective stress of FOM for given e�ective strain N" ,
(9)

N� RN(N") D e�ective stress of N-dimensional ROM for given

e�ective strain N" ,
(10)

while the corresponding error is addressed as

e� D � F � � RN . (11)

Now, consider the corresponding FOM residual equation
analogous to (6) and the error in the QoI given in (11) in
terms of the error in the solution de�ned in (8). Through
linearization, we obtain the error equation and the linearization
of the macroscopic stress error

JF�
e

� �rF, e� � KF�
e
, (12)

respectively. Here rF, JF, and KF de�ne the residual, Jacobian

and linearized stress error in (6) and (7), with E replaced by EF

de�ning the strains of the �nite element shape functions. The,
nowadays, standard method of goal-oriented error estimation
can be carried out by solving the suitably formulated dual (or
adjoint) problem (see, e.g., Oden and Prudhomme, 2001)

�

JF
�T

�� D
�

KF
�T

. (13)

Finally, (12) and (13) can be combined to yield the result

e� � �[��]TrF. (14)

We note that the estimator (14) has, in particular, the following
properties: (i) It is restricted to estimating the linearized error
contribution, (ii) it requires the assembly of the entire FOM
residual and Jacobian, and (iii) it requires the solution of the dual
problem using the FOM to formally hold. Even if the linearization
error is negligible, the high computational cost involved in
assembling the full (FOM) Jacobian and residual of the problem
makes this technique unalluring for use in conjunction with
highly e�cient ROM approximations. Possible approximations
of (13) pertain to hierarchical approximations. One could, for
instance, solve the dual problem using an enriched ROM,
rather than the FOM. However, designing a robust hierarchical
scheme requires means of guaranteeing that the enriched basis
is su�cient. In view of the discussion above, we shall henceforth
consider alternative methods to estimating (and controlling) the
error in macroscopic stress from each microscopic problem.
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2.3. Arti�cial Neural Networks (ANNs)
2.3.1. Generation of Data

2.3.1.1. Design of input data / loading directions
The present work is concerned with materials based on state
dependent models for, e.g., pseudo-plasticity. For such material
models, see, e.g., Kunc and Fritzen (2018), the transition zone
between elastic and plastic domain is found in the vecinity of
the origin in strain space. In this transition zone a pronounced
nonlinearity and change of slope not only from the elastic to
the plastic domain take place, but also depending on the load
direction in the plastic domain, followed by a saturation behavior
for increasing load amplitudes. This material behavior motivated
the Concentric Sampling (CS) approach proposed by Kunc and
Fritzen (2018) for pseudo-plastic materials, which is also used
in this work. Based on the CS approach, nd almost uniformly

distributed unit vectors / directions d(i) 2 R
6 (i D 1, : : : , nd) are

generated. Samples along the generated directions are considered
with an exponentially growing step width from the origin. The
primal strain dataset OD" is addressed as

OD" D fN" 2 R
6
: N" D r d, r 2 Dr , d 2 Ddg , Dr D fr1, : : : g ,

Dd D fd1, : : : g (15)

with the primal strain norm discretization Dr and set
of directions Dd. The de�nition (15) corresponds to a
tensor decomposition into direction and amplitude. For many
materials the volume changes are rather small compared to
isochoric deformations. This e�ect is particularly pronounced for
(pseudo-) plastic materials. In order to sample the strain space
in a problem speci�c manner, a rescaling of the strains de�ned
in (15) may be convenient. The present work solely rescales the
spherical part (sph) of each primal strain (i.e., the dilatation),
while the deviatoric part (dev) remains unchanged. The actual
strain dataset is described by

D" D

�

N" 2 R
6
: N" D OT(ON") D

1

Or
sph(ON") C dev(ON"), ON" 2 OD"

�

,

#(D") D #(Dd)#(Dr) , (16)

where Or speci�es the rescaling of the spherical part. The number
of strain samples #(D") is given by the product of number
of the directions #(Dd) and the number of amplitudes per
direction #(Dr).

2.3.1.2. Generation of output data
For the training of the arti�cial neural networks (ANNs), training
(T), validation (V), and random (Monte Carlo - MC) datasets,
referred to as DT

" , DV
" , and DMC

" , respectively, are generated.
The latter are not obtained using CS, but using a uniformly
random set of directions in strain space. They are mainly used for
unbiased testing of the surrogate independent of the proximity
to the training and validation set. The output of interest in the
present work is, primarily, the e�ective stress, but also some error
measures for the derived surrogates, which will be de�ned in the
following sections.

Technically, the process of generating the data samples is
challenging. In order to obtain reliable data, the FOM and

the ROM must be evaluated thousands of times in order to
obtain the needed data. Each sample consists of an e�ective
strain N" and the related e�ective stress N� . In order to boost
the performance of the simulations, a ROM-preconditioned
solver for the FOM has been developed: First, an accurate (i.e.,
high-dimensional) ROM is solved for each load path. Then
the FEM is accelerated by taking the ROM solution as initial
guess for the nodal displacements during the �rst increment
and, during the subsequent load steps, by taking the ROM
displacement increment as initial guess for the FEM displacement
adjustment. This not only brings the initial guess close to the
�nal solution but it also leads to an accurate global sti�ness
matrix that can be combined with Quasi-Newton techniques. The
ROM-accelerated FE showed a 20% reduction in the number of
Newton iterations, despite the use of a Quasi-Newton scheme.
This is remarkable in view of the less accurate sti�ness matrix
of Quasi-Newton scheme and the faster convergence must be
attributed to the improved initial guess for the FE displacement
vector reconstructed from the ROM solution. Overall, this
approach provides signi�cant computational improvements over
a naive FE based data generation. Further, it is noteworthy that
the high-dimensional ROM solution can be used to derive a
hierarchy of lower-dimensional ROM solutions needing virtually
no additional Newton-Raphson iterations via linearization. More
precisely the trailing entries of a ROM solution can be eliminated
by making use of the Schur complement which leads to an
adjustment of the remaining reduced coe�cients. In our tests this
downscaling of high quality ROM solutions to N-dimensional
ROMs proved an e�cient tool.

2.3.2. Surrogate Model for the Effective Stress

2.3.2.1. Feature design
For the successful training of ANNs the normalization of the
input and output data and the design of appropriate inputs
(usually referred to as features) through linear or nonlinear
transformations is essential. Compared to image data and
convolutional neural networks, which usually take advantage
of the intrinsic connection of image data and convolution,
the present input data (strain data) is low-dimensional and
necessarily requires sensible mechanical guidance during feature
design. From a pure data-driven perspective, general batch
normalization can greatly improve the prediction quality of a
network. But in the present problem setting the input and output
data have a clear physical nature. Therefore, based on mechanical
reasoning, the consideration of the dependency of the material
law on the spherical (N"�) and deviatoric (N"0) degrees of freedom
of the strain o�ers a material theoretic starting point. This linear
transformation is addressed as

Tsd1(N") D

�

N"�

N"0

�

D [N"�, N"0
1, N"0

2, N"0
3, N"0

4, N"0
5]T 2 R

6 . (17)

Additionally, the deviatoric part of the strain can be split into its
norm and direction

Tsd2(N") D

2

4

N"�

jN"0j

N"0=jN"0j

3

5 2 R
7 . (18)
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After either of these transformations, a corresponding
normalization is performed in order to prepare the strain
features for the subsequent evaluation through the ANN: For
Tsd1, each component of the vector Tsd1(N") is shifted and then
divided by its corresponding mean and standard deviation over
the training dataset DT

" , i.e., component-wise shifting and scaling

are applied. For Tsd2, the �rst component (i.e., the volumetric
strain) is scaled according to the standard procedure while the
deviatoric strain amplitude is divided by its peak value and the
deviatoric direction remains unchanged. In the following the
shifted and scaled inputs are referred to as x[0] 2 R

D,D D 6, 7.

2.3.2.2. Architecture of the arti�cial neural network
In the present work, feedforward neural networks are used. This
choice within the plethora of available arti�cial neural networks
is driven by the fact that a function is to be calibrated that
depends exclusively on the current state N": the e�ective stress of
the FOM N� F(N"). It should be remarked that for problems with
history dependency, e.g., path-dependent plasticity or damage in
cyclic loading, feedforward neural networks could, in principle,
be considered, but recurrent neural networks o�er much better
alternatives. They are specially designed for time series and
they feed back outputs of the model into the prediction of
the subsequent cycle. Generally, the training costs of recurrent
neural networks are immensely higher than that of feedforward
neural networks, since a large number of input paths is required,
instead of points in the input space. For the problem at hand
recurrent neural networks o�er no advantages. Hence, we choose
feedforward neural networks for the rest of the present work.
Hereby, networks consisting of L > 1 layers are taken into
account. For each layer l D 1, : : : , L consisting of n[l] neurons

the inputs x[l�1] 2 R
n[l�1]

and outputs x[l] 2 R
n[l]

are related

by weights W[l], biases b[l] and activation functions a[l] via the
recursion

x[l] D a[l](W[l]x[l�1] C b[l]) 2 R
n[l]

, W[l] 2 R
n[l]�n[l�1]

,

b[l] 2 R
n[l]

, (19)

complemented by n[0] D D. The weights and biases of
the ANN are parameters, which need to be calibrated with
training data by solving an unconstrained optimization problem.
The choice of activation functions is an abstract parameter
that can heavily in�uence the quality of the surrogate. Its
selection depends on the intuition of the user, complemented
by thorough testing in terms of architecture sweeps. In the
present context, the di�erentiability of the stress surrogate is
aspired, as it allows for a computation of the tangent sti�ness
at low computational expense through automatic di�erentiation.
This requirement naturally favors smooth activation functions.
Our ANN implementation is based on Python3 (v3.4.3) using
Google’s TensorFlow library (v1.12.0), which o�ers automatic
di�erentiation capabilities. For architecture tests the following
activation functions have been used:

� the identity function (Id) a(x) D x,
� the recti�ed linear unit (RELU) a(x) D max(x, 0),
� the softplus function (SP) a(x) D log(1 C exp(x))

� and the hyperbolic tangent (TANH) a(x) D tanh(x).

The identity function (Id) allows to pass unaltered input, such
that a linear combination of the activation functions of the
previous layer is returned. This is particularly desired in the last
layer, in order to obtained an optimized linear combination of
nonlinear functions as �nal output y D x[L] of the ANN. The

evaluation of a single input strain through the whole ANN is
addressed by the composition of all layers

ANN(N") D y(N") D a[L]
�

W[L]a[L�1](: : : ) C b[L]
�

. (20)

2.3.2.3. Loss function
The training of the ANN requires an objective function that
provides an error respecting the nature of the outputs. In the
context of ANNs, the objective function is referred to as loss
function. Similar to the inputs, the outputs, the e�ective stress
of the FOM N� F de�ned in (9), should also be scaled using an
invertible transformation

p(N") D T� ( N� F(N")) 2 R
d� . (21)

Here, the same transformations Tsd1 and Tsd2 as for the inputs
are considered for T� during architecture testing. The evaluation
of the ANN is analogously abbreviated as

Qp(N") D ANN(N") 2 R
d� . (22)

In this work, the mean squared error (MSE) is chosen as the
loss function

MSE D
1

d�

mean
DT

"

�

kp � Qpk
2
�

. (23)

The MSE (23) is then optimized with respect to the ANN
parameters, i.e., the weights and biases are identi�ed starting
from a random initialization. The ANN output is then obtained
through an inverse transformation

N� ANN(N") D T�1
� (ANN(N")) . (24)

It should be remarked that, from the perspective of physics-
informed arti�cial neural networks, one may also consider the
incorporation of the norm of the non-symmetric part of the
gradient @ N� ANN=@ N" in the loss function. This would help to
calibrate the network, such that its gradient is likely to be
close to symmetric. But since this can not be assured for
arbitrary input N", number of layers, neurons and activation
functions, the present work prefers to solely consider (23) for
the loss function, calibrate N� ANN as good as possible and simply
symmetrize the resulting gradient @ N� ANN=@ N". Hereby, it should
be stressed that a symmetric gradient @ N� ANN=@ N" is essential
for the hyperelastic/pseudo-plastic material considered in this
work, since the assembled system matrix of the macroscopic
problems is symmetric by the corresponding material theory.
A non-symmetric system matrix in the macroscopic problem
would also increase the computational costs, due to the thereby
induced necessity for solvers for non-symmetric matrices.
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The quality of the ANN during training is checked, not with
respect to the training dataset, but with the validation dataset DV

"

via the mean relative norm error (MRNE)

MRNE D mean
DV

"

 

k N� F � N� ANNk

k N� Fk

!

. (25)

In addition to that, the mean coe�cient of determination R2
� of

the e�ective stress is evaluated

R2
� D

1

6

6
X

iD1

R2
i , R2

i D 1 �

mean
DV

"

�

�

N� F
i � N� ANN

i

�2
�

mean
DV

"

�

( N� F
i )2
�

�

 

mean
DV

"

( N� F
i )

!2
.

(26)
The coe�cient of determination is bounded by one which is
attained if and only if the surrogate coincides with the reference
for all queries.

2.3.3. Surrogate Model for the Error in the Quantity of

Interest

2.3.3.1. Error regression and classi�cation
In this section, we are interested in the calibration of ANNs
taking strain data as input and delivering quantitative and
qualitative error estimates for the stress. On the one hand, for
a given strain, it might be of interest to predict the error of stress
surrogate against the FOM stress. On the other hand, it might
not be of particular interest to know the exact error value, but
rather to know if the error is acceptable, i.e., if it is smaller than a
prescribed tolerance. The quantitative error prediction leads to
a classical regression problem, whereas the binarized response
gives rise to an ordinary classi�cation problem.

In the error regression problem, for a given model N� M 2

f N� RN , N� ANNg of the e�ective stress, we are interested in the
absolute and relative norm errors

eM
a (N") D k N� F(N") � N� M(N")k , eM

r (N") D
k N� F(N") � N� M(N")k

k N� F(N")k
.

(27)
For the error classi�cation problem, we consider the indicator

function

�M(N") D

(

1 if eM
a (N") < �a or eM

r (N") < �r

0 else ,
(28)

with prescribed absolute and relatives tolerances �a and �r ,
respectively. The outcome of �M is particularly useful in order
to decide on the subsequent treatment: For �M D 1, the error
is considered acceptable and the surrogate can be used, while
�M D 0 should trigger an adaptive re�nement. For instance,
the classi�er �M can decide if the stress surrogate N� M at a
macroscopic integration point is acceptable or whether a more
dedicated surrogate is needed.

For error regression and classi�cation, the fully connected
feed forward ANNs as described by (19) and the same
activation functions as in section 2.3.2.2 are used. For the binary

classi�cation the �nal ANN layer is regarded as a log-probability
with a single neuron. This setup is usually referred to as logits
in binary classi�cation.

2.3.3.2. Loss function
One of the desired properties, considering possible safety
requirements in the error regression and classi�cation, is to
obtain if not accurate, then at least conservative results. In
order to achieve a conservative behavior, for the error regression
problem we consider the function

��(x) D max(x, 0) C � max(�x, 0) , (29)

which changes the slope for negative input values to �. The
function �� can be used to penalize underestimation of the error
(for � > 1) when applied to the scalar argument of the MSE
for the true error eM (representing the absolute error eM

a or the
relative error eM

r of the model M 2 fRN, ANNg) and its ANN
surrogate QeM

MSE� D mean
DT

"

(j��(eM(N") � QeM(N"))j2). (30)

The MSE� is considered as the loss function for error regression,
where � acts as a penalty parameter. The corresponding R2

value and the relative conservative amount (RCA) over the
validation dataset

R2
e D 1 �

mean
DV

"

�

(eM � QeM)2
�

mean
DV

"

((eM)2) �

 

mean
DV

"

(eM)

!2
,

RCAe D
#( DV

" : eM(N") � QeM(N"))

#( DV
" )

(31)

are used to assess the quality of the prediction.
For the error classi�cation of model M 2 fRN, ANNg, due to

the binary nature of (28), the last layer of the ANN is de�ned as
the composition of a standard sigmoid function and a shifted step
function, i.e.,

Q�M(N") D s � Q�M
0 (N"), Q�M

0 (N") D
1

1 C exp(�ANN(N"))
,

s(x) D

(

1 x > 1=2,

0 else.
(32)

The loss function for classi�cation chosen in this work is the
weighted binary cross entropy

�w D �mean
DT

"

�

w �M(N") log
�

Q�M
0 (N")

�

C(1��M(N")) log
�

1 � Q�M
0 (N")

� �

.

(33)
Herein, false positive predictions dominate the cross entropy
for w > 1, while 0 < w < 1 puts the focus on false negative
classi�cation. We de�ne the overall accuracy of the classi�er
as the expectation of �nding the same response in the true
indicator �M and in the surrogate Q�M:

ACC D 1 � mean
DV

"

�

j Q�M � �Mj
�

. (34)
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Further, the accuracy within the bin b 2 f0, 1g is de�ned as the
conditional probability

ACCb D 1 � mean
fx2DV

" :�M(x)Dbg

�

j Q�M � �Mj
�

. (35)

The reader should note, that ACC0 is more relevant when
seeking conservative estimates. Only if ACC0 and ACC1 are
close to unity, then the overall classi�cation is robust, while
for seemingly good ACC (e.g., around 0.98) the critical ACC0

could be inappropriate. This e�ect is particularly important if the
surrogate has only few outliers requiring further processing.

2.4. Hybrid ANN/ROM Multi-Level Finite
Element Simulation
2.4.1. General Hybrid Approach
In order to build a twoscale simulation model relying on
the �nite element method on the larger scale, the material
model must be replaced by the homogenized response of the
heterogeneous solid. In sections 2.1.2 and 2.3.2 the use of
ROM and ANN serving as surrogates for the e�ective stress
tensor and the e�ective tangent sti�ness are described in detail.
Both surrogates can be combined by introducing an indicator
function �(x) :
 7! f0I 1g which adaptively selects between
the rapid and purely data-driven (but less physical) ANN if
� D 1 and the physics-driven ROM for � D 0. The indicator
function represents the binarized con�dence in the accuracy of
the ANN surrogate.

First, a simple ansatz for � is chosen by setting � to one if the
current strain at the macroscopic position x 2 
 falls within the
region covered by samples during the training of the ANN. In the
present study this is equivalent to the kinematic indicator

�K(x) D

�

1 if k "(x)kW � "0,
0 else.

(36)

Here, "0 D max(Dr) is the peak amplitude used during
Concentric Sampling and k � kW denotes a weighted norm
that transforms elements of D" de�ned via (16) back into
normalized directions:

k"kW D

q

Or2 ksph(")k2
2 C kdev(")k2

2. (37)

The use of the ROM outside of the training domain is motivated
by its reluctance to energy minimization, i.e., by preserving
the key physical characteristics of the full order model while
restricted to a relevant subspace of the solution manifold.

A second indicator can be obtained by evaluating the accuracy
of the ANN. Therefore, a binary classi�er Q�ANN

: Sym(R3�3) 7!

f0, 1g is employed following the procedure outlined in
section 2.3.3. The indicator function is then replaced by
the classi�er: �(x) D Q�ANN( "(x)).

2.4.2. Technical Issues Related to on-the-�y Model

Switching
At �rst, the concept of the indicator function � marking
the con�dence region for the ANN and employing the
ROM elsewhere sounds straight-forward. However, this simple

FIGURE 2 | Macroscopic FE boundary value problem ( NP) with on-the-�y

model switching at integration points for the computation of the effective

microscopic stress N� for prescribed microscopic effective strain N" for the

microscopic problem (P): �rst, �K checks if N" is in the training region of the

ANN surrogate for N� ; if the quality of ANN is acceptable based on Q�ANN, then

N� ANN is evaluated and passed to the macroscopic FE problem; but if either N"

is outside of the ANN training range or the ANN surrogate is not accurate

enough, then a previously selected accurate ROM of corresponding dimension

N is evaluated and then passed to the macroscopic problem.

approach does not work in practice as the two concurrent
surrogates do not provide continuous approximations of the
stresses. This can be illustrated by letting C � Sym(R3�3)
denote the con�dence region of the ANN in strain space. It
should be noted, that C may contain several holes depending
on the chosen quality indicator determining a point or region
in strain space as admissible or not. On the boundary @C

of the con�dence region there is a hard transition between
the two surrogates which induces a stress jump, leading to
a non-smooth material response. When switching between
ANN and ROM on-the-�y, i.e., when deciding for each query
adaptively which surrogate should be evaluated, convergence of
the macroscopic problem is disrupted, rendering the straight-
forward implementation of a quality indicator guided adaptive
procedure infeasible. One may try to solve this problem with
multi-�delity approaches, see, e.g., Meng and Karniadakis (2019),
where multiple nested surrogates (e.g., arti�cial neural networks)
based on data groups of di�erent accuracy/�delity and amounts
are trained. Unfortunately, such multi-�delity data approaches
are not applicable for the problem at hand. In order to
motivate this more clearly, consider again Figure 1 and the
strategy illustrated in Figure 2 for a macroscopic boundary value
problem solved with FE and calling for an on-the-�y model
switching at the integration points for the computation of N� for
prescribed N".

In the context of twoscale simulations, the problem is not
the accuracy/�delity of the training data of the microscopic
problem, but (1) the usage of a surrogate outside of its training
range (based on �K for the ANN stress surrogate) and (2) the
point-wise quality of the surrogate with respect to prescribed
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tolerances ( Q�ANN for the ANN e�ective stress surrogate), which
de�ne the boundary of the con�dence region C and trigger the
model switching. Both events can occur in twoscale simulations,
since the input �eld at the macroscopic scale (i.e., N"(Nx)) is
not known for arbitrary macroscopic geometry and boundary
conditions, such that point-wise at the macroscopic scale the
ANN microscopic surrogate for the e�ective stress may be
evaluated far outside of its training range or may be inaccurate.
If the ANN e�ective stress surrogate is inaccurate, then, e.g, a
�xed ROM of su�cient accuracy can be initiated, as depicted
in Figure 2. Naturally, in order to lower the number of ROM
evaluations, one could simply enhance the existing networks
N� ANN and Q�ANN during the online computation by re-training
using additional samples. However, there is no methodology
available that can a priori guaranty accuracy gains without the
need of extensive architecture sweeps and substantial sampling
of extended and/or re�ned regions in the input space. Therefore,
such an online re-training is not a viable option at the moment
and alternatives need to be investigated. Contrary to the inherent
properties of ANNs and the related training, (i) the ROM
solution is obtained in a physically guided procedure, (ii) the

errors of the ROMs drop with increasing dimension, and (iii)
the ROM has no intrinsic validity domain limitation in strain
space. This motivates the use of a ROM of su�cient dimension
outside of the validity domain of the ANN stress surrogate.
Approaches for the algorithmic realization of the dynamic
switching between concurrent surrogates are described in
the sequel.

2.4.2.1. Staggered hybrid ANN/ROM algorithm
The �rst approach consists of a staggered procedure, where
the ANN is used as the only stress surrogate in a �rst run
of the twoscale simulation (see Algorithm 1). Thereby, a �rst
overall response is gathered. This is followed by a second run,
in which the subset of all integration points having seen a
zero quality indicator during any of the load steps of the �rst
run are enforced to use the ROM surrogate. This set is then
kept constant, i.e., switching from ANN to ROM is one way.
This procedure enables the use of the ANN solution as an
initial guess for the subsequent hybrid run which leads to low
iteration counts and improved performance. During the second
run, the di�erence of the ANN and the ROM can be evaluated

Algorithm 1: Staggered hybrid ANN/ROM twoscale simulation algorithm.

Input : quality indicator q; ANN surrogate � ANN; ROM surrogate � RN

1 for i D 1, : : : , ngp do qi D 1; // initialize quality indicator

2 for iinc D 1, : : : , ninc do

3 while increment not converged do

4 Newton-Raphson iteration using ANN surrogate only: � ANN

5 for i D 1, : : : , n do qi D min(qi, �( "i)) // update quality indicator (one way update)

6 end

7 converged nodal displacements ! u(1)(iinc) // level 1 solution

8 end

9 restart simulation (conserve quality indicators qi, i D 1, : : : , ngp) // second run

10 for iinc D 1, : : : , ninc do

11 initial guess using previous simulation run: 1u D u(1)(iinc) � u(1)(iinc � 1)

12 while increment not converged do

13 Newton-Raphson iteration using ANN (if qi D 1) or ROM (if qi D 0)

14 end

15 converged nodal displacements ! u(2)(iinc) // level 2 solution

16 end

Algorithm 2: Adaptive on-the-�y ANN/ROM twoscale simulation algorithm.

Input : quality indicator q; ANN surrogate � ANN; ROM surrogate � RN ;

1 for iinc D 1, : : : , ninc do

2 for i D 1, : : : , ngp do qi D 1; // reset quality indicator

3 while increment not converged do

4 for i D 1, : : : , ngp do

5 evaluate strain N"i and update quality indicator qi D min(qi, �(N"i)) // one way update

6 use � ANN if qi D 1 and � RN if qi D 0

7 [optional] compute di�erence of the stress between � ANN and � RN // post-processing

8 end

9 end

10 converged nodal displacements ! u(iinc)

11 end
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to provide valuable post-processing data in order to better
understand the quantitative impact of the model modi�cations,
see also examples in section 3.3.2. Two major disadvantages of
this approach are (i) the irreversibility of the ROM activation
which can lead to substantial computational costs and (ii) the
possible failure during the �rst run, if the ANN surrogate
becomes non-convergent. The latter can, e.g., occur if the local
magnitude of N" on the macroscale falls way outside of range of
the training data.

2.4.2.2. Adaptive on-the-�y ANN/ROM algorithm
A second on-the-�y model selection procedure, solving both
of the aforementioned issues, is described in Algorithm 2: It
re-initializes the quality indicator in favor of the ANN at the
beginning of each load increment. During the subsequent non-
linear Newton-Raphson iterations of the same increment, the
indicator is updated in a monotonic way, i.e., switching from
ANN to ROM is allowed but not vice verse (see line 5 in
Algorithm 2). The computational e�ciency can be improved
by substituting only part of the equilibrium iteration by
the ROM.

3. NUMERICAL EXAMPLES

3.1. Underlying Material Model
An arti�cial heterogeneous solid consisting of three phases is
investigated. It consists of a laminate structure of two pseudo-
plastic materials where the two layers share the same elastic
parameters (E1 D E2 D 75 GPa, �1 D �2 D 0.3) but have
di�erent yield strength and hardening behavior: The �rst layer
has a yield stress of 100 MPa and a linear hardening slope of
2,000 MPa, whereas the second layer has a yield stress of 115 MPa
in the absence of hardening. The third phase is represented
by a spherical inclusion that is centered on the interface of
the two phases. The inclusion is assumed linear elastic with
properties mimicking a ceramic inclusion made of SiC (E D

400 GPa, � D 0.2), see Figure 3. The volume fractions of the
two plastic layers are 46.73% each and the one of the inclusion
is 6.54%. The material was designed to induce a directional
dependency of the e�ective material behavior (see right plot in

Figure 3 for an example). This feature makes the identi�cation
of the unknown homogenized response more challenging and,
thereby, a benchmark problem for the developed methodology
is designed.

3.2. Quantitative Comparison of ROM and
ANN Surrogate Models
3.2.1. Effective Stress Surrogate
The strain space is sampled as described in section 2.3.1
for an e�ective strain amplitude discretization Dr D

f0.0005, 0.002, 0.0035, 0.005, 0.0075, 0.01, 0.015, 0.025, 0.04g.
The spherical / volumetric part of the primal strain dataset
is rescaled with Or D 5. Then, 1152 training, 288 validation
and 512 Monte Carlo directions are generated, yielding 10368
training, 2592 validation and 4608 Monte Carlo e�ective strain
points in R

6.
An initial architecture testing phase is conducted.

The activation functions and transformations illustrated
in section 2.3.2 are considered, together with varying
number of layers and neurons. The architecture test with
L 2 f3, : : : , 6g and number of neurons per hidden layer
n[l] 2 f16, 32, 64, 128g, l 2 f1, : : : , L � 1g, yields that none of
the activation functions (RELU, SP, TANH) show a remarkable
advantage over the other, even for as large number of epochs
as 10,000 with whole batch training for a learning rate of
0.001 using an ADAM optimizer. However, the feature design
of input (e�ective strain) and output data (e�ective stress of
the FOM) has a major in�uence. Hereby, the most successful
combination is identi�ed to be the use of the spherical-deviatoric
transformation Tsd1 for the input as well as for the output. The
transformation Tsd2 did not show major advantages in the �nal
objective function values.

Based on the initial architecture testing, the softplus function
(SP) has been chosen to power further investigations, due
to its monotonic and di�erentiability properties in regard of
an expected monotonic stress behavior and need for tangent
operators for future FE multiscale computations. In Table 1,
di�erent architectures are tabulated, showing the performance of
each ANN. Based on the MRNE and R2

� values for the validation
dataset (and the corresponding values MRNEMC and R2

�MC

FIGURE 3 | (Left) Periodic representative volume element (RVE) of the triphasic material: layer 1 (blue; pseudo-plastic with hardening), layer 2 (green; pseudo-plastic,

no hardening), and inclusion (red; linear elastic); (Right) Directional dependency of the material response.
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TABLE 1 | ANNs for the effective stress surrogate with correspondingchoice of input features, network architecture, intermediate transformation of stress dataT� ,
measures MRNE andR2

� for the validation dataset, and MRNEMC and R2
� MC for the MC dataset.

ANN ID Features Architecture T � MRNE R2
� MRNEMC R2

� MC

N� ANN1 Tsd1 f5 � 128(SP)� 6(Id)g Tsd1 0.0189 0.9995 0.0183 0.9995

N� ANN2 Tsd1 f5 � 64(SP)� 6(Id)g Tsd1 0.0204 0.9995 0.0200 0.9994

N� ANN3 Tsd2 f5 � 64(SP)� 6(Id)g Tsd1 0.0241 0.9995 0.0241 0.9995

N� ANN4 Tsd1 f5 � 16(SP)� 6(Id)g Tsd1 0.1578 0.9768 0.1564 0.9751

FIGURE 4 | Von Mises effective stress vs. effective strain norm for ANN1 for the 3 loading directions of the training dataset(Left) and 3 loading directions of the
validation dataset(Right) tabulated inTable 2 .

evaluating the MC dataset), the ANN1 comprised of six layers
with �ve softplus hidden layers and 128 neurons per hidden
layer is chosen for the �nal evaluation. InFigure 4the prediction
of ANN1 for the von Mises e�ective stressN� vM is depicted
for the three in Table 2 tabulated directions of the training
(dirT12, dirT23, and dirTmixed) and validation datasets (dirV12,
dirV23, and dirVmixed), showing a good agreement with the
FOM data. It should be noted that the directions dirT/V12
have a (12) dominant component, meaning that the hardening
material shown inFigure 3 is activated, while dirT/V23 have
a (23) dominant component allowing for a localization of the
deformation in the non-hardening material, seeFigure 4. The
e�ective strain directions dirT/Vmixed show some examples
for combined loading and corresponding material response,
seeFigure 4. The reader should take into account, that the
ANNs have been trained with strain data up to a norm of
0.04 in the primal strain setODT

" (corresponding to the last data
point for each loading direction inFigure 4). The behavior of
the ANN1 beyond this norm value was expected to tend to
keep increasing due to the properties of the softplus function.

TABLE 2 | Effective strain load directionsN"=kN"k for the inspection of the effective
von Mises stress N� vM in the evaluation of ANN1.

Direction ID Direction of ( N" 11, N" 22, N" 33,
p

2N" 12,
p

2N" 13,
p

2N" 23) 2 R6

dirT12 (– 0.10 – 0.07 0.15 0.96 0.11 0.16)

dirT23 (– 0.03 – 0.10 – 0.05 0.00 0.08 0.99)

dirTmixed (– 0.12 0.03 – 0.03 0.48 – 0.16 0.85)

dirV12 (– 0.11 – 0.15 0.27 0.89 – 0.27 – 0.18)

dirV23 (– 0.11 0.02 – 0.07 – 0.12 – 0.08 0.98)

dirVmixed (0.02 – 0.31 0.24 0.04 – 0.12 0.91)

However, due to the tendency of the ANN to increasingly
overestimate the stresses and the arti�cial sti�ening at load
amplitudes beyond the training data, ANN1 is not expected
to deliver accurate results beyond an e�ective strain norm of
approximately 0.04 in respect to the primal strain setODT

" . Finally,
in addition to the a posteriori symmetrization of the gradient
@N� ANN1=@N" , numerical tests were carried out to verify that (i)
the gradient obtained via automatic di�erentiation is almost
symmetric (with an average error lower than 1%) and (ii) that
the di�erence of the symmetrized gradient to the algorithmic
tangent of the ROM with 96 modes was matched up to relative
errors around 1.5%. These two checks approved the chosen
approach. For a better transparency of these results, the authors
o�er Supplemental Data, see section Supplementary Material,
containing the FOM data, the trained ANN1 and commands for
the reproduction of all corresponding results.

3.2.2. Error Surrogates
For the error regression and classi�cation, it is �rst necessary
to gain an overview regarding the quality of theN-dimensional
ROMs and of the best of the trained ANN e�ective stress
surrogatesN� ANN1 of the previous section.

In Figure 5 the cumulative distribution function of the
absolute norm erroreM

a (ANE) and of the relative norm error
eM
r (RNE) for the validation set DV" are shown for ROMs of

di�erent dimensionsN and for N� ANN1. It is clearly visible that for
increasing ROM dimension, the accuracy of the ROM improves
for both, the ANE and RNE. This is expected, since the higher
the ROM dimension, the richer the underlying function space,
i.e., the distance to the solution manifold of the full ordermodel
decreases. It should be noted that the ANN e�ective stress model
N� ANN1 performs well against ROM16 and ROM24. The ROM32
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