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Abstract We apply the well-known Banach-Nečas-Babuška inf-sup theory in a
stochastic setting to introduce a weak space-time formulation of the linear stochas-
tic heat equation with additive noise. We give sufficient conditions on the the data
and on the covariance operator associated to the driving Wiener process, in order
to have existence and uniqueness of the solution. We show the relation of the ob-
tained solution to the so-called mild solution and to the variational solution of the
same problem. The spatial regularity of the solution is also discussed. Finally, an
extension to the case of linear multiplicative noise is presented.
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1 Introduction

We consider a linear parabolic stochastic evolution problem of the form

dU(t) +A(t)U(t) dt = f(t) dt+ dW (t), t ∈ (0, T ],

U(0) = U0.
(1.1)

We assume that A(t) is a random elliptic operator defined within a Gelfand triple
setting as follows. Given separable Hilbert spaces V,H, we consider a Gelfand
triple V ⊂ H ⊂ V ∗, where V is continuously and densely embedded into H.
We denote by 〈·, ·〉H the inner product in H and by 〈·, ·〉V ∗ V the dual pairing
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between V and V ∗ with 〈u, v〉V ∗ V = 〈u, v〉H , ∀v ∈ V whenever u ∈ H. Further,
we denote by L (H) the space of bounded linear operators on H and by L2(H)
the Hilbert-Schmidt operators.

Let T ∈ (0,∞) be fixed and let (Ω,Σ,P) be a complete probability space, with
normal filtration Σ = (Σt)t∈[0,T ]. We assume that a progressively measurable
map A : [0, T ] × Ω × V → V ∗, coercive and bounded dt ⊗ P-a.s., is given, with
associated bilinear form a given by a(t, ω;u, v) = 〈A(t, ω)u, v〉V ∗ V . We consider
a predictable process with Bochner integrable trajectories f ∈ L2([0, T ] × Ω;V ∗)
and we assume that W = (W (t))t∈[0,T ] is a Q-Wiener process, with covariance

operator Q ∈ L (H) of trace class, i.e., Q
1
2 ∈ L2(H,H) := L2(H).

In order to give a meaning to (1.1), we have to define what we mean by a
solution. In the special case when A is independent of t and ω and considered as
unbounded operator in H, we have the concepts of weak and mild solution, see [6].

Definition 1 (Weak and mild solution) Let the operator A be possibly un-
bounded, independent of ω and t and defined on a certain domain D(A), i.e.,
A : D(A) ⊂ H → H. A weak solution to (1.1) is an H-valued, predictable stochas-
tic process U(t), which is Bochner integrable P-a.s. and satisfies

〈U(t), v〉H = 〈U0, v〉H −
∫ t

0

〈U(s), A∗v〉H ds+

∫ t

0

〈f(s), v〉H ds

+

∫ t

0

〈dW (s), v〉H , P-a.s., ∀v ∈ D(A∗), t ∈ [0, T ].

(1.2)

Moreover, if −A is the generator a strongly continuous semigroup (S(t))t≥0 in H

and
∫ T
0
‖S(s)Q

1
2 ‖2L2(H) ds <∞, then the unique weak solution coincides with the

mild solution, given by the formula

U(t) = S(t)U0 +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s) dW (s), t ∈ [0, T ]. (1.3)

We briefly recall how to switch from the Gelfand triple framework to the semi-
group framework in Appendix A. Within the semigroup framework it is possible
to prove results about about spatial regularity and temporal Hölder-continuity of

the solution, by defining Sobolev spaces of fractional order, Ḣβ := D(A
β
2 ), and

exploiting the semigroup theory. For example, in the parabolic case, when the
semigroup is analytic, it was shown in [17] that if U0 ∈ L2(Ω; Ḣβ), f = 0, and

‖A
β−1
2 Q

1
2 ‖L2(H) <∞ for some β ≥ 0, then the mild solution satisfies

‖U(t)‖L2(Ω;Ḣβ) ≤ C
(
‖U0‖L2(Ω;Ḣβ) + ‖A

β−1
2 Q

1
2 ‖L2(H)

)
, t ∈ [0, T ].

The concept of mild solution presents however the disadvantage of not being ap-
plicable whenever the operator does not generate a semigroup. This fact provides
a good reason to look for more general concepts of solution that do not rely at all
on such a theory.

The aim of this paper is to introduce a new concept of solution based on a weak
formulation of the problem. In order to prove the mild solution formula (1.3), [6]
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proceeds from the space-time weak formulation (1.2) with time-independent deter-
ministic test functions, to a weak formulation with time-dependent deterministic
test functions,

〈U(t), v(t)〉H = 〈U0, v(0)〉H +

∫ t

0

〈U(s), v̇(s)−A∗v(s)〉H ds

+

∫ t

0

〈f(s), v(s)〉H ds+

∫ t

0

〈 dW (s), v(s)〉H .

This suggests the possibility of using a weak space-time formulation, which would
be to find a pair (U1, U2) such that∫ t

0

〈U1(s),−v̇(s) +A∗v(s)〉H ds+ 〈U2, v(t)〉H

= 〈U0, v(0)〉H +

∫ t

0

〈f(s), v(s)〉H ds+

∫ t

0

〈dW (s), v(s)〉H ,

for all v in a suitable class of test functions.
With a proper choice of function spaces, the well-posedness of this problem

in the deterministic setting is obtained within the Banach-Nečas-Babuška inf-
sup theory, see Section 2 below. In Section 3 we extend this to the stochastic
evolution problem (1.1). The equation is solved ω-wise and the inf-sup theory
allows to prove that a solution exists, is unique, and satisfies a bound that is
expressed in terms of the data U0, f , and W , P-a.s. By taking the expectation
of this, we achieve a standard estimate for the norm of the solution in the space
L2([0, T ]×Ω;V )∩L2(Ω; C ([0, T ];H)), which is consistent with standard estimates
presented, for example, in [4, Chapt. 5]. In particular, under suitable assumptions,
our solution coincides with the mild solution. In Section 5, we briefly discuss the
spatial regularity under such assumptions.

A more general solution concept is the so-called variational solution, for which
a comprehensive theory can be found, for example, in [12, Chapt. 4]. This theory
applies to more general quasilinear equations, but we present it here for our linear
equation.

Definition 2 (Variational solution) Assume that Q is trace class, i.e., Q
1
2 ∈

L2(H). A continuous H-valued Σ-adapted process (U(t))t∈[0,T ] is called a varia-

tional solution to (1.1), if for its dt⊗P equivalence class Û we have Û ∈ L2([0, T ]×
Ω,P⊗ dt;V ) and

U(t) = U0 −
∫ t

0

A(s)Ū(s) ds+

∫ t

0

f(s) ds+

∫ t

0

dW (s), P-a.s.,

for any t ∈ [0, T ], where Ū is any V -valued progressively measurable dt⊗P version
of Û .

We show that our solution coincides with such a solution, in particular, that
our U1 and U2 play the roles of the Ū and U , respectively, in Definition 2.

Finally, the norm bound that we obtain for the solution operator of the linear
problem with additive noise allows us to use a standard fixed point technique
and extend our theory to the case of multiplicative noise. In Section 6 we present
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this in the case of linear multiplicative noise. This approach extends to semilinear
equations under appropriate global Lipschitz assumptions.

Although our solution concept essentially is not more general the mild and
variational solutions, the advantage is that it is characterized by a space-time weak
formulation, which potentially can be used as the basis for numerical methods. This
will be exploited in future work.

2 Preliminaries

2.1 The inf-sup theory

We recall the Banach-Nečas-Babuška (BNB) theorem, see [1,8], for example. Let
V and W be Banach spaces, W reflexive, and consider a bounded bilinear form
B : V ×W → R, with

CB := sup
0 6=w∈W

sup
0 6=v∈V

B(v, w)

‖v‖V ‖w‖W
<∞, (BDD)

and the associated bounded linear operator B : W → V ∗, i.e., B ∈ L (W,V ∗),
defined by

〈v,Bw〉V V ∗ := B(v, w), ∀w ∈W, ∀v ∈ V.
The operator B is boundedly invertible if and only if the following conditions are
satisfied:

cB := inf
06=w∈W

sup
0 6=v∈V

B(v, w)

‖v‖V ‖w‖W
> 0, (BNB1)

∀v ∈ V, sup
0 6=w∈W

B(v, w) > 0. (BNB2)

The constant cB is called the inf-sup constant and, whenever both V and W
are reflexive and (BNB1) holds, we have the identity

inf
0 6=w∈W

sup
0 6=v∈V

B(v, w)

‖v‖V ‖w‖W
= inf

06=v∈V
sup

0 6=w∈W

B(v, w)

‖v‖V ‖w‖W
, (2.1)

which allows to swap the spaces where the infimum and the supremum are taken.
An immediate consequence of this is that the variational problem

given F ∈ V ∗, find w ∈W : B(v, w) = F (v), ∀v ∈ V,

i.e., solve Bw = F in V ∗, and its adjoint

given G ∈W ∗, find v ∈ V : B(v, w) = G(w), ∀w ∈W,

i.e., solve B∗v = G in W ∗, are well-posed whenever (BDD), (BNB1) and (BNB2)
hold. In particular, the well-posedness of the former is equivalent to the well-
posedness of the latter and the norms of the respective solutions are bounded
by

‖w‖W ≤
1

cB
‖F‖V ∗ , ‖v‖V ≤

1

cB
‖G‖W ∗ .
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2.2 The inf-sup theory applied to an abstract parabolic problem

In recent years there has been a renewed interest for the tools presented above
in order to deal with the linear heat equation starting from an abstract parabolic
equation given in the Gelfand triple framework (see, for example, [2,3,5,13,14,15,
16]). Assume indeed that Hilbert spaces V,H are given, forming a Gelfand triple
V ⊂ H ⊂ V ∗ with bilinear forms

a(t ; ·, ·) : V × V → R, t ∈ [0, T ],

satisfying the following conditions for some positive numbers α,Ma:

|a(t;u, v)| ≤Ma‖u‖V ‖v‖V , t ∈ [0, T ], u, v ∈ V,

a(t; v, v) ≥ α‖v‖2V , t ∈ [0, T ], v ∈ V.

For every t ∈ [0, T ], let A(t) be the bounded linear operator from V to V ∗ associ-
ated with the bilinear form, i.e., A(t) ∈ L(V, V ∗) and

〈A(t)u, v〉V ∗ V = a(t;u, v) = 〈u,A∗(t)v〉V V ∗ .

Consider now the problem

u̇(t) +A(t)u(t) = f(t) in V ∗, t ∈ (0, T ),

u(0) = u0 in H,
(2.2)

where u̇(t) denotes the derivative of u with respect to t, i.e., u̇(t) := du
dt . Define

the Lebesgue-Bochner spaces

Y = L2([0, T ];V ),

X = L2([0, T ];V ) ∩H1((0, T );V ∗),

normed by

‖y‖2Y = ‖y‖2L2([0,T ];V ) =

∫ T

0

‖y(t)‖2V dt,

‖x‖2X = ‖x‖2L2([0,T ];V ) + ‖ẋ‖2L2([0,T ];V ∗) =

∫ T

0

‖x(t)‖2V + ‖ẋ(t)‖2V ∗ dt.

By the trace theorem, X is densely embedded in C ([0, T ];H) and there exists a
constant Me, uniform in the choice of V , such that

Me := sup
0 6=x∈X

‖x(t)‖C ([0,T ];H)

‖x‖X
<∞.

Moreover, whenever x, y ∈ X , integration by parts is possible:∫ T

0

(
〈ẋ(t), y(t)〉V ∗ V + 〈x(t), ẏ(t)〉V V ∗

)
dt = 〈x(T ), y(T )〉H − 〈x(0), y(0)〉H .

The reader can refer to [7] for a comprehensive presentation of these spaces.
A possible approach to solving the differential problem (2.2) is presented for

example in [13] and it consists in integrating in time the dual pairing between the
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equation and a test function y1 ∈ Y and taking the inner product between the
initial condition and another test vector y2 ∈ H, thus obtaining the following two
equations:∫ T

0

(
〈u̇(t), y1(t)〉V ∗ V + a(t;u(t), y1(t))

)
dt =

∫ T

0

〈f(t), y1(t)〉V ∗ V dt,

〈u(0), y2〉H = 〈u0, y2〉H .

Adding the equations and defining YH := Y × H, Hilbert space normed by its
product norm, gives the variational problem

u ∈ X : B(u, y) = F (y), ∀y = (y1, y2) ∈ YH , (2.3)

where the following bilinear and linear forms are used

B : X × YH → R,

B(x, y) :=

∫ T

0

(
〈ẋ(t), y1(t)〉V ∗ V + a(t;x(t), y1(t))

)
dt+ 〈x(0), y2〉H ,

F : YH → R,

F (y) :=

∫ T

0

〈f(t), y1(t)〉V ∗ V dt+ 〈u0, y2〉H .

We call this the first space-time variational formulation of (2.2). This is not the
only way to include the initial condition in the variational formulation, but it will
turn out to be the most suitable in our analysis.

Consider now the backward adjoint problem to (2.2):

− v̇(t) +A∗(t)v(t) = g(t) in V ∗, t ∈ (0, T ),

v(T ) = vT in H,
(2.4)

whose first space-time variational formulation is given by

v ∈ X : B∗(y, v) = G (y), ∀y ∈ YH . (2.5)

Here the bilinear form is given by

B∗ : YH ×X → R,

B∗(y, x) :=

∫ T

0

(
〈y1(t),−ẋ(t)〉V V ∗ + a(t; y1(t), x(t))

)
dt+ 〈y2, x(T )〉H ,

and the load functional by

G : YH → R,

G (y) :=

∫ T

0

〈g(t), y1(t)〉V ∗ V dt+ 〈y2, vT 〉H .

By defining a new load functional

F : X → R,

F (x) :=

∫ T

0

〈f(t), x(t)〉V ∗ V dt+ 〈u0, x(0)〉H ,
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and interchanging the roles of trial and test spaces, the second (or weak) space-time
formulation of the original problem (2.2) is obtained:

u = (u1, u2) ∈ YH : B∗(u, x) = F (x), ∀x ∈ X . (2.6)

If a solution of (2.6) has the additional regularity u1 ∈ X , then an integration
by parts shows that u1 is a solution of the first problem (2.3) and that u2 = u1(T ).
In this case the second component of the solution, u2, can be understood as a
continuous H-valued version of u1, evaluated at time t = T . Therefore, u2 is
redundant and in other works the weak space-time formulation is

u ∈ Y : B∗(u, x) = F (x), ∀x ∈ X0,{T} := {x ∈ X : x(T ) = 0}.

However, in the present work we found it useful to keep u2.
The first and the second formulations are related and the well-posedness of the

former is equivalent to the well-posedness of the latter. More precisely, it holds
that (by a suitable modification of the proofs in [13,15])

CB := sup
06=x∈X

sup
0 6=y∈YH

B∗(y, x)

‖x‖X ‖y‖YH
≤
√

2 max{1,M2
a}+M2

e ,

cB := inf
0 6=x∈X

sup
0 6=y∈YH

B∗(y, x)

‖x‖X ‖y‖YH
≥ αmin{M−2

a , 1}√
2 max{α−2, 1}+M2

e

,

(2.7)

and that for any y ∈ YH the following condition is satisfied:

sup
06=x∈X

B∗(y, x) ≥ min {1, α}‖y‖2YH .

This shows that the operator B∗ ∈ L(X ,Y∗H), associated with the bilinear form
B∗(·, ·) via B∗(y, x) = 〈y,B∗x〉YH Y∗

H
is boundedly invertible. This, in turn, im-

plies that the operator B ∈ L(YH ,X ∗) associated with B∗(·, ·) via B∗(y, x) =
〈By, x〉X∗ X is also boundedly invertible, with the same inf-sup constant, see (2.1).

Moreover, for f ∈ L2([0, T ];V ∗) and u0 ∈ H, we have F ∈ X ∗. Hence, (2.6) is
well-posed.

3 A weak space-time formulation of the stochastic problem

In order to introduce the weak space-time formulation for the equation (1.1) we will
follow the idea outlined in Subsection 2.2. We consider spaces X and Y restricted
to a time interval [0, t], for fixed t ∈ [0, T ], endowed with their respective natural
norms. We denote these spaces by

Yt0 = L2([0, t];V ),

X t0 = L2([0, t];V ) ∩H1
0 ((0, t);V ∗),

with the convention that X = XT0 and Y = YT0 .
We assume that the family of operators A(s, ω) is as in Section 1, i.e., that its

bilinear forms satisfy the following conditions for some positive numbers α,Ma:

|a(s, ω;u, v)| ≤Ma‖u‖V ‖v‖V , s ∈ [0, T ], ω ∈ Ω, u, v ∈ V,

a(s, ω; v, v) ≥ α‖v‖2V , s ∈ [0, T ], ω ∈ Ω, v ∈ V.
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We introduce a family of problems parametrized by (t, ω), defined by the bi-
linear forms

B∗t,ω : (Yt0 ×H)×X t0 → R,

B∗t,ω(y, x) :=

∫ t

0

(
〈y1(s),−ẋ(s)〉V ∗ V + a(s, ω; y1(s), x(s))

)
ds

+ 〈y2, x(t)〉H ,

and the load functionals

Wt,ω : X t0 → R,

Wt,ω(x) := Ft,ω(x) + W̃t,ω(x),

where

Ft,ω(x) =

∫ t

0

〈f(s, ω), x(s)〉V ∗ V ds+ 〈U0(ω), x(0)〉H ,

W̃t,ω(x) =
(∫ t

0

〈dW (s), x(s)〉H
)

(ω).

The weak space-time formulation reads, for almost every (t, ω) ∈ [0, T ]×Ω:

U(t, ω) ∈ (Yt0 ×H) : B∗t,ω(U(t, ω), x) = Wt,ω(x), ∀x ∈ X t0 . (3.1)

Since our assumption on a(s, ω; ·, ·) is uniform with respect to s, ω with con-
stants α,Ma, we conclude that the bilinear forms B∗t,ω satisfy the inf-sup condi-
tions uniformly in t, ω with the same constants CB , cB as in (2.7). This means
that for almost every (t, ω) ∈ [0, T ] × Ω, the operator Bt,ω ∈ L(Yt0 × H, (X t0)∗)
associated to B∗t,ω(·, ·) via B∗t,ω(y, x) = 〈Bt,ωy, x〉(X t0)∗ X t0

is boundedly invertible.

Moreover, the norm of the inverse operator B−1
t,ω is bounded by c−1

B , uniformly in
t, ω.

Focusing now on the right-hand side, we assume that f(·, ω) ∈ Y∗ and that
U0(ω) ∈ H. Then, for x ∈ X t0 , it holds that

|Ft,ω(x)| =
∣∣∣∫ t

0

〈f(s, ω), x(s)〉V ∗ V ds+ 〈U0(ω), x(0)〉H
∣∣∣

≤
(∫ t

0

‖f(s, ω)‖2V ∗ ds
) 1

2
(∫ t

0

‖x(s)‖V 2 ds
) 1

2
+ ‖U0(ω)‖H‖x(0)‖H

. ‖f(·, ω)‖(Yt0)∗‖x‖Yt0 + ‖U0(ω)‖H‖x‖X t0
≤
(
‖f(·, ω)‖(Yt0)∗ + ‖U0(ω)‖H

)
‖x‖X t0 ,

showing that Ft,ω ∈ (X t0)∗ for almost every (t, ω) ∈ [0, T ] × Ω. In particular, by
monotonicity in t, it follows that

E
[

sup
t∈[0,T ]

‖Ft,·‖(X t0)∗
]
. E

[
‖f‖Y∗ + ‖U0‖H

]
. (3.2)

The final step is provided by the following lemma, which shows that W̃t,ω ∈
(X t0)∗ with an estimate similar to the one in (3.2).
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Lemma 1 If Q
1
2 ∈ L2(H), then there exists a process K ∈ L2(Ω; C ([0, T ];R))

such that, for almost every (t, ω) ∈ [0, T ]×Ω,

‖W̃t,ω‖(X t0)∗ . K(t, ω) (3.3)

and

E
[

sup
t∈[0,T ]

K(t, ω)2
]
. E

[ ∫ T

0

‖Q
1
2 ‖2L2(H) dt

]
= T‖Q

1
2 ‖2L2(H). (3.4)

Hence, W̃t,ω ∈ (X t0)∗ for almost every (t, ω) ∈ [0, T ]×Ω and

E
[

sup
t∈[0,T ]

‖W̃t,ω‖2(X t0)∗
]
. E

[ ∫ T

0

‖Q
1
2 ‖2L2(H) dt

]
= T‖Q

1
2 ‖2L2(H).

Proof We use an analytic semigroup (S0(t))t≥0 generated by a fixed operator
−A0. This can be achieved, for example, by freezing the coefficients and setting
A∗0 := A∗(t0, ω0), for a fixed pair (t0, ω0). Then −A∗0 is the generator of an analytic
semigroup (S∗0 (t))t≥0, and we consider the adjoint problem (2.4) on [0, t], with
A∗(·) replaced by A∗0. Problem (2.4) is hence uniquely solvable, which means that
the operator B∗0 : X t0 → (Yt0 ×H)∗ associated to the bilinear form in (2.5) is a
bijection. We can hence write any x ∈ X t0 as B−∗0 B∗0x, which, in view of the
semigroup theory, can be represented as:

x(s) = (B−∗0 B∗0x)(s) =

∫ t

s

S∗0 (r − s)(−ẋ(r) +A∗0x(r)) dr + S∗0 (t− s)x(t).

We insert this expression into the weak stochastic integral to get∫ t

0

〈dW (s), x(s)〉H

=

∫ t

0

∫ t

s

〈dW (s), S∗0 (r − s)(−ẋ(r) +A∗0x(r))〉H dr

+

∫ t

0

〈dW (s), S∗0 (t− s)x(t)〉H

=

∫ t

0

〈∫ r

0

S0(r − s)dW (s), (−ẋ(r) +A∗0x(r))
〉
H

dr

+
〈∫ t

0

S0(t− s)dW (s), x(t)
〉
H
.

Here we used the stochastic Fubini theorem and (S0(t))∗ = S∗0 (t). It follows that∣∣∣∫ t

0

〈dW (s), x(s)〉H
∣∣∣

≤
(∫ t

0

∥∥∥ ∫ r

0

S0(r − s)dW (s)
∥∥∥2
V

dr
) 1

2
(∫ t

0

‖ − ẋ(r) +A∗0x(r)‖2V ∗ dr
) 1

2

+
∥∥∥ ∫ t

0

S0(t− s)dW (s)
∥∥∥
H
‖x(t)‖H

.
(∫ t

0

∥∥∥ ∫ r

0

S0(r − s) dW (s)
∥∥∥2
V

dr +
∥∥∥ ∫ t

0

S0(t− s) dW (s)
∥∥∥2
H

) 1
2 ‖x‖X t0
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This implies (3.3) with

K(t, ·) :=
(∫ t

0

∥∥∥ ∫ r

0

S0(r − s) dW (s)
∥∥∥2
V

dr +
∥∥∥ ∫ t

0

S0(t− s) dW (s)
∥∥∥2
H

) 1
2
.

By monotonicity in t, we have

sup
t∈[0,T ]

K(t, ·)2 .
∫ T

0

∥∥∥ ∫ r

0

S0(r − s)dW (s)
∥∥∥2
V

dr + sup
t∈[0,T ]

∥∥∥ ∫ t

0

S0(t− s)dW (s)
∥∥∥2
H
.

By taking the expectation it follows that

E
[

sup
t∈[0,T ]

K(t, ·)2
]
. E

[ ∫ T

0

∥∥∥ ∫ r

0

S0(r − s)dW (s)
∥∥∥2
V

dr

+ sup
t∈[0,T ]

∥∥∥ ∫ t

0

S0(t− s)dW (s)
∥∥∥2
H

]
.

By means of Ito’s isometry, Doob’s maximal inequality, and by using the smoothing
property of the semigroup, it follows that

E
[

sup
t∈[0,T ]

∥∥∥ ∫ t

0

S0(t− s) dW (s)
∥∥∥2
H

]
≤ 16E

[ ∫ T

0

‖Q
1
2 ‖2L2(H) ds

]
and

E
[ ∫ T

0

∥∥∥ ∫ r

0

S0(r − s) dW (s)
∥∥∥2
V

dr
]
≤ 1

2
E
[ ∫ T

0

‖Q
1
2 ‖2L2(H) ds

]
.

A proof of these statements is found in [4, Chapt. 3, Lemma 5.2]. This proves
(3.4).

Putting together the results presented above, and recalling that the second
component of the solution is a H-valued version of the first component, we can
rewrite everything in a compact form in the following theorem:

Theorem 1 (Existence and uniqueness) If U0 ∈ L2(Ω;H), f ∈ L2(Ω ×
[0, T ];V ∗) and Q

1
2 ∈ L2(H), then there exists a unique solution U ∈ L2(Ω ×

[0, T ];V ) ∩ L2(Ω; C ([0, T ];H)) to the problem (3.1). Its norm satisfies the bound

E
[ ∫ T

0

‖U1(s)‖2V ds+ sup
t∈[0,T ]

‖U2(t)‖2H
]

. c−1
B

(
E
[ ∫ T

0

‖f(s)‖2V ∗ ds+ ‖U0‖2H
]

+ ‖Q
1
2 ‖2L2(H)

)
,

where the constant hidden in . is purely a numerical factor.

Proof In view of the preliminary results about the ω-wise invertibility of the oper-
ator Bt,ω, and according to the remarks about Ft,ω and Lemma 1, we have that
for fixed ω and for any t ∈ [0, T ], there exists a unique solution to the problem
(3.1), which satisfies the bound∫ t

0

‖U1(s, ω)‖2V ds+ ‖U2(t, ω)‖2H . c−1
B

(
K(t, ω) + ‖f(ω)‖2(Yt0)∗ + ‖U0(ω)‖2H

)
.
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Since the bound holds for every t, we can in particular take the expectation of
the supremum over t ∈ [0, T ] at both sides, thus obtaining by monotonicity with
respect to t that

E
[ ∫ T

0

‖U1(s)‖2V ds+ sup
t∈[0,T ]

‖U2(t)‖2H
]

. c−1
B E

[
‖f‖2Y∗ + ‖U0‖2H + sup

t∈[0,T ]

K(t, ·)2
]
,

which, in view of Lemma 1, becomes

E
[ ∫ T

0

‖U1(s)‖2V ds+ sup
t∈[0,T ]

‖U2(t)‖2H
]

. c−1
B E

[
‖f‖2Y∗ + ‖U0‖2H + ‖Q

1
2 ‖2L2(H)

]
.

This, together with the remark in Section 2.2 that U2 is a version of U1, concludes
the proof of the theorem.

Notice that the assumption on Q
1
2 is the same as in the definition of the other

concepts of solutions presented and our result is consistent with the analogous
results obtained in [4, Chapt. 5].

In order to prepare for the treatment of multiplicative noise in Section 6, we
consider also the modified problem

dU(t) +A(t)U(t) dt = f(t) dt+ Ψ(t) dW (t), t ∈ (0, T ],

U(0) = U0,

where Ψ is a predictable operator-valued process, Ψ ∈ L2([0, T ] × Ω; L (H)). We
use the same weak formulation (3.1) but with the modified load functional

W̃t,ω(x) =
(∫ t

0

〈Ψ(s) dW (s), x(s)〉H
)

(ω).

A straightforward modification of the proof of Lemma 1 leads to the following.

Lemma 2 If ΨQ
1
2 ∈ L2([0, T ] × Ω; L2(H)), then there exists a process K such

that, for almost every (t, ω) ∈ [0, T ]×Ω,

‖W̃t,ω‖(X t0)∗ ≤ K(t, ω).

Moreover,

E
[

sup
t∈[0,T ]

‖W̃t,ω‖2(X t0)∗
]
. E

[ ∫ T

0

‖Ψ(t)Q
1
2 ‖2L2(H) dt

]
.

Remark 1 An alternative approach that does not involve the semi-group theory
while estimating the stochastic integral ω-wise is based on a modification of the
right-hand side of the equation (3.1), by noticing that it is equal to:

W̃t,ω(x) =

∫ t

0

〈W (s, ω),−ẋ(s)〉V ∗ V + 〈W (t, ω), x(t)〉H .
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This approach presents however the drawback of requiring the process defining
the noise to have the same spatial regularity as the solution that we are looking
for. Indeed, by assuming that the Wiener process W belongs to a smaller space,
namely that

W ∈ L2(Ω; C ([0, T ];H) ∩ L2([0, T ];V )),

we can obtain that, for any t ∈ [0, T ],

‖W̃t,ω‖(X t0)∗ . ‖W‖L2([0,t];V ) + ‖W (t)‖H .

We can now use such an estimates in the same fashion as above, to finally obtain
the following result.

Theorem 2 (Existence and uniqueness) If U0 ∈ L2(Ω;H), f ∈ L2(Ω ×
[0, T ];V ∗) and Q

1
2 ∈ L2(H,V ), then there exists a unique solution U ∈ L2(Ω ×

[0, T ];V ) ∩ L2(Ω; C ([0, T ];H)) to the problem (3.1). Its norm satisfies the bound

E
[ ∫ T

0

‖U1(s)‖2V ds+ sup
t∈[0,T ]

‖U2(t)‖2H
]

. c−1
B

(
E
[ ∫ T

0

‖f(s)‖2V ∗ ds+ ‖U0‖2H
]

+ ‖Q
1
2 ‖2L2(H,V )

)
,

where the constant hidden in . is purely a numerical factor.

4 Properties of the solution

We want now to find a connection between the solution presented here and the
other concepts of solution previously introduced. To this end, an important role
is played by the second component U2 of the solution U = (U1, U2), that we keep
in our ω-wise formulation, by choosing test functions in X and not in X0,{T}.

In the following sections we will omit to write explicitly the ω-dependence of
the solution and of the data, whenever this does not lead to ambiguities.

4.1 Connection with the variational solution

In order to show the connection between our solution and the variational solution,
we choose test functions x ∈ X t0 , for any t ∈ [0, T ], that are constant in time, i.e.,
x(s) ≡ ξ ∈ V, s ∈ [0, t]. Hence, for any ξ ∈ V , it holds almost surely that∫ t

0

〈A(s)U1(s), ξ〉V ∗ V ds+ 〈U2(t), ξ〉H

=

∫ t

0

〈f(s), ξ〉V ∗ V ds+ 〈U0, ξ〉H +

∫ t

0

〈dW (s), ξ〉H ,

which can be rewritten as

V ∗

〈
U2(t)−

(
U0 −

∫ t

0

A(s)U1(s) ds+

∫ t

0

f(s) ds+

∫ t

0

dW (s)
)
, ξ
〉
V

= 0,
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which, in turn, implies

U2(t)
V ∗

= U0 −
∫ t

0

A(s)U1(s) ds+

∫ t

0

f(s) ds+

∫ t

0

dW (s), P-a.s..

With the representation above, we can now rely on the theory in [12] to claim
that such an identity holds not only in V ∗ but in H and that our solution is a
variational solution.

4.2 Connection with the mild solution

Assume in the following that −A is independent of t and ω and hence generates
an analytic semigroup (S(t))t≥0. Then the following theorem holds:

Theorem 3 Let U be the mild solution (1.3) to the problem (1.1) and assume
that (U1, U2(t)) ∈ Yt0 × H is the weak space-time solution to the same problem.

Then, for any t ∈ [0, T ], U1
Y
= U and U2(t)

H
= U(t).

Proof For any t ∈ [0, T ] and for any x ∈ X t0 , we have P-a.s. that∫ t

0

( 〈U1(s),−ẋ(s) +A∗x(s)〉V V ∗) ds+ 〈U2(t), x(t)〉H

=

∫ t

0

〈f(s), x(s)〉V ∗ V ds+ 〈U0, x(0)〉H +

∫ t

0

〈dW (s), x(s)〉H .
(4.1)

We choose now test functions x = v, where v ∈ X t0 is the solution to the
deterministic backward equation (2.4) over the time interval [0, t], with arbitrary
final data ξt and load function g. Its variational formulation is given by (2.5), that
is ∫ t

0

〈y1(s),−v̇(s) +A∗v(s)〉V V ∗ ds+ 〈y2, v(t)〉H

=

∫ t

0

〈y1(s), g(s)〉V V ∗ ds+ 〈y2, ξt〉H ,
(4.2)

for all y ∈ Yt0 ×H. The solution to such a problem is given by the mild formula

v(s) = S∗(t− s)ξt +

∫ t

s

S∗(r − s)g(r) dr, s ∈ [0, t], (4.3)

where S∗ is the semigroup generated by −A∗, namely S∗(s) = e−sA
∗
. By substi-

tuting x = v in (4.1) and y = (U1, U2(t)) in (4.2), we obtain∫ t

0

〈U1(s), g(s)〉V V ∗ ds+ 〈U2(t), ξt〉H

=

∫ t

0

〈f(s), v(s)〉V ∗ V ds+ 〈U0, v(0)〉H +

∫ t

0

〈dW (s), v(s)〉H ,
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which, by (4.3) is in turn equal to

=

∫ t

0

〈f(s), S∗(t− s)ξt〉V ∗ V ds+

∫ t

0

〈
f(s),

∫ t

s

S∗(r − s)g(r) dr
〉

V ∗ V
ds

+ 〈U0, S
∗(t)ξt〉H +

〈
U0,

∫ t

s

S∗(r − s)g(r) dr
〉
H

+

∫ t

0

〈dW (s), S∗(t− s)ξt〉H +

∫ t

0

〈
dW (s),

∫ t

s

S∗(r − s)g(r) dr
〉
H
.

By manipulating the dual pairings in a suitable way, changing the order of in-
tegration (using the stochastic version of Fubini’s theorem), and using the mild
solution formula (1.3), we get∫ t

0

〈U1(s), g(s)〉V V ∗ ds+ 〈U2(t), ξt〉H

=
〈
S(t)U0 +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s) dW (s), ξt
〉
H

+

∫ t

0

〈
S(s)U0 +

∫ s

0

S(s− r)f(r) dr +

∫ s

0

S(s− r) dW (r), g(s)
〉

V V ∗
ds,

= 〈U(t), ξt〉H +

∫ t

0

〈U(s), g(s)〉V V ∗ ds,

which reads
〈U1 − U, g〉Yt0 (Yt0)∗ + 〈U2(t)− U(t), ξt〉H = 0.

Since (g, ξt) is arbitrary in L2([0, t];V ∗)×H, and t ∈ [0, T ], it follows that

U1
Y
= U, U2(t)

H
= U(t), t ∈ [0, T ], P-a.s.

Remark 2 This is consistent with the fact that U1 is a V -valued version of U2 and
that U2 is a continuous H-valued function of time. Moreover, in the same way as
in [4,6,9] we can also derive a connection to the weak solution (1.2). We omit the
details.

5 Regularity

As already pointed out, it is possible to switch from the Gelfand triple setting
to the semigroup setting whenever A is independent of t and ω. Moreover, the
semigroup S(t) = e−tA is analytic and fractional powers of A are well defined.

Define Ḣβ as the domain of A
β
2 and consider the spaces

Yt,β0 := L2([0, t]; Ḣβ+1),

X t,β0 := L2([0, t]; Ḣ1−β) ∩H1((0, t); Ḣ−1−β),

normed by

‖y‖2Yt,β0
:=

∫ t

0

‖A
β+1
2 y(s)‖2H ds,

‖x‖2X t,β0
:=

∫ t

0

(‖A
1−β
2 x(s)‖2H + ‖A−

1+β
2 ẋ(s)‖2H) ds.
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The spaces in the previous sections correspond to β = 0. In particular, as before,
we use the notation Yβ = YT,β0 and Xβ = XT,β0 . The space Yt,β0 × Ḣβ endowed

with its product norm ‖ · ‖Yt,β0 ×Ḣβ and the space X t,β0 endowed with the ‖ · ‖X t,β0
-

norm are Hilbert spaces.

There is a dense embedding Xβ ↪→ C ([0, T ]; Ḣ−β), i.e., for any x ∈ X β ,

‖A−
β
2 x‖C ([0,T ];Ḣ−β) . ‖x‖Xβ ,

where, again, the underlying constant is uniform in the choice of V . A proof of
this fact can be found in [7,10], and relies on the properties of the interpolating
space

(Ḣ1−β , Ḣ−1−β) 1
2

= Ḣ−β .

We introduce a new bilinear form, B∗t,ω,β , given by the original one, B∗t,ω,
restricted to the newly introduced domains, that is

B∗t,ω,β : (Yt,β0 × Ḣβ)×X t,β0 → R,

together with a new load functional,

Wt,ω,β : X t,β0 → R,

Wt,ω,β(x) := Ft,ω,β(x) + W̃t,ω,β(x),

given by Ft,ω and W̃t,ω defined on the new domains introduced above.

The weak space-time formulation reads hence, for almost every ω and t ∈ [0, T ]:

Uβ(t, ω) ∈ Yt,β0 × Ḣβ : B∗t,ω,β(Uβ(t, ω), x) = Wt,ω,β(x), ∀x ∈ X t,β0 . (5.1)

It is possible to prove that the conditions (BDD), (BNB1) and (BNB2) still hold,
with the same constants CB and cB as before. The proof of this follows from a
straightforward modification of the proof for the deterministic framework in [13]
or [15], taking in account the remarks made for its extension to the stochastic
framework in Section 3. It will therefore be omitted.

In the following lemma we give sufficient conditions on the load functional
Wt,ω,β in order to have a unique solution.

Lemma 3 With the notation introduced above, the following facts hold true:

– If f ∈ Yt,β−2
0 and U0 ∈ Ḣβ, P-a.s., then Ft,ω,β ∈ (X t,β0 )∗, P-a.s. Moreover, if

f ∈ L2(Ω;Yβ−2) and U0 ∈ L2(Ω; Ḣβ), then

E
[

sup
t∈[0,T ]

‖Ft,ω,β‖2(X t,β0 )∗

]
. E

[
‖f‖2Yβ−2

H
+ ‖U0‖2Ḣβ

]
.

– If Q
1
2 ∈ L2(H, Ḣβ), then W̃t,ω,β ∈ (X t,β0 )∗, P-a.s. Moreover,

E
[

sup
t∈[0,T ]

‖W̃t,ω,β‖2(X t,β0 )∗

]
.
∫ T

0

‖Q
1
2 ‖2L2(H,Ḣβ) dt.
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Proof The first statement is obvious. In order to prove the second one, one can use
the same notation and techniques as in Section 3, together with the employment
of the following properties to derive an analogous to Lemma 1:

E
[

sup
t∈[0,T ]

‖A
β
2

∫ t

0

S(t− s)dW (s)‖2H
]
.
∫ T

0

‖A
β
2Q

1
2 ‖2L2(H) ds

and

E
[ ∫ T

0

‖A
β−1
2

∫ r

0

S(r − s)dW (s)‖2H dr
]
.
∫ T

0

‖A
β
2Q

1
2 ‖2L2(H) ds.

These two properties follows from a direct generalizations of the ones presented in
[4, Lemma 5.2].

The previous lemma, together with the initial remarks about the fulfilment of the
conditions (BDD), (BNB1), and (BNB2), gives the following result.

Theorem 4 Let β ≥ 0 and f ∈ L2(Ω;Yβ−2), U0 ∈ L2(Ω; Ḣβ), and Q
1
2 ∈

L2(H, Ḣβ). Then the problem (5.1) has a unique solution U ∈ L2(Ω;Yβ) ∩
L2(Ω; C ([0, T ]; Ḣβ)) and its norm is bounded by

E
[ ∫ T

0

‖U1(s)‖2Ḣβ+1 ds+ sup
t∈[0,T ]

‖U2(t)‖2Ḣβ

]
. c−1

B E
[ ∫ T

0

‖f(s)‖2Ḣβ−1 ds+

∫ T

0

‖Q
1
2 ‖2L2(H,Ḣβ) ds+ ‖U0‖2Ḣβ

]
.

6 Linear multiplicative noise

In this section we use the theory developed in the previous sections to prove
existence and uniqueness to the weak space-time solution to the problem

dU(t) +A(t)U(t) dt = f(t) dt+ (B(t)U(t)) dW (t), t ∈ (0, T ],

U(0) = U0.
(6.1)

Here B(t, ω) ∈ L (H,L (H)), with further assumptions on its (t, ω)-dependence to
be specified below. As we have done before, we introduce an ω-wise weak formu-
lation. In order to do so we introduce a new load functional W v

t,ω defined by

W v
t,ω : X t0 → R,

W v
t,ω(x) := Ft,ω(x) + W̃ v

t,ω(x),

where

W̃ v
t,ω(x) =

(∫ t

0

〈(B(s) v(s)) dW (s), x(s)〉H
)

(ω),

for (t, ω) ∈ [0, T ] × Ω and v ∈ ST := L2(Ω;L2([0, T ];V )) ∩ L2(Ω; C ([0, T ];H)).
The weak space-time formulation of problem (6.1) reads hence, for almost every
(t, ω) ∈ [0, T ]×Ω,

U(t, ω) ∈ Yt0×H : B∗t,ω(U(t, ω), x) = W U
t,ω(x), ∀x ∈ X t0 . (6.2)
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We use Banach’s fixed point theorem for the linear operator T : v 7→ U that maps
v ∈ ST to the solution of of the problem

U(t, ω) ∈ Yt0 ×H : B∗t,ω(U(t, ω), x) = W v
t,ω(x), ∀x ∈ X t0 . (6.3)

We will show that T : ST → ST is a contraction, if T is small.
We make the further assumption that B is predictable, uniformly bounded

with respect to ω, and Lp in time for some p > 2, i.e., for some constant κ,(∫ T

0

‖B(t, ω)‖pL (H,L (H)) dt
)1/p

≤ κ, P-a.s. (6.4)

We may then prove the following lemma.

Lemma 4 For any v ∈ ST and B as in (6.4), it holds that

E
[ ∫ T

0

‖(B(s, ·) v(s, ·))Q
1
2 ‖2L2(H) ds

]
. T

p
p−2 ‖Q

1
2 ‖2L2(H) ‖v‖

2
ST
.

Proof We use Hölder’s inequality to get

E
[ ∫ T

0

‖B(s, ·) v(s, ·))Q
1
2 ‖2L2(H) ds

]
≤ E

[ ∫ T

0

‖B(s, ·)‖2L (H,L (H))‖Q
1
2 ‖2L2(H)‖v(s, ·)‖2H ds

]
≤ E

[
sup

t∈[0,T ]

‖v(s, ·)‖2H
(∫ T

0

‖B(s, ·)‖2L (H,L (H)) ds
)
‖Q

1
2 ‖2L2(H)

]
≤ E

[
sup

t∈[0,T ]

‖v(s, ·)‖2H T
p
p−2

(∫ T

0

‖B(s, ·)‖pL (H,L (H)) ds
) 2
p ‖Q

1
2 ‖2L2(H)

]
≤ T

p
p−2 κ2 ‖v‖2ST

‖Q
1
2 ‖2L2(H),

where in the last line we used (6.4).

By combining Lemma 4 with Lemma 2, with Ψ = Bv, we see that W̃ v
t,ω ∈ (X t0)∗

and

E
[

sup
t∈[0,T ]

‖W̃ v
t,ω‖2(X t0)∗

]
. E

[ ∫ T

0

‖(B(t)v(t))Q
1
2 ‖2L2(H) dt

]
. T

p
p−2 ‖Q

1
2 ‖2L2(H) ‖v‖

2
ST
.

If U0 ∈ L2(Ω;H), f ∈ L2(Ω × [0, T ];V ∗), Q
1
2 ∈ L2(H), then we may argue as in

Theorem 1 to conclude that (6.3) has a unique solution with

E
[ ∫ T

0

‖U1(s)‖2V ds+ sup
t∈[0,T ]

‖U2(t)‖2H
]

. E
[ ∫ T

0

‖f(s)‖2V ∗ ds+ ‖U0‖2H
]

+ T
p
p−2 ‖Q

1
2 ‖2L2(H) ‖v‖

2
ST
.

Hence, the solution operator T maps ST to itself. An application of the previous
bound with f = 0, U0 = 0 shows that it is a contraction, if T is small. We thus
have a unique solution for T small and since the interval of existence does not
depend on the size of the data f, U0, we may extend it to a global solution.

We summarize the result in the following theorem:
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Theorem 5 (Existence and uniqueness) If U0 ∈ L2(Ω;H), f ∈ L2(Ω ×
[0, T ];V ∗), Q

1
2 ∈ L2(H), and B ∈ L∞(Ω;Lp([0, T ]; L (H,L (H)))) for some p >

2, then there exists a unique solution U ∈ L2(Ω × [0, T ];V ) ∩ L2(Ω; C ([0, T ];H))
to the problem (6.2)

Remark 3 This approach extends easily to a semilinear equation of the form

dU(t) +A(t)U(t) dt = F (t, U(t)) dt+B(t, U(t)) dW (t)

under appropriate global Lipschitz assumptions on the nonlinear operators F , B.

Remark 4 Under the hypotheses of Section 5, and by assuming that for some p > 2
the following bound holds uniformly in ω,

(∫ T

0

‖B(t, ω)‖p
L (Ḣβ,L (Ḣβ))

)1/p
dt ≤ κ,

we may extend the results of Theorem 4 to the case of linear multiplicative noise.

A Connection between the semigroup framework and the variational
framework

In this appendix we outline how to switch between the Gelfand triple and semigroup frame-
works. This is based on [7, Chapt. XVIII.3], [12, Appendix F], [9], and [5].

Recall that

V
J
↪→ H

Φ∼= H∗
J∗
↪→ V ∗

where J and J∗ are dense embeddings and Φ is the Riesz isomorphism. We want to modify
the operator A introduced above, under the hypothesis that it is deterministic and time-
independent, so that it becomes an unbounded operator Ã from H into H. Define

D(A) ⊂ H = {v ∈ V : Av ∈ J∗Φ(H)},

and the new operator Ã by

Ã : D(Ã) ⊂ H → H,

D(Ã) := J(D(A)),

Ã := Φ−1(J∗)−1AJ−1.

Ã is thus an unbounded densely defined linear operator, positive definite because of the co-
ercivity of the bilinear form. If the bilinear form a(·, ·) associated to A is symmetric and J

is a compact embedding, then Ã is self-adjoint, boundedly invertible, with compact inverse
Ã−1 := JA−1J∗Φ, and this implies that we can use the spectral theorem in order to define
the semigroup and fractional powers of Ã. Alternatively, we can argue that such an operator
is the generator of a strongly continuous semigroup of contractions and such a semigroup is
holomorphic, as outlined in [11, Theorem 1.52], and it is hence possible to define fractional

powers of Ã. In order to simplify the notation, we finally omit the embeddings and denote Ã
by A.

For the other way around, i.e., how to switch from the semigroup framework to the Gelfand
triple framework, we refer to [12, Appendix F, Remark F.0.6].



19

References
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