
Achieving Maximum Distance Separable Private Information Retrieval
Capacity With Linear Codes

Downloaded from: https://research.chalmers.se, 2024-03-13 07:59 UTC

Citation for the original published paper (version of record):
Kumar, S., Lin, H., Rosnes, E. et al (2019). Achieving Maximum Distance Separable Private
Information Retrieval Capacity With Linear Codes. IEEE Transactions on Information Theory, 65(7):
4243-4273. http://dx.doi.org/10.1109/TIT.2019.2900313

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

1

Achieving Maximum Distance Separable Private
Information Retrieval Capacity With Linear Codes

Siddhartha Kumar, Student Member, IEEE, Hsuan-Yin Lin, Senior Member, IEEE,
Eirik Rosnes, Senior Member, IEEE, and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—We propose three private information retrieval
(PIR) protocols for distributed storage systems (DSSs) where data
is stored using an arbitrary linear code. The first two protocols,
named Protocol 1 and Protocol 2, achieve privacy for the scenario
with noncolluding nodes. Protocol 1 requires a file size that is
exponential in the number of files in the system, while Protocol 2
requires a file size that is independent of the number of files and is
hence simpler. We prove that, for certain linear codes, Protocol 1
achieves the maximum distance separable (MDS) PIR capacity,
i.e., the maximum PIR rate (the ratio of the amount of retrieved
stored data per unit of downloaded data) for a DSS that uses
an MDS code to store any given (finite and infinite) number of
files, and Protocol 2 achieves the asymptotic MDS-PIR capacity
(with infinitely large number of files in the DSS). In particular,
we provide a necessary and a sufficient condition for a code
to achieve the MDS-PIR capacity with Protocols 1 and 2 and
prove that cyclic codes, Reed-Muller (RM) codes, and a class
of distance-optimal local reconstruction codes achieve both the
finite MDS-PIR capacity (i.e., with any given number of files)
and the asymptotic MDS-PIR capacity with Protocols 1 and 2,
respectively. Furthermore, we present a third protocol, Protocol 3,
for the scenario with multiple colluding nodes, which can be
seen as an improvement of a protocol recently introduced by
Freij-Hollanti et al.. Similar to the noncolluding case, we provide
a necessary and a sufficient condition to achieve the maximum
possible PIR rate of Protocol 3. Moreover, we provide a particular
class of codes that is suitable for this protocol and show that RM
codes achieve the maximum possible PIR rate for the protocol.
For all three protocols, we present an algorithm to optimize their
PIR rates.

Index Terms—Code automorphisms, colluding servers, gener-
alized Hamming weight, distributed storage, linear codes, local
reconstruction codes, Reed-Muller codes, private information
retrieval.

I. INTRODUCTION

In data storage applications, besides resilience against disk
failures and data protection against illegitimate users, the
privacy may also be of concern. For instance, one may be
interested in designing a storage system in which a file can be
downloaded without revealing any information of which file

This work was partially funded by the Research Council of Norway
(grant 240985/F20) and the Swedish Research Council (grant #2016-04253).
This paper was presented in part at the IEEE International Symposium
on Information Theory (ISIT), Aachen, Germany, June 2017, at the IEEE
International Symposium on Information Theory (ISIT), Vail, CO, USA, June
2018, and at the IEEE Information Theory Workshop (ITW), Guangzhou,
China, November 2018.

S. Kumar, H.-Y. Lin, and E. Rosnes are with Simula UiB,
N-5008 Bergen, Norway (e-mail: kumarsi@simula.no; lin@simula.no;
eirikrosnes@simula.no).

A. Graell i Amat is with the Department of Electrical Engineering,
Chalmers University of Technology, SE-41296 Gothenburg, Sweden (e-mail:
alexandre.graell@chalmers.se).

is actually downloaded to the servers storing it. This form of
privacy is usually referred to as private information retrieval
(PIR). PIR is important to, e.g., protect users from surveillance
and monitoring.

PIR protocols were first studied in the computer science
literature by Chor et al. in [1], [2], which introduced the
concept of an n-server PIR protocol, where a binary storage
node is replicated among n servers (referred to as nodes)
and the aim is to privately retrieve a single bit from the
storage nodes while minimizing the total upload and download
communication cost. Additionally, an n-server PIR protocol
assumes that the n nodes do not collude in order to reveal the
identity of the requested bit. The communication cost in [1]
was further reduced in [3]–[5]. Since then, coded PIR schemes
have been introduced, where data is encoded (as opposed to
simply being replicated) across several nodes [6]. With the
advent of distributed storage systems (DSSs), where the user
data is encoded and then stored on n nodes, there has been an
increasing interest in implementing coded PIR protocols for
these systems.

In recent years PIR has become an active research area in
the information theory community with a fundamental dif-
ference in the measurement of efficiency. In the information-
theoretic sense, the message sizes are much larger than the
size of all queries sent to the storage nodes. Thus, rather
than accounting for both the upload and the download cost,
efficiency is measured in terms of download cost only as the
upload cost can be neglected. The ratio of the requested file
size to the amount of downloaded data is referred to as the
PIR rate, where a higher PIR rate means a higher efficiency.
The highest achievable PIR rate for any n-server PIR protocol
is referred to as the PIR capacity.

In the information theory literature, the authors in [7] were
the first to present PIR protocols for DSSs where data is
stored using codes from two explicit linear code constructions.
In [8], the authors presented upper bounds on the tradeoff
between the storage and the PIR rates for a certain class of
linear PIR protocols. In [9], Fazeli et al. introduced PIR codes
which, when used in conjunction with traditional n-server PIR
protocols, allow to achieve PIR on DSSs. These codes achieve
high code rates without sacrificing on the communication
cost of an n-server PIR protocol. In [10], given an arbitrary
number of files, the authors derived the PIR capacity for
noncolluding and replicated databases, where the data can be
seen as being encoded by a trivial class of maximum distance
separable (MDS) codes, i.e., repetition codes. For the case
of noncolluding nodes, Banawan and Ulukus [11] derived the

2

PIR capacity for DSSs using an [n, k] MDS code to store a
given number of files, referred to as the MDS-PIR capacity.
In this paper, we will refer to the MDS-PIR capacity for a
given finite number of files as the finite MDS-PIR capacity,
and to the MDS-PIR capacity for an infinite number of files
as the asymptotic MDS-PIR capacity. In [12], a PIR protocol
for MDS-coded DSSs and noncolluding nodes was proposed
and shown to achieve the asymptotic MDS-PIR capacity. PIR
protocols for the case of colluding nodes were proposed in
[12]–[15]. The MDS-PIR capacity for the colluding case is still
unknown in general, except for some special cases [16] and
for repetition codes [17]. The problem of symmetric PIR for
DSSs was recently considered in [18], where an expression for
the symmetric PIR capacity for linear schemes in the general
case of colluding nodes and an MDS linear storage code was
derived. In the symmetric case, the user should not only be
able to privately retrieve the requested file from the system,
but also learn nothing about the other files stored from the
retrieved data. See also the related work [19], [20], which deals
with replicated databases. The PIR capacity for the case where
a given number of storage nodes fail to respond (so-called
robust PIR) was given in [17] for the scenario of colluding
servers with replication coding.

In the storage community, it is well known that MDS codes
are inefficient in the repair of failed nodes. In particular,
they have large repair locality, i.e., the repair of a failed
node requires contacting a large number of nodes.1 Repair is
essential to maintain the initial state of reliability of the DSS.
To address low repair locality, Pyramid codes [23], locally
repairable codes [24], local reconstruction codes (LRCs) [25],
[26], and locally recoverable codes [27] are some non-MDS
codes that have been proposed. These four classes of codes
follow the same design philosophy and for simplicity, we will
refer to them generically as LRCs. Following the motivation of
using non-MDS codes in DSSs, the authors of [28] presented
a PIR protocol for DSSs that store data using arbitrary linear
codes for the scenario of noncolluding nodes. Independently,
Freij-Hollanti et al. in [29] presented a PIR protocol that
ensures privacy even when a subset of at most n − k nodes
collude. The protocol is based on two codes, the storage code
and the query code, which defines the queries. The retrieval
process is then characterized by the retrieval code, which is
the Hadamard product of these two codes. The PIR rate of
the protocol is upperbounded by (n − k̃)/n, where k̃ is the
dimension of the retrieval code. The authors showed that with
generalized Reed-Solomon (GRS) codes for the storage and
query codes, the upper bound on the PIR rate is achieved.
To the best of our knowledge, in the asymptotic regime when
the number of files tends to infinity, the PIR rate (n − k̃)/n
is the highest achievable PIR rate known so far. Moreover,
they showed that their protocol could work with certain non-
MDS codes. However, for non-MDS codes (e.g., Reed-Muller
(RM) codes where considered in [30]) the PIR rates that can
be achieved by the protocol in [29] are lower than the upper
bound (n− k̃)/n.

1In a parallel line of work, schemes for efficient repair (in terms of repair
bandwidth) of Reed-Solomon codes have been proposed [21], [22].

In this paper, as an extension of [28], we present three
PIR protocols for DSSs using arbitrary linear codes. These
protocols share the fact that all of them are constructed by
making use of correctable erasure patterns and information
sets of the underlying storage code. We first focus on the
noncolluding scenario and propose two PIR protocols, referred
to as Protocol 1 and Protocol 2. Protocol 1 requires a file
size that is exponential in the number of files in the system,
while Protocol 2 requires a file size that is independent of
the number of files and is therefore simpler. Furthermore,
Protocol 1 is designed such that its PIR rate depends on the
number of files in the system, while Protocol 2 is such that its
PIR rate is independent of the number of files. We prove that,
interestingly, for certain non-MDS code families, Protocol 1
achieves the finite MDS-PIR capacity (and hence the asymp-
totic MDS-PIR capacity as well) and Protocol 2 achieves the
asymptotic MDS-PIR capacity. Thus, we show that the MDS
property required to achieve the MDS-PIR capacity in [10]–
[12] is not necessary and is overly restrictive. In particular, we
give a sufficient condition based on code automorphisms and
a necessary condition connected to the generalized Hamming
weights of the underlying storage code to achieve the MDS-
PIR capacity for Protocols 1 and 2. We prove that cyclic codes,
RM codes, and distance-optimal information locality codes
achieve the finite MDS-PIR capacity (and thus the asymptotic
MDS-PIR capacity, too) with Protocol 1 and the asymptotic
MDS-PIR capacity with Protocol 2. For other codes, we
present an optimization algorithm for Protocols 1 and 2 to
optimize their PIR rates.

We furthermore present a third protocol, Protocol 3, for the
scenario of multiple colluding nodes and non-MDS storage
codes. This protocol is based on and improves the protocol
in [29], [30], in the sense that it achieves higher PIR rates.
We extend the necessary and the sufficient condition from the
noncolluding case to provide joint conditions on the storage
and query codes to achieve the upper bound (n− k̃)/n on the
PIR rate of Protocol 3. Moreover, we show that Protocol 3
achieves the upper bound (n − k̃)/n on the PIR rate for
RM codes and some non-MDS codes. We also provide an
optimization algorithm for the protocol to optimize the PIR
rate. Such an optimization is in itself an extension of the
optimization algorithm for Protocols 1 and 2 for the case of
noncolluding nodes. Besides GRS and RM codes as in [29],
[30], we also prove that (U|U + V) codes [31] with U being
an arbitrary binary linear code and V a binary repetition code
can be used in conjunction with Protocol 3. We finally give
examples of all-symbol locality LRCs with good PIR rates.

The main contributions of the paper are summarized in the
following:
• For the noncolluding case, we propose two PIR protocols,

Protocol 1 and Protocol 2 (Sections IV and V), and
provide a necessary and a sufficient condition for a code
to achieve the MDS-PIR capacity with these protocols
(Theorems 3 and 4, respectively, in Section VI).

• For the noncolluding case, we show that important classes
of non-MDS codes, namely cyclic codes, RM codes, and
distance-optimal information locality codes achieve the
finite MDS-PIR capacity and the asymptotic MDS-PIR

3

capacity with Protocols 1 and 2, respectively (Corollar-
ies 7, 8, and Theorem 5, respectively, in Section VI).

• For the colluding case, we propose Protocol 3 that
achieves higher asymptotic PIR rates for non-MDS codes
(equal to its upper bound) than the best known protocol
[29], [30]. Similar to the noncolluding case, a necessary
and a sufficient condition for the protocol to achieve PIR
rates equal to its upper bound is provided (Corollary 10
and Theorem 8, respectively, in Section VIII). Indepen-
dently of this work, by using an approach similar to ours,
in [32] the authors modified the protocol in [30] and
showed that the PIR rate (n − k̃)/n is achievable for
transitive codes.2 However, the protocol in [32] requires
a much larger number of stripes and query sizes than
our proposed Protocol 3, since it is based on transitive
subgroups of the automorphishm groups of the storage
and query codes, and thus is less practical.

• For both the noncolluding and colluding cases, we pro-
vide an algorithm that optimizes the PIR rate of the
underlying code (Sections VII and VIII-E).

The remainder of this paper is organized as follows. We
provide some definitions and preliminaries in Section II. In
Section III, we provide a general system model for the three
PIR protocols proposed in the paper. In Sections IV and V, we
present Protocols 1 and 2 for the scenario with noncolluding
nodes. In Section VI, we give a necessary and a sufficient
condition for codes to achieve the MDS-PIR capacity with
Protocols 1 and 2 and prove that several families of codes
achieve it. In Section VII, we give an optimization algorithm
to optimize the PIR rate. In Section VIII, we consider the
scenario with colluding nodes and propose Protocol 3. In the
same section, we also present a family of storage codes that
can be used with this protocol. Lastly, we provide a necessary
and a sufficient condition to achieve an upper bound on the PIR
rate for this protocol, and we show that RM codes satisfy the
sufficient condition and thus achieve the upper bound on the
PIR rate of Protocol 3. In Section IX, we optimize Protocols 1,
2, and 3 to maximize their PIR rates for different storage codes
under the scenarios of noncolluding and colluding nodes.
Finally, some conclusions are drawn in Section X.

A. Notation and Conventions
In this paper, we use the following notation. We use

lowercase bold letters to denote vectors, uppercase bold letters
to denote matrices, and calligraphic uppercase letters to denote
sets. For example: x, X , and X denote a vector, a matrix, and
a set, respectively. An identity matrix of dimensions m ×m
is denoted as Im. The all-zero matrix of dimensions a × b
is denoted as 0a×b, while the all-one matrix of dimensions
a×b is referred to as 1a×b. (·)T represents the transpose of its
argument and 〈·, ·〉 denotes the scalar dot product between two
vectors. The operator ◦ represents the Hadamard product. As
such, x ◦ y represents the Hadamard product of two length-
n vectors x and y. Consider the column vectors x1, . . . ,xa,

2Note that the proposed sufficient condition (Theorem 8) is not equivalent
to the concept of transitive codes in [32] when there are at least 2 colluding
nodes (in the noncolluding case the concept of transitive codes in [32] reduces
to our sufficient condition (Theorem 4)).

then (x1| . . . |xa) represents the horizontal concatenation of
the column vectors. Similarly, the horizontal concatenation of
the matrices X1, . . . ,Xa, all with the same number of rows,
will be denoted by (X1| . . . |Xa). We represent a submatrix of
X that is restricted in columns by the set I and in rows by the
set J by X|JI , and the matrix rank of X by rank (X). The
function LCM(a, b) computes the lowest common multiple of
two positive integers a and b, and a | b denotes that a is a
divisor of b, while the function H(·) represents the entropy of
its argument.

In the rest of the paper, C will denote a linear code over
a finite field GF(q). The operations over GF(q), such as
addition, multiplication, etc., will be clearly understood from
the context. We use the customary code parameters [n, k] to
refer to a code of block length n and dimension k, having
code rate RC = k/n. The dimension of a code C will
sometimes be denoted by dim (C). Furthermore, [n, k, dCmin]
represents an [n, k] code of minimum Hamming distance
dCmin. Since a code C can be seen as a codebook matrix,
the shortened and punctured codes are denoted by C|JI , with
column indices I and row coordinates J . In addition, HC ,
GC , and C⊥ represent a parity-check matrix, a generator
matrix, and the dual code, respectively, of C. We denote
by N the set of all positive integers, Na , {1, 2, . . . , a},
and Nn1:n2 , {n1, n1 + 1, . . . , n2} for two positive integers
n1 ≤ n2, n1, n2 ∈ N. The Hamming weight of a binary vector
x is denoted by wH (x), while the support of a vector x, i.e.,
the set of nonzero entries of x, will be denoted by χ(x).
Note that sometimes, for the sake of convenience, we will
omit the superscripts and/or the subscripts if the arguments
we refer to are contextually unambiguous. Also, with some
abuse of language, the index of a coordinate of a vector is
sometimes referred to simply as the coordinate. An erasure
pattern is a binary vector where the ones represent erased
positions, while the zeros represent nonerased positions. The
weight of an erasure pattern is the number of erased positions,
and an erasure pattern x is said to be correctable by a code
C if HC |χ(x) has rank |χ(x)|. Finally, for ease of notation,
we will refer to a matrix with constant row weight, constant
column weight, and constant row and column weight equal to
a as an a-row regular, a-column regular, and a-regular matrix,
respectively.

II. DEFINITIONS AND PRELIMINARIES

In this section, we review some basic notions in coding
theory and some classes of codes that will be used throughout
the paper.

Definition 1. Let C be an [n, k] code defined over GF(q). A
set of coordinates of C, I ⊆ Nn, of size k is said to be an
information set if and only if GC |I is invertible.

Definition 2. Let D be a subcode of an [n, k] code C. The
support of D is defined as

χ(D) , {j ∈ Nn : ∃x = (x1, . . . , xn) ∈ D, xj 6= 0}.

It is noted that

χ(D) =
⋃
x∈D

χ(x).

4

Next, we introduce the concept of generalized Hamming
weights [33].

Definition 3. The s-th generalized Hamming weight of an
[n, k] code C, denoted by dCs , s ∈ Nk, is defined as the cardi-
nality of the smallest support of an s-dimensional subcode of
C, i.e.,

dCs , min
{
|χ(D)| : D is an [n, s] subcode of C

}
.

For the sequel, we introduce the notion of Hadamard
product [34] of vector spaces.

Definition 4. Let X and Y be two vector spaces in GF(q)n.
The Hadamard product of X and Y , denoted by X ◦ Y , is
defined as the space in GF(q)n generated by the Hadamard
products x ◦ y for all x ∈ X and y ∈ Y .

A. Reed-Muller Codes

We review the family of binary linear RM codes [35] and
then quickly summarize a result related to information sets of
an RM code. We adapt the concept and definition from [31,
Ch. 13], and the details can be found therein.

Definition 5. For a given m ∈ N, the v-th order binary RM
code R(v,m) is an [n, k] code with length n = 2m and code
dimension k =

∑v
i=0

(
m
i

)
for v ∈ {0} ∪ Nm, constructed as

the linear space spanned by the set of all m-variable Boolean
monomials of degree at most v.

For example, R(2, 3) can be viewed as the lin-
ear space spanned by the set of Boolean monomials
{1, z1, z2, z3, z1z2, z1z3, z2z3}.

Next, we introduce a way to number the coordinate index
of an RM codeword. Without loss of generality, since there
are in total n = 2m codeword coordinates, each coordinate
index i ∈ N2m can be described by a binary column m-tuple
µ = (µ1, . . . , µm)T, µj ∈ GF(2), such that

i , 1 +

m∑
j=1

µj2
j−1. (1)

For instance, for m = 4, the 7-th coordinate of an RM code
corresponds to (0 1 1 0)T. Hence, a set of coordinates I ⊆ Nn
can alternatively be written as a set of corresponding m-tuples
for RM codes.

Let V be an m × m invertible matrix over GF(2) and
σ ∈ GF(2)m×1 be a length-m binary column vector. It is
well known that the coordinate transformation mapping µ onto
g(µ) , V µ + σ is an automorphism for the RM code [31,
Ch. 13].

For the sake of simplicity, throughout the paper we assume
V = Im.

Example 1. Consider the RM code R(1, 3) with generator
matrix

GR(1,3) =

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .

The i-th row of GR(1,3) corresponds to the i-th monomial
of the set of Boolean monomials {1, z1, z2, z3}, i ∈ N4. It
can be seen that any codeword of R(1, 3) corresponds to a
linear combination of the Boolean monomials as w01+w1z1+
w2z3 + w3z3, where wi ∈ GF(2), i ∈ N4. Clearly, I =
{(0 0 0)T, (1 0 0)T, (0 1 0)T, (0 0 1)T} forms an information
set for R(1, 3). Pick an automorphism g with V = I3 and
σ = (0 0 1)T. Then,

I ′ = {g(µ) = µ+ σ : µ ∈ I}
= {(0 0 1)T, (1 0 1)T, (0 1 1)T, (0 0 0)T}

is also an information set of R(1, 3).

The following lemma shows how to determine an informa-
tion set for an RM code.

Lemma 1. Consider the RM codeR(v,m) with v ∈ {0}∪Nm,
m ∈ N. Then, the set of m-tuples given by

I , {µ ∈ GF(2)m×1 : wH (µ) ≤ v}

is an information set for R(v,m).

Proof: The proof is based on the definition of RM codes.
The details are given in Appendix A.

Lemma 1 can be extended to nonbinary generalized RM
codes (see the comprehensive work in [36] that determines
the information sets for generalized RM codes).

B. Local Reconstruction Codes

LRCs are a family of codes that are used in DSSs because
of their low repair locality, i.e., they need to contact a
relatively low number of nodes in order to repair a failed node.
Systematic codes that focus on lowering the locality for the
systematic nodes (i.e., the nodes that store the systematic code
symbols; see the system model in Section III) are referred
to as information locality codes. Examples of such codes are
presented in [23]–[26]. On the contrary, LRCs that achieve
low locality for all nodes are referred to as all-symbol locality
codes. The codes presented in [27] are examples of all-symbol
locality codes. Formally, information locality codes are defined
as follows.

Definition 6 ((r, δ) information locality code [26, Def. 2]).
An [n, k] code is said to be an (r, δ) information locality
code if there exist Lc punctured codes Cj , C|Sj of C with
column coordinate set Sj ⊂ Nn for j ∈ NLc . Furthermore,
{C|Sj}j∈NLc

must satisfy the following conditions:
1) |Sj | ≤ r + δ − 1, ∀ j ∈ NLc ,
2) dCjmin ≥ δ, ∀ j ∈ NLc , and
3) rank

(
G|⋃

j Sj
)

= k.

In other words, Definition 6 says that there are Lc local
codes in C each having a block length of at most r + δ − 1,
a minimum Hamming distance at least δ, and the union of all
coordinate sets of the local codes contains an information set.
The overall code C has minimum Hamming distance dCmin ≤
n − k + 1 − (dk/re − 1)(δ − 1) and can repair up to δ − 1
systematic nodes by contacting r storage nodes. Codes that
achieve the upper bound on the minimum Hamming distance

5

are known as distance-optimal (r, δ) information locality codes
and have the following structure.

Definition 7 (Distance-optimal (r, δ) information locality code
[26, Th. 2.2]). Let r | k such that Lc = k/r. An (r, δ)
information locality code C as defined in Definition 6 is
distance-optimal if:

1) Each local code C|Sj , j ∈ NLc , is an [r + δ − 1, r]

MDS code defined by a parity-check matrix HC|Sj =
(Pj |Iδ−1) of dimensions (δ−1)×(r+δ−1) and minimum

Hamming distance d
C|Sj
min = δ.

2) The sets {Sj}j∈NLc
are disjoint, i.e., Sj ∩Sj′ = ∅ for all

j, j′ ∈ NLc , j 6= j′.
3) The code C has a parity-check matrix of the form

H =

P1 Iδ−1

P2 Iδ−1

. . .
PLc Iδ−1

M1 0 M2 0 · · · MLc 0 Ia

(2)

where the matrices M1, . . . ,MLc are arbitrary matrices in
GF(q) of dimensions (n− Lc(r + δ − 1))× r, and a , n−
Lc(r + δ − 1).

For ease of exposition, we refer to the local parities as the
parity symbols that take part in the local codes, while the parity
symbols that are not part of the Lc local codes are referred to
as global parity symbols. According to Definition 7, there exist
n−Lc(r+ δ− 1) global parities and Lc(δ− 1) local parities.
We partition the coordinates of these parities into L+ 1 sets,
where L ,

⌊
n

r+δ−1

⌋
. For i ∈ NL+1, we have

Pj =

{(j − 1)nc + r + 1, . . . , jnc} if j ∈ NLc ,

{(j − 1)nc + 1, . . . , jnc} if j ∈ NLc+1:L,

{Lnc + 1, . . . , n} if j = L+ 1,

(3)

where nc , r + δ − 1 is the block length of each local
code. The set Pj , j ∈ NLc , represents the coordinates of the
local parities of the j-th local code Cj . The remaining sets
Pj , j ∈ NLc+1:L+1, represent the coordinates of the global
parities of C. As such, the set P =

⋃L+1
j=1 Pj represents the

parity coordinates of C.

C. UUV Codes

Consider an [n1, k1] code U and an [n1, k2] code V both
over GF(q). An [n = 2n1, k = k1 + k2] (U | U + V) code
[31] (herein referred to as a UUV code) has codewords of the
form (u | u+ v), where u ∈ U and v ∈ V . A UUV code has
generator matrix

GUUV =

(
GU GU

0k2×n1
GV

)
,

where GU and GV are the generator matrices of U and V ,
respectively. One can construct RM codes using UUV codes
in an iterative manner [31, p. 374].

· · · · · ·

...
...

c
(2)
β,n

c
(2)
2,n

c
(2)
1,n

...

Q(1) Q(k) Q(k+1) Q(n)

r1 rk rk+1 rn

n storage nodes

(a)

(b)(c)

Fig. 1. System Model. (a) The colored boxes in each storage node represent
the f coded chunks pertaining to the f files. (b) Coded chunk corresponding
to the 2nd file in the n-th node. It consists of β code symbols, c(2)i,n, i ∈ Nβ .
(c) The user sends the queries Q(l), l ∈ Nn, to the storage nodes and receives
responses rl.

III. SYSTEM MODEL

We consider a DSS that stores f files X(1), . . . ,X(f),
where each file X(m) = (x

(m)
i,j), m ∈ Nf , can be seen as

a β × k matrix over GF(pα`), with β, k, α, ` ∈ N, and
p being some prime number. Each file is encoded using a
linear code as follows. Let x(m)

i = (x
(m)
i,1 , . . . , x

(m)
i,k), i ∈ Nβ ,

be a message vector corresponding to the i-th row of X(m).
Each x(m)

i is encoded by an [n, k] code C over GF(q) with
q , pα, having subpacketization α, into a length-n codeword
c

(m)
i =

(
c
(m)
i,1 , . . . , c

(m)
i,n

)
, where c

(m)
i,j ∈ GF(q`), j ∈ Nn.

For α = 1, the code C is referred to as a scalar code.
Otherwise, the code is called a vector code [37]. The βf
generated codewords c(m)

i are then arranged in the array
C =

(
(C(1))T| . . . |(C(f))T

)T
of dimensions βf × n, where

C(m) =
(
(c

(m)
1)T| . . . |(c(m)

β)T
)T

for m ∈ Nf . For a given
column j ofC, we denote the column vector

(
c
(m)
1,j , . . . , c

(m)
β,j

)T

as a coded chunk pertaining to file X(m). The f coded chunks
in column j are stored in the j-th storage node, j ∈ Nn, as
shown in Fig. 1(a). In case the [n, k] code C is systematic, the
nodes that store the systematic code symbols are referred to
as systematic nodes.

A. Privacy Model

We consider a DSS where a set of T nodes may act as spies.
Further, they may collude and hence they are referred to as
colluding nodes. In addition, it is assumed that the remaining
nonspy nodes do not collaborate with the spy nodes. The
scenario of a single spy node (T = 1) in the DSS is analogous
to having a system with no colluding nodes. Let T ⊂ Nn,
|T | = T , denote the set of spy nodes in the DSS. The role
of the spy nodes is to determine which file X(m) is accessed
by the user. We assume that the user does not know T , since

6

otherwise it can trivially achieve PIR by not contacting the spy
nodes. To retrieve file X(m) from the DSS, the user sends a
d × βf matrix query Q(l) over GF(q) ⊆ GF(q`) to the l-th
node for all l ∈ Nn. The query matrices are represented in the
form of d subquery vectors q(l)

i of length βf as

Q(l) =

q

(l)
1
...
q

(l)
d

 =

q

(l)
1,1 · · · q

(l)
1,βf

... · · ·
...

q
(l)
d,1 · · · q

(l)
d,βf

 .

The i-th subqueries q(l)
i , l ∈ Nn, of the n queries aim at

recovering Γ unique code symbols3 of the file X(m). In
response to the received query matrix, node l sends the column
vector

rl = (rl,1, . . . , rl,d)
T = Q(l)

(
c
(1)
1,l , . . . , c

(1)
β,l , . . . , c

(f)
β,l

)T
, (4)

referred to as the response vector, back to the user as illustrated
in Fig. 1(c). We refer to rl,i as the i-th subresponse of the l-th
node. Perfect information-theoretic PIR for such a scheme is
defined in the following.

Definition 8. Consider a DSS with n nodes storing f files
in which a set of T nodes T = {t1, . . . , tT } ⊂ Nn, 1 ≤
|T | = T ≤ n− k, act as colluding spies. A user who wishes
to retrieve the m-th file sends the queries Q(l), l ∈ Nn, to
the storage nodes, which return the responses rl. This scheme
achieves perfect information-theoretic PIR if and only if

Privacy: H
(
m|Q(t1), . . . ,Q(tT)

)
= H(m); (5a)

Recovery: H
(
X(m)|r1, . . . , rn

)
= 0. (5b)

Queries satisfying (5a) ensure that the file requested by the
user is independent of the queries. Thus, the colluding nodes
in T do not gain any additional information regarding which
file is requested by the user by observing the queries. The
recovery constraint in (5b) ensures that the user is able to
recover the requested file from the responses sent by the DSS.

The efficiency of a PIR protocol is defined as the amount
of retrieved data per unit of total amount of downloaded
data, since it is assumed that the content of the retrieved file
dominates the total communication cost [8], [12].

Definition 9. The PIR rate of a PIR protocol, denoted by R, is
the amount of information retrieved per downloaded symbol,
i.e.,

R ,
βk

nd
.

Since the size of each file is βk, the parameters d and Γ
should be chosen such that βk = Γd.4 For Protocols 2 and 3
in Sections V and VIII to be practical, we may select

β =
LCM(k,Γ)

k
and d =

LCM(k,Γ)

Γ
, (6)

3In general, the i-th subqueries recover Γi unique code symbols such that
among the

∑
i Γi recovered code symbols there are βk distinct information

symbols. However, for the sake of simplicity, we assume Γi = Γ for all i for
Protocols 2 and 3.

4For Protocol 1, d and Γ should be chosen such that βk =
∑d
i=1 Γi.

as it ensures the smallest values of β and d. This is not the
case for Protocol 1 in Section IV, where β is exponential
in the number of files in order achieve optimal PIR rates.
By choosing the values above for β and d, the PIR rate for
Protocols 2 and 3 becomes

R =
Γ

n
.

We will write R(C) to highlight that the PIR rate depends on
the underlying storage code C. The maximum achievable PIR
rate is the PIR capacity. It was shown in [11] that for the
noncolluding case and for a given number of files f stored
using an [n, k] MDS code, the MDS-PIR capacity, denoted by
Cf , is

Cf ,
n− k
n

[
1−

(k
n

)f]−1

. (7)

Throughout the paper we refer to the capacity in (7) as the
finite MDS-PIR capacity as it depends on the number of files.
On the contrary, when the number of files f → ∞, the
asymptotic MDS-PIR capacity is

C∞ ,
n− k
n

. (8)

It was shown in [8, Th. 3] that the PIR rate for a DSS with
noncolluding nodes is upperbounded by C∞ for a special
class of linear information retrieval schemes. In the case of
colluding nodes, an explicit upper bound is currently unknown,
as well as an expression for the MDS-PIR capacity. Some
initial work for the case of two colluding nodes has recently
been presented in [16].

IV. FINITE MDS-PIR CAPACITY-ACHIEVING PROTOCOL
FOR THE NONCOLLUDING CASE

In this section, we propose a capacity-achieving protocol,
named Protocol 1, that achieves the finite MDS-PIR capacity
in (7) for the scenario of noncolluding nodes. The protocol is
inspired by the protocol introduced in [11].

A. PIR Achievable Rate Matrix

In [10], the concept of exploiting side information for
PIR problems was introduced. By side information we mean
additional redundant symbols not related to the requested file
but downloaded by the user in order to maintain privacy.
These symbols can be exploited by the user to retrieve the
requested file from the responses of the storage nodes. In
[11, Sec. V.A], it was shown that a [5, 3, 3] MDS storage
code can be used to achieve the finite MDS-PIR capacity,
where the side information is decoded by utilizing other code
coordinates forming an information set in the code array.
For instance, the authors chose the ν = 5 information sets
I1 = {1, 2, 3}, I2 = {1, 4, 5}, I3 = {2, 3, 4}, I4 = {1, 2, 5},
and I5 = {3, 4, 5} of the [5, 3, 3] MDS code in their PIR
achievable scheme. Observe that in {Ii}i∈N5

each coordinate
of the [5, 3, 3] code appears exactly κ = 3 times. This
motivates the following definition.

7

Definition 10. Let C be an arbitrary [n, k] code. A ν×n binary
matrix Λκ,ν(C) is said to be a PIR achievable rate matrix for
C if the following conditions are satisfied.

1) The Hamming weight of each column of Λκ,ν is κ, and
2) for each matrix row λi, i ∈ Nν , χ(λi) always contains

an information set.
In other words, each coordinate j of C, j ∈ Nn, appears
exactly κ times in {χ(λi)}i∈Nν , and every set χ(λi) contains
an information set.

Lemma 2. If a matrix Λν,κ(C) exists for an [n, k] code C,
then we have

κ

ν
≥ k

n
,

where equality holds if χ(λi), i ∈ Nν , are all information
sets.

Proof: Since by definition each row λi of Λν,κ always
contains an information set, we have wH (λi) ≥ k, i ∈ Nν .
Let vj , j ∈ Nn, be the j-th column of Λκ,ν . If we look at
Λκ,ν from both a row-wise and a column-wise point of view,
we obtain

νk ≤
ν∑
i=1

wH (λi) =

n∑
j=1

wH (vj) = κn,

from which the result follows. Clearly, equality holds if χ(λi),
i ∈ Nν , are all information sets.

Example 2. Consider the [5, 3, 2] systematic code with gen-
erator matrix

G =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

 .

One can easily verify that

Λ2,3 =

0 1 1 1 1
1 0 0 1 1
1 1 1 0 0

is a PIR achievable rate matrix for this code.

Before we state our main results, in order to clearly illustrate
our example and the following achievability proof, we first
introduce the following definition.

Definition 11. For a given ν × n PIR achievable rate matrix
Λκ,ν(C) = (λu,j), we define the PIR interference matrices
Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j) for the code C with

ai,j , u if λu,j = 1, ∀ j ∈ Nn, i ∈ Nκ, u ∈ Nν ,
bi,j , u if λu,j = 0, ∀ j ∈ Nn, i ∈ Nν−κ, u ∈ Nν .

Note that in Definition 11, for each j ∈ Nn, distinct values
of u ∈ Nν should be assigned for all i. Thus, the assignment
is not unique in the sense that the order of the entries of
each column of A and B can be permuted. For j ∈ Nn, let
Aj , {ai,j : i ∈ Nκ} and Bj , {bi,j : i ∈ Nν−κ}. Note that
the j-th column of A contains the row indices of Λ whose
entries in the j-th column are equal to 1, while B contains the
remaining row indices of Λ. Hence, it can be observed that
Bj = Nν \ Aj , ∀ j ∈ Nn.

Definition 12. By S(a|Aκ×n) we denote the set of column
coordinates of matrix Aκ×n = (ai,j) in which at least one of
its entries is equal to a, i.e.,

S(a|Aκ×n) , {j ∈ Nn : ∃ ai,j = a, i ∈ Nκ}.

The following claim can be directly verified.

Claim 1. S(a|Aκ×n) contains an information set of code C,
∀ a ∈ Nν . Moreover, for an arbitrary entry bi,j of B(ν−κ)×n,
S(bi,j |Aκ×n) = S(a|Aκ×n) ⊆ Nn \ {j} if bi,j = a.

We illustrate the previous points in the following example.

Example 3. Continuing with Example 2 and following Defi-
nition 11, we obtain

A2×5 =

(
2 1 1 1 1
3 3 3 2 2

)
and B1×5 =

(
1 2 2 3 3

)
for Λ2,3. One can see that Aj∪Bj = N3, ∀ j ∈ N5. Moreover,
for instance, take a = 1, then S(1|A2×5) = {2, 3, 4, 5}
contains an information set of the [5, 3, 2] systematic code of
Example 2.

Now consider the two matrices
c
(m)
µ+a1,1,1

c
(m)
µ+a1,2,2

· · · c
(m)
µ+a1,n,n

... · · ·
...

c
(m)
µ+aκ,1,1

c
(m)
µ+aκ,2,2

· · · c
(m)
µ+aκ,n,n

 and

c
(m)
µ+b1,1,1

c
(m)
µ+b1,2,2

· · · c
(m)
µ+b1,n,n

... · · ·
...

c
(m)
µ+bν−κ,1,1

c
(m)
µ+bν−κ,2,2

· · · c
(m)
µ+bν−κ,n,n

of code symbols of the m-th file, where µ ∈ Nβ−ν ∪ {0}.
Observe that if the user knows the first matrix of code symbols,
from Claim 1, since the coordinate set S(bi,j |Aκ×n) ⊆
Nn \ {j} contains an information set and the user knows the
structure of the storage code C, the code symbols c(m)

µ+bi,j ,j

of the second matrix can be obtained. The intuition behind
the definition of the interference matrices A and B is as
follows. Assume that X(1) is requested. Protocol 1 requires
the user to download the side information

∑
m 6=1 c

(m)
µ+ai,j ,j

based on A and also to download code symbols as sums of
code symbols from the requested file and the side information∑
m6=1 c

(m)
µ+bi,j ,j

based on B. Claim 1 then indicates that

the side information
∑
m 6=1 c

(m)
µ+bi,j ,j

based on B can be
reliably decoded and hence we can obtain the requested file
by cancelling the side information. Here, the entries of A and
B are respectively marked in red and blue. We are now ready
to state Protocol 1.

B. Protocol 1

The proposed Protocol 1 generalizes the MDS-coded PIR
protocol in [11] to DSSs where files are stored using an
arbitrary linear code. Inspired by [10] and [11], a PIR capacity-
achievable scheme should follow three important principles:
1) enforcing symmetry across storage nodes, 2) enforcing
file symmetry within each storage node, and 3) exploiting

8

side information of undesired symbols to retrieve new desired
symbols. Note that principle 1) is in general not a necessary
requirement for a feasible PIR protocol. However, as pointed
out in [11] and [16], any PIR scheme can be made symmetric,
hence we keep this principle for the purpose of simplifying
the implementation.

The PIR achievable rate matrix Λκ,ν for the given storage
code C plays a central role in the proposed PIR protocol.
Moreover, the protocol requires β = νf stripes and ex-
ploits the corresponding PIR interference matrices Aκ×n and
B(ν−κ)×n. Note that the number of stripes depends on the
number of files f , hence Protocol 1 depends on f as well.
We first outline the steps of the protocol, and then we will
prove that the proposed protocol satisfies the perfect privacy
condition of (5a) and results in the PIR rate of Theorem 1
below. Without loss of generality, we assume that the user
wants to download the first file, i.e., m = 1. The algorithm is
composed of four steps as described below. In Appendix B,
we show that the algorithm generates d× βf query matrices
Q(l), l ∈ Nn, with

d =
κ

ν − κ

[
νf − κf

]
.

Step 1. Index Preparation: For all files, the user inter-
leaves the query indices for requesting the rows of C(m)

randomly and independently of each other. This is equiv-
alent to generating the interleaved code array Y (m) =(
(y

(m)
1)T| . . . |(y(m)

β)T
)T

, ∀m ∈ Nf , with rows

y
(m)
i = c

(m)
π(i), i ∈ Nβ ,

where π(·) : Nβ → Nβ is a random permutation, which is
privately known to the user only. Therefore, when the user
requests code symbols from each storage node, this procedure
is designed to make the requested row indices to be random
and independent of the requested file index.

Step 2. Download Symbols in the i-th Repetition: The user
downloads the needed symbols in κ repetitions. In the i-th
repetition, i ∈ Nκ, the user downloads the required symbols
in a total of f rounds. Each repetition comprises f rounds. In
the m-th round, the user downloads symbols that are linear
sums of code symbols from any m files, m ∈ Nf . Using the
terminology in [11], the user downloads two types of symbols
in each round, desired symbols, which are directly related
to the requested file index m = 1, and undesired symbols,
which are not related to the requested file index m = 1, but
are exploited to decode the requested file from the desired
symbols. For the desired symbols, we will distinguish between
round ` = 1 and round ` ∈ N2:f .
Undesired symbols. The undesired symbols refer to sums of
code symbols which do not contain symbols from the re-
quested file. For every round `, ` ∈ Nf−1, the user downloads
the code symbols{ ∑

m′∈M
y

(m′)
((i−1)U(f−1)+U(`−1))·ν+a1,j ,j

,

. . . ,
∑
m′∈M

y
(m′)
((i−1)U(f−1)+U(`−1))·ν+aκ,j ,j

,

. . . ,
∑
m′∈M

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+a1,j ,j

,

. . . ,
∑
m′∈M

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+aκ,j ,j

}
(9)

for all j ∈ Nn and for all possible subsets M⊆ N2:f , where
|M| = ` and

U(`) ,
∑̀
h=1

κf−(h+1)(ν − κ)h−1.

In contrast to undesired symbols, desired symbols are sums of
code symbols which contain symbols of the requested file.
The main idea of the protocol is that the user downloads
desired symbols that are linear sums of requested symbols
and undesired symbols from the previous round.

Desired symbols in the first round. In the first round, the
user downloads κ · U(1) = κκf−(1+1)(ν − κ)1−1 = κf−1

undesired symbols from each storage node. However, these
symbols cannot be exploited directly. Hence, due to symmetry,
in round ` = 1, the user downloads the κf−1 desired symbols{

y
(1)

κf−1(ai,j−1)+1,j
, . . . , y

(1)

κf−1(ai,j−1)+κf−1,j

}
(10)

from the j-th storage node, j ∈ Nn, i.e., the user also
downloads κf−1 symbols for m = 1 from each storage node.

Desired symbols in higher rounds. In the (`+ 1)-th round,
` ∈ Nf−1, in order to exploit the side information, i.e.,
the undesired symbols from the previous round, the user
downloads the symbols{

y
(1)
D(`−1)·ν+ai,j ,j

+
∑

m′∈M1

y
(m′)
((i−1)U(f−1)+U(`−1))·ν+b1,j ,j

,

y
(1)
(D(`−1)+1)·ν+ai,j ,j

+
∑

m′∈M1

y
(m′)
((i−1)U(f−1)+U(`−1))·ν+b2,j ,j

,

. . . , y
(1)
(D(`−1)+(ν−κ)−1)·ν+ai,j ,j

+
∑

m′∈M1

y
(m′)
((i−1)U(f−1)+U(`−1))·ν+bν−κ,j ,j

,

y
(1)
(D(`−1)+(ν−κ))·ν+ai,j ,j

+
∑

m′∈M1

y
(m′)
((i−1)U(f−1)+U(`−1)+1)·ν+b1,j ,j

,

. . . , y
(1)[
D(`−1)+(U(`)−U(`−1))(ν−κ)−1

]
·ν+ai,j ,j

+
∑

m′∈M1

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+bν−κ,j ,j

,

. . . , y
(1)
(D(`)−(ν−κ))·ν+ai,j ,j

+
∑

m′∈MN(`)

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+b1,j ,j

,

. . . , y
(1)
(D(`)−1)·ν+ai,j ,j

9

+
∑

m′∈MN(`)

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+bν−κ,j ,j

}
(11)

for all distinct `-sized subsetsM1, . . . ,MN(`) ⊆ N2:f , where
j ∈ Nn, N(`) ,

(
f−1
`

)
, and

D(`) , κf−1 +
∑̀
h=1

(
f − 1

h

)
κf−(h+1)(ν − κ)h.

This indicates that for each combination of files indexed by
Ml, l ∈ NN(`), the user downloads

[
U(`) − 1 − U(` − 1) +

1
]
(ν − κ) new desired symbols from each storage node, and

since there are in total N(`) combinations of files, in each
round D(`) − 1 − D(` − 1) + 1 extra desired symbols are
downloaded from each storage node.

Exploiting the side information. Using the fact that for a
linear code C any linear combination of codewords is also
a codeword, and together with Claim 1, it is not too hard to
see that by fixing an arbitrary coordinate j ∈ Nn, there always
exist some coordinates S ⊂ Nn \ {j} (see Claim 1) such that
for a subset M ⊆ N2:f with |M| = `, the so-called aligned
sum { ∑

m′∈M
y

(m′)
((i−1)U(f−1)+U(`−1))·ν+b1,j ,j

,

. . . ,
∑
m′∈M

y
(m′)
((i−1)U(f−1)+U(`)−1)·ν+bν−κ,j ,j

}
for ` ∈ Nf−1 and i ∈ Nκ, can be decoded. Consequently, in
the (`+ 1)-th round, from each storage node j we can collect
code symbols related to m = 1 from the desired symbols, i.e.,{

y
(1)
D(`−1)·ν+ai,j ,j

, . . . , y
(1)
(D(`)−1)·ν+ai,j ,j

}
(12)

is obtained.

Symmetry across storage nodes. In the previous steps,
since the user downloads the same amount of required symbols
for each j ∈ Nn and for every round, symmetry across storage
nodes is ensured.

File symmetry within each storage node. To ensure that
the privacy condition (5a) is fulfilled, we have to make sure
that in each round ` ∈ Nf of each repetition, for each
storage node and for every combination of files indexed by
M ⊆ Nf with |M| = `, the user requests the same number
of linear sums η(M) ,

∑
m∈M y

(m)
ηm,j

, where ηm depends
on m. This will be shown to be inherent from the protocol
(see proof of Theorem 1 in Appendix B). In addition, since
the user always requests the same number of linear sums
for each combination of files, the scheme also implies that
the frequencies of requested code symbols pertaining to each
individual file index m ∈ Nf among all the linear sums are
the same for each storage node.

Step 3. Complete κ Repetitions: The user repeats Step 2
until i = κ. We will show that by our designed parameters
U(`) and D(`), the user indeed downloads in total β = νf

stripes for the requested file (see again Appendix B).

Step 4. Shuffling the Order of Queries to Each Node: The
order of the queries to each storage node is uniformly shuffled
to prevent the storage node to be able to identify which file is
requested from the index of the first downloaded symbol.

C. Achievable PIR Rate

The PIR rate, R(C), of Protocol 1 in Section IV-B for a
DSS where f files are stored using an arbitrary [n, k] code C
is given in the following theorem.

Theorem 1. Consider a DSS that uses an [n, k] code C to
store f files. If a PIR achievable rate matrix Λκ,ν(C) exists,
then the PIR rate

R(C) =
(ν − κ)k

κn

[
1−

(κ
ν

)f]−1

(13)

is achievable.

Proof: See Appendix B.
We remark that from Lemma 2, (13) is smaller than or equal

to the finite MDS-PIR capacity in (7) since

R(C) =

νk
κn

[
1− κ

ν

]
[
1−

(
κ
ν

)f] =
νk

κn

[
1 +

κ

ν
+ · · ·+

(κ
ν

)f−1
]−1

≤
[
1 +

k

n
+ · · ·+

(k
n

)f−1
]−1

, (14)

and it becomes the finite MDS-PIR capacity in (7) if there
exists a matrix Λκ,ν for C with κ

ν = k
n . The inequality in (14)

follows from Lemma 2.

Corollary 1. If a PIR achievable rate matrix Λκ,ν(C) with
κ
ν = k

n exists for an [n, k] code C, then the finite MDS-PIR
capacity in (7) is achievable.

This gives rise to the following definition.

Definition 13. A PIR achievable rate matrix Λκ,ν(C) with
κ
ν = k

n for an [n, k] code C is called an MDS-PIR capacity-
achieving matrix, and C is referred to as an MDS-PIR
capacity-achieving code.

We remark that there might exist codes that are MDS-PIR
capacity-achieving for which an MDS-PIR capacity-achieving
matrix does not exist.

Note that the largest achievable PIR rate in the noncolluding
case where data is stored using an arbitrary linear code is still
unknown. Interestingly, it is observed from Lemma 2 and (14)
that the largest possible achievable PIR rate for an arbitrary
linear code with Protocol 1 strongly depends on the smallest
possible value of κ

ν for which a PIR achievable rate matrix
Λκ,ν exists. We stress that the existence of an MDS-PIR
capacity-achieving matrix Λκ,ν does not necessarily require
(ν, κ) = (n, k), but κ

ν = k
n .

Since the existence of a PIR achievable rate matrix is
connected to the information sets of a code, we review a
widely known result in coding theory.

Proposition 1 ([38, Th. 1.4.15]). Let C be an [n, k, dCmin] code.
Then, every set of n− dCmin + 1 coordinates of C contains an

10

information set. Furthermore, n − dCmin + 1 is the smallest
number of coordinates with this property.

Lemma 3. For a given [n, k, dCmin] code C, there always exists
a PIR achievable rate matrix Λk,ν with

ν = k + min
(
k, dCmin − 1

)
.

Proof: See Appendix C.
A lower bound on the largest possible achievable PIR rate

obtained from Theorem 1 and Lemma 3 is given as follows.

Corollary 2. Consider a DSS that uses an [n, k, dCmin] code C
to store f files. Then, the PIR rate

R(C) =
min

(
k, dCmin − 1

)
n

[
1−

(k

k + min
(
k, dCmin − 1

))f]−1

is achievable.

We remark that because every set of k coordinates of an
[n, k] MDS code is an information set, we can construct n
information sets by cyclically shifting an arbitrary information
set n times, hence an MDS-PIR capacity-achieving matrix
Λk,n of an MDS code can be easily constructed. In other
words, Protocol 1 with MDS codes is MDS-PIR capacity-
achieving (see Corollary 1) and MDS codes are a class of
MDS-PIR capacity-achieving codes.

Remark 1. Since minimum storage regenerating (MSR) codes
are MDS codes [39] and can be viewed as scalar linear codes
over a larger extension field, it follows that MSR codes are
also MDS-PIR capacity-achieving codes.

In Section VI, we provide a necessary and a sufficient
condition for an arbitrary linear code to achieve the MDS-PIR
capacity with Protocol 1 and give certain families of MDS-
PIR capacity-achieving codes. For illustration purposes, in the
next subsection, we give an example of an MDS-PIR capacity-
achieving code.

D. A [5, 3, 2] MDS-PIR Capacity-Achieving Code for f = 2

In this subsection, we compute the PIR achievable rate of a
[5, 3, 2] non-MDS code for a DSS that stores two files, f = 2,
and show that it is MDS-PIR capacity-achieving.

Let C be a non-MDS [5, 3, 2] binary code with generator
matrix

G =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 . (15)

One can see that the ν × n = 5× 5 matrix

Λ3,5 =

1 1 1 0 0
1 0 0 1 1
0 1 0 1 1
0 1 1 1 0
1 0 1 0 1

is a PIR achievable rate matrix. From Λ3,5, we obtain the
following sets:

χ(λ1) = {1, 2, 3}, χ(λ2) = {1, 4, 5}, χ(λ3) = {2, 4, 5},

χ(λ4) = {2, 3, 4}, χ(λ5) = {1, 3, 5}.

All of these sets contain an information set of C (see Defini-
tion 10). Furthermore, we get the following PIR interference
matrices

A3×5 =

1 1 1 2 2
2 3 4 3 3
5 4 5 4 5

,
B2×5 =

(
3 2 2 1 1
4 5 3 5 4

)
.

One can see that Claim 1 holds. For example, S(3|A3×5) =
{2, 4, 5} contains an information set for C.

In the next step, for each m ∈ N2 and for β = νf = 52, we
first generate the interleaved code array Y (m) with row vectors
y

(m)
i = c

(m)
π(i), i ∈ N52 , by a randomly selected permutation

function π(·). Suppose that the user wishes to obtain X(1). We
list all downloaded sums of code symbols in Table I, which
is similar to [11, Table II]. Similar to the PIR protocol in
[11], Protocol 1 requires f = 2 rounds in each repetition,
and the scheme needs to be repeated κ = 3 times. Note that
since the protocol requests an equal amount of code symbols
associated with X(1) and X(2), it is straightforward to see
that the privacy constraint is satisfied.

It should be mentioned that here we strongly make use
of the PIR interference matrices. For example, in round
2 of repetition 1 (see Table I), since the user knows
C, the code symbols y

(2)
5·0+3,1, y(2)

5·0+2,2, and y
(2)
5·0+2,3 can

be obtained by knowing {y(2)
5·0+3,2, y

(2)
5·0+3,4, y

(2)
5·0+3,5} and

{y(2)
5·0+2,1, y

(2)
5·0+2,4, y

(2)
5·0+2,5}, from which the corresponding

coded symbols {y(1)
3·5+1,1, y

(1)
3·5+1,2, y

(1)
3·5+1,3} can be obtained

by cancelling the side information. Since {1, 2, 3} is an
information set, the corresponding requested file vector of
length k = 3 can also be decoded. Hence, in summary, it
is sufficient to reliably decode 52 = 25 different length-k
requested file vectors for m = 1. In summary, for f = 2,
the user downloads 3× 5 undesired symbols based on (9) and
(3 + 2)× 5 = 25 desired symbols according to (10) and (11)
in each repetition. Hence, the PIR achievable rate is equal to

R(C) =
3 · 25

3 · (25 + 15)
=

5

8
=

1− 3
5

1−
(

3
5

)2 ,
which corresponds to the finite MDS-PIR capacity in (7) with
f = 2, i.e., the [5, 3, 2] non-MDS code given by (15) is MDS-
PIR capacity-achieving.

V. ASYMPTOTIC MDS-PIR CAPACITY-ACHIEVING
PROTOCOL FOR THE NONCOLLUDING CASE

In this section, we present Protocol 2, a PIR protocol with
PIR rate independent of the number of files that achieves
the asymptotic MDS-PIR capacity in (8) for the case of
noncolluding nodes. We assume that the DSS uses an [n, k]
code C over GF(q) of rate RC and subpacketization α. For
such a code C, the user designs the l-th, l ∈ Nn, query as

Q(l) = U + V (l), (16)

11

TABLE I
PROTOCOL 1 WITH A [5, 3, 2] NON-MDS CODE FOR f = 2.

Server 1 Server 2 Server 3 Server 4 Server 5

y
(1)
3(1−1)+1,1

y
(1)
3(1−1)+1,2

y
(1)
3(1−1)+1,3

y
(1)
3(2−1)+1,4

y
(1)
3(2−1)+1,5

y
(1)
3(1−1)+2,1

y
(1)
3(1−1)+2,2

y
(1)
3(1−1)+2,3

y
(1)
3(2−1)+2,4

y
(1)
3(2−1)+2,5

y
(1)
3(1−1)+3,1

y
(1)
3(1−1)+3,2

y
(1)
3(1−1)+3,3

y
(1)
3(2−1)+3,4

y
(1)
3(2−1)+3,5

ro
un

d
1

y
(2)
5·0+1,1 y

(2)
5·0+1,2 y

(2)
5·0+1,3 y

(2)
5·0+2,4 y

(2)
5·0+2,5

y
(2)
5·0+2,1 y

(2)
5·0+3,2 y

(2)
5·0+4,3 y

(2)
5·0+3,4 y

(2)
5·0+3,5

re
pe

tit
io

n
1

y
(2)
5·0+5,1 y

(2)
5·0+4,2 y

(2)
5·0+5,3 y

(2)
5·0+4,4 y

(2)
5·0+5,5

y
(1)
3·5+1,1 + y

(2)
5·0+3,1 y

(1)
3·5+1,2 + y

(2)
5·0+2,2 y

(1)
3·5+1,3 + y

(2)
5·0+2,3 y

(1)
3·5+2,4 + y

(2)
5·0+1,4 y

(1)
3·5+2,5 + y

(2)
5·0+1,5

rn
d.

2

y
(1)
4·5+1,1 + y

(2)
5·0+4,1 y

(1)
4·5+1,2 + y

(2)
5·0+5,2 y

(1)
4·5+1,3 + y

(2)
5·0+3,3 y

(1)
4·5+2,4 + y

(2)
5·0+5,4 y

(1)
4·5+2,5 + y

(2)
5·0+4,5

y
(1)
3(2−1)+1,1

y
(1)
3(3−1)+1,2

y
(1)
3(4−1)+1,3

y
(1)
3(3−1)+1,4

y
(1)
3(3−1)+1,5

y
(1)
3(2−1)+2,1

y
(1)
3(3−1)+2,2

y
(1)
3(4−1)+2,3

y
(1)
3(3−1)+2,4

y
(1)
3(3−1)+2,5

y
(1)
3(2−1)+3,1

y
(1)
3(3−1)+3,2

y
(1)
3(4−1)+3,3

y
(1)
3(3−1)+3,4

y
(1)
3(3−1)+3,5

ro
un

d
1

y
(2)
5·1+1,1 y

(2)
5·1+1,2 y

(2)
5·1+1,3 y

(2)
5·1+2,4 y

(2)
5·1+2,5

y
(2)
5·1+2,1 y

(2)
5·1+3,2 y

(2)
5·1+4,3 y

(2)
5·1+3,4 y

(2)
5·1+3,5

re
pe

tit
io

n
2

y
(2)
5·1+5,1 y

(2)
5·1+4,2 y

(2)
5·1+5,3 y

(2)
5·1+4,4 y

(2)
5·1+5,5

y
(1)
3·5+2,1 + y

(2)
5+3,1 y

(1)
3·5+3,2 + y

(2)
5+2,2 y

(1)
3·5+4,3 + y

(2)
5+2,3 y

(1)
3·5+3,4 + y

(2)
5+1,4 y

(1)
3·5+3,5 + y

(2)
5+1,5

rn
d.

2

y
(1)
4·5+2,1 + y

(2)
5+4,1 y

(1)
4·5+3,2 + y

(2)
5+5,2 y

(1)
4·5+4,3 + y

(2)
5+3,3 y

(1)
4·5+3,4 + y

(2)
5+5,4 y

(1)
4·5+3,5 + y

(2)
5+4,5

y
(1)
3(5−1)+1,1

y
(1)
3(4−1)+1,2

y
(1)
3(5−1)+1,3

y
(1)
3(4−1)+1,4

y
(1)
3(5−1)+1,5

y
(1)
3(5−1)+2,1

y
(1)
3(4−1)+2,2

y
(1)
3(5−1)+2,3

y
(1)
3(4−1)+2,4

y
(1)
3(5−1)+2,5

y
(1)
3(5−1)+3,1

y
(1)
3(4−1)+3,2

y
(1)
3(5−1)+3,3

y
(1)
3(4−1)+3,4

y
(1)
3(5−1)+3,5

ro
un

d
1

y
(2)
5·2+1,1 y

(2)
5·2+1,2 y

(2)
5·2+1,3 y

(2)
5·2+2,4 y

(2)
5·2+2,5

y
(2)
5·2+2,1 y

(2)
5·2+3,2 y

(2)
5·2+4,3 y

(2)
5·2+3,4 y

(2)
5·2+3,5

re
pe

tit
io

n
3

y
(2)
5·2+5,1 y

(2)
5·2+4,2 y

(2)
5·2+5,3 y

(2)
5·2+4,4 y

(2)
5·2+5,5

y
(1)
3·5+5,1 + y

(2)
5·2+3,1 y

(1)
3·5+4,2 + y

(2)
5·2+2,2 y

(1)
3·5+5,3 + y

(2)
5·2+2,3 y

(1)
3·5+4,4 + y

(2)
5·2+1,4 y

(1)
3·5+5,5 + y

(2)
5·2+1,5

rn
d.

2

y
(1)
4·5+5,1 + y

(2)
5·2+4,1 y

(1)
4·5+4,2 + y

(2)
5·2+5,2 y

(1)
4·5+5,3 + y

(2)
5·2+3,3 y

(1)
4·5+4,4 + y

(2)
5·2+5,4 y

(1)
4·5+5,5 + y

(2)
5·2+4,5

where U = (ui,j) is a d×βf matrix whose elements ui,j are
chosen independently and uniformly at random from GF(q)
and whose purpose is to make Q(l) appear random and thus
ensure privacy. V (l) =

(
v

(l)
i,j

)
is a d×βf deterministic binary

matrix over GF(q), where v(l)
i,j = 1 means that the j-th symbol

in node l is accessed by the i-th subquery of Q(l), that allows
recovery of the requested data by the user. Matrix V (l) is
constructed from a d× n matrix Ê, as explained below.

Let I1, . . . , Iβ be β information sets for C (which are
implicitly linked to the β stripes of each file) and define
Fl , {i ∈ Nβ : l ∈ Ii} to be the set of indices of the
information sets I1, . . . , Iβ containing the l-th coordinate of
C. Then, Ê = (êi,l) is a binary matrix of size d× n that has
the following structure.

C1. Each row, denoted by êi, i ∈ Nd, has Hamming weight
wH (êi) = Γ.

C2. Each row êi is an erasure pattern that is correctable by
C.

C3. Each column, denoted by tl, l ∈ Nn, has weight
wH (tl) = |Fl|, i.e., the weight of the l-th column of Ê
is the number of times the l-th coordinate of the storage
code C appears in the β information sets I1, . . . , Iβ .

For later use, we call the vector (wH (t1) , . . . , wH (tn)) the
column weight profile of Ê.

Matrix V (l) is constructed from Ê such that if êi,l = 1,
then the i-th subquery of the l-th query, q(l)

i , accesses a
code symbol stored in the l-th node. Additionally, Ê is a
matrix having strictly Γd nonzero entries, ensuring that Γd
code symbols are downloaded by the protocol. We defer the
intuition behind the three conditions above until later in this
section. More precisely, matrix V (l) is constructed from Ê as
follows. For l ∈ Nn, V (l) has the form

V (l) =
(
0d×(m−1)β |∆l | 0d×(f−m)β

)
,

where ∆l is the d× β binary matrix

∆l =
(
ωT

j
(l)
1

| ωT

j
(l)
2

| . . . | ωT

j
(l)
d

)T

, (17)

with ωj , j ∈ Nβ , being the j-th β-dimensional unit vector,
i.e., a length-β weight-1 binary vector with a single 1 at the
j-th position and ω0 = 01×β . Also, given a chosen d × n
matrix Ê,

j
(l)
i =

{
s

(l)
i if êi,l = 1,

0 otherwise,
(18)

where s(l)
i ∈ Fl and s

(l)
i 6= s

(l)
i′ for i 6= i′, i, i′ ∈ Nd. This

completes the construction of the protocol.
Now, we provide the intuition behind conditions C1, C2,

and C3 above.

12

• Condition C1 stems from the fact that the user should be
able to recover Γ unique code symbols of the requested
file X(m) from the i-th subqueries q(l)

i that are sent to
the n nodes. Thus, each row of Ê should have exactly Γ
ones.

• For C2, consider an arbitrary row êi of Ê. The corre-
sponding set of n subqueries {q(1)

i , . . . , q
(n)
i } trigger a

response from the n nodes of the form

rl,i =

{
Yl + φl if êi,l = 1,

Yl otherwise,

where φl represents a code symbol present in the l-th
node, and Yl is some interference symbol generated due
to the product between q(l)

i and the content of the l-th
node. The vector (Y1, . . . , Yn) represents a codeword of
C (see also Theorem 2 below and its proof in Appendix D
for further details). In order to recover φl, l ∈ χ(êi), we
need to know Yl. This can be seen as a decoding problem
over the binary erasure channel. In other words, the i-th
row of Ê should be an erasure pattern that is correctable
by C.

• Condition C3 comes from the fact that the protocol should
be able to recover wH (tl) unique code symbols from the
l-th node.

The idea behind the construction of V (l) from Ê is that
the retrieval process can be cast as the correction of an
erasure pattern. Thus, we design V (l) (and subsequently the
responses) so that erasure correction is possible.

We remark that for a code C, Ê and {Ii}i∈Nβ need
not be unique. Furthermore, each set Ii, i ∈ Nβ , can
alternatively be represented as a correctable erasure pattern
ēi = (ēi,1, . . . , ēi,n), where ēi,l = 0, ∀ l ∈ Ii. Also, the
information sets {Ii}i∈Nβ can alternatively be defined by a
matrix Ē of size β × n as

Ē =

ē1

...
ēβ

 .

The two matrices Ê and Ē can be stacked into the matrix
E = (ei,l) as

E =

(
Ê
Ē

)
. (19)

To meet condition C3, for each l ∈ Nn, wH (tl) = β−wH (wl),
where tl and wl are columns of Ê and Ē, respectively. It
follows that meeting all three conditions C1, C2, and C3 is
equivalent to finding a (β + d) × n β-column regular matrix
E in which each row is a correctable erasure pattern. Hence,
we conclude that the requirements for E are equivalent to
finding a PIR achievable rate matrix

Λd,β+d(C) = 1(β+d)×n −E(β+d)×n, (20)

where β and d are chosen according to βk = Γd.
In the following lemma, we prove that our construction of

the queries ensures that the privacy condition (5a) is satisfied.

Lemma 4. Consider a DSS that uses an [n, k] code with
subpacketization α to store f files, each divided into β stripes.
Then, the queries Q(l), l ∈ Nn, designed as in (16) satisfy
H
(
m|Q(l)

)
= H(m), where l ∈ Nn represents the spy node.

Proof: The queries Q(l), l ∈ Nn, are a sum of a random
matrix U and a deterministic matrix V (l). The resulting
queries have elements that are independently and uniformly
distributed at random from GF(q). Hence, any Q(l) obtained
by the spy node is statistically independent of m. This ensures
that H

(
m|Q(l)

)
= H(m).

The following theorem shows that Protocol 2 achieves
perfect information-theoretic PIR, and it gives its achievable
PIR rate, R(C). Note that to prove perfect information-theoretic
PIR it remains to be shown that from the responses rl in
(4) sent by the nodes back to the user, one can recover the
requested file, i.e., that the constructed PIR protocol satisfies
the recovery condition in (5b).

Theorem 2. Consider a DSS that uses an [n, k] code with
subpacketization α to store f files, each divided into β stripes.
If there exists a Γ-row regular matrix Ê satisfying conditions
C1, C2, and C3, then H

(
X(m)|r1, . . . , rn

)
= 0 and the PIR

rate

R(C) =
Γ

n
≤ n− k

n

is achievable.

Proof: See Appendix D.
Theorem 2 generalizes [12, Th. 1] to any linear code.

Corollary 3. If for an [n, k] code C there exists an (n− k)-
regular matrix E satisfying conditions C1, C2, and C3, then
Protocol 2 achieves the asymptotic MDS-PIR capacity C∞ in
(8).

Remark 2. From (20), if there exists an (n − k)-regular
matrix E satisfying conditions C1, C2, and C3, a Λκ,ν MDS-
PIR capacity-achieving matrix with κ

ν = k
n exists. Thus, if

a code achieves the asymptotic MDS-PIR capacity C∞ with
Protocol 2, it also achieves the finite MDS-PIR capacity Cf
with Protocol 1.

Note that the parameters Γ, β mentioned in Theorem 2,
and d (which is not explicitly mentioned) have to be carefully
selected such that βk = Γd and such that a Γ-row regular
matrix Ê (satisfying condition C3) actually exists with a
valid collection of information sets {Ii}i∈Nβ . In the following
corollary, we provide a valid set of values.

Corollary 4. Let C be an [n, k, dCmin] code. For Γ =
min(k, dCmin − 1), it holds that

H
(
X(m)|r1, . . . , rn

)
= 0, (21)

and the PIR rate R(C) =
min(k,dCmin−1)

n is achievable.

Proof: Let d = k and β = Γ. Then, (21) follows directly
from Theorem 2, since we have shown in Lemma 3 that the
required matrix Λk,Γ+k(C) exists for C, and the existence of
E(Γ+k)×n follows from (20).

13

The above corollary provides a lower bound on the value of
Γ for any code. In other words, it allows us to design a PIR
protocol with PIR rate greater than or equal to min(k, dCmin −
1)/n. We remark that with a better designed Ê, it may be
possible to achieve a higher PIR rate. For systematic codes
with rate RC > 1/2, a better lower bound on the maximum
achievable PIR rate compared to that of Corollary 4 is given
below.

Corollary 5. Let C be an [n, k] systematic code with RC >
1/2 and HC = (P | In−k). Consider the [n = k, k′] code C′
with parity-check matrix HC

′
= P . For Γ = dC

′

min−1, it holds
that

H
(
X(m)|r1, . . . , rn

)
= 0, (22)

and the PIR rate R(C) =
dC
′

min−1
n is achievable.

Proof: As for the proof of Corollary 4, let d = k and
β = Γ. Then, (22) follows directly from Theorem 2. Select k
erasure patterns ê′i, i ∈ Nk, of length k, such that wH (ê′i) =
dC
′

min − 1 and ê′i+1 is a right cyclic shift of ê′i, i ∈ Nk−1. The
patterns are all correctable by the code C′. Thus, the erasure
patterns

êi = (ê′i, 0, · · · , 0︸ ︷︷ ︸
n−k

)

are also correctable by C. Choosing the information sets
Ii = Nk, i ∈ NΓ, the required Γ-row regular matrix Ê
satisfying conditions C1, C2, and C3 can then be constructed
from {êi}i∈Nk and {Ii}i∈NΓ

.
Observe that RC > 1

2 implies k > dCmin − 1. In [29], under
the assumption that k > dCmin − 1, a PIR protocol achieving a
PIR rate of (dCmin − 1)/n was given. Note that dCmin ≤ dC

′

min,
and thus R(C) ≥ (dCmin − 1)/n for our construction.

Below we give two examples to elucidate Protocol 2.
Example 4 illustrates the PIR protocol when the underlying
code has rate RC > 1/2, with parameters d = k and β = Γ.
On the other hand, Example 5 uses an underlying code that
has rate RC < 1/2, again with parameters d = k and β = Γ.

Example 4. Consider a DSS that uses the [5, 3, 2] scalar (α =
1) binary code C in Section IV-D (with generator matrix given
in (15)) to store a single file by dividing it into β stripes. Its
parity-check matrix is given by

HC = (P |In−k) =

(
1 1 0 1 0
0 1 1 0 1

)
.

To determine the value of the parameter β, we compute the
minimum Hamming distance dC

′

min of the [n′ = 3, k′ = 1] code
C′ with parity-check matrix HC

′
= P . From HC

′
it follows

that dC
′

min = 3. Hence, from Corollary 5, β = 2. Let the file to
be stored be denoted by the 2 × 3 matrix X = (xi,j), where
the message symbols xi,j ∈ GF(2`) for ` ∈ N. Then,

C =

(
x1,1 x1,2 x1,3 x1,1 + x1,2 x1,2 + x1,3

x2,1 x2,2 x2,3 x2,1 + x2,2 x2,2 + x2,3

)
.

The user wants to download the fileX from the DSS and sends
a queryQ(l), l ∈ N5, to the l-th storage node. The queries take
the form shown in (16). For l ∈ N5, we construct the matrix

V (l) = ∆l by choosing an appropriate matrix Ê. To do this,
we carefully choose the information sets I1 = {1, 2, 3} and
I2 = {1, 2, 3} (and hence V (4) = V (5) = 0d×β). This allows
us to generate a column weight profile in Ê. More specifically,
let tl be the l-th column of Ê, l ∈ N5. We have wH (t1) =
wH (t2) = wH (t3) = 2 and wH (t4) = wH (t5) = 0. A valid
matrix Ê is

Ê =

1 0 1 0 0
1 1 0 0 0
0 1 1 0 0

and we construct ∆1 according to (17). Focusing on the first
column of Ê, we can see that the first two rows have a one
in the first position. Thus, we choose j(1)

1 = s
(1)
1 , j(1)

2 = s
(1)
2 ,

and j(1)
3 = 0, since ê1,1 = 1, ê2,1 = 1, and ê3,1 = 0. We take

s
(1)
1 , s

(1)
2 ∈ N2. We arbitrarily choose s(1)

1 = 1 and s
(1)
2 = 2

to get

∆1 =

ω1

ω2

ω0

 =

1 0
0 1
0 0

 .

Similarly, we construct

∆2 =

0 0
1 0
0 1

 and ∆3 =

0 1
0 0
1 0

 .

The queries Q(l) are sent to the respective nodes and the
responses

r1 =

(
u1,1x1,1+u1,2x2,1+x1,1

u2,1x1,1+u2,2x2,1+x2,1

u3,1x1,1+u3,2x2,1

)
=

(
I1+x1,1

I4+x2,1

I7

)
,

r2 =

(
u1,1x1,2+u1,2x2,2

u2,1x1,2+u2,2x2,2+x1,2

u3,1x1,2+u3,2x2,2+x2,2

)
=

(
I2

I5+x1,2

I8+x2,2

)
,

r3 =

(
u1,1x1,3+u1,2x2,3+x2,3

u2,1x1,3+u2,2x2,3

u3,1x1,3+u3,2x2,3+x1,3

)
=

(
I3+x2,3

I6
I9+x1,3

)
,

r4 =
(u1,1 u1,2
u2,1 u2,2
u3,1 u3,2

)(
x1,1+x1,2

x2,1+x2,2

)
=

(
I1+I2
I4+I5
I7+I8

)
,

r5 =
(u1,1 u1,2
u2,1 u2,2
u3,1 u3,2

)(
x1,2+x1,3

x2,2+x2,3

)
=

(
I2+I3
I5+I6
I8+I9

)
,

where Ii =
∑2
j=1 uh,jxj,h′ and i = 3(h−1)+h′, with h, h′ ∈

N3, are collected by the user. Notice that each storage node
sends back d = k = 3 symbols. The user obtains the requested
file as follows. Knowing I2, the user obtains I1 and I3 from the
first components of r4 and r5. This allows the user to obtain
x1,1 and x2,3. In a similar fashion, knowing I6 the user gets
I5 from the second component of r5, then uses this to obtain
I4 from the second component of r4. This allows the user to
obtain x2,1 and x1,2. Similarly, knowing I7 allows the user to
get I8 from the third component of r4. Knowing I8 allows the
user to obtain I9 from the third component of r5, which then
allows to recover the symbols x2,2 and x1,3. In this way, the
user recovers all symbols of the file and hence recovers X .
Note that R(C) = 2·3

5·3 = 2
5 , which is equal to the asymptotic

MDS-PIR capacity C∞ in (8).

14

Example 5. Consider a DSS consisting of n = 7 storage
nodes that store a single file X . The DSS uses a [7, 3, 4] scalar
binary code C. The parity-check matrix of the code is

HC =

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 .

We take β = Γ = n−k = 4. File X is of size β×k and hence
consists of βk symbols in GF(2`). Accordingly, the code array
is

C =

x1,1 x1,2 x1,3 x1,2 + x1,3 x1,1 + x1,3 x1,1 + x1,2 x1,1 + x1,2 + x1,3

x2,1 x2,2 x2,3 x2,2 + x2,3 x2,1 + x2,3 x2,1 + x2,2 x2,1 + x2,2 + x2,3

x3,1 x3,2 x3,3 x3,2 + x3,3 x3,1 + x3,3 x3,1 + x3,2 x3,1 + x3,2 + x3,3

x4,1 x4,2 x4,3 x4,2 + x4,3 x4,1 + x4,3 x4,1 + x4,2 x4,1 + x4,2 + x4,3

 .

The queries sent to each node, each consisting of d = k = 3
subqueries, take the form in (16). The aim of each subquery is
to recover Γ code symbols using the PIR protocol. In order to
do so, we construct the information sets {Ii}i∈N4

. With careful
consideration, we choose I1 = {3, 4, 6}, I2 = {2, 6, 7}, I3 =
{1, 3, 4}, and I4 = {1, 5, 6}. The column weight profile of Ê
is (2, 1, 2, 2, 1, 3, 1). A valid matrix Ê is

Ê =

0 0 1 1 1 1 0
1 1 0 1 0 1 0
1 0 1 0 0 1 1

 .

Note that each erasure pattern in Ê (each row) is correctable
by the code C. As in Example 4, we map the columns of Ê
and {Ii}i∈N4

to the matrix V (l) and obtain

∆1 =

0 0 0 0
0 0 1 0
0 0 0 1

 , ∆2 =

0 0 0 0
0 1 0 0
0 0 0 0

 ,

∆3 =

1 0 0 0
0 0 0 0
0 0 1 0

 , ∆4 =

1 0 0 0
0 0 1 0
0 0 0 0

 ,

∆5 =

0 0 0 1
0 0 0 0
0 0 0 0

 , ∆6 =

1 0 0 0
0 1 0 0
0 0 0 1

 ,

∆7 =

0 0 0 0
0 0 0 0
0 1 0 0

 .

As an example, we next show the reconstruction of symbols
from the first pair of subqueries and subresponses. We have

r1,1 = I1, r2,1 = I2, r3,1 = I3 + x1,3,

r4,1 = I2 + I3 + x1,2 + x1,3, r5,1 = I1 + I3 + x4,1 + x4,3,

r6,1 = I1 + I2 + x1,1 + x1,2, r7,1 = I1 + I2 + I3,

where rl,1 denotes the first subresponse from the l-th node,
Ii =

∑4
j=1 uh,jxj,h′ and i = 3(h − 1) + h′, h, h′ ∈ N3.

Clearly, the subresponses r1,1, r2,1, and r7,1 allow the user
to obtain the three interference symbols I1, I2, and I3. This
is solely because the first row of Ê (pertaining to the first
subqueries) is an erasure pattern correctable by C. Having
this knowledge, the user obtains the symbols x1,3, x1,2 +x1,3,
x4,1 +x4,3, and x1,1 +x1,2 from the remaining subresponses.
From the obtained code symbols the user can decode x1,3,

x1,2, and x1,1, hence obtaining the message symbols in the
first row of C. The code symbol x4,1 +x4,3 is used to decode
x4,1, x4,2, and x4,3 from the code symbols that are further
obtained from the third subresponse. In the same way, the
remaining two subresponses allow the recovery of βk = 12
message symbols.

The PIR rate is R(C) = 4·3
7·3 = 4

7 , which is equal to the
asymptotic MDS-PIR capacity C∞ in (8).

VI. MDS-PIR CAPACITY-ACHIEVING CODES

For given values of n and k, whether an [n, k] code is
MDS-PIR capacity-achieving or not is of great interest. In
this section, we provide a necessary condition for an arbitrary
linear code to achieve the MDS-PIR capacities Cf and C∞
with Protocols 1 and 2, respectively. Furthermore, we prove
that certain important families of codes, namely cyclic codes,
RM codes, and a class of distance-optimal LRCs are MDS-PIR
capacity-achieving. For Protocol 2, the MDS-PIR capacity-
achieving proofs for these classes of codes assume β = n− k
and d = k, which are not necessary the minimum values given
in (6). However, in the numerical results section (see Tables II
and III) we show examples for which Protocol 2 also achieves
the MDS-PIR capacity for β and d in (6).

As shown in the previous sections, the only requirement for
a code C to achieve the MDS-PIR capacity with Protocol 1
is that there exists an MDS-PIR capacity-achieving matrix
Λκ,ν(C) (or a (Γ = n−k)-regular matrixE of size (β+d)×n).
In other words, the code C should be able to correct β + d
erasure patterns of n − k erasures that satisfy the regularity
condition of E.

Let us first consider a fact for any information set of an
[n, k] code.

Proposition 2 ([38, Th. 1.6.2]). If I is an information set
of an [n, k] code C, then Nn \ I is an information set of its
[n, n− k] dual code C⊥.

Based on Proposition 2, the subsequent result follows.

Corollary 6. The dual of an [n, k] MDS-PIR capacity-
achieving code is an [n, n − k] MDS-PIR capacity-achieving
code.

To check if a linear code achieves the MDS-PIR capacity
with Protocol 1, sometimes it might be easier to verify the
MDS-PIR capacity-achieving condition for its dual code.

Next, we derive a useful result that gives the relation
between an information set and a subcode of dimension s.

Lemma 5. Given an [n, k] code C, for any information set I
and an s-dimensional subcode D ⊆ C, we have∣∣I ∩ χ(D)

∣∣ ≥ s.
Proof: See Appendix E.

Now, we are able to provide a necessary condition for a
code to achieve the MDS-PIR capacity with Protocol 1.

Theorem 3. If an MDS-PIR capacity-achieving matrix exists
for an [n, k] code C, then

dCs ≥
n

k
s, ∀ s ∈ Nk. (23)

15

Proof: By definition there exists a PIR achievable rate
matrix Λκ,ν(C) with κ

ν = k
n . This means that there exist

information sets Ii, i ∈ Nν , such that in {Ii}i∈Nν each
coordinate j of C, j ∈ Nn, appears exactly κ times. Let D
be any subcode of dimension s of the [n, k] code C. This
implies that

κ |χ(D)| =
ν∑
i=1

∣∣Ii ∩ χ(D)
∣∣ (a)

≥ νs,

where (a) follows from Lemma 5. Based on the definition of
dCs , s ∈ Nk, there exists a rank-s subcode D∗ that achieves
dCs . We then have

dCs ≥
ν

κ
s =

n

k
s, ∀ s ∈ Nk.

Based on the necessary condition, it can be shown that the
code C in Example 2 is not MDS-PIR capacity-achieving with
Protocol 1, since dC2 = 3 < 5

3 · 2, i.e., it is impossible to find
an MDS-PIR capacity-achieving matrix Λκ,ν for this code.

We would like to emphasize that it seems that the necessary
condition for MDS-PIR capacity-achieving matrices in Theo-
rem 3 is also a sufficient condition. We have performed an ex-
haustive search for codes with parameters k ∈ Nn and n ∈ N11

(except for [n, k] = [10, 5] and [n, k] = [11, 4 ≤ k ≤ 7])
and seen that for codes that satisfy the necessary condition,
there always exists an MDS-PIR capacity-achieving matrix.
Therefore, we conjecture that (23) in Theorem 3 is an if and
only if condition for the existence of an MDS-PIR capacity-
achieving matrix.

Conjecture 1. An MDS-PIR capacity-achieving matrix exists
for an [n, k] code C if and only if

dCs ≥
n

k
s, ∀ s ∈ Nk.

In the following, we provide a sufficient condition for an
[n, k] code C to achieve the MDS-PIR capacity with Protocol 1
by using code automorphisms [31, Ch. 8].

Theorem 4. Given an [n, k] code C, if there exist n distinct
automorphisms π1, . . . , πn of C such that for every code
coordinate j ∈ Nn, {π1(j), . . . , πn(j)} = Nn, then the code
C is an MDS-PIR capacity-achieving code.

Proof: Since any [n, k] code C contains at least one
information set I, the automorphisms {πi}i∈Nn guarantee that

Ii , {πi(j) : j ∈ I}, i ∈ Nn,

are all information sets of C. By assumption, for a given j ∈ I,
we have {π1(j), . . . , πn(j)} = Nn. Since there are in total k
coordinates in I, every coordinate appears exactly k times in
{Ii}i∈Nn , and hence an MDS-PIR capacity-achieving matrix
Λk,n(C) satisfying Definition 13 exists.

Using their known code automorphisms and Theorem 4, it
is easy to prove that the families of cyclic codes and RM codes
achieve the MDS-PIR capacity.

A. Cyclic Codes

Corollary 7. Cyclic codes are MDS-PIR capacity-achieving
codes.

Proof: Let πi denote the automorphism of an [n, k] cyclic
code C that cyclically shifts each coordinate to the right
by i positions. Clearly, for every code coordinate j ∈ Nn,
{π1(j), . . . , πn(j)} = Nn, and the result follows from Theo-
rem 4.

B. Reed-Muller Codes

Corollary 8. RM codes are MDS-PIR capacity-achieving
codes.

Proof: Consider an arbitrary RM code R(v,m) with
v ∈ {0} ∪ Nm for some m ∈ N. Consider the n distinct
automorphisms gi(µ) , µ+σi, where σi is the i-th m-tuple
in GF(2)m×1, i ∈ Nn, n = 2m (see Section II-A). For any
µ ∈ GF(2)m×1,

{g1(µ), . . . , gn(µ)} = {µ+ σ1, . . . ,µ+ σn}

forms the vector space GF(2)m×1, and the result follows from
Theorem 4.

We remark here that because of the property of invertible
and affine automorphisms for binary RM codes, it is not too
hard to see that Corollary 8 can be extended to nonbinary
generalized RM codes [40]. The detailed discussion is omitted.
Furthermore, note that in the independent work [32] it was also
shown that RM codes can achieve the asymptotic MDS-PIR
capacity, albeit with a protocol that requires a much larger β
and d.

Besides cyclic codes and RM codes, there exist other
families of codes satisfying Theorem 4, for instance, the class
of low-density parity-check (LDPC) codes constructed from
array codes [41], [42]. We further emphasize that the proof of
Theorem 4 indicates that the automorphisms of an [n, k] code
are very important to design an MDS-PIR capacity-achieving
matrix.

C. Local Reconstruction Codes

In this subsection, we prove that a certain family of LRCs
achieves the MDS-PIR capacity by directly showing the exis-
tence of an (n− k)-regular n× n matrix E.

Consider an [n, k] distance-optimal (r, δ) information local-
ity code (see Definition 7) for which the (n′− k)× n′ matrix(

P1 P2 · · · PLc In′−kM1 M2 · · · MLc

)
,HMDS (24)

is the parity-check matrix of an [n′, k] MDS code over GF(q),
where n′ = n− (Lc − 1)(δ − 1).5 For such a class of codes,
we give an explicit construction of the matrix E in order to
design the PIR protocol.

5Examples of codes that satisfy (24) are Pyramid codes, the LRCs in [25],
and codes from the parity-splitting construction of [26].

16

Recall that L =
⌊
n
nc

⌋
, nc = r+δ−1, and let r̄ , n mod nc.

We consider

E =

 E1,1 E1,2 . . . E1,L+1

...
...

...
...

EL+1,1 EL+1,2 . . . EL+1,L+1

having (L + 1)2 submatrices El,h, l, h ∈ NL+1. For any
l, h ∈ NL, the submatrices El,h have dimensions nc × nc,
El,L+1 has dimensions nc× r̄, EL+1,h has dimensions r̄×nc,
and EL+1,L+1 has dimensions r̄ × r̄. We denote by e

(l)
i ,

l ∈ NL+1, the i-th row of
(
El,1| . . . |El,L+1

)
. The coordinates

of e(l)
i represent the coordinates of the code C defined by its

parity-check matrix in (2). Furthermore, each row vector is
subdivided into L+ 1 subvectors e(l)

i,j , j ∈ NL+1, as

e
(l)
i = (e

(l)
i,1, . . . , e

(l)
i,n) = (e

(l)
i,1, . . . , e

(l)
i,L, e

(l)
i,L+1).

The subvectors e(l)
i,1, . . . , e

(l)
i,L are of length nc, while e(l)

i,L+1

is of length r̄. Correspondingly, we can think about E as
partitioned into L + 1 column partitions, where the first Lc

partitions correspond to the Lc local codes and the remaining
L + 1 − Lc partitions correspond to global parities (see also
(3)). We can write E as

E ,

e
(1)
1
...
e

(1)
nc

...
e

(L)
nc

e
(L+1)
1

...
e

(L+1)
r̄

=

e
(1)
1,1 e

(1)
1,2 · · · e

(1)
1,L e

(1)
1,L+1

...
... · · ·

...
...

e
(1)
nc,1

e
(1)
nc,2

· · · e
(1)
nc,L

e
(1)
nc,L+1

...
... · · ·

...
...

e
(L)
nc,1

e
(L)
nc,2

· · · e
(L)
nc,L

e
(L)
nc,L+1

e
(L+1)
1,1 e

(L+1)
1,2 · · · e

(L+1)
1,L e

(L+1)
1,L+1

...
... · · ·

...
...

e
(L+1)
r̄,1 e

(L+1)
r̄,2 · · · e

(L+1)
r̄,L e

(L+1)
r̄,L+1

.

We refer to the set of rows e(l)
1 , . . . , e

(l)
nc as the l-th row

partition of E.
For convenience, we divide E into four submatrices Ẽ, W ,

Z, and O defined as

Ẽ ,

e

(1)
1,1 e

(1)
1,2 · · · e

(1)
1,L

e
(1)
2,1 e

(1)
2,2 · · · e

(1)
2,L

...
... · · ·

...
e

(L)
nc,1

e
(L)
nc,2

· · · e
(L)
nc,L

,Z ,

e

(1)
1,L+1

e
(1)
2,L+1

...
e

(L)
nc,L+1

,

W ,

e

(L+1)
1,1 e

(L+1)
1,2 · · · e

(L+1)
1,L

...
... · · ·

...
e

(L+1)
r̄,1 e

(L+1)
r̄,2 · · · e

(L+1)
r̄,L

 ,O ,

e

(L+1)
1,L+1

...
e

(L+1)
r̄,L+1

, (25)

where Ẽ is an ncL×ncL matrix, having L2 submatrices El,h,
l, h ∈ NL.

In the following, we give a systematic construction of E
such that it is (n− k)-regular. The construction involves two
steps.

a) Initialize matrices Ẽ, W , Z, and O. Matrix Z is
initialized to the all-zero matrix of dimensions ncL× r̄.
Matrices W and O are initialized by setting e(L+1)

i,j = 1,

i ∈ Nr̄, j ∈ P =
⋃L+1
j′=1 Pj′ , where P corresponds to the

parity coordinates of C and the sets Pj′ are defined in
Section II-B (see (3)). Let m =

⌊
n−k
L

⌋
, m1 = m + 1,

ρ1 = · · · = ρt = m1, and ρt+1 = · · · = ρL = m,
where t = (n − k) mod L. Matrix Ẽ is initialized with
the structure

Ẽ =

π1 π2 · · · πL
πL π1 · · · πL−1

...
... · · ·

...
π2 π3 · · · π1

 , (26)

where each matrix entry πl, l ∈ NL, is a ρl-regular square
matrix of dimensions nc × nc. Notice that due to the
structure in (26), Ẽ has row and column weight equal
to n − k, and subsequently each row of E has weight
n− k. Note also that the columns of E with coordinates
in Pj , j ∈ NL, have column weight n− k+ r̄, while the
columns with coordinates in PL+1 have weight r̄.

b) Swapping elements between Ẽ and Z. The swapping
of elements is performed iteratively with r̄ iterations.
For each iteration, in the i-th row partition and j-th
column partition, we consider a set of row coordinates
R(i)
j of size |Pj | from which s

(i)
j ∈ {0, 1} ones from

columns with coordinates in Pj , j ∈ NL, are swapped
with zeroes in the corresponding rows of Z. For conve-
nience, we define s(i) = (s

(i)
1 , . . . , s

(i)
L) and require that∑L

j=1 s
(i)
j = 1. Note that R(i)

j and s(i) depend on the
iteration number. We describe the procedure for iteration
j′ ∈ Nr̄. For the first row partition, select s(1) with
s

(1)
j = 1 and s(1)

z = 0, ∀ z ∈ NL\{j}, for some j ∈ NL,
such that if j ∈ NLc there exist δ − 1 rows in the first
row partition and j-th column partition such that their
individual weight is strictly larger than δ − 1, and other-
wise if j ∈ NLc+1:L, all rows in the first row partition
and j-th column partition must have weight larger than
or equal to max(1,m − (δ − 1)). This will ensure that
the resulting erasure patterns after the swap (as described
next) are correctable by C (see Appendix F-B). Such an
s(1) will also always exist for all r̄ iterations as shown in
Appendix F-B. Next, for all i′ ∈ R(1)

j and p ∈ Pj (where
different p’s are chosen for different i′’s, and index j is
such that s(1)

j = 1) the one at coordinate (i′, p) of Ẽ
is swapped with a zero at coordinate (i′, j′) of Z (this
corresponds to coordinate (i′, ncL + j′) of E). Then,
for the remaining row partitions i = 2, . . . , L, consider
s(i) to be the (i − 1)-th right cyclic shift of s(1) and
repeat the swapping procedure for the first row partition.
Due to the specific selection of s(1), the corresponding
erasure patterns for all row partitions after the swaps are
correctable by C (see Appendix F-B). Note that we have
performed

∑L
j=1 |Pj | = n−k−r̄ swaps from the columns

of Ẽ with coordinates in the set ∪Lj=1Pj to the j′-th
column of Z. Thus, each column in ∪Lj=1Pj has column
weight n− k + r̄ − 1 and the (ncL+ j′)-th column has
column weight n−k− r̄+ r̄ = n−k. Letting j′ = j′+1
and repeating the above procedure r̄ times ensures E to
be (n− k)-regular.

17

This completes the construction of E, which has row and
column weight n − k. In the following theorem, we show
that each row of E (considered as an erasure pattern) can be
corrected by any code from the class of distance-optimal (r, δ)
information locality codes whose parity-check matrices are as
in (2) and are compliant with (24). Thus, this class of codes
is MDS-PIR capacity-achieving.

Theorem 5. An [n, k] distance-optimal (r, δ) information lo-
cality code C with parity-check matrix as in (2) and satisfying
(24) is an MDS-PIR capacity-achieving code.

Proof: See Appendix F.
In the following, we present an example to illustrate the

construction of the matrix E. The existence of such a matrix
ensures that the PIR protocols presented in Sections IV and
V achieve the finite MDS-PIR capacity Cf in (7) and the
asymptotic MDS-PIR capacity C∞ in (8), respectively.

Example 6. Consider an [n = 7, k = 4] Pyramid code C that
is constructed from an [n′ = 6, 4] Reed-Solomon (RS) code
over GF(23) with parity-check matrices

HC =

z3 1 1 0 0 0 0
0 0 0 z3 z 1 0
z4 1 0 z5 z5 0 1

and

HMDS =

(
z3 1 z3 z 1 0
z4 1 z5 z5 0 1

)
,

respectively, where z denotes a primitive element of GF(23).
It is easy to see that C is a distance-optimal (r = 2, δ = 2)
information locality code. We have nc = 3, L = Lc = 2, and
r̄ , n mod nc = 1. Since ρ1 = 2 and ρ2 = 1, we get

Ẽ =

(
π1 π2

π2 π1

)
=

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 , Z =

0
0
0
0
0
0

 ,

where π1 is a 2-regular 3× 3 matrix and π2 is picked as the
identity matrix. The set of parity coordinates is P = {3, 6, 7},
and we set e(3)

1,3 = e
(3)
1,6 = e

(3)
1,7 = 1. As such, we get

W =
(
0 0 1 0 0 1

)
and O =

(
1
)
.

This completes Step a) of the construction above. Note that
each row of E has now weight 3. The second step of the
procedure (Step b)) is as follows. Consider the first iteration,
j′ = 1. In the first row partition we choose s(1) = (s

(1)
1 =

1, s
(1)
2 = 0). Taking R(1) = {2}, we do the swap between

the coordinates (i′ = 2, p = 3 ∈ P1) and (i′, 6 + j′). For
the second row partition we have s(2) = (0, 1) which is a
right cyclic shift of s(1). Taking R(2) = {6}, we do the swap
between the coordinates (i′ = 6, p = 6 ∈ P2) and (i′, 6 + j′).
Thus, we have

e
(1)
2,3 = 0, e

(1)
2,7 = 1,

e
(2)
3,6 = 0, e

(2)
3,7 = 1.

Algorithm 1: Optimizing the PIR rate
Input : Distributed storage code C of length n
Output: Optimized matrix Eopt and largest possible Γ

1 Γ← min
(
k, dCmin − 1

)
2 Eopt ← ∅, Γopt ← Γ
3 Ln−k ←

ComputeErasurePatternList(C, n− k)
4 while Γ ≤ n− k do
5 LΓ ← ComputeErasurePatternList(C,Γ)
6 if LΓ 6= ∅ then
7 E ← ComputeMatrix(LΓ,Ln−k)
8 if E 6= ∅ then
9 Eopt ← E, Γopt ← Γ

10 else
11 return (Eopt,Γopt)
12 end
13 end
14 Γ← Γ + 1
15 end
16 return (Eopt,Γopt)

Since r̄ = 1, this completes Step b), which results in

E =

1 1 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 1 0 0 1
0 0 1 0 0 1 1

.

The entries in red indicate the swapped values within each
row. It can easily be verified that each row of E is an erasure
pattern that is correctable by code C.

VII. OPTIMIZING THE PIR RATE FOR THE
NONCOLLUDING CASE

For codes for which we are not able to prove that they
achieve the MDS-PIR capacity, in this section we provide an
algorithm to optimize Protocols 1 and 2 in order to achieve the
highest possible PIR rate R(C) for a given code C by taking
the structure of the underlying code into consideration. The
algorithm is given in Algorithm 1 and is based on Theorem 2.
In particular, we need to find a (d+β)×n matrix E in (19) for
which Ê consists of erasure patterns of weight Γ that are all
correctable by C, and for which Ē corresponds to information
sets of C (the support of each row is the complement of an
information set). In addition, it is required that each column
weight of Ê is equal to the corresponding column weight of
1 − Ē (see Section V). Note that from the resulting matrix
E we can find a PIR achievable rate matrix by taking its
binary complement as in (20) (see Section V), thus optimizing
Protocols 1 and 2 in Sections IV and V, respectively.

The main issues that need to be addressed are the ef-
ficient enumeration of the set of erasure patterns of a
given weight Γ (corresponding to the rows of Ê) and
also of weight n − k (Ē, corresponding to information

18

sets) that can be corrected by C, and the efficient com-
putation of the matrix E. These issues are addressed by
the subprocedures ComputeErasurePatternList(C, ·)
and ComputeMatrix(LΓ,Ln−k), in Lines 3, 5, and 7 of
Algorithm 1, and discussed below in Sections VII-A and
VII-B, respectively. Here, LΓ and Ln−k correspond to erasure
patterns for Ê and Ē, respectively. We remark that the
algorithm will always return a valid E 6= ∅, since initially
Γ = min(k, dCmin− 1). This follows directly from the fact that
we can construct an arbitrary Ê with row weights Γ such that
its column weights match the corresponding weights in 1−Ē.
Each row in Ê is an erasure pattern that is correctable by C.

Let d = k and β = Γ. In the particular case of C being a
rate RC > 1/2 systematic MDS code, dCmin = n− k + 1, and
the algorithm will do exactly one iteration of the main loop.
This follows directly from the construction of E: the matrix
E can be constructed by taking the support of an arbitrary
information set of C and cyclically shifting it n times to
construct an n×n PIR achievable rate matrix, after which the
resulting matrix is complemented as (20) to getE. In this case,
the overall PIR scheme reduces to the scheme described in [12,
Sec. IV] for systematic MDS codes of rate RC > 1/2. Clearly,
for general MDS codes (including nonsystematic codes) of rate
RC > 1/2, the same construction of E works, and the algo-
rithm will perform exactly one iteration of the main loop also
for nonsystematic MDS codes. In the case of C being a rate
RC ≤ 1/2 general MDS code, the initial value of Γ becomes
k (since Γ = min(k, dCmin − 1) = min(k, n− k) = k), but the
algorithm will also find a valid matrix E for Γ = n− k ≥ k.
Again, the existence of E follows from the same argument of
cyclically shifting an existing information set n times. In the
general case of d 6= k and β 6= Γ, a similar argument to the
one above can be made.

A. ComputeErasurePatternList(C, ·)

Computing a list of erasure patterns that are correctable for
a given short code can be done using any maximum likelihood
(ML) decoding algorithm. For small codes, all length-n binary
vectors (or erasure patterns) of weight Γ (or n − k) that
are correctable can be found by exhaustive search, while for
longer codes a random search can be performed, in the sense
of picking length-n binary vectors (or erasure patterns) of
weight Γ (or n − k) at random, and then verifying whether
they are correctable or not. Alternatively, one can apply a
random permutation π to the columns of HC , apply the
Gauss-Jordan algorithm to the resulting matrix to transform
it into row echelon form, collect a subset of size Γ of the
column indices of leading-one-columns,6 and finally apply the
inverse permutation π−1 to this subset of column indices. The
resulting set corresponds to erased coordinates in C that can
be recovered by the code. Finally, one can check whether all
cyclic shifts of the added erasure pattern are correctable or not
and add the correctable cyclic shifts to LΓ (or Ln−k).

6The leading-one-columns are the columns containing a leading one, where
the first nonzero entry in each matrix row of a matrix in row echelon form is
called a leading one.

B. ComputeMatrix(LΓ,Ln−k)

Given the lists LΓ and Ln−k of erasure patterns of weight Γ
and n−k, respectively, that are correctable for C, we construct
a
(
|LΓ|+|Ln−k|

)
×n matrix, denoted by Ψ = (ψi,j), in which

each row i ∈ N|LΓ| is one of the erasure patterns from LΓ and
each row i ∈ N|LΓ|+1:|LΓ|+|Ln−k| is one of the erasure patterns
from Ln−k. The problem is now to find a d×n submatrix Ψ̂
of the upper part of Ψ (rows 1 to |LΓ|) and a β×n submatrix
Ψ̄ of the lower part of Ψ (rows |LΓ| + 1 to |LΓ| + |Ln−k|)
such that the column weight of each of the n columns is the
same for Ψ̂ and the binary complement of Ψ̄, where β and d
are chosen such that βk = Γd.

This can be formulated as an integer program (in the integer
variables η1, . . . , η|LΓ|+|Ln−k|) in the following way,

maximize
|LΓ|+|Ln−k|∑

i=1

ηi

s. t.
|LΓ|∑
i=1

ηiψi,j =

|LΓ|+|Ln−k|∑
i=|LΓ|+1

ηi(1− ψi,j), ∀ j ∈ Nn,

ηi ∈ {0, 1}, ∀ i ∈ N|LΓ|+|Ln−k|, (27)
|LΓ|∑
i=1

ηi = d, and
|LΓ|+|Ln−k|∑
i=|LΓ|+1

ηi = β.

A valid (d + β) × n matrix E is constructed from the rows
of Ψ with ηi-values equal to one in any feasible solution of
(27). When |LΓ|+ |Ln−k| is large, solving (27) may become
impractical (solving a general integer program is known to
be NP-hard), in which case one can take several random
subsets (of some size) of the lists LΓ and Ln−k, construct
the corresponding matrices Ψ, and try to solve the program
in (27).

VIII. MULTIPLE COLLUDING NODES

In this section, we consider the scenario where T > 1 nodes
act as spies and have the ability to collude. In particular, we
propose a protocol for this scenario that improves upon the PIR
protocol in [29]. We refer to the protocol in [29] as the (C, C̄)-
retrieval protocol (or scheme), since it is based on two linear
codes: an [n, k] code C and an [n, k̄] code C̄, where C is the
underlying storage code of the DSS and C̄ defines the queries.
Furthermore, the retrieval process is defined by an [n, k̃] code
C̃ that is the Hadamard product of C and C̄, C̃ = C ◦ C̄. The
protocol yields privacy against at most T = dC̄

⊥

min−1 colluding
nodes under the assumption that the code C̄ with dC̄

⊥

min = T +1
exists for the given T (existing in the sense that the Hadamard
product of C and C̄ has rate strictly smaller than 1).

Originally, the protocol was designed to work with GRS
codes, a class of MDS codes, i.e., both codes C and C̄ are
GRS codes. In this case C̄ has parameters [n, k̄ = T], the
retrieval code C̃ has parameters [n, k̃ = k + T − 1], and the
PIR rate is

RGRS =
n− (k + T − 1)

n
.

19

For non-MDS codes, the protocol achieves a PIR rate

R(C, C̄) =
dC̃min − 1

n
,

which is lower than RGRS. In general, when the underlying
codes are arbitrary codes, it can be shown that the PIR rate of
the (C, C̄)-retrieval protocol is upperbounded by

RUB ,
n− k̃
n

. (28)

In particular, the (C, C̄)-retrieval protocol in [29] achieves a
PIR rate R(C, C̄) < RUB for non-MDS codes. Furthermore, it
was shown in [30] that if C is either a GRS code or an RM
code, then C̄ always exists for any T ≤ n− k. In this section,
we look at this protocol from the perspective of arbitrary linear
codes C and propose an improved protocol, referred to as
Protocol 3, that achieves a higher PIR rate RP3(C, C̄), where
R(C, C̄) ≤ RP3(C, C̄) ≤ RUB ≤ RGRS. In particular, we show
that the upper bound RUB can be achieved for some non-MDS
codes. Also, for a given T we present a code family for C for
which C̄ exists.

A. Protocol 3: The Multiple Colluding Nodes Case

The protocol presented here, referred to as Protocol 3, can
be seen as an extension of Protocol 2 in Section V. We
assume that each file X(m) =

(
x

(m)
i,j

)
, m ∈ Nf , of size

β × k, is stored using an [n, k] code C over GF(q), where
x

(m)
i,j ∈ GF(q`) for some ` ∈ N. Let C̄ be an [n, k̄] code over

GF(q). The code C̄ is used to design the query matrix Q(l),
of dimensions d×βf , where q(l)

i is the i-th subquery of Q(l)

(see Section III-A). Furthermore, C̄ characterizes T , i.e., the
maximum number of colluding nodes the PIR protocol can
handle whilst maintaining information-theoretic privacy. As
for Protocol 2, β and d are taken as small as possible according
to (6). The response vector corresponding to the i-th subquery
q

(l)
i , denoted by ρ(i) = (r1,i, . . . , rn,i)

T, is a collection of the
n response symbols rl,i from the n storage nodes and is related
to the codewords of an [n, k̃] code C̃ = C ◦ C̄. Furthermore, C̃
characterizes the PIR rate of the protocol.

1) Query Construction: The protocol requires that the
user constructs queries by choosing βf codewords c̄(m)

i =

(c̄
(m)
i,1 , . . . , c̄

(m)
i,n), i ∈ Nβ and m ∈ Nf , drawn independently

and uniformly at random from the code C̄. It then constructs
the vector

c̊l = (c̊
(1)
l , . . . , c̊

(f)
l), l ∈ Nn,

where c̊(m)
l = (c̄

(m)
1,l , . . . , c̄

(m)
β,l). Thus, the vector c̊l is of length

βf . The vector c̊(m)
l is a collection of the entries of the l-th

coordinates of the codewords c̄(m)
1 , . . . , c̄

(m)
β that pertain to

the m-th file. We denote by Ji ⊆ Nn, i ∈ Nd, |Ji| = Γ, the
set of nodes from which the protocol obtains code symbols
pertaining to the m-th file from the i-th subresponses.

Similar to Protocol 2 presented in Section V for the case
of noncolluding nodes, we need to construct a matrix Ê and
β information sets {Ii}i∈Nβ . The matrix Ê is a d× n binary
matrix where each row represents an erasure pattern of weight

Γ correctable by C̃ = C ◦ C̄. The column weight profile of Ê
is determined from {Ii}i∈Nβ as in Section V. Note that Ji
is the support of the i-th row vector of Ê. Let m denote the
index of the requested file. Then, the i-th subquery to node l
is constructed as

q
(l)
i = c̊l + δ

(l)
i , (29)

where

δ
(l)
i =

{
ω
β(m−1)+s

(l)
i

if l ∈ Ji,
ω0 otherwise,

(30)

for l ∈ Nn, where ωt, t ∈ Nβf , is the t-th (βf)-dimensional
unit vector and ω0 = 01×βf . The index s(l)

i is defined as

s
(l)
i ∈ Fl = {t ∈ Nβ : l ∈ It} (31)

and s
(l)
i 6= s

(l)
i′ for i 6= i′, i, i′ ∈ Nd. The index s

(l)
i denotes

the symbol downloaded from the s
(l)
i -th row of the chunk

pertaining to X(m) of the l-th node in response to the i-th
subquery. Clearly, we see that the symbols downloaded from
all nodes form β information sets as

∑d
i=1 |Ji| =

∑β
i=1 |Ii| =

βk.
Note that in (29), the vector c̊l introduces randomness such

that privacy is ensured, while the vector ω is deterministic
and is properly designed such that the requested file can be
recovered by the user.

2) Response Construction: For the i-th subquery, the re-
sponse symbol from the l-th node is constructed as

rl,i = 〈q(l)
i , (c

(1)
1,l , . . . , c

(f)
β,l)〉. (32)

The response symbol in (32) is the dot product between the
subquery vector to the l-th node and its content. The user
obtains a response vector ρ(i), consisting of response symbols
from n nodes as

ρ(i) =

r1,i

r2,i

...
rn,i

 =

β∑
i′=1

f∑
m′=1

c̄
(m′)
i′,1 c

(m′)
i′,1

c̄
(m′)
i′,2 c

(m′)
i′,2

...
c̄
(m′)
i′,n c

(m′)
i′,n

︸ ︷︷ ︸
∈
{
x∈(GF(q`))n : HC̃x=0

}
+

o

(i)
1

o
(i)
2
...
o

(i)
n

 , (33)

where H C̃ is a parity-check matrix of the code C̃,7 the
symbol o(i)

l denotes the symbol obtained from the l-th node
corresponding to the i-th subquery, and

o
(i)
l =

{
c
(m)
i′,l if l ∈ Ji,

0 otherwise,

where i′ = s
(l)
i . These symbols are obtained by post-

processing (33) as follows,

H C̃ρ(i) = H C̃

o

(i)
1

o
(i)
2
...
o

(i)
n

 . (34)

7Note that the upload cost of the PIR scheme in [29], [30] grows linearly
with f . However, when the file size is large (i.e., when ` is large; q` is the
field size of the message symbols) the upload cost can be ignored.

20

This completes the construction of the PIR protocol. In
the following, we prove that this protocol satisfies the PIR
conditions (5a) and (5b) in Definition 8.

Lemma 6. Consider a DSS that uses an [n, k] code with
subpacketization α to store f files, each divided into β stripes,
and assume the privacy model of Section III-A with a set
T = {t1, . . . , t|T |} ⊂ Nn of |T | ≤ T ≤ dC̄

⊥

min − 1 colluding
nodes. Then, the subqueries q(l)

i , l ∈ Nn, i ∈ Nd, designed as
in (29) and (30) satisfy H

(
m|Q(t1), . . . ,Q(t|T |)

)
= H(m).

Proof: The addition of a deterministic vector in (29)
does not change the probability distribution of the vectors
q

(t1)
i , . . . , q

(t|T |)

i . The same can be said about their joint
distribution. Furthermore, in each query matrix Q(l), l ∈
{t1, . . . , t|T |}, the subqueries q(l)

i are independent of each
other. Thus, the proof follows the same lines as the proof
of [29, Th. 8].

Theorem 6. Consider a DSS that uses an [n, k] code C
with subpacketization α to store f files, each divided into
β stripes. Let C̄ be an [n, k̄] code such that there exists an
[n, k̃] code C̃ = C ◦ C̄ of rate RC̃ < 1. If there exists a Γ-
row regular d × n binary matrix Ê in which each row is a
correctable erasure pattern for C̃ and satisfying condition C3,
then H(X(m)|ρ(1), . . . ,ρ(d)) = 0 and the PIR rate

RP3(C, C̄) =
Γ

n
≤ RUB (35)

is achievable.

Proof: By assumption there exists a matrix Ê of size d×n
having row weight Γ. Furthermore, again by assumption, each
row of Ê is an erasure pattern that is correctable by C̃. From
(30), (34) results in

H C̃ρ(i) = H C̃ |χ(êi)

o

(i)
l1

o
(i)
l2
...

o
(i)
l|Ji|

 ,

where êi is the i-th row of Ê and lj , j ∈ N|Ji|, denotes
the elements of Ji. The above linear system of equations
is full rank as H C̃ |χ(êi) is full rank. This is because êi is
a correctable erasure pattern for C̃. As such, the Γ symbols
{o(i)
l }l∈Ji are obtained. From all responses, the user obtains

Γd = βk code symbols of the code C. Furthermore, from (31),
these Γd symbols are part of the β information sets {Ii}i∈Nβ
of C. Thus, H

(
X(m)|ρ(1), . . . ,ρ(d)

)
= 0.

Unlike [29], where the authors consider sets Ji with a fixed
structure, we generalize the sets to match arbitrary codes C, C̄,
and C̃. In particular, the sets in [29] were constructed targeting
MDS codes, in which case the PIR rate of the (C, C̄)-retrieval
protocol is upperbounded by RUB in (28), as mentioned earlier.
However, the use of these sets for arbitrary codes C and C̄ does
not allow to obtain the requested file X(m). Thus, Theorem 6
can be seen as a generalization of [29, Th. 7], where the PIR
rate for non-MDS codes was shown to be R(C, C̄) = (dC̃min −
1)/n < RUB. Our proposed protocol can achieve higher rates

as illustrated in the following corollary. In particular, we will
show that the upper bound RUB is achievable for some classes
of non-MDS codes.

Corollary 9. If for an [n, k] code C and an [n, k̄] code C̄
there exists an [n, k̃] code C̃ = C ◦ C̄ of rate RC̃ < 1 and an
(n− k̃)-row regular d×n binary matrix Ê in which each row
is a correctable erasure pattern by C̃ and satisfying condition
C3, then Protocol 3 achieves the upper bound RUB.

As for Protocol 2, the parameters Γ, β, and d mentioned
in Theorem 6 have to be carefully selected such βk = Γd
and such that a Γ-row regular matrix Ê (satisfying condition
C3) actually exists with a valid collection of information sets
{Ii}i∈Nβ for C.

B. Example
Lemma 6 proves that the proposed protocol provides privacy

up to T = dC̄
⊥

min − 1 colluding nodes. This is illustrated in the
example below.

Consider a DSS with n = 12 nodes that stores a single file
X(1) of size 1×4. X(1) is encoded using the [12, 4, 6] binary
code C with parity-check matrix

HC =

0 1 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1

.

Let C̄ = C, and the code C̃ = C ◦ C̄ has parity-check matrix

H C̃ =

(
1 1 1 1 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1 1

)
.

Note that the dual code C̄⊥ has minimum Hamming distance
dC̄
⊥

min = 3, thus Protocol 3 protects against T = dC̄
⊥

min − 1 = 2

colluding nodes. Choosing Γ = dC̃min − 1 = 1, one can use
the PIR protocol as presented in [29] to get a PIR rate of
R(C, C̄) = 1

12 . However, we can set Γ = 2 and use Protocol 3
to achieve a higher PIR rate. Note that the value of Γ cannot
be greater than 2 as the number of redundant symbols in C̃ is
2. We choose

Ê =

(
0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0

)
and I1 = {2, 3, 9, 12}. Thus, β = 1 and d = 2. Note that
each row of Ê is an erasure pattern that is correctable by the
[12, 10, 2] code C̃, and that I1 is an information set of C. In
order to form all the queries (each query consists of d = 2

subqueries), we need to choose s(9)
1 , s(12)

1 , s(2)
2 , and s(3)

2 . From
(31), we have

s
(9)
1 = 1, s

(12)
1 = 1, s

(2)
2 = 1, and s(3)

2 = 1.

Now, consider the first subqueries. The query vectors q(9)
1 and

q
(12)
1 are

q
(9)
1 = c̊9 + ω1 = c̊9 + 1,

q
(12)
1 = c̊12 + ω1 = c̊12 + 1,

21

and q(l)
1 = c̊l, ∀ l ∈ N12\{9, 12}. The corresponding response

vector is

ρ(1) =

1∑
i′=1

1∑
m′=1

c̄
(m′)
i′,1 c

(m′)
i′,1

c̄
(m′)
i′,2 c

(m′)
i′,2

...
c̄
(m′)
i′,12c

(m′)
i′,12

︸ ︷︷ ︸
∈
{
x∈(GF(q`))12 : HC̃x=0

}
+

0
...
0

c
(1)
1,9

0
0

c
(1)
1,12

.

Finally, the user computes

H C̃ρ(1) = H C̃

0
...
0

c
(1)
1,9

0
0

c
(1)
1,12

=

(
c
(1)
1,9

c
(1)
1,12

)
.

In a similar manner, from ρ(2) the user obtains c(1)
1,2 and c(1)

1,3.
Clearly, the indices of the symbols downloaded by the user
form the information set I1, from which we can obtain the
requested fileX(1). The PIR rate of the scheme is RP3(C, C̄) =
4
24 = 1

6 , i.e., double of the PIR rate of the protocol in [29].
Furthermore, it achieves the upper bound in (35).

A limiting factor for Protocol 3 is that the upper bound
on the PIR rate RUB in (35) depends on the dimension of C̃.
Furthermore, in order to achieve the PIR property with large
T , one requires C̄ to be of large dimension such that C̄⊥ has
large minimum Hamming distance. Therefore, for arbitrary C
and C̄ the chances that C̃ = C ◦ C̄ has rate RC̃ = 1 (the code
does not even correct a single erasure) are quite high for large
values of T , since the Hadamard product is highly nonlinear.
In other words, the probability that RUB = 0 is high. Below,
we present code constructions for which RUB > 0.

C. Codes for Protocol 3

As seen in the preceding subsections, the codes C and C̄
must be chosen such that the code C̃ = C ◦ C̄ has rate RC̃ < 1
for the PIR protocol to work. In this subsection, we provide
a family of codes C and C̄ that satisfy RC̃ < 1 for a given T .

In particular, we show that a special class of UUV codes
can be used for the codes C and C̄ to obtain a valid C̃. Let
U be an [n1, k1] code and V an [n1, 1] repetition code, both
over GF(2). We construct the [n = 2n1, k = k1 + 1] code
C = (U | U + V) with generator matrix

GC =

(
GU GU

01×n1
11×n1

)
. (36)

Theorem 7. Let U be an [n1, k1] binary code where n1 ≥
k1 + 2 and V an [n1, 1] binary repetition code. Then, the
[n = 2n1, k = k1 + 1] codes C and C̄ constructed using (36)
ensure that the vector space C̃ = C ◦ C̄ of length n is a linear
code of dimension strictly less than n, i.e., RC̃ < 1.

Proof: See Appendix G.

Theorem 7 proves that for an arbitrary linear code U , the
UUV code ensures that k̃ < n and thus C̃ is a valid code. The
fact that any code U can be used in the protocol makes the
UUV construction attractive. Also, the UUV construction may
produce dmin-optimal binary linear codes. For instance, the
codes C and C̄ in Section VIII-B are dmin-optimal binary linear
codes that can be constructed through the UUV construction.
One drawback of the UUV construction, however, is that the
constructed codes are in general low rate codes.

In [30], the authors showed that choosing C and C̄ to be
RM codes with carefully selected parameters ensures that C̃
is also an RM code of dimension k̃ < n. However, the PIR
rate is very low [30, Th. 15]. In the following subsection, we
show that RM codes can indeed achieve a higher PIR rate of
RP3(C, C̄) = (n− k̃)/n = RUB.

D. Codes Achieving the Maximum PIR Rate of Protocol 3

In order to consider the codes achieving the maximum
possible PIR rate for Protocol 3, we give a definition similar
to Definition 10 in Section IV.

Definition 14. Let C be an [n, k] code and C̄ an [n, k̄] code.
Denote by C̃ = C ◦ C̄ the k̃-dimensional code generated by
the Hadamard product of C and C̄. A (k + n− k̃)× n binary
matrix Λ̃k,k+n−k̃ is called a PIR maximum rate matrix for
Protocol 3 if the following conditions are satisfied.

1) Λ̃k,k+n−k̃ is a k-column regular matrix, and
2) there are exactly k rows {λi}i∈Nk and n − k̃ rows
{λi+k}i∈Nn−k̃ of Λ̃k,k+n−k̃ such that ∀ i ∈ Nk, χ(λi)

is an information set for C̃ and ∀ i ∈ Nn−k̃, χ(λi+k) is
an information set for C.

Similar to the case of noncolluding nodes in Section V, it
is not difficult to show that the existence of a k×n matrix Ê
for the code C̃ = C ◦ C̄ and an (n− k̃)× n matrix Ē for the
code C is equivalent to the existence of Λ̃k,k+n−k̃.

The following corollary follows immediately from a similar
reasoning as for Theorem 3.

Corollary 10. If a PIR maximum rate matrix Λ̃k,k+n−k̃ exists
for Protocol 3, then

dCs ≥
n− k̃
k

s, ∀ s ∈ Nk,

dC̃s ≥ s, ∀ s ∈ Nk̃.

Proof: Using an argumentation similar to the proof of
Theorem 3, the existence of a PIR maximum rate matrix for
Protocol 3 implies that there exist k information sets {Ĩi}i∈Nk
of C̃ and n − k̃ information sets {Ii′}i′∈Nn−k̃ of C such that
each coordinate j of C appears exactly k times in {Ĩi}i∈Nk ∪
{Ii′}i′∈Nn−k̃ , j ∈ Nn. Hence, we obtain

k |χ(D)| =
k∑
i=1

∣∣Ĩi ∩ χ(D)
∣∣

︸ ︷︷ ︸
≥0

+

n−k̃∑
i′=1

∣∣Ii′ ∩ χ(D)
∣∣

≥
n−k̃∑
i′=1

∣∣Ii′ ∩ χ(D)
∣∣ ≥ (n− k̃)s;

22

k
∣∣∣χ(D̃)

∣∣∣ =

k∑
i=1

∣∣Ĩi ∩ χ(D̃)
∣∣+

n−k̃∑
i′=1

∣∣Ii′ ∩ χ(D̃)
∣∣

︸ ︷︷ ︸
≥0

≥
k∑
i=1

∣∣Ĩi ∩ χ(D̃)
∣∣ ≥ ks,

where D is an [n, s] subcode of C, s ∈ Nk, and D̃ is an [n, s]
subcode of C̃, s ∈ Nk̃.

It can be seen from the proof above that we can only have
|Ĩ ∩ χ(D)| ≥ 0 for an information set Ĩ of C̃ and a subcode
D ⊆ C (or |I ∩ χ(D̃)| ≥ 0 for an information set I of C and
a subcode D̃ ⊆ C̃). Hence, unlike in Conjecture 1, we do not
conjecture this necessary condition to be sufficient.

Similar to Theorem 4 for the noncolluding case, we provide
a sufficient condition for codes to achieve the maximum
possible PIR rate of Protocol 3 by using code automorphisms
of C and C̃.

Theorem 8. Let C be an [n, k] code, C̄ an [n, k̄] code, and
C̃ = C ◦ C̄. If there exist k information sets Ĩ1, . . . , Ĩk of C̃,
an information set I of C, and n− k̃ distinct automorphisms
of C such that for every code coordinate ji ∈ I, i ∈ Nk,

Ĩi ∪ {π1(ji), . . . , πn−k̃(ji)
}

= {1, 2, . . . , n},

then the codes C and C̄ achieve the maximum possible PIR
rate of Protocol 3, i.e., RUB.

Proof: Since there exist n− k̃ distinct automorphisms of
C such that Ij , {πj(ji) : ji ∈ I}, j ∈ Nn−k̃, are information
sets of C, and for every code coordinate ji ∈ I, i ∈ Nk,

Ĩi ∪ {π1(ji), . . . , πn−k̃(ji)
}

= {1, 2, . . . , n},

each code coordinate h ∈ Nn appears exactly k times in
{Ĩi}i∈Nk ∪ {Ij}j∈Nn−k̃ , which shows the existence of a PIR
maximum rate matrix Λ̃k,k+n−k̃ for Protocol 3.

We now show that RM codes achieve the maximum PIR
rate of Protocol 3.

Corollary 11. Let C be an [n, k] RM code R(v,m), C̄ an
[n, k̄] RM code R(v̄,m), and k̃ = k + k̄, where n = 2m,
k =

∑v
i=0

(
m
i

)
, and k̄ =

∑v̄
i=0

(
m
i

)
. Then, a PIR maximum

rate matrix Λ̃k,k+n−k̃ exists for Protocol 3, and its PIR rate
is

RP3(C, C̄) =
n− k̃
n

= RUB.

Proof: It can be easily shown that C̃ = C ◦ C̄ is an RM
code R(ṽ,m) with ṽ = v + v̄. Consider two information sets
I and Ĩ of C and C̃, respectively. (Lemma 1 gives one way
to construct these two information sets.) We construct the k+
n− k̃ information sets

Ĩi , {σ + µi : σ ∈ Ĩ}, i ∈ Nk,
Ij , {µ+ σ̄j : µ ∈ I}, j ∈ Nn−k̃,

for C̃ and C, respectively, where {µi}i∈Nk and {σ̄j}j∈Nn−k̃
are the numbered binary m-tuples in I and GF(2)m×1 \ Ĩ,
respectively.

Without loss of generality, the i-th information set Ĩi, i ∈
Nk, can be written as

Ĩi = {µi + σ1, . . . ,µi + σk̃},

where σj′ ∈ Ĩ, j′ ∈ Nk̃. Furthermore, consider the i-th
elements across all sets Ij , j ∈ Nn−k̃. They have the form
µi+σ̄j , where µi ∈ I. Since σ̄j ∈ GF(2)m×1\Ĩ and σi ∈ Ĩ,
the set

{µi + σ1, . . . ,µi + σk̃} ∪ {µi + σ̄1, . . . ,µi + σ̄n−k̃}

with cardinality n = 2m is equal to GF(2)m×1, i.e., the set
containing the elements of the i-th information set Ĩi and the
i-th elements µi + σ̄j in all sets Ij is equal to the set of
all binary n = 2m tuples. Therefore, we are able to find k
information sets {Ĩi}i∈Nk of C̃, an information set I of C,
and n − k̃ distinct automorphisms πj(µ) = µ + σ̄j of C,
j ∈ Nn−k̃, satisfying Theorem 8. This completes the proof.

We remark again that Corollary 11 can be extended to
nonbinary generalized RM codes. Finally, note that in the
independent work [32] it was also shown that RM codes
can achieve the maximum possible PIR rate of the (C, C̄)-
retrieval protocol, i.e., RUB, for transitive codes. However, it
is important to highlight that our Protocol 3 requires a much
smaller β (number of stripes) and a significant smaller d
(number of subqueries). Indeed, the protocol in [32] requires
very large β and d (in the order of 10000 for the example
provided), and thus our protocol is more practical.

E. Optimizing the PIR rate

For those codes for which we do not have a proof that
RUB is achieved, we now provide an algorithm to optimize
the PIR rate RP3(C, C̄) for a given storage code C and query
code C̄ such that it comes closer to the upper bound RUB.
The algorithm is identical to Algorithm 1 for the case of
noncolluding nodes with some key differences which we
highlight below.
• In Line 1, Γ is initialized to 1.
• The while loop in Line 4 runs up to n− k̃.
• The first argument to the subprocedure
ComputeErasurePatternList(·,Γ) is changed
from C to C ◦ C̄ in Line 5.

With these minor modifications, Algorithm 1 can be used
to optimize the PIR rate in the case of T colluding nodes.
Numerical results are presented below in Section IX. Note
that Γ is initialized to 1 as opposed to min(k, dCmin − 1) in
the case of noncolluding nodes. This is because Ê and Ē of
E are based on different codes. This also guarantees that the
algorithm always returns Eopt 6= ∅ (assuming dC̃min ≥ 2), since
in this case all weight-1 erasure patterns are correctable by C̃,
and a valid matrix E can be trivially constructed.

IX. NUMERICAL RESULTS

In this section, we present maximized PIR rates for the
PIR protocols described in Sections IV, V, and VIII. Unless
specified otherwise, these protocols are optimized using Al-
gorithm 1 with minimum possible values for the parameters

23

TABLE II
OPTIMIZED VALUES FOR THE PIR RATE FOR DIFFERENT CODES HAVING

CODE RATES STRICTLY LARGER THAN 1/2 FOR THE CASE OF
NONCOLLUDING NODES.

Code dCmin dC
′

min Rnon−opt Ropt C∞

C1 : [5, 3] (Example 4) 2 3 0.4 0.4 0.4
C2 : [11, 6] 4 4 0.2727 0.4545 0.4545
C3 : [12, 8] Pyramid 4 4 0.25 0.3333 0.3333
C4 : [18, 12] Pyramid 5 5 0.2222 0.3333 0.3333
C5 : [16, 10] LRC 5 5 0.25 0.3750 0.3750
C6 : [154, 121] LRC 4 6 0.0325 0.2013 0.2143
C7 : [187, 121] LRC 7 16 0.0802 0.3262 0.3529

TABLE III
OPTIMIZED VALUES FOR THE PIR RATE FOR DIFFERENT CODES HAVING
CODE RATES AT MOST 1/2 FOR THE CASE OF NONCOLLUDING NODES.

Code dCmin Rnon−opt Ropt C∞

C8 : [7, 3] (Example 5) 4 0.4286 0.5714 0.5714
C9 : [9, 4] LRC ([27, Ex. 1]) 5 0.4444 0.5555 0.5555
C10 : [12, 6] LRC ([27, Ex. 2]) 6 0.4167 0.5 0.5

β and d as given in (6). In contrast to Sections VI to VI-C,
where different classes of codes were proved to be MDS-PIR
capacity-achieving, we consider here other codes (with two
exceptions as detailed below) and their highest possible PIR
rates. The results are tabulated in Tables II and III for the case
of noncolluding nodes, and in Table IV for the colluding case.
Results in Table II are for code rates strictly larger than 1/2,
while codes of rate at most 1/2 are tabulated in Table III.

In Tables II and III, C∞ (see (8)) is the asymptotic MDS-
PIR capacity and Ropt is the optimized PIR rate computed
from Algorithm 1. In Table II, Rnon−opt = (dC

′

min − 1)/n,
while in Table III, Rnon−opt = (dCmin − 1)/n. In Table IV,
CLB,∞ , (n− (k + T − 1))/n is a lower bound (taken from
[29]) on the asymptotic MDS-PIR capacity in the case of at
most T colluding nodes, while Ropt is the optimized PIR rate
computed from Algorithm 1 and Rnon−opt = (dC̃min − 1)/n.

The code C1 in Table II is from Example 4, C2 is an
[11, 6] binary linear code with optimum minimum Hamming
distance, while codes C3 and C4 are Pyramid codes, taken
from [23], of locality 4 and 6, respectively, C5 is an LRC
of locality 5 borrowed from [24]. In [43], a construction
of optimal (in terms of minimum Hamming distance) binary
LRCs with multiple repair groups was given. In particular, in
[43, Constr. 3], a construction based on array LDPC codes was
provided. The minimum Hamming distance of array LDPC
codes is known for certain sets of parameters (see, e.g.,
[44] and references therein). Codes C6 and C7 in Table II
are optimal LRCs based on array LDPC codes constructed
using [43, Constr. 3] and having information locality 11. The
protocols for these two underlying codes have β = Γ and
d = k.

Code C8 in Table III is the dual code of the [7, 4, 3]
Hamming code and is taken from Example 5, while the codes
C9 and C10 are dmin-optimal LRCs over GF(13) of all-symbol
locality 2 and 3, respectively, taken from [27] (see Examples 1
and 2, respectively, in [27]). These two codes are also tabulated
in Table IV. The corresponding C̄ codes are RS codes and
their parameters are given in Table IV (an RS code of length

n and dimension k is denoted by RS[n, k]). Code C11 (from
Table IV) is taken from Section VIII-B, while code C12 (also
from Table IV) is taken from [27] (see Example 5 in [27]).
Note that C12 is an LRC of length 12 over GF(13) with
two disjoint recovering sets of sizes 2 and 3, respectively,
for every symbol of the code (all-symbol locality). Code C13

(from Table IV) is a [26, 9, 8] binary UUV code that is close to
an optimal binary linear code (the best known code for these
parameters has a minimum Hamming distance of 9), while the
code C14 is a UUV code where U is a [16, 5, 8] RM code (the
code R(1, 4)). Note that C14 becomes the RM code R(1, 5).
Due to the high computational complexity of Algorithm 1 for
C14, we are unable to compute the maximum rate of Protocol 3
for the minimum values of β and d. Instead, we take β = Γ
and d = k and use Corollary 11 to obtain the maximum rate
of the protocol.

It is observed in Tables II and III that in the case of
noncolluding nodes, the optimized PIR rate Ropt is equal to the
asymptotic capacity C∞ for all tabulated codes except C6 and
C7. Note that the codes C1, C2, and C5–C10 do not fall within
the code families that we proved are MDS-PIR capacity-
achieving (see Section VI). Thus, the results in Tables II
and III show that, interestingly, other codes can achieve the
asymptotic MDS-PIR capacity as well. On the other hand,
C3 and C4 satisfy the conditions of Theorem 5. Thus, they
are MDS-PIR capacity-achieving with β = Γ and d = k.
The results in the table show that they also achieve C∞
for β and d as in (6). Also, note that by the nature of the
optimization procedure (see Remark 2), MDS-PIR capacity-
achieving matrices Λκ,ν with κ

ν = k
n of all tabulated codes

except C6 and C7 are found. This implies that they are also
MDS-PIR capacity-achieving codes for any finite number
of files and must satisfy the necessary condition based on
generalized Hamming weights in Theorem 3. Due to the high
computational complexity of Algorithm 1, it is difficult to
maximize the PIR rates of C6 and C7. Therefore, it is an open
problem whether or not they are MDS-PIR capacity-achieving
codes. For the colluding case (see Table IV) the lower bound
CLB,∞ on the asymptotic MDS-PIR capacity is not achieved,
even after optimization. To the best of our knowledge, GRS
codes are the only known class of codes where this bound is
actually achieved [29]. On the other hand, the upper bound
RUB (from (35)) is attained in all cases.

X. CONCLUSION

We presented three different PIR protocols, namely Proto-
col 1, Protocol 2, and Protocol 3, for DSSs where data is
stored using an arbitrary linear code. We first considered the
case where no nodes in the DSS collude. Under this scenario,
Protocols 1 and 2 achieve the PIR property. We proved that, for
certain non-MDS codes, Protocol 1 achieves the finite MDS-
PIR capacity (and also the asymptotic MDS-PIR capacity)
and Protocol 2, which is a much simpler protocol compared
to Protocol 1, achieves the asymptotic MDS-PIR capacity.
Thus, the MDS property is not necessary in order to achieve
the MDS-PIR capacity (both finite and asymptotic). We also
provided a necessary and a sufficient condition for codes

24

TABLE IV
OPTIMIZED VALUES FOR THE PIR RATE FOR DIFFERENT CODES FOR THE COLLUDING CASE WITH T = 2 AND T = 3.

Code C C̄ C̃ dCmin T Rnon−opt Ropt RUB CLB,∞

C9 : [9, 4] LRC ([27, Ex. 1]) RS[9, 2] RS[9, 6] 5 2 0.3333 0.3333 0.3333 0.4444
C10 : [12, 6] LRC ([27, Ex. 2]) RS[12, 2] RS[12, 8] 6 2 0.3333 0.3333 0.3333 0.4167
C11 : [12, 4] (Section VIII-B) C [12, 10, 2] 6 2 0.0833 0.1667 0.1667 0.5833
C12 : [12, 4] LRC ([27, Ex. 5]) RS[12, 2] [12, 7, 5] 6 2 0.3333 0.4167 0.4167 0.5833
C13 : [26, 9] (U | U + V) C [26, 22, 1] 8 3 0 0.1538 0.1538 0.5769
C14 : [32, 6] (U | U + V) C [32, 16, 8] 16 3 0.2188 0.5 0.5 0.75

to be MDS-PIR capacity-achieving with Protocols 1 and 2.
The necessary condition is based on generalized Hamming
weights while the sufficient condition is obtained from code
automorphisms of the linear storage code. We proved that
cyclic codes, RM codes, and a class of distance-optimal
information locality codes are MDS-PIR capacity-achieving
codes. For other codes, we provided an optimization algorithm
that optimizes Protocols 1 and 2 in order to maximize their
PIR rates. We also considered the scenario where a subset of
nodes in the DSS collude. For such a scenario, we proposed
Protocol 3, which is an improvement of the PIR protocol by
Freij-Hollanti et al.. The improvement allows the protocol to
achieve higher PIR rates, and the PIR rates for non-MDS codes
are no longer limited by the minimum Hamming distance of
the retrieval code. Subsequently, we presented an optimization
algorithm to optimize the PIR rate of the protocol, and a
family of codes based on the classical (U | U + V) con-
struction that can be used with this protocol. Furthermore,
as for the noncolluding case, we provided a necessary and a
sufficient condition to achieve the maximum possible PIR rate
of Protocol 3. Moreover, we proved that RM codes satisfy the
sufficient condition and can achieve much higher PIR rates
than previously reported by Freij-Hollanti et al.. Finally, we
presented some numerical results on the PIR rates for several
linear codes, including distance-optimal all-symbol locality
LRCs constructed by Tamo and Barg.

APPENDIX A
PROOF OF LEMMA 1

We need to ensure that given a k × n generator matrix G
of R(v,m) with k =

∑v
i=0

(
m
i

)
and n = 2m, the k × k

matrixG|I that comprises the columns of the generator matrix
indexed by the coordinates of I is invertible. We are going to
elaborate on this by considering all the monomials zµ1

1 · · · zµmm ,
µi ∈ GF(2), in a so-called graded lexicographic order, where
each vector µ = (µ1, . . . , µm)T ∈ GF(2)m×1 defines a
column of the generator matrix G according to (1). Formally
speaking, denote zµ1

1 · · · zµmm by zµ. We say zµ ≺ zµ′ either
if wH (µ) < wH (µ′) or if wH (µ) = wH (µ′) and the topmost
nonzero entry of µ − µ′ (subtraction is over the reals) is
positive. For instance, in graded lexicographical ordering we
have z1 ≺ z2 ≺ z3 ≺ z1z2 ≺ z1z3 ≺ z2z3 ≺ z1z2z3 for
m = 3.

Now we are ready for the proof. It is noted that a basis
of R(v,m) can be viewed as B , {1, z1, z2, z3, . . .} =
{zµ′ : wH (µ′) ≤ v}. Let us list the monomials in B in graded
lexicographical order, and let the `-th monomial f`(z) of the
ordered list represent the `-th row of G, ` ∈ Nk. According

to the generator matrix construction of R(v,m), it is known
that the (`,µ) entry of G is equal to the value of the `-th
monomial f`(z) at z = µ [31, Ch. 13]. Furthermore, given a
column coordinate µ ∈ I, for ` ∈ Nk, we have

f`(µ) =

{
1 if zµ = f`(z),

0 if zµ ≺ f`(z).

Thus, the (zµ,µ) entry can be seen as a pivot of G|I and
G|I is obviously invertible.

APPENDIX B
PROOF OF THEOREM 1

The proof is completed by showing that the following
statements are true.
File symmetry within each storage node. For all repeti-
tions, we investigate file symmetry for every possible com-
bination of files in each round within each storage node. In
the first round (` = 1) of all κ repetitions, it follows from (9)
that, for each m′ ∈ N2:f , the downloaded number of undesired
symbols y(m′)

s,j is equal to κU(1) = κf−1, while for the desired
symbols, from (10), it follows that the user requests κf−1

code symbols y(1)
s,j . In the (`+1)-th round of all κ repetitions,

` ∈ Nf−1, arbitrarily choose a combination of files indexed
by M ⊆ N2:f , where |M| = `. It follows from (11) that the
total number of requested desired symbols for files pertaining
to {1} ∪M is equal to

(ν − κ)
[(
U(`)− 1

)
−U(`− 1) + 1

]
= (ν − κ)κf−(`+1)(ν − κ)`−1 = κf−(`+1)(ν − κ)`.

On the other hand, for the undesired symbols, it follows from
(9) that in the (`+ 1)-th round the user requests

κ
[(
U(`+ 1)− 1

)
−U(`) + 1

]
= κκf−(`+2)(ν − κ)` = κf−(`+1)(ν − κ)`

linear sums for a combination of files indexed by M⊆ N2:f ,
|M| = ` + 1. Thus, in rounds Nf−1, an equal number of
linear sums for all combinations of files indexed by M ⊆
Nf are downloaded. By construction, these are linear sums of
unique code symbols pertaining to f files. Thus, symmetry in
all f − 1 rounds is ensured. In the f -th round, only desired
symbols are downloaded. Since each desired symbol is a linear
combination of code symbols from all f files, an equal number
of linear sums is again downloaded for the combination of files
indexed by Nf . Therefore, symmetry within each node and in
each round is ensured.

25

The β × k file X(1) can be reliably decoded. In the first
round (` = 1) of all κ repetitions, ∀ s ∈ Nκf−1 , the user
has downloaded the matrix

y
(1)

κf−1(a1,1−1)+s,1
· · · y

(1)

κf−1(a1,n−1)+s,n

... · · ·
...

y
(1)

κf−1(aκ,1−1)+s,1
· · · y

(1)

κf−1(aκ,n−1)+s,n

of code symbols. Given an a ∈ Nν , recalling Definitions 11
and 12, it follows that for each s ∈ Nκf−1 , the coordi-
nate set S

(
κf−1(a − 1) + s

∣∣κf−1(Aκ×n − 1κ×n) + s1κ×n
)

contains an information set. Hence, the (κf−1(a − 1) +
1)-th, . . . , (κf−1(a−1)+κf−1)-th stripes are recovered. Since
ai,j ∈ Nν , we know until now that the user has obtained
the 1-st, 2-nd, . . . , (κf−1(ν − 1) + κf−1)-th stripes. Note that
κf−1(ν − 1) + κf−1 = D(0)ν. Moreover, owing to (12), in
the (`′ = `+ 1)-th round of all κ repetitions with ` ∈ Nf−1,
∀ s ∈ ND(`−1):(D(`)−1) the matrices

y
(1)
s·ν+a1,1,1

· · · y
(1)
s·ν+a1,n,n

... · · ·
...

y
(1)
s·ν+aκ,1,1

· · · y
(1)
s·ν+aκ,n,n

of code symbols are downloaded. Similarly, fix an s ∈
ND(`−1):(D(`)−1). Then, ∀ a ∈ Nν , the coordinate set S

(
sν +

a
∣∣sν1κ×n + Aκ×n

)
must contain an information set, and

the user can recover the (sν + 1)-th, . . . , (sν + ν)-th stripes.
Observe that in the last (`′ = (f − 1) + 1)-th round, the row
index of the last recovered stripe is equal to (D(f−1)−1)ν+ν.
Hence, the total number of stripes the user has recovered is(

D(f − 1)− 1
)
ν + ν

=

[
f−1∑
`=0

(
f − 1

`

)
κf−(`+1)(ν − κ)` − 1

]
ν + ν

= (νf−1 − 1)ν + ν = νf .

This indicates that the user has recovered all νf stripes for
X(1), and X(1) is in fact reliably reconstructed.
The PIR achievable rate is expressed as (13). According
to (9), since there are

(
f−1
`

)
combinations of files other than

the first file with index m = 1, the user has downloaded

κ

(
f − 1

`

)[
U(`)− 1−U(`− 1) + 1

]
= κ

(
f − 1

`

)
κf−(`+1)(ν − κ)`−1

=

(
f − 1

`

)
κf−`(ν − κ)`−1

undesired symbols from each storage node in the `-th round,
` ∈ Nf−1, of each repetition. Moreover, from (10) and (11),
the user has downloaded κf−1 desired symbols from each
storage node in round ` = 1 of each repetition, and

D(`)− 1−D(`− 1) + 1 =

(
f − 1

`

)
κf−(`+1)(ν − κ)`

extra desired symbols from each storage node in the (`+1)-th
round, ` ∈ Nf−1, of each repetition. In summary, the total
download cost for Protocol 1 using Λκ,ν(C) is equal to

nd = total number of undesired symbols
+ total number of desired symbols

= κn

f−1∑
`=1

(
f − 1

`

)
κf−`(ν − κ)`−1

+κn

f−1∑
`=0

(
f − 1

`

)
κf−(`+1)(ν − κ)`

= κn

[
κ

ν − κ

f−1∑
`=1

(
f − 1

`

)
κf−(`+1)(ν − κ)`

+

f−1∑
`=0

(
f − 1

`

)
κf−(`+1)(ν − κ)`

]

= κn

[
κ

ν − κ
(νf−1 − κf−1) + νf−1

]
=

κn

ν − κ

[
κνf−1 − κf + νf − κνf−1

]
=

κn

ν − κ

[
νf − κf

]
.

Therefore, the PIR achievable rate R(C) is given by

R(C) =
βk

nd
=

νfk

κn
ν−κ

[
νf − κf

] =
(ν−κ)k
κn[

1−
(
κ
ν

)f] .
APPENDIX C

PROOF OF LEMMA 3

By setting κ = k and using Definition 11, we will prove the
existence of Λk,ν with ν = k+min(k, dCmin−1). In fact, given
an [n, k, dCmin] code C, observe that for an interference matrix
Ak×n derived from a valid Λk,ν , S(a|Ak×n) must contain an
information set ∀ a ∈ Nν . We first choose Γ = min(k, dCmin−1)
information sets of C. Note that since every code contains at
least one information set, one can always arbitrarily choose Γ
information sets even if some of them are repeatedly chosen.
Let us denote the selected information sets by Ii, i ∈ NΓ, and
start to construct the corresponding matrix Ak×n with

ai,j = k + i, if j ∈ Ii, i ∈ NΓ. (37)

In this way, kΓ entries of Ak×n are constructed. Next, denote
the remaining nonconstructed entries in each column of Ak×n
by

Aj ,
{
a
i
(j)
1 ,j

, . . . , a
i
(j)

s(j)
,j

}
, j ∈ Nn,

where s(j) ≤ k is the total number of nonconstructed entries
in each column. Hence, there are in total kn−kΓ = k(n−Γ)
nonconstructed entries as follows,{

a
i
(1)
1 ,1

, . . . , a
i
(1)

s(1)
,1
, . . . , a

i
(n)
1 ,n

, . . . , a
i
(n)

s(n)
,n

}
. (38)

If we consecutively assign 1, . . . , k to the entries of Ak×n
in (38) and repeat this process n − Γ times, the remaining
k(n− Γ) entries of Ak×n will certainly be constructed. Note

26

that since we consecutively assign values of Nk and the largest
number of empty entries of each column of Ak×n is k, it is
impossible to have repeated values of Nk in each column of
the constructed Ak×n. From (37) and (38), it can be seen
that each a ∈ Nk occurs in n − Γ columns of Ak×n. From
Proposition 1, we can then say that the set S(a|Ak×n) of
cardinality n−Γ ≥ n−(dCmin−1) contains an information set.
For the remaining a ∈ Nk+1:k+Γ, (37) ensures that S(a|Ak×n)
contains an information set. Thus, this procedure will result
in a valid PIR interference matrix Ak×n. The proof is then
completed, since we can construct a PIR achievable rate matrix
Λk,k+Γ from Ak×n.

APPENDIX D
PROOF OF THEOREM 2

Consider the i-th subresponse of each response rl. Out of
the n subresponses generated from the n storage nodes, there
are Γ subresponses originating from a subset of nodes J ⊂
Nn, |J | = Γ, of the form

rl,i = Yl + c
(m)
s,l , ∀ l ∈ J , s ∈ Nβ . (39)

Yl is referred to as code interference symbol. Considering
GC = (gi′,l), for l ∈ Nn, each code symbol and code
interference symbol have the form

c
(m)
s,l =

k∑
i′=1

gi′,lx
(m)
s,i′ , (40)

Yl =

k∑
i′=1

gi′,lI(i−1)k+i′ , (41)

where x(m)
s,i′ is an information symbol of C, and I(i−1)k+i′ =∑f

m=1

∑mβ
i′′=(m−1)β+1 ui,i′′x

(m)
i′′−(m−1)β,i′ is an interference

symbol. To obtain Γ code symbols from (39), the user requires
the knowledge of the code interference symbols Yl. This is
obtained from the remaining n−Γ subresponses of the nodes
in J , Nn \ J , which are

rl,i = Yl, ∀ l ∈ J . (42)

From (40) and (41) we can observe that the interference
symbols Yl have the same form as the code symbols of
C. Since there are Γ unknowns, solving (42) resembles ML
decoding of the code C. (42) is a full rank system in the
unknowns I(i−1)k+1, . . . , Iik (from the third requirement C3
of Ê in Section V) in GF(q`). Hence, knowing the interfer-
ence symbols allows the recovery of Γ unique (from the first
requirement C1 for Ê in Section V) code symbols from the
i-th subquery as the user has the knowledge of Yl, l ∈ J . In
a similar way, from all subqueries, the user obtains dΓ = βk
unique code symbols pertaining to file X(m). These βk code
symbols are part of β information sets (from the second
requirement C2 of Ê in Section V and (18)). Furthermore,
since each information set is implicitly linked to a unique
stripe of the requested file and s ∈ Nβ (see (39)) is selected
(without repetition) from Fl (see (18)), k code symbols from
each stripe are obtained, and the user can recover the whole file
X(m), from which it follows that H

(
X(m)|r1, . . . , rn

)
= 0.

APPENDIX E
PROOF OF LEMMA 5

We prove the inequality by using the well known Sylvester’s
rank inequality:8 If U is an s × k matrix and G is a matrix
of size k × n, then

rank (UG) ≥ rank (U) + rank (G)− k.

Let C be an [n, k] code with generator matrix G. Given an
arbitrary information set I, G|I is by definition invertible (see
Definition 1). We next choose an arbitrary subcode D ⊆ C of
dimension s that can be generated by UG for some s × k
matrix U of rank s.

Applying Sylvester’s rank inequality, we have

rank (U(G|I)) ≥ s+ k − k = s.

Because each basis vector of the space U(G|I) must at least
contain one nonzero component, this leads to

|I ∩ χ(D)| = |χ(D|I)| = |χ(U(G|I))| ≥ s,

where χ(D) is the support of D (see Definition 2).

APPENDIX F
PROOF OF THEOREM 5

The proof is a two-step procedure. First, we prove that all
rows in E after Step a) are correctable by C. Secondly, we
prove that the swaps in certain rows in Step b) ensure that
the resulting rows are correctable erasure patterns. We start
by proving two key lemmas (Lemmas 7 and 8 below), which
will form the basis of the overall proof of the theorem.

Lemma 7. Let C be an [n, k] distance-optimal (r, δ) infor-
mation locality code consisting of Lc local codes and with
parity-check matrix as in (2). Additionally, it adheres to the
condition in (24). Then, C can simultaneously correct δ−1+νj
erasures, νj ≥ 0, in each local code C|Sj provided that the
number of global parities available is at least ν1 + · · ·+ νLc .

Proof: We begin by defining HC |IJ as the submatrix of
HC restricted in columns by the set J and in rows by the set
I. For j ∈ NLc , consider the j-th local code. Let Ej denote
the set of coordinates that are erased in the j-th local code,
where |Ej | = δ − 1 + νj . Let

Rj = {(δ − 1)(j − 1) + 1, . . . , (δ − 1)j} ∪ Aj

be a set of rows of HC of cardinality |Rj | = |Ej |, where
Aj ⊂ NLc(δ−1)+1:(n−k), |Aj | = νj , is a set of rows of HC

(which correspond to parity-check equations of the available
global parities). In order to prove the lemma one needs to
prove that

rank
(
HC

∣∣∪jRj
∪jEj

)
=

Lc∑
j=1

(δ − 1 + νj). (43)

8The proof of this inequality is available in the literature on linear algebra,
so here we omit the proof.

27

For each j ∈ NLc and j′ 6= j, assume that there exists a
set Aj′ ⊂ NLc(δ−1)+1:(n−k) such that Aj ∩ Aj′ = ∅. Then, it
follows that Rj ∩Rj′ = ∅, and since Ej ∩ Ej′ = ∅,

rank
(
HC

∣∣∪iRj
∪jEj

)
=

Lc∑
j=1

rank
(
HC |RjEj

)
.

Thus, to show (43) it is sufficient to show that

rank
(
HC |RjEj

)
= δ − 1 + νj (44)

for all j ∈ NLc .
To show this, consider now the [n′, k] MDS code C′ whose

parity-check matrix is given by HMDS in (24). Let S ′j ⊂ Nn′
denote a set of coordinates of C′ of cardinality

∣∣S ′j∣∣ = k+δ−
1 + νj . More specifically,

S ′j = {1, . . . , k} ∪ {k + 1, . . . , k + δ − 1} ∪ Bj ,

where Bj = {a−Lc(δ−1)+(δ−1)+k : a ∈ Aj} ⊂ Nδ+k:n′ .
In other words, the set S ′j consists of k systematic coordinates
and δ − 1 + νj parity coordinates of C′. The punctured code
C′j = C′|S′j is defined by a parity-check matrix HC

′
j of

dimensions (δ− 1 + νj)× (k+ δ− 1 + νj) that is a submatrix
of HMDS. Since the punctured code of an MDS code is
also an MDS code [45], C′j has minimum Hamming distance

d
C′j
min = δ+νj = δ+ |Aj |. Note that for some column index set
J ⊂ Nk+δ−1+νj , |J | = |Ej |, one can build HC |RjEj = HC

′
j |J .

From the MDS property, it follows that

rank
(
HC |RjEj

)
= rank

(
HC

′
j |J
)

= δ − 1 + νj .

Finally, if the total number of global parities is at least∑Lc

j=1 νj , we can assign to the set Aj , j ∈ NLc , a set of νj
rows of HC corresponding to global parity-checks such that
the sets Aj are all disjoint, hence (44) holds for all j ∈ NLc ,
and (43) follows, which completes the proof.

Lemma 8. Consider an erasure pattern e of length n of the
form

e = (e1, . . . , en) = (e1, . . . , eL, eL+1),

where the subvectors e1, . . . , eL are all of length nc = r+δ−1
and eL+1 is of length r̄ = n mod nc. Let χ(ej), j ∈ NL+1,
be the support of ej and t = (n − k) mod L. If |χ(e1)| =
· · · = |χ(et)| = m1, |χ(et+1)| = · · · = |χ(eL)| = m, and
|χ(eL+1)| = 0, where m =

⌊
n−k
L

⌋
and m1 = m+ 1, then e

is correctable by C.

Proof: The erasure pattern e is divided into L+ 1 parti-
tions represented by ej = (enc(j−1)+1, . . . , encj), j ∈ NL, and
eL+1 = (encL+1, . . . , en), where ej , j ∈ NLc , corresponds to
the coordinates of the j-th local code, and eLc+1, . . . , eL+1

correspond to the coordinates of the global parities of C.
The set χ(ej), j ∈ NL+1, is the set of coordinates erased

from the j-th partition, and we construct the erasure patterns
ej , j ∈ NL, such that |χ(ej)| = δ − 1 + νj with

νj =

{
m1 − (δ − 1) if j ∈ Nt,
m− (δ − 1) if j ∈ Nt+1:L,

where t = (n − k) mod L, and let χ(eL+1) = ∅. In
other words, we construct the erasure patterns such that the
erasures are distributed as equally as possible across the first
L partitions.

From Definition 7, it follows that n − k ≥ (δ − 1)Lc +
(L − Lc)(r + δ − 1) ≥ L(δ − 1) (where the last inequality
follows from L ≥ Lc), hence δ − 1 is an integer satisfying
the inequality L(δ − 1) ≤ n − k, and subsequently δ − 1 ≤
n−k
L . The integer m is the largest integer such that m ≤ n−k

L .
Therefore, δ − 1 ≤ m. To show that e is correctable it is
enough to show that the erasures in the Lc local codes can be
corrected, since in this case we have a nonerased information
set for C, which allows to correct the remaining erasures in e.

From Lemma 7, to correct δ − 1 + νj erasures in the j-
th local code for all j ∈ NLc , the number of global parities
available, γtot + r̄, must be

γtot + r̄ ≥
Lc∑
j=1

νj =

{
m1t+m(Lc − t)− Lc(δ − 1) if t ≤ Lc,

m1Lc − Lc(δ − 1) if t > Lc,

(45)

where γtot is the number of global parities available in the
(Lc+1)-th, . . . , L-th partitions and r̄ = n−ncL is the number
of global parities in the (L+ 1)-th partition. By counting the
number of global parities not erased in L− Lc partitions, we
get

γtot =

(nc −m)(L− Lc) if t ≤ Lc,

(nc −m1)(t− Lc) + (nc −m)(L− t) if t > Lc.

(46)

By substituting (46) into (45), we get (after performing some
simple arithmetic) the condition

n− k −mL ≥ t,

which is valid for both cases of t (t ≤ Lc and t > Lc). By
definition of t and m, the above inequality is met with equality,
and it follows that e is a correctable erasure pattern.

A. Proof of Step a)

Let Ẽ, W , Z, and O be submatrices of E as shown in (25).
We begin the proof by proving that each of the ncL rows of
the matrix

(
Ẽ | Z

)
is a correctable erasure pattern, where

Ẽ is defined in (26). This is proved by induction on the row
partitions of

(
Ẽ | Z

)
.

Base Case. Consider the first row partition of
(
Ẽ | Z

)
, given

by (
π1 π2 · · · πL 0nc×r̄

)
.

For each row vector e(1)
i , i ∈ Nnc , in this row partition, where

the subscript i indicates the row index and the superscript
the row partition, consider the subvectors e(1)

i,1 , . . . , e
(1)
i,L. From

Step a) in Section VI-C, for all i ∈ Nnc , the j-th subvectors
e

(1)
i,j have support of cardinality |χ(e

(1)
i,j)| = m1 for all j ∈ Nt,

where t = (n − k) mod L, |χ(e
(1)
i,j)| = m for j ∈ Nt+1:L,

and |χ(e
(1)
i,L+1)| = 0. Thus, the vectors e(1)

i in the first row

28

partition of
(
Ẽ | Z

)
have the same structure as the erasure

pattern e from Lemma 8 and are therefore erasure patterns that
are correctable by C. Note that the number of global parities
available in the (Lc+1)-th, . . . , L-th subvectors of vector e(1)

i ,
γ

(1)
tot , is γ(1)

tot = γtot, hence γ(1)
tot + r̄ = γtot + r̄ ≥

∑Lc

j=1 νj and
from the proof of Lemma 8 the error pattern e(1)

i is correctable.

Inductive Step. Assume that the vectors e(l)
i , i ∈ Nnc , in the

l-th row partition of
(
Ẽ|Z

)
are correctable by C and that each

local code C|Sj can correct δ − 1 + ν
(l)
j erasures, j ∈ NLc .

The row vectors are taken from the matrix(
πσl−1(1) πσl−1(2) · · · πσl−1(L) 0nc×r̄

)
,

where σ , (L (L − 1) · · · 1) denotes a cycle whose mapping
is L 7→ (L − 1) 7→ · · · 7→ 1 7→ L. The (L + 1)-th subvectors
satisfy |χ(e

(l)
i,L+1)| = 0. From Lemma 7, the underlying

characteristic of the vectors e(l)
i is that they are correctable

erasure patterns if the number of global parities not erased in
e

(l)
i , γ(l)

tot + r̄, is larger than or equal to
∑Lc

j=1 ν
(l)
j .

In the (l+1)-th row partition of
(
Ẽ|Z

)
, the nc rows have the

form (
πσl(1) πσl(2) · · · πσl(L) 0nc×r̄

)
.

Due to the cyclic shifts, for j ∈ NL, all the j-th subvectors
of the vectors e(l+1)

i in row partition l + 1, l ∈ NL−1, have
support size |χ(e

(l+1)
i,j)| = |χ(e

(l)
i,σ−1(j))|. Thus, there exist two

indices j′, j′′ ∈ NL, j′ 6= j′′, such that

|χ(e
(l+1)
i,j′)| − |χ(e

(l)
i,j′)| = |χ(e

(l)
i,j′′)| − |χ(e

(l+1)
i,j′′)|,

|χ(e
(l+1)
i,j)| = |χ(e

(l)
i,j)|, ∀ j ∈ NL \ {j′, j′′}.

(47)

One can see that there are at most 4 (depending on t and Lc)
choices for the pair (j′, j′′) as follows.
Case 1. j′, j′′ ∈ NLc : From (47), it follows that ν(l+1)

j′ −
ν

(l)
j′ = ν

(l)
j′′ − ν

(l+1)
j′′ , ν(l+1)

j = ν
(l)
j , and γ

(l)
tot = γ

(l+1)
tot . Thus,

we have
∑Lc

j=1 ν
(l+1)
j =

∑Lc

j=1 ν
(l)
j = γ

(l)
tot + r̄ = γ

(l+1)
tot + r̄.

Case 2. j′, j′′ ∈ NLc+1:L: From (47), it follows that γ(l+1)
tot =

γ
(l)
tot and

∑Lc

j=1 ν
(l+1)
j =

∑Lc

j=1 ν
(l)
j . Therefore,

∑Lc

j=1 ν
(l+1)
j =

γ
(l+1)
tot + r̄.

Case 3. j′ ∈ NLc , j
′′ ∈ NLc+1:L: From (47), it follows that

ν
(l+1)
j′ − ν(l)

j′ = γ
(l+1)
tot − γ(l)

tot . Moreover, it can be seen that∑
j 6=j′,j∈NLc

ν
(l+1)
j =

∑
j 6=j′,j∈NLc

ν
(l)
j . Hence, we have

Lc∑
j=1

ν
(l+1)
j =

∑
j 6=j′,j∈NLc

ν
(l+1)
j + ν

(l+1)
j′

=
∑

j 6=j′,j∈NLc

ν
(l+1)
j + (ν

(l+1)
j′ − ν(l)

j′) + ν
(l)
j′

=
∑

j 6=j′,j∈NLc

ν
(l)
j + (γ

(l+1)
tot − γ(l)

tot) + ν
(l)
j′

=

Lc∑
j=1

ν
(l)
j + (γ

(l+1)
tot − γ(l)

tot)

(b)
= γ

(l)
tot + r̄ + (γ

(l+1)
tot − γ(l)

tot)

= γ
(l+1)
tot + r̄,

where (b) holds since
∑Lc

j=1 ν
(l)
j = γ

(l)
tot + r̄.

Case 4. j′ ∈ NLc+1:L, j′′ ∈ NLc : Following an argumentation
similar to Case 3, we have

∑Lc

j=1 ν
(l+1)
j = γ

(l+1)
tot + r̄.

In each of the above cases we see that the condition γtot+ r̄ ≥∑Lc

j=1 ν
(l+1)
j is satisfied (with equality). From the proof of

Lemma 8, the nc rows in the (l+1)-th row partition of
(
Ẽ|Z

)
are correctable by C, which completes the inductive step.

The rows of (W | O) as shown in Step a) in Section VI-C
have support corresponding to only the parity symbols of C.
Thus, these rows are all correctable by C, and it follows from
the above arguments that each row of E is an erasure pattern
that is correctable by C.

B. Proof of Step b)

We now address the second part of the proof. Note that
the columns with coordinates in Pj , j ∈ NL, have column
weight n− k+ r̄ after Step a). Step b) involves the swapping
of one entries from these coordinates with zero entries in the
column coordinates of Z. The swapping is done to ensure that
the column weight of the columns indexed by Pj , j ∈ NL, is
reduced to n−k, while those of the columns of Z are increased
to n− k− r̄. Since O is an all-one matrix, the columns of E
with indices in PL+1 have also weight n− k. It is possible to
show that such a swapping always exists. Overall, the resulting
matrix E is (n−k)-column regular. To ensure that the erasure
patterns are correctable, we use Lemma 7. For each row,

Lc∑
j=1

νj ≤ γtot + γL+1, (48)

where γL+1 is number of nonerased parity coordinates in
column partition L + 1, must hold. Clearly, if for a certain
row of (Ẽ | Z) a one from a column from a column partition
in NLc+1:L (corresponding to Ẽ) is swapped with a zero in a
column from partition L + 1 (corresponding to Z), then the
resulting erasure pattern is still correctable by C as (48) is still
valid. On the other hand, for j ∈ NLc , if for a certain row of
(Ẽ | Z) a one from the j-th column partition is swapped with
a zero in the (L+1)-th column partition, then such a row is still
a correctable erasure pattern provided that νj > 0 before the
swap. This is easy to see as the swapping procedure reduces
νj and γL+1 by one. Thus, (48) is still satisfied. From the
aforementioned arguments and the fact that each row of any
row partition of (Ẽ | Z) has at most r̄ swaps of ones occurring
from the set of NL column partitions and zeroes from the
(L + 1)-th partition, it follows that the swaps according to
Step b) are valid over all r̄ iterations (valid in the sense that
the resulting erasure patterns are correctable by C) if

Lc∑
j=1

νj +

L∑
j=Lc+1

(m− (δ − 1)) ≥ r̄. (49)

This is a counting argument, where according to Step b) for
each row we restrict swapping νj coordinates in the j-th

29

column partition, j ∈ NLc , and m − (δ − 1) coordinates in
the column partitions NLc+1:L to make sure (following the
arguments above) that the resulting erasure pattern after the
swap is correctable by C. Using that νj = ρj − (δ − 1) and
t = n−k−mL, it can be shown that the left hand side of (49)
can be lowerbounded by n−k−L(δ−1) when t ≤ Lc. Setting
n = r̄+L(r+δ−1) and k = Lcr, it follows that (49) reduces
to L ≥ Lc. By definition, this is always true. When t > Lc,
the left hand side of (49) is equal to n−k−L(δ−1)+Lc− t,
and it can be shown that this is always larger than or equal
to r̄, since t ≤ L (details omitted for brevity). It follows that
for all r̄ iterations and for all row partitions in the systematic
procedure in Step b) there exists a valid swap such that the
resulting erasure patterns are still correctable by C.

APPENDIX G
PROOF OF THEOREM 7

To prove the theorem we need the following lemma.

Lemma 9. Let C be an [n = 2n1, k = k1 + 1] binary code
constructed from an [n1, k1] code U through the (U | U + V)
construction, where V is an [n, 1] binary repetition code. The
generator matrix GC of C is given in (36). Let C̄ = C and
GC̄ = GC . Then, the code C̃ = C ◦ C̄ is a vector space of
dimension

dim(C̃) ≤

{
k1 + n1 + 1 if n1 − k1 ≤

(
k1

2

)
,

2k1 +
(
k1

2

)
+ 1 otherwise.

(50)

Proof: From Definition 4, we know that c̃ ∈ C̃ has the
form c̃ = (c1c̄1, . . . , cnc̄n), where c = (c1, . . . , cn) ∈ C and
c̄ = (c̄1, . . . , c̄n) ∈ C̄. Considering GC = (gci,j) and GC̄ =

(gc̄i,j), the vector space C̃ is spanned by the row space of

GC̃ =

gc1,1g

c̄
1 gc1,2g

c̄
2 · · · gc1,ng

c̄
n

gc2,1g
c̄
1 gc2,2g

c̄
2 · · · gc2,ng

c̄
n

...
... · · ·

...
gck,1g

c̄
1 gck,2g

c̄
2 · · · gck,ng

c̄
n

 , (51)

where the vector gc̄j , j ∈ Nn, denotes the j-th column
vector of GC̄ . The matrix GC̃ is a matrix consisting of k2

row vectors (corresponding to codewords of C̃) of length
n. We divide GC̃ into k submatrices GC̃i , where GC̃i =
(gci,1g

c̄
1|gci,2gc̄2| . . . |gci,ngc̄n), i ∈ Nk (see (51)). From (36) and

since GC = GC̄ , we have gck,j = gc̄k,j = 0, j ∈ Nn1
,

and gck,j = gc̄k,j = 1, j ∈ Nn1+1:n. Therefore, (51) can be
expanded to

GC̃ =

gc1,1

gc̄1,1
gc̄2,1

...
gc̄k1,1

0

 · · · gc1,n1

gc̄1,n1

gc̄2,n1

...
gc̄k1,n1

0

 gc1,n1+1

gc̄1,n1+1

gc̄2,n1+1
...

gc̄k1,n1+1

1

 · · · gc1,n

gc̄1,n
gc̄2,n

...
gc̄k1,n

1

gc2,1

gc̄1,1
gc̄2,1

...
gc̄k1,1

0

 · · · gc2,n1

gc̄1,n1

gc̄2,n1

...
gc̄k1,n1

0

 gc2,n1+1

gc̄1,n1+1

gc̄2,n1+1
...

gc̄k1,n1+1

1

 · · · gc2,n

gc̄1,n
gc̄2,n

...
gc̄k1,n

1

... · · ·

...
... · · ·

...

0

gc̄1,1
gc̄2,1

...
gc̄k1,1

0

 · · · 0

gc̄1,n1

gc̄2,n1

...
gc̄k1,n1

0

 1

gc̄1,n1+1

gc̄2,n1+1
...

gc̄k1,n1+1

1

 · · · 1

gc̄1,n
gc̄2,n

...
gc̄k1,n

1

.

(52)

Furthermore, let GU = (gui,j) be the generator matrix of U .
From (36), we have gci,j = gc̄i,j = gui,j for i ∈ Nk1

and
j ∈ Nn1

. For i, j ∈ Nk, we denote the i-th row of the j-
th submatrix GC̃j as w(j)

i . For i ∈ Nk−1, the i-th row of the
i-th submatrix GC̃i is given as

w
(i)
i = (gci,1g

c̄
i,1, g

c
i,2g

c̄
i,2, . . . , g

c
i,ng

c̄
i,n). (53)

Since gc̄i,j = gci,j ∈ GF(2), (53) reduces to w
(i)
i =

(gci,1, g
c
i,2, . . . , g

c
i,n). Furthermore, from (36) we see that gci,j =

gci,n1+j = gui,j , j ∈ Nn1
, i ∈ Nk1

. Therefore, these k1 = k− 1
rows form the k1 basis vectors of the code space (U ,U) and
can be arranged in a matrix as(

GU GU
)
. (54)

The k-th row of GC̃i can be written as

w
(i)
k = (

n1︷ ︸︸ ︷
0, 0, . . . , 0, gci,n1+1, g

c
i,n1+2, . . . , g

c
i,n)

(c)
= (0, 0, . . . , 0, gui,1, g

u
i,2, . . . , g

u
i,n1

),

where (c) results from the structure of GC in (36). Stacking
together the k-th row of all k1 submatrices GC̃i , i ∈ Nk1

,
results in the k1 row vectors(

0k1×n1
GU
)
. (55)

In a similar way, the rows w(k)
i , i ∈ Nk, of the k-th submatrix

GC̃k result in the matrix(
0k1×n1

GU

01×n1 11×n1

)
. (56)

Of the remaining (k − 1)(k − 2) rows in (52), since C = C̄,
there exist

(
k1

2

)
distinct rows as follows,

Θ =

gc1,1g
c̄
2,1 gc1,2g

c̄
2,2 · · · gc1,ng

c̄
2,n

gc1,1g
c̄
3,1 gc1,2g

c̄
3,2 · · · gc1,ng

c̄
3,n

...
... · · ·

...
gc1,1g

c̄
k1,1

gc1,2g
c̄
k1,2

· · · gc1,ng
c̄
k1,n

gc2,1g
c̄
3,1 gc2,2g

c̄
3,2 · · · gc2,ng

c̄
3,n

...
... · · ·

...
gc2,1g

c̄
k1,1

gc2,2g
c̄
k1,2

· · · gc2,ng
c̄
k1,n

...
... · · ·

...

gck1−1,1g
c̄
k1,1

gck1−1,2g
c̄
k1,2

· · · gck1−1,ng
c̄
k1,n

.

Furthermore, from the construction of GC in (36), we have
(gci,1, . . . , g

c
i,n1

) = (gci,n1+1, . . . , g
c
i,n) = (gui,1, . . . , g

u
i,n1

),
i ∈ Nk1

and because C̄ = C, we have (gc̄i,1, . . . , g
c̄
i,n1

) =
(gc̄i,n1+1, . . . , g

c̄
i,n). Therefore,

Θ =
(
θ(k1

2)×n1
θ(k1

2)×n1

)
, (57)

30

where θ(k1
2)×n1

is a binary matrix of size
(
k1

2

)
× n1. From

(54)–(57), GC̃ can be written as

GC̃ =

GU GU

0k1×n1
GU

0k1×n1
GU

θ(k1
2)×n1

θ(k1
2)×n1

01×n1
11×n1

 .

Using Gaussian elimination, GC̃ can be reduced to

GC̃ =

GU 0k1×n1

0k1×n1
GU

0k1×n1 0k1×n1

θ(k1
2)×n1

θ(k1
2)×n1

01×n1
11×n1

 . (58)

Let GU =
(
Ik1
|Pk1×(n1−k1)

)
, where Pk1×(n1−k1) is the

parity matrix of size k1 × (n1 − k1). We now count the
number of independent rows in the matrix(

GU

θ(k1
2)×n1

)
=

(
Ik1 Pk1×(n1−k1)

θ(k1
2)×n1

)
.

Upon performing Gaussian elimination, we get(
Ik1

Pk1×(n1−k1)

0
(
k1
2)×k1

∆(k1
2)×(n1−k1)

)
,

where ∆(k1
2)×(n1−k1) is a matrix of dimensions

(
k1

2

)
× (n1−

k1) with elements in GF(2). Hence, we have rank (∆) ≤
min

((
k1

2

)
, (n1 − k1)

)
. From this and (58), we can easily see

that

k̃ = rank
(
GC̃
)

= k1 + k1 + rank (∆) + 1

≤

{
k1 + n1 + 1 if n1 − k1 ≤

(
k1

2

)
,

2k1 +
(
k1

2

)
+ 1 otherwise.

Lemma 9 gives an upper bound on the dimension of C̃. In
order to prove dim(C̃) < n, we check when the upper bound
in (50) is at most n− 1. For the first case in (50), we need to
show

k̃ ≤ k1 + n1 + 1 ≤ 2n1 − 1.

Clearly, this is true since n1 ≥ k1 + 2 by assumption. For the
second case in (50) we have to show

k̃ ≤ 2k1 +

(
k1

2

)
+ 1 ≤ 2n1 − 1.

Since n1 >
(
k1

2

)
+ k1, the above inequality reduces to(

k1

2

)
> 2.

Clearly, this is true for k1 ∈ N3:∞. In the following, we argue
for k1 ∈ N2. Since n1 ≥ k1 + 2 by assumption, we have

2n1 − 1 ≥ 2(k1 + 2)− 1 = 2k1 + 3 > 2k1 +

(
k1

2

)
+ 1,

for k1 ∈ N2. Therefore, dim(C̃) < n for n1 ≥ k1 + 2.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proc. 36th Annual IEEE Symp. Found. Comp. Sci.
(FOCS), Milwaukee, WI, USA, Oct. 1995, pp. 41–50.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, Nov.
1998.

[3] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking
the O(n1/(2k−1)) barrier for information-theoretic private information
retrieval,” in Proc. 43rd Annual IEEE Symp. Found. Comp. Sci. (FOCS),
Vancouver, BC, Canada, Nov. 2002, pp. 261–270.

[4] S. Yekhanin, “Towards 3-query locally decodable codes of subexponen-
tial length,” Journal of the ACM, vol. 55, no. 1, pp. 1–16, Feb. 2008.

[5] K. Efremenko, “3-query locally decodable codes of subexponential
length,” in Proc. 41st Annual ACM Symp. Theory Comput. (STOC),
Bethesda, MD, USA, May/Jun. 2009, pp. 39–44.

[6] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. 36th Annual ACM Symp. Theory Comput.
(STOC), Chicago, IL, USA, Jun. 2004, pp. 262–271.

[7] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA, Jun./Jul. 2014, pp.
856–860.

[8] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval
for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, China, Jun. 2015, pp. 2842–2846.

[9] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low
storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, China, Jun. 2015, pp. 2852–2856.

[10] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[11] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[12] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2018.

[13] Y. Zhang and G. Ge, “A general private information retrieval
scheme for MDS coded databases with colluding servers,” Apr. 2017,
arXiv:1704.06785v1 [cs.IT]. [Online]. Available: https://arxiv.org/abs/
1704.06785

[14] ——, “Private information retrieval from MDS coded databases
with colluding servers under several variant models,” May 2017,
arXiv:1705.03186v2 [cs.IT]. [Online]. Available: https://arxiv.org/abs/
1705.03186

[15] R. G. L. D’Oliveira and S. El Rouayheb, “Lifting private information
retrieval from two to any number of messages,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 1744–1748.

[16] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij-Hollanti et
al.” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2018.

[17] ——, “The capacity of robust private information retrieval with collud-
ing databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370,
Apr. 2018.

[18] Q. Wang and M. Skoglund, “Linear symmetric private information
retrieval for MDS coded distributed storage with colluding servers,” in
Proc. IEEE Inf. Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017,
pp. 71–75.

[19] ——, “On PIR and symmetric PIR from colluding databases with
adversaries and eavesdroppers,” 2019, to app. in IEEE Trans. Inf. Theory.

[20] H. Sun and S. A. Jafar, “The capacity of symmetric private information
retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322–329, Jan.
2019.

[21] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5684–5698, Sep. 2017.

[22] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes:
Achieving the cut-set bound,” in Proc. 58th Annual IEEE Symp. Found.
Comp. Sci. (FOCS), Berkeley, CA, USA, Oct. 2017, pp. 216–227.

[23] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proc. IEEE Int. Symp. Net. Comp. Appl. (NCA), Cambridge, MA, USA,
Jul. 2007, pp. 79–86.

https://arxiv.org/abs/1704.06785
https://arxiv.org/abs/1704.06785
https://arxiv.org/abs/1705.03186
https://arxiv.org/abs/1705.03186

31

[24] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel erasure
codes for big data,” in Proc. 39th Very Large Data Bases Endowment
(VLDB), Trento, Italy, Aug. 2013, pp. 325–336.

[25] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proc.
USENIX Annual Tech. Conf., Boston, MA, USA, Jun. 2012.

[26] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol. 60, no. 8, pp. 4637–4660, Aug. 2014.

[27] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[28] S. Kumar, E. Rosnes, and A. Graell i Amat, “Private information retrieval
in distributed storage systems using an arbitrary linear code,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp.
1421–1425.

[29] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geom., vol. 1, no. 1, pp. 647–664, Nov. 2017.

[30] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-
Trautmann, D. Karpuk, and I. Kubjas, “Reed-Muller codes for private
information reterival,” in Proc. 10th Int. Workshop Coding Cryptography
(WCC), Saint-Petersburg, Russia, Sep. 2017.

[31] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[32] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-
Trautmann, D. Karpuk, and I. Kubjas, “t-private information retrieval
schemes using transitive codes,” 2019, to app. in IEEE Trans. Inf.
Theory.

[33] V. K. Wei, “Generalized Hamming weights for linear codes,” IEEE
Trans. Inf. Theory, vol. 37, no. 5, pp. 1412–1418, Sep. 1991.

[34] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge
University Press, 2013.

[35] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Trans. IRE Prof. Gro. Inf. Theory, vol. 4, no. 4, pp. 38–49,
Sep. 1954.

[36] J. D. Key, T. P. McDonough, and V. C. Mavron, “Information sets and
partial permutation decoding for codes from finite geometries,” Finite
Fields Th. App., vol. 12, no. 2, pp. 232–247, Apr. 2006.

[37] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[38] W. C. Huffman and V. Pless, Eds., Fundamentals of Error-Correcting
Codes. Cambridge, UK: Cambridge University Press, 2010.

[39] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[40] P. Delsarte, J. M. Goethals, and F. J. MacWilliams, “On generalized
Reed-Muller codes and their relatives,” Inf. Contr., vol. 16, no. 5, pp.
403–442, Jul. 1970.

[41] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd
Int. Symp. Turbo Codes & Rel. Topics (ISTC), Brest, France, Sep. 2000,
pp. 543–546.

[42] K. Yang and T. Helleseth, “On the minimum distance of array codes as
LDPC codes,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3268–3271,
Dec. 2003.

[43] J. Hao and S.-T. Xia, “Constructions of optimal binary locally repairable
codes with multiple repair groups,” IEEE Commun. Lett., vol. 20, no. 6,
pp. 1060–1063, Jun. 2016.

[44] E. Rosnes, M. A. Ambroze, and M. Tomlinson, “On the mini-
mum/stopping distance of array low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 9, pp. 5204–5214, Sep. 2014.

[45] C. Feyling, “Punctured maximum distance separable codes,” Electron.
Lett., vol. 29, no. 5, pp. 470–471, Mar. 1993.

	Introduction
	Notation and Conventions

	Definitions and Preliminaries
	Reed-Muller Codes
	Local Reconstruction Codes
	UUV Codes

	System Model
	Privacy Model

	Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case
	PIR Achievable Rate Matrix
	Protocol 1
	Achievable PIR Rate
	A [5,3,2] MDS-PIR Capacity-Achieving Code for f=2

	Asymptotic MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case
	MDS-PIR Capacity-Achieving Codes
	Cyclic Codes
	Reed-Muller Codes
	Local Reconstruction Codes

	Optimizing the PIR Rate for the Noncolluding Case
	ComputeErasurePatternList(C,)
	ComputeMatrix(L,Ln-k)

	Multiple Colluding Nodes
	Protocol 3: The Multiple Colluding Nodes Case
	Query Construction
	Response Construction

	Example
	Codes for Protocol 3
	Codes Achieving the Maximum PIR Rate of blackProtocol 3
	Optimizing the PIR rate

	Numerical Results
	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Lemma 3
	Appendix D: Proof of Theorem 2
	Appendix E: Proof of Lemma 5
	Appendix F: Proof of Theorem 5
	Proof of Step a)
	Proof of Step b)

	Appendix G: Proof of Theorem 7
	References
	Biographies
	Siddhartha Kumar
	Hsuan-Yin Lin
	Eirik Rosnes
	Alexandre Graell i Amat

