Insights into the Exfoliation Process of V2O5· nH2O Nanosheet Formation Using Real-Time 51V NMR

Downloaded from: https://research.chalmers.se, 2020-04-28 07:10 UTC

Citation for the original published paper (version of record):
Insights into the Exfoliation Process of V2O5· nH2O Nanosheet Formation Using Real-Time 51V NMR
ACS Omega, 4(6): 10899-10905
http://dx.doi.org/10.1021/acsomega.9b00727

N.B. When citing this work, cite the original published paper.
Insights into theExfoliation Process of V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O Nanosheet Formation Using Real-Time 51V NMR

Ahmed S. Etman,†,§ Andrew J. Pell,† Peter Svedlindh,‡ Niklas Hedin,† Xiaodong Zou,† Junliang Sun,⊥ and Diana Bernin⊥

†Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
‡Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden
§Department of Chemistry, Faculty of Science, Alexandria University, Ibrahima, 21321 Alexandria, Egypt
⊥College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China

Supporting Information

ABSTRACT: Nanostructured hydrated vanadium oxides (V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O) are actively being researched for applications in energy storage, catalysis, and gas sensors. Recently, a one-step exfoliation technique for fabricating V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets in aqueous media was reported; however, the underlying mechanism of exfoliation has been challenging to study. Herein, we followed the synthesis of V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets from the V\textsubscript{2}O\textsubscript{5} and VO\textsubscript{2} precursors in real time using solution- and solid-state 51V NMR. Solution-state 51V NMR showed that the aqeous solution contained mostly the decavanadate anion [V\textsubscript{10}O\textsubscript{28}2n−] and the hydrated dioxovanadate cation [VO\textsubscript{3}·4H\textsubscript{2}O]n−, and during the exfoliation process, decavanadate was formed, while the amount of [VO\textsubscript{3}·4H\textsubscript{2}O]n− remained constant. The conversion of the solid precursor V\textsubscript{2}O\textsubscript{5} to VO\textsubscript{2} was monitored with solid-state 51V NMR, which was initiated when VO\textsubscript{2} was in its monoclinic forms. The dried V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets were weakly paramagnetic because of a minor content of isolated V4+. Its solid-state 51V signal was less than 20% of V\textsubscript{2}O\textsubscript{5} and arose from diamagnetic V4+ or V5+. This study demonstrates the use of real-time NMR techniques as a powerful analysis tool for the exfoliation of bulk materials into nanosheets. A deeper understanding of this process will pave the way to tailor these important materials.

1. INTRODUCTION

In the last few years, the synthesis of two-dimensional (2D) materials based on transition metal chalcogenides and oxides with thicknesses of a few layers has attracted renewed attention because of the different chemical, physical, and semiconducting properties of these materials compared to their bulk (three-dimensional, 3D) counterparts.1−3 Vanadium oxides are earth-abundant compounds, which have important applications in catalysis,4−7 batteries,8−10 supercapacitors,11 and sensors.11 Thus, many research groups have focused on the synthesis of 2D vanadium oxides from their bulk precursors.12−14 Of particular interest among these 2D materials are those based on the hydrated vanadium pentoxides (V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O), which have been shown to exhibit improved electrochemical behavior and semiconducting properties compared to anhydrous V\textsubscript{2}O\textsubscript{5}.15 The improvements are typically ascribed to the presence of H\textsubscript{2}O or H+ ions between the V\textsubscript{2}O\textsubscript{5} layers in V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O, which can be synthesized in the form of hydrogels,16 xerogels,17,18 nanobelts,19 and nanosheets.1−7 Nanostructured V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O has attracted research interest as it can be easily fabricated into a freestanding film,5 which is easier to handle than, and is thus advantageous compared to, an amorphous or crystalline powder or gel.

V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O is commonly synthesized either by an ion-exchange route using sodium metavanadate solution or via a sol−gel route using a mixture of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and V\textsubscript{2}O\textsubscript{5}.20,21 In both cases, a dark red compound is formed with a layered structure. Recently, Etman et al. synthesized V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets using aqueous exfoliation of a mixture of V\textsubscript{2}O\textsubscript{5} and VO\textsubscript{2} resulting in black/green films. The synthesis was monitored by in situ X-ray diffraction (XRD) studies, which revealed that the V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O phase started to form after 90 min of reflux in water at 80 °C. A more detailed understanding of the underlying mechanism of the formation of this V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O product is challenging because vanadium is a transition metal with a very complex chemistry and many different stable oxidation states.22 As XRD and wide-angle X-ray scattering provide data mainly on the long-range order in

Received: March 15, 2019
Accepted: May 29, 2019
Published: June 24, 2019

DOI: 10.1021/acsomega.9b00727
ACS Omega 2019, 4, 10899−10905
compounds, other techniques are important to assess developments in noncrystalline materials or at the solid–liquid interface during the reaction.

Nuclear magnetic resonance (NMR) is a characterization technique complementary to XRD and has been used to study the ion-exchange or sol–gel synthesis routes of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$.222526 It can provide information about the local order, coordination states, and protonated or deprotonated oxygen atoms. Typically, solid compounds are monitored by magic-angle spinning (MAS) solid-state (ss)-NMR, whereas solution-state NMR is used to observe dissolved compounds. However, both solid- and solution-state ^{51}V NMR are complicated by localized unpaired electrons in paramagnetic $^{51}\text{V}^+$ ions, which may bleach out the signal arising from the NMR detectable (diamagnetic) $^{51}\text{V}^{4+}$ ions in various ways.27 MAS ss-NMR is able to distinguish between delocalized (metallic) and localized (paramagnetic) electronic states via Knight shifts and paramagnetic shifts.28 Paramagnetic, which refers here to Curie or Curie–Weiss paramagnetism, $^{51}\text{V}^+$ ions with localized unpaired electrons cannot be directly studied with NMR, but their presence has the effect of bleaching the ^{51}V signal of nearby $^{51}\text{V}^{4+}$ ions, allowing the presence of $^{51}\text{V}^{4+}$ to be probed indirectly. However, $^{51}\text{V}^{4+}$ ions with localized unpaired electrons can be studied by other techniques, for example, electron spin resonance (ESR). When the $^{51}\text{V}^{4+}$ ions are less than 2.7 Å apart, their unpaired electrons may pair and turn the corresponding materials from paramagnetic to diamagnetic, which does give a detectable $^{51}\text{V}^{4+}$ NMR signal.

In this paper, we report on real-time solid- and solution-state ^{51}V NMR studies performed during the synthesis of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ nanosheets from a 1:4 mixture by weight of commercial monoclinic VO$_2$(M) and V$_2$O$_5$. The interpretation of the ^{51}V NMR results was linked with those from ESR and ^1H NMR and used to elucidate the mechanism of the aqueous exfoliation process and formation of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ nanosheets.

2. RESULTS AND DISCUSSION

2.1. Morphology and Structure of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ Nanosheets. The $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ nanosheets were synthesized in water from a 1:4 mixture by weight of monoclinic VO$_2$(M) and V_2O_5. The interpretation of the ^{51}V NMR results was linked with those from ESR and ^1H NMR and used to elucidate the mechanism of the aqueous exfoliation process and formation of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ nanosheets.

The XRD pattern (Figure 1a, black) recorded in this way was very similar to that collected in the reference mode using an in-house diffractometer (λ = 1.5406 Å). One possible solution to overcome the preferred orientation was to perform XRD in transmission mode with, for example, a high-energy X-ray source (synchrotron radiation, λ = 0.7766 Å). Notably, the XRD pattern (see Figure 1a, black) recorded in this way was very similar to that collected in the reference mode using an in-house diffractometer, suggesting a disordered stacking between $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ layers over the a–b plane. Interestingly, the transmission electron microscopy (TEM) images showed that $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ had a typical nanosheet morphology with a different lateral size thickness ranging from 30 to 220 nm (see Figure 1b). In addition, the selected area electron diffraction (SAED) pattern of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ had powder rings (see Figure 1c), which provided additional support for disordered stacking between the layers over the a–b plane.

2.1.1. Local Structure of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ Nanosheets. MAS ss-NMR can provide fruitful information about the local structure of the largely disordered nanosheets of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ was slightly lower in magnitude, −596 ppm, and the spinning side band manifold was broader, having nearly double the number of spinning side bands (see Figure 2, red). In addition, the individual side bands exhibited an increased inhomogeneous line width, which suggested highly distorted geometries of the vanadium sites. The enhanced line width was in agreement with observations from XRD and SAED.

In previous NMR studies of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ gels, synthesized using H$_2$O$_2$-based or ion-exchange methods, up to five different ^{51}V NMR peaks have been observed and attributed to various vanadium sites.3233 The corresponding ^{51}V isotropic shifts have been in the interval of −572 to −663 ppm. However, in this study, the intrinsic and symmetric ^{51}V line width of the ^{51}V NMR peaks of the nanosheets of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ exceeded 80 ppm and thus prevented potential multiple vanadium sites from being resolved. On the basis of previous studies,27 the ^{51}V isotropic shift of the nanosheets of $\text{V}_2\text{O}_5$$\cdot$$n\text{H}_2\text{O}$ suggested octahedral vanadium sites with one water
molecule bonded to the vanadyl oxygen or vanadium pentoxide with shifted subunits.

Notably, the integral intensity of the total 51V signal including the spinning side band manifold of the V$_2$O$_5$·nH$_2$O nanosheets was less than 20% of the V$_2$O$_5$ precursor. The broad line width of the side bands means that the second-order quadrupolar broadening cannot be measured from the line shape, and the contributions of the first-order quadrupolar interaction and shift anisotropy to the spinning side band manifold cannot be easily separated; consequently, the quadrupolar couplings were not measured.34 One possible reason for the signal loss relative to the precursor would be a phase transition similar to that of VO$_2$(M)−metallic-VO$_2$(R) because of frictional heating from MAS.35,36

The magnetic susceptibility data (see Figure S1) indicated a weak paramagnetic behavior of the nanosheets with no observable magnetic phase transition. A fit of these data returned a Weiss constant of zero, pure Curie paramagnetism which we ascribe to isolated (noninteracting) V$^{4+}$ ions that were incorporated between the V$_2$O$_5$ nanosheets during the course of the reaction. In turn, we ascribe the large reduction in the observable signal from V$_2$O$_5$ to a paramagnetic bleaching effect, where the nuclear relaxation of V$^{5+}$ is enhanced by the proximity of the paramagnetic V$^{4+}$ ions.27 As the synthesis was performed in an aqueous mixture of VO$_2$(M) and V$_2$O$_5$, the former provided a possible source of paramagnetic V$^{4+}$, given the 1:4-fraction of VO$_2$(M) and V$_2$O$_5$. V$_2$O$_5$·nH$_2$O has been found to contain about 10 mol % of V$^{4+}$ according to Etman et al.7 which was in agreement with the observed weakly paramagnetic behavior. The presence of V$^{4+}$ was here confirmed by ESR (see Figure S2). The corresponding spectra each had a broad peak with an isotropic g-value of 1.95 at room temperature. This value matched well with those reported for other V$^{4+}$-containing materials.52,25,37

2.1.2. Water Molecules in V$_2$O$_5$·nH$_2$O Nanosheets. The distribution and location of H$_2$O in V$_2$O$_5$·nH$_2$O are important for the electrochemical behavior and semiconducting properties.20,21 In relation to the positioning of H$_2$O, Pozarnsky and McCormick suggested a chain model with a H$_2$O molecule and a −OH group in the equatorial plane and an additional H$_2$O pointing downward.31 Hence, we recorded a static 2H ss-NMR spectrum (see Figure 3) on the V$_2$O$_5$·nD$_2$O nanosheets and observed three distinct resonances with decreasing intensities at chemical shifts of 1, 3.3, and 7 ppm. Similar results were obtained from 1H NMR experiments under MAS, but the 1H background of the probe and rotor complicated the interpretation (data not shown). Takeda et al. have observed rotational restricted motion in hydrated V$_2$O$_5$ as evidenced by the features of the 2H powder patterns.22 In this work, neither bulk H$_2$O nor strongly coordinated H$_2$O could be observed. Instead, the features of the static 2H spectrum suggested that H$_2$O had a high mobility. However, H$_2$O or −OH groups bonded or coordinated to V$^{4+}$ were not easily detectable under static conditions, as they were expected to be strongly shifted by a Fermi-contact shift to the paramagnetic V$^{4+}$ ion, exhibit large resonance broadening, and have short relaxation times. The observed 2H chemical shifts at 3.3 and 1 ppm were attributed to D$_2$O and −OD on the surface of the nanosheets, respectively.38 The chemical shift at 7 ppm may have been due to −OD groups, in which the O atom bridges between two V atoms.

2.2. Probing Nanosheet Formation by Real-Time 51V NMR. To elucidate the formation of nanosheets, we applied real-time solid- and solution-state 51V NMR to follow the reaction of the solid phases and the dissolved species separately.

2.2.1. Dissolved Species. VO$_2$ and V$_2$O$_5$ with a mass ratio of 1:4 were blended with 550 μL of H$_2$O and 50 μL of D$_2$O in an NMR tube, and solution-state 51V NMR spectra were recorded in real time during the reaction. The observed vanadium species and their 51V shift are summarized in Table 1. It was evident that the 51V signals of the decavanadate anion [H$_2$V$_{10}$O$_{28}$]$^{4+}$, resonating at −419, −503, and −522 ppm, exhibited increasing integral intensities for up to 2 h after mixing, whereas the 51V signal of the hydrated dioxovanadate cation [VO$_2$·4H$_2$O]$^{+}$ at −549 ppm retained a constant integral (see Figure 4). The decavanadate anion is believed to be produced from 10 dioxovanadate cations under acidic conditions in aqueous solutions. However, if this reaction had occurred here, there must also have been an additional process where dioxovanadate cations were produced. Further experiments are needed to clarify this.

Table 1. Dissolved Vanadium Species Observed with Solution-State NMRa

<table>
<thead>
<tr>
<th>dissolved vanadium species</th>
<th>51V shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H2V${10}$O$_{28}$]$^{4+}$</td>
<td>−419, −503, −522</td>
</tr>
<tr>
<td>[VO$_2$·4H$_2$O]$^{+}$</td>
<td>−549</td>
</tr>
</tbody>
</table>

aThe peak at −297 ppm could not be assigned.

Figure 3. Static 2H NMR of V$_2$O$_5$·nD$_2$O nanosheets. The 2H NMR spectrum was recorded using a quadrupolar echo sequence.

Figure 4. Stacked real-time solution-state NMR spectra as a function of time. “x” marks an unassigned peak. The inset shows the normalized 51V signal integral as a function of time for [H$_2$V$_{10}$O$_{28}$]$^{4+}$ (black) and [VO$_2$·4H$_2$O]$^{+}$ (red).
thermore, the rate of its formation has to be equal to the rate of consumption, so as to keep the overall dioxovanadate concentration unaltered throughout the entire reaction. It has furthermore been discussed that the decavanadate anion is not responsible for the formation of the nanosheets because it is highly acidic and hence would prevent further condensation reactions.39 Notably, a broad feature at a shift of about −297 ppm was observed (see Figure 4), which Rehder has suggested to be related to a VO2+ derivate.40 The broadening of this 51V signal might also be attributed to polymeric vanadium species or species that contain V(VI) in close vicinity.

The dioxovanadate cation was exchanged with H3VO4−, which has a pKa of 3.8.41 It is, hence, highly likely that the observed chemical shift of [VO2·4H2O]+ was due to an average of both the cationic and anionic forms and is highly pH-dependent. The observed chemical shift agreed well with the reported one at a pH of 3.8.41 The formation of the decavanadate anion produces H+, which lowered the pH to 2.6 at the end of the reaction, which in turn shifted the 51V signal of the dioxovanadate cation from −550 ppm to less negative chemical shift values. An aqueous suspension of VO2 did not produce any 51V NMR peaks at room temperature or 80 °C. Hence, we assumed that all of the 51V signals (in Figure 4) including the broad peak at about −297 ppm resulted from VO2+ and its reaction products despite its low solubility (0.7 g/L = 3.8 mmol/L at room temperature).52 It is worth mentioning that VO2+ is, however, slightly water-soluble particularly under acidic conditions, and the following V4+ species, which are NMR silent, might be present: [VO−SH2O]25, VOOH+, and a dimer VO3(OH2)2+; the latter most likely formed from the coupling of two VOOH+ species.43 V4+ species in an aqueous VO2+/V2O5 mixture at 80 °C was confirmed by the hyperfine coupling between an electron and 51V in the ESR spectrum showing eight peaks (see Figure S2). These features of the ESR spectrum suggested isolated V4+ species in solution,29 most likely [VO·SH2O]2+. Furthermore, the ESR spectrum had a broad feature, which was attributed to solid VO2 and an aqueous mixture of solely V2O5 did not give any ESR signal.

The same vanadium species have been observed in preparations from other approaches using ion-exchange and sol−gel methods.23−25,37 Our observations were consistent with findings from other synthetic methods taking into account the acidic conditions with pH = 3.8. Furthermore, the observed 51V NMR signals agreed well with earlier findings on the concentration and pH dependence for vanadium species formed in aqueous solutions.21

Etman et al. have reported on an onset of the V2O5·nH2O formation after 90 min using real-time XRD,7 while the formation of decavanadate leveled out after 2.5 h. By comparing those findings with the ones of this study, the question arose if the dissolved species were responsible for the formation of nanosheets or if the observations of the decavanadate anion and the dioxovanadate cation were solely due to various side reactions of the aqueous vanadium chemistry. Many mechanisms have been proposed for the formation of nanostructured gels,25,29,37 and in our view, the most relevant are those that have dealt with ion exchange.23,25 However, notably, all of them have derived these compounds from vanadium-based species in solution, whereas here we instead started from two commercial solid compounds (V2O5 and VO2).

2.2.2. Solid Species. To access information on the solid phases during the reaction, we performed real-time MAS ss-NMR experiments on the reaction mixture (0.3 mg of VO2, 1.2 mg of V2O5, and 20 μL of H2O) at 7 kHz MAS. Analyses of the 51V NMR spectra in Figure 5a,b showed a reduction of the integral of the whole 51V signal spinning side band manifold due to the V2O5 phase, which has an isotropic chemical shift of −611 ppm. The reduction was observed both for low-flip-angle direct excitation (Figure 5c, gray) and in a Hahn echo experiment (Figure 5c, red). The normalized 51V NMR integrals of a repeated Hahn echo experiment (Figure 5c, black) coincided well with the first reaction. Vanadium-containing compounds have a very large 51V NMR shift range, which in turn required that we moved the observation window by changing the carrier frequency and retuning the probe to observe various species. By comparing weight-normalized 51V MAS ss-NMR spectra of fresh commercial VO2(M) and V2O5, the observed broad 51V signal of VO2(M) at approximately 2100 ppm30 was consistent with <1% of the V2O5 signal in the solid phase (see Figure S3). This intensity was lower than expected and was ascribed to the broad 51V resonance of VO2 being harder to excite and having a shorter relaxation time than those of V2O5. The other 51V signal resonating at negative shift is most likely the impurity V2O3 (see Figure S3). Consequently, an amount of approximately 0.3 mg of VO2(M) was undetectable in the real-time MAS ss-NMR experiments. The lab-scale synthesis was prepared under similar conditions as in real-time MAS ss-NMR experiment and revealed traces of unexfoliated V2O5 at the end of the synthesis, which agreed with the remaining signal in the 51V NMR spectra detected after 38 h (see Figure S3, red and gray), and was therefore attributed to this unexfoliated V2O5 precursor. Despite attempts to observe other 51V signals, for
example, from VO₂, none were detected. One reason might have been the small rotor volume of 20 μL, which required a V₂O₅·nH₂O ratio that is 17 times larger to assure a good signal-to-noise ratio and to minimize the uncertainty of the weighed amount of solids, as compared to the lab-scale synthesis. In total, approximately 1.5 mg of VO₂ was present.

Interestingly, the synthesis of the V₂O₅·nH₂O nanosheets failed when V₂O₅ was used solely as the precursor (data not shown), suggesting that VO₂(M) or dissolved species formed from VO₂(M) initiated the formation of the V₂O₅·nH₂O nanosheets. A requirement of VO₂(M) for this synthesis was proposed by Pozarnsky and McCormick who reported on the formation of V⁴⁺ species by ion exchange and the consumption of those during the reaction. They suggested that [V⁴⁺·O·SH₂O]²⁺ reacted with [V⁵⁺O₂·4H₂O]⁴⁺ and formed oligomeric species, which polymerized further. Hence, our observations of a reduction of the V₂O₅ signal during the course of the reaction might be explained by a homogeneous distribution of V⁴⁺ in close vicinity of V⁵⁺ formed via polymerization rather than the consumption of V₂O₅ into other species. Our proposed reaction pathway, which is in agreement with Pozarnsky and McCormick, is illustrated in Figure 6. Alternatively, as measured quantity of V⁴⁺. Furthermore, the ¹H NMR (data not shown) displayed a broad ¹H NMR peak for the aged VO₂(M) as compared to the fresh one. The increased ¹H NMR signal intensity suggested strongly that concurrent H₂O uptake had occurred. Hence, as was reported by Etman et al., the relative fraction of VO₂(M)→V₂O₅ used in the synthesis was crucial for successful exfoliation.

3. CONCLUSIONS

To summarize, real-time solid-state and solution-state ⁵¹V NMR studies were performed to follow the transformation of VO₂ and V₂O₅ in aqueous dispersion into nanosheets of V₂O₅·nH₂O. During exfoliation, a loss of the ⁵¹V NMR signal of V₂O₅ was observed, which was attributed to a homogeneous distribution of V⁴⁺ that is in close contact with V⁵⁺ bleaching their signals. Taken together, our findings were consistent with a hypothesis that both VO₂ and V₂O₅ had been dissolved and VO₂ formed as [V⁴⁺·O·SH₂O]²⁺ cations, which were oligomerized with [V⁵⁺O₂·4H₂O]⁴⁺ species from V₂O₅ and then polymerized further. Another explanation could have been intercalation of [V⁴⁺·O·SH₂O]²⁺ between the layers of V₂O₅. Additional future studies could include real-time ESR experiments with stirring; however, such were out of the scope of this current study.

4. MATERIALS AND METHODS

4.1. Materials.

The V₂O₅·nH₂O or V₂O₅·nD₂O nanosheets were synthesized as described in ref 7. In a typical synthesis, a mixture of 1:4 (weight ratio) of V₂O₅ (Fisher Scientific, UK) and V₂O₅ (Sigma-Aldrich, Germany, purity 99.9%), denoted by VO₂(M), was used as the precursors. The mixture of oxides was dispersed in water or D₂O (CortecNet, 99.8%) by sonication for 10 min and then heated under reflux at 80–90 °C for 8–24 h. At the end of heating process, a greenish black suspension of V₂O₅·nH₂O nanosheets was formed, which was then dried in air at 80 °C for 5 h to obtain the V₂O₅·nH₂O nanosheets.

For the real-time ss-NMR experiments, 0.3 mg of VO₂, 1.2 mg of V₂O₅, and 20 μL of H₂O were placed in a Kel-F insert, which can be sealed with screws. After sealing, the mixture was sonicated for a minute. The insert was then placed in a 4 mm rotor, which was inserted into the spectrometer.

For the real-time solution-state NMR experiments, VO₂ and V₂O₅ with a mass ratio of 1:4 were blended with 550 μL of H₂O and 50 μL of D₂O. The synthesis was performed at 70 °C, and the sample tube was spun at 20 Hz.

4.2. Methods.

⁵¹V MAS NMR data were acquired on 14.1 T (⁵¹V Larmor frequency of −157.9 MHz) and 9.4 T (Larmor frequency of −105.2 MHz) Bruker AVANCE-III spectrometers equipped with a 4 mm or 3.2 mm triple-resonance MAS probe. Real-time MAS ⁵¹V NMR spectra were recorded at a MAS rate of 7 kHz, while rotors containing solely solid compounds were spun at the rate of 14 or 24 kHz. The isotropic chemical shift was determined by comparing ⁵¹V NMR spectra recorded at two different spinning frequencies. An aqueous solution of sodium metavanadate (1 mol/L) was used to externally calibrate the ⁵¹V NMR chemical shift to −574.38 ppm. For solid samples, the length and strength of the radio frequency (rf) pulse were estimated using the reference solution, and a rf pulse and a nominal flip angle of 10° were used for single pulse acquisition. For real-time MAS experiments on the reaction mixture, the rf pulse was calibrated.
on the sample itself and a 45° nominal flip angle was used. Applied rf fields between 80 and 95 kHz and spectral widths between 2500 and 5000 kHz were used. The carrier frequency was placed on resonance at the isotropic shift for V₂O₅ as well at VO₂(M) and others. The ⁵¹V longitudinal relaxation time constants T₁ for the solid compounds were estimated to be less than a second at room temperature and at 85 °C. Nevertheless, a repetition delay of 5 s was used for the real-time MAS NMR measurements on the reaction mixture at 85 °C. Static ¹H NMR was carried out on V₂O₅·nD₂O nanosheets prepared in D₂O instead of H₂O. A small piece of the V₂O₅·nD₂O nanosheets was glued in place in a glass insert, which was NMR was carried out on V₂O₅ without spinning, and a quadrupolar echo pulse sequence was used. For real-time solution-state NMR measurements, V₂O₅*lamd was placed on resonance at the isotropic shift for V₂O₅ as well between 2500 and 5000 kHz were used. The carrier frequency was stepped from 1000 to 6000 gauss using two or eight fields between 80 and 95 kHz and spectral widths with in-house scripts (MATLAB, Mathworks).

A moderately wide Gaussian function, which was optimized to reach close to 0 at the time point the signal had decayed, was pairwise multiplied with the recorded free induction decays before Fourier transformation. Unless otherwise stated, the spectral intensities were normalized to the mass of the sample packed in the rotor. Processing including baseline corrections was performed with in-house scripts (MATLAB, Mathworks).

All ESR experiments were carried out on a Bruker ELEXYS (X-band) spectrometer at room temperature or 80 °C. Samples were studied in a glass capillary, and the magnetic field was stepped from 1000 to 6000 gauss using two or eight signal accumulations. For heat treatment, capillaries were placed on resonance at the isotropic shift for V₂O₅ as well between 2500 and 5000 kHz were used. The carrier frequency was stepped from 1000 to 6000 gauss using two or eight fields between 80 and 95 kHz and spectral widths with in-house scripts (MATLAB, Mathworks).

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00727.

Variation of magnetic susceptibility with temperature, ESR spectra, weight-normalized ⁵¹V MAS ss-NMR spectra of V₂O₅ and VO₂, XRD patterns of VO₂ fresh and aged, and ⁵¹V MAS ss-NMR spectra of the aged VO₂ (PDF)

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00727.

ORCID

Ahmed S. Etman: 0000-0003-0358-2379
Andrew J. Pell: 0000-0002-2542-8113
Niklas Hedín: 0000-0002-7284-2974
Xiaodong Zou: 0000-0001-6748-6656
Junliang Sun: 0000-0003-4074-0962
Diana Bernin: 0000-0002-9611-2263

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The Swedish NMR Centre is acknowledged for access to the facility and spectrometer time. T. Astlind is thanked for ESR support, Prof Astrid Gräsland for ESR time, Prof Mattias Edén for NMR spectrometer time, and Prof Lynne McCusker for her help in recording the XRD pattern at the synchrotron facility.

REFERENCES

Strategy towards VO₂(B) Single Layers with Atomic Thickness. *Small* 2012, 8, 3752−3756.

