
eChIDNA: Continuous Data Validation in Advanced Metering
Infrastructures

Downloaded from: https://research.chalmers.se, 2024-03-13 08:01 UTC

Citation for the original published paper (version of record):
Van Rooij, J., Swetzén, J., Gulisano, V. et al (2018). eChIDNA: Continuous Data Validation in
Advanced Metering Infrastructures. 2018 IEEE International Energy Conference (ENERGYCON):
1-6. http://dx.doi.org/10.1109/ENERGYCON.2018.8398800

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



eChIDNA: Continuous Data Validation in Advanced
Metering Infrastructures

Joris van Rooij∗†, Johan Swetzén†, Vincenzo Gulisano†, Magnus Almgren† and Marina Papatriantafilou†
∗Göteborg Energi, Gothenburg Sweden

joris.vanrooij@goteborgenergi.se
†Chalmers University of Technology, Gothenburg Sweden

{jorisv,vinmas,almgren,ptrianta}@chalmers.se, johan@swetzen.com

Abstract—New laws and regulations increase the demands for a
more data-intense metering infrastructure towards more adaptive
electricity networks (aka smart grids). The automatic measuring,
often involving wireless communication, introduces errors both
in software and during data transmission.

These demands, as well as the large data volumes that
need to be validated, present new challenges to utilities. First,
measurement errors cannot be allowed to propagate to the data
stored by utilities. Second, manual fixing of errors after storing is
not a feasible option with increasing data volumes and decreasing
lead times for new services and analysis. Third, validation is not
only to be applied to current readings but also to past readings
when new types of errors are discovered.

This paper addresses these issues by proposing a hybrid sys-
tem, eChIDNA, utilizing both the store-then-process and the data
streaming processing paradigms, enabling for high throughput,
low latency distributed and parallel analysis. Validation rules
are built upon this paradigm and then implemented on the
state of the art Apache Storm Stream Processing Engine to
assess performance. Furthermore, patterns of common errors
are matched, triggering alerts as a first step towards automatic
correction of errors.

The system is evaluated with production data from hundreds
of thousands of smart meters. The results show a performance in
the thousands messages per second realm, showing that stream
processing can be used to validate large volumes of meter data
online with low processing latency, identifying common errors as
they appear. The results from the pattern matching are cross-
validated with system experts and show that pattern matching is
a viable way to minimize time required from human operators.

I. INTRODUCTION

The development of an enhanced electricity grid has moved
forward both technologically and politically in recent years.
One driving force is an increased measurement rate, as a
number of countries introduce mandatory hourly billing. When
consumers are given the option to pay for their electricity
based on the demand at that particular time of day, they
gain a higher degree of control over their energy bills by
facilitating energy efficiency. Shorter measurement intervals
also open up new possibilities in load forecasting with the
potential of tailoring electricity production to the consumption
and increasing the amount of renewable energy.

These new requirements have lead to the construction of
Advanced Metering Infrastructures (AMIs): networks of smart
meters and data concentrator units that measure consumption
and report it to the utility. These devices offer reduced com-
putational power and can be remotely controlled.

Together with AMIs, the utility data analysis infrastructure
also needs to be adjusted to accept the roughly 700 times
increase in data that hourly readings give compared to monthly
readings. Shorter sampling periods, such as 15 minutes, have
been evaluated in a research setting and can improve load
forecasting accuracy compared to hourly readings [1]. It is
therefore reasonable to expect further increases in data rates.

This increasing amount of data collected by AMIs is
known to be error prone, far from the clean and com-
plete measurement series required for load forecasting or
billing. Measurements can arrive out-of-order, duplicated or
not at all, sometimes owing to communication losses and re-
transmissions particularly common in wireless infrastructures.
Erroneous measurements can be caused by meters that are
broken, software issues or even by malicious users looking
to decrease their electricity costs by unlawful means. These
errors threaten the increasing quality demanded from the meter
values by new applications such as demand-response and real
time pricing. Therefore, all data collected must be swiftly
validated and corrected if necessary.

A. Challenges

A system aiming to solve this validation problem faces sev-
eral challenges. The first challenge is to process and validate
this large volume of data with low latency before storing,
billing or other analysis is run on the data. Fluctuating data
rates and out-of-order readings contribute to this challenge as
well as erroneous measurements.

The second challenge is continuously updating the valida-
tion rules and leveraging system expert knowledge. This is
needed because new errors may arise at any moment and
are usually identified by a human operator at some point in
time. Closing the control loop creates an iterative learning
process where the human controller finds new problems and
subsequently uses the validation engine to find other instances
of these problems (possibly re-running the validation for
previous data to find earlier occurrences of a certain error).

Finally the third challenge is to run the analysis in a dis-
tributed and parallel fashion leveraging the cumulative compu-
tational power of AMIs’ smart meters and data concentrators.
Data concentrators could for example validate and compare
voltage levels in the network for all meters in a specific area,
forwarding only validated data to the utility.



B. Related work

Since the early 2000s, the data streaming paradigm has
emerged as an alternative to traditional databases when it
comes to processing large amounts of data in real-time.
Among the many applications are financial trading and market
analysis, as well as network intrusion detection and monitoring
of denial of service attacks. Traditional databases are not
designed to support this kind of streaming data and in response
to these new challenges, Aurora was developed as one of the
first SPEs [2]. Aurora was designed to run on a single machine
without the possibility of distributing the work. Building upon
the functionality of Aurora, among other works, Borealis,
an SPE that can scale to several machines, was developed
[3]. More recently, systems like StreamCloud [4] have been
presented for improved scalability. Others have been released
as open source software, like Apache Flink [5], Apache
Spark [6], Apache Storm [7] and S4 [8].

Stream processing in the context of AMIs has been explored
since 2010. Several different applications have been found
for SPEs in this area, including Intrusion Detection Systems
(IDSs) [9], real-time pricing [10] and adaptive measurement
rates [11]. Data validation with a simplified system model was
investigated in [12]. Here we designed and implemented a
system that is directly deployable at a real world utility.

Out-of-orderness is a problem where two concepts have be-
come prevalent: punctuation [13] and variations thereof (heart-
beats [14], Window ID [15], out-of-order-processing [16]) and
K-slack [17]. Common for these methods is that processing is
halted until missing data has arrived unless too much time
has passed after which special action is needed. Here we
instead implemented a custom sorting mechanism that allows
for processing all arrived data even if some values are missing.

C. Contributions

In this paper we introduce eChIDNA, a Kappa architec-
ture [18] that addresses these challenges relying both on the
traditional store-then-process (database) paradigm and the data
streaming processing paradigm. The streaming paradigm has
been proposed as an alternative to the traditional store-then-
process (database) paradigm by applications demanding high
processing capacity and low processing latency.

A prototype of eChIDNA has been implemented, extending
the system of the utility providing the real use-cases we
studied. The streaming analysis is performed relying on the
state of the art Apache Storm [7] Stream Processing Engine
(SPE). We evaluate the system both in terms of efficiency as
well as performance and the results are compared with the
ground truth provided by system experts.

The rest of the paper is organized as follows: the system
model is introduced in Section II. In Section III, we discuss
the architecture of eChIDNA. The evaluation is presented in
Section IV. Finally the conclusions are presented in Section V.

II. SYSTEM MODEL

Metering data at a utility typically goes from the smart
meters in the AMI through concentrator units and the head-

Table I
FORMAT OF TUPLES CONTAINING METER READINGS.

Attribute Description
tn timestamp
met meter ID
loc location ID
cc cumulative consumption
cd consumption delta

end before being stored and processed in a Meter Data
Management system (MDM).

A. Advanced Metering Infrastructure

AMIs are composed of a multitude of different devices;
smart meters that measure the energy or water consumption,
concentrators that collect the readings from the meters and for-
ward these to the central server. The meters and concentrators
in the field have limited memory and processing capabilities
and can be organized in different topologies (e.g., point-to-
point, hierarchical or mesh ones).

The smart meters can save the amount of consumed energy
in different ways. The cumulative consumption since startup
can be stored together with a timestamp at regular time
intervals, a consumption delta - the amount of energy used
between two timestamps - can be stored, or both. Readings are
sent to the central server regularly after which they are stored
in the Meter Data Management (MDM) system. The bulk of
the data will have arrived within 24 hours but the server will
continue waiting for data to arrive. If it has not arrived with a
certain amount of days Dmax, it is considered lost. Dmax

is typically in the order of days or weeks, yet regulations
and future applications like real time pricing demand fast
processing of data. Data must therefore be processed as soon
as it is available even if some intermediate readings in the
stream may not have arrived yet.

B. Data streaming

In the streaming data paradigm, a Stream Processing Engine
(SPE) is used to process streams of data in a distributed and
parallel fashion. Data is represented in tuples with a common
schema, composed by a timestamp tn and a set of attributes
〈A1, A2, . . . , An〉. A schema for tuples with meter readings
is presented in table I. The operation of an SPE relies on
viewing data as a flow of such tuples from beginning to
end. The incoming data therefore consists of an unbounded
stream of tuples. To extract meaningful information from these
tuples, continuous queries in the form of Directed Acyclic
Graphs, DAGs, are formed. Edges in the DAG correspond
to the flow of data between the operations, represented by
vertices. Operations can be for example filters that drop tuples
that do not fulfill certain criteria, mappers that transform tuples
or union operations that merge several streams into one. All
these are examples of stateless operations, they consider only a
single tuple when producing a result. Another type of operators
are the stateful ones, for example aggregate which performs
a computation over several tuples in a single stream and join



Figure 1. A topology that finds the highest consumption value, the highest
number of kWh drawn for specified time period, in a stream of consumption
values. The first group of “Find largest” nodes are running in parallel, possibly
on different machines. The last “Find largest” needs to be a single process to
summarize the results.

which combines tuples from several streams. A common way
of performing aggregate operations is by using a (sliding)
window. To handle the unbounded stream of tuples, only the
latest tuples are considered. For example, a time-based window
can contain all tuples from the last five hours and a tuple-based
window can contain the 10 latest tuples.

The results of a continuous query can be alarms that are
triggered or a modified data stream saved to a dedicated
database. An example of a continuous query that finds the
highest measured power consumption in a distributed manner
can be found in figure 1.

III. ARCHITECTURE

Here we describe the architecture of a system that can deal
with the problems and challenges mentioned in Section I.
eChIDNA consists of two modules: data ingestion and val-
idation. The latter in turn is composed of two submodules,
single- and composite event detection, as shown in figure 2.
The data ingestion module takes care of the incoming real time
data from the different AMI systems as well as the historical
data from the MDM system. The module parses the incoming
data into tuples with a uniform format in order to maximize
the systems interoperability. The tuples outputted from the
data ingestion module are read into the validation module.
Errors identified by the single event detection are sent to the
composite event detection submodule, which finds common
composite errors made up by sequences of these single events.

A. Data ingestion

The data that is read into eChIDNA can either come from
one or more AMI systems or, when data needs to be repro-
cessed, from the MDM. The data from different AMI systems,
which in turn could have multiple meter brands and models,
can have different formats. For example meters could send
the cumulative consumption, a consumption delta for a fixed
time period (eg. day, hour, 15 minutes), or both. Therefore
the data ingestion module parses the data into a uniform tuple
format presented in table I. Because many validation rules
require a consumption delta, these are calculated by eChIDNA,
if not already present, by taking two consecutive tuples and
computing the difference in the cumulated consumption. Data
that has been processed by the entire system can be moved

away or simply removed since reprocessing can always be
done from the persistent storage in the MDM.

The calculation of the consumption delta is straightforward
when all tuples arrive in order, but becomes more challenging
when tuples are missing or out of order. There is extensive
research dealing with tuples arriving out of order, as described
in Section I-B. Common for these methods is that the process-
ing for a meter is halted until missing tuples have arrived.
This makes these methods not compliant with the system
requirements:

1) Data must be processed as soon as possible.
2) Data may arrive with a maximum delay Dmax

Therefore we developed a tailored sorting mechanism de-
scribed below.

A tuple τ.tn with timestamp tn is used to calculate the
consumption delta between tn−1 and tn as well as the delta
between tn and tn+1. This implies that τ.tn cannot be dis-
carded until both τ.tn−1 and τ.tn+1 have arrived.

The sorting mechanism must thus keep track of which tuples
have been fully processed and does this by using intervals. An
interval spans between two timestamps and denotes that all
tuples inside of the interval have been processed. An interval
[n..m] for example indicates that tuples with a timestamp
between n and m have been processed. A tuple τ.tn which
can not attach to a existing interval will start a new interval
[n..n], spanning between n and n. At the arrival of τ.tn+1, this
interval is expanded to [n..n + 1] while neither of the tuples
is discarded yet. As τ.tn+2 arrives the interval is expanded to
[n..n+2] and τ.tn+1 is discarded after the consumption deltas
have been calculated. This approach allows us to store only
the tuples that are still waiting to be processed. In case of out-
of-order tuples, multiple intervals will be present to account
for the tuples that are processed. Two intervals merge when
the missing tuples between them arrive and are processed.
Intervals and tuples with timestamps that exceed the maximum
allowed delay Dmax are deleted.

This mechanism accumulates state during system operation,
the tuples that have not been processed completely as well
as the intervals themselves. Persisting the state at a regular
time interval and saving the input tuples processed during this
interval ensures a robust system that can cope with crashes.

B. Validation modules and rule design

A basis for further analysis, the validation rules lay the
groundwork on which the system is built. eChIDNA’s archi-
tecture allows for rapid implementation and testing of new
validation rules, both for single- and composite events.

1) Single event detection sub-module: Single event triggers
contain a check for some condition and will output an identifier
if this condition is met. The identifiers are stored for every
meter in a sliding window of size Dmax. Triggers can indicate
an error of some kind in the meter reading, but can also be
used to find other events. These events could then be used as a
building block for composite events. Some examples for both
types of triggers are described below.



Figure 2. An overview of the eChIDNA architecture. Data from one or more AMI systems and/or historical data from the MDM are read by the data ingestion
module. The validation module is composed by two submodules: The single event triggers validate individual tuples and the composite event detection that
looks for patterns in the single events. Validated data is stored in the MDM, while validation errors are sent to a system expert. New validation rules and
patterns can be submitted by the system expert.

Table II
SINGLE EVENT TRIGGERS AND THEIR IDENTIFIERS.

Representation Validation error
N Negative consumption
Z Zero consumption
H Above fuse level

1a) Negative values: As described in Section II-A, the
system model does not allow negative consumption deltas.
Such deltas therefore always indicate an error of some kind.

1b) Zero consumption: Zero consumption is not an error in
itself, but can be part of a bigger problem. This trigger but can
be a useful building block for finding composite errors. For
example, a longer period without energy consumption may be
important to look at more closely.

1c) Above fuse level: As a maximum value for electricity
consumption, the fuse provides a hard limit. For every indi-
vidual meter, information about the installed fuses is available
and has been used to calculate this limit. Although a fuse may
temporarily allow values above its rating, it cannot sustain it
over time and therefore consumption above this limit triggers
an alert. This alert can be caused by a technical error, but
it can also be caused by a customer who has installed a fuse
with higher rating. Whether intentional or not, this needs to be
corrected since the network tariffs for the consumer depends
on the installed fuse.

2) Composite event detection sub-module: The errors de-
scribed above can be part of a larger problem. Issues with
hardware or software can give rise to so-called composite
errors that can be identified by considering the ordering and
kind of errors that have been reported for a smart meter.
Automatic identification of these errors is a first step towards
automated correction, which would save substantial amounts
of time for human operators. In order to identify such errors
automatically, a formal pattern matching framework is needed.

One common system for pattern matching is regular ex-
pressions, a search pattern defined by a character string. In
order to apply regular expressions to the errors caught by
the validation rules, they first need to be transformed into a

string that can be matched by a regular expression. There is
additional information that needs to be captured apart from
the string of errors, for example finding if an error occurred at
a specific time of day. If a match is found that also passes
through these kinds of validation, it can be considered an
instance of a composite error.

The sliding window where the errors found by the validation
rules are saved contains timestamp ordered errors. Since there
is a maximum delay for meter values, the size of the window
is bounded by Dmax. Matching is performed every time
an error is found. The patterns for composite errors have a
maximum length which is used to only look for matches within
a partition of the stored errors. Matching an error with length l
at timestamp tn will consider values with a timestamp between
tn−(l−1) and tn+(l−1) to ensure that every possible interval of
length l containing the timestamp tn is processed.

In order to match the errors with a regular expression,
representations of the errors within the matching interval are
concatenated into an error string. The expression ’HN’ for
example, using the identifiers specified in table II will match
every time a consumption delta exceeding the fuse value is
followed by a negative consumption value. Matches to the
regular expression are complemented with the start and end
times for the match, so that additional properties, like the
timestamp of a specific event, may be tested for.

Due to the fact that partitions of the stored errors that are
matched by regular expressions can overlap, there is a risk of
finding some composite errors several times. This is illustrated
by the following example: Consider the string with three high
values followed by a negative value: ’HHHN’. The expression
’H.0-2N’, a high consumption value followed by a negative
consumption and at most 2 values in between, will match three
times for the substrings ’HHHN’, ’HHN’, and ’HN’. For this
reason, the start and end of any matched composite error is
stored. In case a match is completely covered by a previously
matched error, that match is not considered.

IV. EVALUATION

eChIDNA’s accuracy is evaluated and compared with results
from a system expert. The efficiency is evaluated as well. The



Table III
NUMBER OF MATCHES FOR EACH VALIDATION RULE IN THOUSANDS. THE
TOTAL NUMBER OF VALUES ANALYZED IS APPROXIMATELY 200 MILLION.

Validation rule Matches
Zero consumption 4000

Negative consumption 1.5
Above fuse 5.5

throughput measured in processed tuples per second while the
latency is defined as the time between system output and the
most recent tuple that caused the output. The evaluation ran
with 30 days of data for the validation rules, of which 12 days
were used to assess the composite event detection capabilities.

A. Evalution setup

The data that is used for eChIDNA comes from an AMI
with approx. 270 000 meters, 7 000 concentrator units and a
central server. The meters register the cumulative consumption
every hour. Produced energy is either not measured or recorded
in a different register, guaranteeing that consumption values
are monotonically increasing. The meters are queried for their
readings by the concentrators twice a day. The concentrators
send the data to the central server for processing. The max-
imum delay Dmax for this AMI is 40 days. eChIDNA taps
into the data stream between the central server of the AMI
and the MDM, where the data is batched and persistent on
disk. The tuples contain a meterID, locationID, timestamp and
cumulative consumption for every reading.

The efficiency of the system is evaluated on existing hard-
ware available at the utility. It runs on a virtual server with two
AMD Opteron processing cores at 2.6 GHz and 4GB of RAM.
This server runs Apache Kafka [19] as input and message
queue in the data ingestion module while the consumption
deltas are calculated by the SPE Apache Storm [7]. The
validation module also runs on Apache Storm. Pyleus, a
framework enabling the use of Python topologies on Storm,
was used in consultation with system experts for usability
reasons. Storm (and Pyleus) use topologies to represent the
Directed Acyclic Graphs. The vertices in the DAG are called
bolts. Reading the persistent file data into Apache Kafka is
also performed on the server.

B. Validation accuracy

The single event detection was evaluated using the data pro-
duced by smart meters during one month, out of which twelve
days were used to compare the results from the composite
event detection with the results from a system expert.

1) Single event detection: All single event triggers in Sec-
tion III-B1 were enabled: zero and negative consumption, and
above fuse. The number of errors found for each validation
rule can be seen in table III. Approximately 2% of all
processed values trigger a validation rule, the absolute majority
of these values have zero consumption.

2) Composite event detection: To evaluate this in
eChIDNA, an expression was defined in collaboration with
a system expert, to identify meters suffering from a specific

Table IV
EXAMPLE OF CONSUMPTION VALUES FROM A METER WITH A RUSHING

AND REVERSING PATTERN.

timestamp 18 19 20 21 22 23 24
consumption 2.1 134.6 78.9 4.7 3.8 2.7 -204.2

hardware failure common in the data from the used AMI.
This failure expresses itself in the consumption values with a
specific pattern: rushing and reversing. This pattern contains
one or more extremely high consumption deltas during the
day and a large negative consumption delta, that compensates
the earlier large ones, at midnight. An example can be seen in
table IV. The regular expression for this pattern was inputted
in the system and was matched 640 times in one month of
data. During a twelve day testing period, a system expert was
asked to note all meters diagnosed with the hardware failure.
190 meters were identified. eChIDNA diagnosed 116 meters as
experiencing this problem during the testing period, so a true
positive rate of 61% was obtained for the hardware failures
using the rushing and reversing pattern. The 39% of false
negatives were investigated with help from the system expert
and decomposed in the six cases following below. See also
figure 3.

Missing data is the main cause for the false negative meters,
the hardware failure not only causes errors in the consumption
values but also affects the communication between the meter
and the concentrator unit. Three cases where the root cause
is missing data were identified: 1: only negative, 2: only high
and 3: reversed. The only negative case accounts for 23%
of the false negative meters. For these meters no extremely
high consumption deltas were found, only the negative delta
at midnight was identified. The only high case, accounting
for 22%, is the opposite: No negative delta was found, only
the extremely high consumption deltas. Reversed, at 14%, is a
combination of the previous two cases were only the negative
delta was found during one day, and only extremely high
values were found the day after, ie. a reversed version of the
original pattern. Another large group of false negatives, 4:
end time at 38%, did have both extremely large consumption
deltas and negative deltas, but the negative deltas did not
occur at midnight. Instead these deltas occured at some other
hour during the day. A case with 1% of the false negatives,
5: two days, contains meters where the correcting negative
consumption delta did not occur the same day as the extremely
high values but instead the day after. Finally, 6: unseen data
with the last 2% is made up of meters where the system
expert used data that arrived after the twelve day test period
to diagnose the meters. This data was never analyzed by
eChIDNA and therefore the pattern was not matched.

This decomposition shows that the original expression was
not broad enough to identify all meters experiencing the
hardware failure. The knowledge gained by the system expert
during the decomposition can now be used to improve the
expression and the kappa architecture can be leveraged to re-
validate the data when new expressions are in place. This



0 10 20 30 40

1: only negative
2: only high

3: reversed
4: end time
5: two days

6: unseen data

23

22

14

38

1

2

Percentage

Figure 3. The six different cases for errors caused by a specific hardware
failure not being matched by the original pattern.

shows the importance of system expert feedback to the system,
enabling swift improvements and maximizing the validation
accuracy, closing the control loop.

C. Efficiency

The throughput of the system is defined as the number of
tuples processed per second and the maximum throughput was
found by running the topology with live data and increasing
the input rate step by step until the CPU usage was at 100%.

The latency of the system is defined as follows: The time
between output from the system and the arrival of the latest
tuple that triggered the output. With this definition, the highest
latency observed while processing data from 270 000 smart
meters, was 4 seconds.

The throughput measured was 1 500 tuples per second on
hardware with the processing power of contemporary deployed
or immediately-deployable equipment. This means that the
system has the potential to validate 5.4 million consumption
values every hour. Only 5% of this capacity is required for the
validation of the 270 000 hourly readings in the system. The
remaining capacity can be used to deal with possible arrival
bursts or for validation of 19 days of historic data every day.

V. CONCLUSIONS

The introduction of smart meters and legislation has given
rise to a greatly increasing number of processed meter values
at utilities. At the same time the quality demanded of these
values has been increasing as well due to new applications,
driving the need for a fast and accurate validation. Validation
of live production data is complicated by out of order data
and fluctuating data rates as well as the appearance of new
problems. These problems can be cause by updates, hardware
failure or other, often hard to foresee, sources. For this reason a
live architecture, with system experts in the loop, is required
until full automation can take over. In this paper, we have
discussed how the data streaming processing paradigm in
a kappa architecture can be used to provide scalable and
adaptable validation for both real time and historical data. An
implementation built in Kafka and Storm, eChiDNA, shows
that data for millions of meters reporting hourly values can
be validated on commodity hardware, with a configurable
validation rule set. These results encourage the continued
efforts in this direction, with more advanced types of validation

detecting deviations from known distributions, rapid changes,
even patterns that may indicate malfunctioning measurements.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, by the EU
Horizon 2020 Framework Programme under grant agreement
773717 and by the collaboration framework of Chalmers
Energy Area of Advance with Göteborg Energi and project
INDEED.

REFERENCES

[1] M. Ghofrani, M. Hassanzadeh, M. Etezadi-Amoli, and M. Fadali, “Smart
meter based short-term load forecasting for residential customers,” in
North American Power Symposium (NAPS), 2011, pp. 1–5.

[2] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, and others,
“Monitoring streams: a new class of data management applications,”
in Proceedings of the 28th international conference on Very Large Data
Bases, 2002, pp. 215–226.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, and others, “The
design of the borealis stream processing engine.” in CIDR, vol. 5, 2005,
pp. 277–289.

[4] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming sys-
tem,” Parallel and Distributed Systems, IEEE Transactions on, vol. 23,
no. 12, pp. 2351–2365, 2012.

[5] “Apache Flink.” [Online]. Available: http://flink.apache.org
[6] “Apache Spark.” [Online]. Available: http://spark.apache.org
[7] “Apache Storm.” [Online]. Available: http://storm.apache.org/
[8] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed

stream computing platform,” in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on. IEEE, 2010, pp. 170–177.

[9] V. Gulisano, M. Almgren, and M. Papatriantafilou, “METIS: a two-
tier intrusion detection system for advanced metering infrastructures,”
in Proceedings of the 5th international conference on Future energy
systems. ACM, 2014, pp. 211–212.

[10] B. Lohrmann and O. Kao, “Processing smart meter data streams in the
cloud,” in 2011 2nd IEEE PES International Conference and Exhibition
on Innovative Smart Grid Technologies (ISGT Europe), 2011, pp. 1–8.

[11] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive rate
stream processing for smart grid applications on clouds,” in Proceedings
of the 2Nd International Workshop on Scientific Cloud Computing, ser.
ScienceCloud ’11, 2011, pp. 33–38.

[12] V. Gulisano, M. Almgren, and M. Papatriantafilou, “Online and scalable
data validation in advanced metering infrastructures,” in Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE
PES, 2014, pp. 1–6.

[13] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punc-
tuation semantics in continuous data streams,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 15, no. 3, pp. 555–568, 2003.

[14] U. Srivastava and J. Widom, “Flexible time management in data stream
systems,” in Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2004, pp. 263–274.

[15] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams,” in
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 311–322.

[16] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,
“Out-of-order processing: a new architecture for high-performance
stream systems,” Proceedings of the VLDB Endowment, vol. 1, no. 1,
pp. 274–288, 2008.

[17] S. Babu, U. Srivastava, and J. Widom, “Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams,” ACM
Transactions on Database Systems (TODS), vol. 29, no. 3, pp. 545–580,
2004.

[18] “Kappa architecture,” 2014. [Online]. Available: http://radar.oreilly.com/
2014/07/questioning-the-lambda-architecture.html



[19] J. Kreps, N. Narkhede, J. Rao, and others, “Kafka: A distributed mes-
saging system for log processing,” in Proceedings of 6th International
Workshop on Networking Meets Databases (NetDB), 2011.


