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Triple-negative breast cancer (TNBC), which is largely synonymous with the basal-
like molecular subtype, is the 5th leading cause of cancer deaths for women in
the United States. The overall prognosis for TNBC patients remains poor given that
few treatment options exist; including targeted therapies (not FDA approved), and
multi-agent chemotherapy as standard-of-care treatment. TNBC like other complex
diseases is governed by the perturbations of the complex interaction networks thereby
elucidating the underlying molecular mechanisms of this disease in the context of
network principles, which have the potential to identify targets for drug development.
Here, we present an integrated “omics” approach based on the use of transcriptome
and interactome data to identify dynamic/active protein-protein interaction networks
(PPINs) in TNBC patients. We have identified three highly connected modules, EED,
DHX9, and AURKA, which are extremely activated in TNBC tumors compared to
both normal tissues and other breast cancer subtypes. Based on the functional
analyses, we propose that these modules are potential drivers of proliferation and,
as such, should be considered candidate molecular targets for drug development or
drug repositioning in TNBC. Consistent with this argument, we repurposed steroids,
anti-inflammatory agents, anti-infective agents, cardiovascular agents for patients with
basal-like breast cancer. Finally, we have performed essential metabolite analysis on
personalized genome-scale metabolic models and found that metabolites such as
sphingosine-1-phosphate and cholesterol-sulfate have utmost importance in TNBC
tumor growth.

Keywords: breast cancer, drug repositioning, non-cancer therapeutics, repurposing, basal subtype, personalized
metabolic models
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INTRODUCTION

Breast cancer is the most commonly diagnoses and second
leading cause of cancer-related deaths in women in the
United States with an estimated 268,600 new cases and 41,760
deaths in 2019 (Siegel et al., 2019). Although overall survival has
significantly improved over the past several decades owing in
part to advances in early diagnostic techniques and an increasing
understanding of the underlying biological basis of the disease,
which has led to improved treatment strategies. On a molecular
level, breast cancer can be defined as five predominant molecular
subtypes including the luminal A (LumA), luminal B (LumB),
and Normal-like (NL) subtypes which are predominantly
estrogen receptor (ER) and progesterone receptor (PR) positive;
the HER2 Enriched subtype (HER2E) subtype; and basal-like
tumors which are largely synonymous with Triple Negative
Breast cancer (TNBC) and are ER/PR/HER2 negative. The
considerable differences among these molecular subtypes are
a consequence of dramatically altered genomic and proteomic
profiles which manifest as changes in activated signaling
networks (Gatza et al., 2014) and manifest as differences in risk
factors, incidence, age, prognosis and response to treatment.
Therefore, there is a clear need to develop reliable biomarkers and
to identify potential drug targets in each molecular and clinical
subtype (Perou et al., 2000; Curtis et al., 2012; Weigman et al.,
2012; Gatza et al., 2014; Ciriello et al., 2015; Mertins et al., 2016).

Basal-like breast cancers disproportionally affect younger
women and women of African American decent. This subtype,
which is highly concordant with TNBC, accounts for ∼15–20%
of diagnosed breast tumors but more than 1-in-4 breast cancer
related deaths each year. This is, due in part, to the lack of effective
therapeutic options for TNBC patients aside from multi-agent
chemotherapy, which remains the standard-of-care treatment
despite a limited and varied response among patients and the
related toxic side-effects (Solzak et al., 2017). In this context, we
and others, have proposed that systems level analyses can assist
in revealing the underlying molecular mechanism of the diseases,
discovery of biomarkers for specific subtypes, identification of
subtype specific drug targets and reposition of drugs that can be
used in effective treatment of patients (Mardinoglu and Nielsen,
2015; Mardinoglu et al., 2018; Turanli et al., 2018).

Publicly available “omics” datasets including The Cancer
Genome Atlas (TCGA) (Ciriello et al., 2015), Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) (Curtis et al., 2012), and the National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium
(NCI-CPTAC) (Mertins et al., 2016) enhance our understanding
of the subtype specific molecular mechanisms of breast cancer.
Moreover, integrative and comparative analysis of “omics” data
together with network modeling provided a comprehensive
platform for the drug repositioning and multi-target drug design
(Kibble et al., 2015; Vitali et al., 2016; Turanli et al., 2017).
A number of studies also combined genomic, transcriptomic,
proteomic data with protein-protein interaction networks
(PPINs) and identified putative druggable candidates in breast
cancer by analyzing topological features of the reconstructed
networks (Karagoz et al., 2015; Liu et al., 2017; Li et al., 2018;

Nuncia-Cantarero et al., 2018). These bioinformatics pipelines
have their own power through decreasing the number of
candidate therapeutic targets/drugs and proposing potential
treatment strategies for subsets of breast cancer patients.

The overall prognosis for patients with basal-like breast
cancer remains poor and there is an urgent need to identify
molecular targets to develop effective therapeutic strategies.
To take advantage of the extensive publicly available “omics”
data, we integrated transcriptome with interactome data and
calculated network entropy for each protein-protein interactions
(PPIs) to identify the dynamic states in basal-like breast cancer.
Our analyses identified modules as systems biomarkers at gene
expression level and these networks were confirmed at the
proteomic level. Importantly, functional annotation and analysis
of module activity scores demonstrated that these modules were
subtype specific. Using these models essential metabolites and
drug candidates were identified within the context of basal-like
specific modules. Collectively, these analyses suggest that the
proposed strategy incorporating multi-omics analyses of human
breast tumors has the capacity to define novel signaling networks
and link these features to existing therapeutic opportunities.

MATERIALS AND METHODS

Data Collection
Throughout the study, we integrated multi-omics data including
genomics, transcriptomics, and proteomics using network
analysis (Table 1). TCGA data were obtained from https://gdac.
broadinstitute.org/, METABRIC and CPTAC data were collected
from Supplementary Files of these studies. At transcriptomic
level, gene expressions were obtained from two major initiatives
presenting RNA-Seq data from the TCGA study and microarray
data from the METABRIC study. Normalized gene expression
values for 179 basal and 852 non-basal like breast cancer samples
(n = 1031) from TCGA, and 331 basal and 1665 non-basal
samples from the METABRIC project (n = 1992) were used in
integrative analysis. At the protein level, two different sources
were used, (i) expression data of 160 basal and 777 non-basal like
samples (n = 937) in TCGA, using Reverse Phase Protein Array
(RPPA)- based analysis of 226 proteins, and (ii) expression data
of 19 basal and 58 non-basal like samples (n = 77) from CPTAC
which performed comprehensive mass-spectrometry methods
including around 10,000 proteins (Mertins et al., 2016).

RNA sequencing data from TCGA (n = 1031) were used
as a discovery set whereas, microarray data from METABRIC
and proteomic data from TCGA and/or CPTAC were used as
independent validation data sets in the study (Table 1).

Differential Interactome
To obtain a differential view of human interactome between
two different phenotypes, and to identify PPIs that are up- or
down-regulated in each phenotype relative to the other one,
we used the gene expression profiles of interacting protein
pairs and recruited the differential interactome analysis as
previously described (Ayyildiz et al., 2017). For this purpose,
normalized gene expression profiles from TCGA (179 basal-like
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and 852 non-basal like samples) were categorized into three
levels: high (1), moderate (0), and low (-1) expression levels
according to comparison of each gene expression with the average
expression within each sample. The probability distributions
for any possible co-expression profile of gene pairs (encoding
proteins interacting with each other) were estimated, and the
uncertainty of determining whether or not a PPI in encountered
in a phenotype was estimated through an entropy formulation. In
order to define possible PPIs, we used the high confidence human
PPIs (Karagoz et al., 2016), comprising 147,923 interactions
among 13,213 proteins. Karagoz and coworkers assembled and
integrated physical PPIs of Homo sapiens from six publicly
available databases including BioGRID (Chatr-Aryamontri et al.,
2015), DIP (Salwinski, 2004), IntAct (Orchard et al., 2014),
HIPPIE (Schaefer et al., 2012), HomoMINT (Persico et al.,
2005), and HPRD (Prasad et al., 2009). Then, PPIs analyzed the
differential view of human interactome between the basal and
non-basal subtypes of breast cancer; P < 0.05 was considered
statistically significant for these analyses.

Differentially Expressed Genes and
Proteins
Both differentially expressed genes (DEGs) between 179 basal
and 852 non-basal samples in TCGA cohort, and differentially
expressed proteins (DEPs) between 19 basal and 61 non-
basal samples in CPTAC cohort were identified by using
the Significance Analysis of Microarrays (SAM) method
implemented in R software (Tusher et al., 2001; Hu et al., 2016;
Gámez-Pozo et al., 2017). False Discovery Rate (FDR), adjusted
p-value was set at p < 0.05, and fold changes > 1 between basal-
like and non-basal samples were considered as up-regulated
DEGs and proteins in basal tumors.

Module Extraction From Basal Specific
Networks
Basal subtype specific PPI networks were constructed by
using the differential interactome from basal-like tumors. The
interactions associated with proteins corresponding to DEGs that
are up-regulated in basal-like tumors were identified and used
to construct up-regulated PPI networks specific to basal-like
breast cancer. The networks were visualized by using Cytoscape
software (version 3.4.0) (Lopes et al., 2011). The topological
analysis of the networks was performed via CytoNCA plugin
of Cytoscape (version 2.1) (Tang et al., 2015). Two different
topological metrics, degree, which is defined by the number
of adjacent nodes of a node in the network, and betweenness
centrality, which characterizes nodes by how often they occur

on the shortest path between two other nodes in the network,
were simultaneously employed to define hub nodes. Hub nodes
with higher degree or betweenness values were reported to
have significant roles in cellular signal trafficking and could
be potential candidate biomarkers or drug targets Modules
were identified as highly connected subnetworks within up-
regulated networks. Gene expression data from METABRIC were
used for validation of the gene expression modules in basal-
like breast cancer.

Functional Annotation
Functional enrichment analysis associated with the three protein-
protein interaction modules were analyzed using QIAGEN’s
Ingenuity R©Pathway Analysis (IPA R©, QIAGEN Redwood City)1.

Module Activity
In order to convert the identified EED, AURKA, and DHX9
modules to gene expression signatures that can be used to
quantify pathway activity in a given sample from independent
datasets, the module was converted to a gene list and the
mean expression of unweighted gene list was used to calculate
a pathway score. For these studies, a score was calculated
for each sample in the TCGA (discovery) and METABRIC
cohort (validation). Analysis of variance (ANOVA) tests were
used to quantify differences between the EED-module, DHX9-
module and AURKA-module activity scores between breast
cancer subtypes in each dataset. A Student’s t-test was used to
evaluate levels of EED, DHX9e and AURKA signature scores
between adjacent normal breast tissue and basal-like tumors.
To infer the functional roles of these modules, a panel of
270 experimentally derived gene expression signatures that
predict activation of various oncogenic signaling pathways, was
performed by integrating gene expression data as described
previously (Gatza et al., 2014). To identify the association of the
modules with oncogenic pathways, a Spearman’s rank correlation
was used between oncogenic pathway activity scores and EED,
DHX9 and AURKA activity scores.

Module Specific Drug Repositioning
To identify small molecules that can potentially reverse gene
expression of basal-like tumors, we utilized the Library of
Integrated Network-based Cellular Signatures (LINCS) – L1000
data which includes gene expression data from ∼50 human
cell line in response to ∼20,000 compounds (Campillos et al.,
2008). We queried basal-like specific module genes which are
all up-regulated and down-regulated DEGs (Fold Change < 0.2)

1www.qiagen.com/ingenuity

TABLE 1 | Validation and discovery sets used in this study.

Data type Data portal “Omic” level Number of basal samples Number of non-basal samples Set type

Gene expression levels TCGA Transcriptomic 179 852 Discovery

Gene expression levels METABRIC Transcriptomic 331 1655 Validation

Protein expression levels CPTAC Proteomic 19 58 Validation

Protein expression levels TCGA Proteomic 160 777 Validation
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signatures as input. We used the L1000CDS2 (Duan et al.,
2016) search engine, which contains 30,000 significant signatures
that were processed from the LINCS L1000 data, to identify
small molecule signatures associated with each module. The
identified drugs were ranked based on their scores and the top
50 were acquired for each query. Drugs were checked through
literature review and publicly available datasets such as CTD
(Davis et al., 2017) and KEGG DRUG (Kanehisa et al., 2012) to
identify those that were previously investigated within the context
of breast cancer.

Subtype Specific Essential Metabolites
We next acquired 917 personalized genome scale metabolic
models (GEMs) of breast cancer patients (Uhlen et al., 2017). We
analyzed each patient GEM to identify essential metabolites for
tumor growth by removing the reactions in which the metabolite
functions as substrate regardless of compartmentalization
(Bidkhori et al., 2018). Next, we categorized personalized
models based on clinical information to create subtype-specific
patient metabolic models and found the percentage of subtype
representation of each metabolite. A Fisher exact test was applied
to identify statistically significant difference between basal-like
and non-basal-like (i.e., all other tumors) for each metabolite.
Significant difference between subtypes was determined based
on a P < 0.05.

RESULTS

Basal-Like Subtype Specific PPI
Elucidation via Differential Interactome
Cancer cells are characterized by increase in network
entropy comprising high uncertainty, pathway redundancy
and promiscuous signaling resulting from intra-sample
heterogeneity. Recently, a differential interactome network
analysis were presented to show the uncertainties of PPIs in
ovarian cancer (Ayyildiz et al., 2017). In this study, we employed
differential interactome algorithm utilizing the entropy concept
using a comprehensive gene expression data and human
PPI network to reveal the heterogeneity among the breast
cancer subtypes (i.e., basal-like vs. non-basal-like). To do so, we
categorized the expression of each gene and for each patient using
179 basal and 852 non-basal-like samples from TCGA into three
classes as -1, 0, 1, These classes were then integrated with a high
confident PPI network (Karagoz et al., 2016) and the frequency
of PPIs estimated for both basal-like and non-basal-like tumors.
Using a 95% confidence interval (p < 0.05), significant values
<0.2 and >0.8 as well as corresponding H < 0.7 were calculated
for each class. As a result, 3,002 interactions among 1,652
proteins were considered significant across the entire dataset.
These analyses identified 2,291 interactions among 1,391 proteins
as being significantly activated in basal-like tumors whereas 712
interactions among 612 proteins were identified as significant in
non-basal-like samples; 351 proteins were common across both
subgroups of tumors (Supplementary Table S1).

Since low entropy presents low uncertainty, low redundancy
and deterministic signaling resulting with homogeneity in the

population, we next focused on the basal-like subtype to identify
low entropy interactions (H < 0.1). These analyses identified
the EED protein network which is defined by 82 interactions
within the group of 98 proteins. Importantly, the lowest entropy
profile of the EED centroid network only identified an interaction
with one protein (CTCF) in non-basal-like tumors. We further
identified a sub-set of proteins, excluding 351 common signatures
evident in both basal-like and non-basal-like tumors to identify
a basal-like subtype specific network (Supplementary Table S2).
All differential interactome networks and basal-like subtype
specific networks were delimited regarding up-regulated genes
in the basal-like tumors through 2-class SAM analysis (Tusher
et al., 2001; Supplementary Table S3). Through the integration
of SAM analysis and the above detailed differential interactome
framework, we identified three significant modules: EED centroid
module, covering relatively low entropy PPIs (Figure 1A); the
DHX9 centroid module, covering mixed of low and high entropy
PPIs (Figure 1B); and the AURKA centroid module, covering
relatively high entropy PPIs (Figure 1C).

Further analyses of the EED, DHX9, and AURKA modules
determined that genes included in EED-module play roles
in cyclins and cell cycle regulation (p = 6.1e-19), cell cycle:
G1/S checkpoint regulation (p = 3.5e-18), regulation of cellular
mechanics by calpain protease (p = 1.6e-11), aryl hydrocarbon
receptor signaling (p = 4.3e-11), apoptosis signaling (p = 7.0e-
10), TWEAK signaling (p = 1.8e-09), and GADD45 signaling
(p = 4.3e-9), In contrast, the genes in DHX9-module contribute
to mTOR signaling (p = 4.1e-06), regulation of eIF4 and
p70S6K signaling (p = 7.9e-06), EIF2 signaling (p = 7.2e-
05), Inflammasome pathway (p = 1.4e-04), assembly of RNA
Polymerase I Complex (p = 1.1e-03), DNA double strand
break repair (p = 1.8e-03) and cell cycle (p = 3.5e-03) while
the genes associated with the AURKA-module are involved
in DNA damaged-induced 14-3-3A signaling (p = 1.8e-10),
mitotic roles of Polo like kinase (p = 2.1e-09), role of CHK
proteins in cell cycle checkpoint control (p = 6.0e-08), ATM
signaling (p = 9.3e-07) and mismatch repair (p = 3.1e-06),
role of BRCA1 in DNA damage response (p = 1.3e-05), and
cell cycle (p = 9.8e-05). These data suggest that each module
represent a unique aspect of basal-like breast cancer signaling.
Some of these pathways such as TWEAK signaling, apoptosis
signaling, mTOR signaling, ATM signaling showed that the
chemotherapy targeted pathways are also activated in basal-like
tumors in which chemotherapy is the front-line treatment option,
nowadays (Supplementary Figure S1).

Proteomic Analysis of Basal
Specific Modules
We next reconstructed PPI networks using transcriptome data
and validated our findings at proteomic level by leveraging
orthogonal genomic and proteomic data from the TCGA and
CPTAC projects. Transcriptome data from 937 sample was
compared to RPPA analysis of the same samples to assess the
relationship between each network at the 226 proteins and
phosphoproteins from TCGA. Likewise the gene expression
data from a subset of 77 of these samples was used to
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FIGURE 1 | Basal like breast cancer specific highly connected protein-protein interaction modules. (A) EED module, (B) DHX9 module, (C) AURKA module. Darker
nodes indicate the statistically significant positive correlations between mRNA and protein pairs. Thicker edges indicate lowest entropy levels between
interacting pairs.

examine the relationship between each module and 10,062
proteins and phosphoproteins using mass spectrometry-derived
proteomic data from the CPTAC project. First, we used CPTAC
proteome data to compare each gene to its corresponding
protein across all basal-like tumors and assessed correlation
for those pairs. Overall, 52.6–64.5% of the mRNA-protein pairs
showed statistically significant positive Spearman correlations
(P < 0.05) when changes in mRNA abundance were compared
to changes in relative protein abundance. These proteins in
basal-like samples are shown in darker colors in Figures 1A–C.
Then, we identified DEPs between basal-like and non-basal-
like samples by using both RPPA and CPTAC data. Although
RPPA data has limited number of proteins, we identified several
up-regulated proteins including CCNE1, RAF1, SRC, CDK1,
EGFR, MYC, MYH9, PCNA associated with the EED-module.
Similarly, NDGR1 and CCNB1 were associated with the DHX9
and AURKA modules, respectively. We also analyzed DEPs
between basal-like and non-basal-like tumors by using CPTAC
data which is more comprehensive than RPPA data and it
covered 69.4–56.4% of the module genes and 29.4–36.4% of
these proteins were identified as being up-regulated in basal-like
tumors (Supplementary Table S3).

Modules as Basal Specific Signatures
In order to quantitatively assess the activity of each modular
in each patient sample, we next generated a gene expression
signature on the basis of median expression of each gene in
the module. This strategy was used to calculate a module score
for each sample in the TCGA (discovery set) and METABRIC
(validation set) datasets. We then quantitatively evaluated the
differences in the module activities across breast cancer subtypes

by an ANOVA test. These analyses demonstrated that EED
(P = 1.13e-244), DHX9 (P = 2.4e-236), and AURKA (P = 2.05e-
175) activity was highest in basal-like tumors in the TCGA
cohort (Figures 2A–C); these findings were validated by analysis
of module activity in the METABRIC cohort (Figures 2D–F).
Finally, we determined that the EED (P = 1.06-e96), DHX9
(P = 2.44e-85), and AURKA modules (P = 6.61e-127) were
expressed at significantly higher levels in in basal-like tumors
compared to adjacent normal tissue (Figures 3A–C).

Functionality of Basal Specific Modules
We examined the functional roles of these modules by
exploring the correlations with a series of previously published
gene expression signatures which are capable of measuring
oncogene or tumor suppressor pathway activity, aspects of
the tumor microenvironment and other tumor characteristics.
We identified pathway activities, which were positively (or
negatively) correlated with module activities using a Spearman
rank correlation to assess the relationship between pathway
activity and the EED, DHX9, or AURKA module activity scores.
As expected, our data recapitulated known characteristics of
basal-like tumors including low hormone receptor signaling
and high expression of proliferation pathway activity and
demonstrated the relationship between these characteristics
and the expression of each module (i.e., EED, DHX9, and
AURKA). Moreover, these modules were associated with multiple
indicators of proliferation including, RB_LOSS, RB_LOH, and
bMYB highly correlated with these module activities as well
as RAS, PIK3CA, β-catenin, MYC and HER1_Cluster 1,
HER1_Cluster 2, and HER1_Cluster 3 signatures (Figure 4A).
Consistent results were obtained using the METABRIC data
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FIGURE 2 | The pattern of basal like breast cancer specific modules activity across breast cancer subtypes. (A–C) EED, DHX9, and AURKA modules are highly
activated in basal like tumors by using TCGA cohort-discovery set. (D–F) EED, DHX9, and AURKA modules are highly activated in basal like tumors by using
METABRIC cohort-validation set.

FIGURE 3 | The activity levels of basal like breast cancer specific modules in normal and basal like tumors. (A) EED module, (B) DHX9 module, (C) AURKA module.

(Figure 4B). Importantly, we also confirmed the ability of the
transcriptomic module signatures to assess the functional roles
of EED, DHX9, and AURKA modules by exploring relationships
between the module signature scores and protein expression.
Analysis of RPPA data from basal-like samples confirmed that
these tumors with high module scores have significantly higher
levels of CHK1, CHK2, CDK1, Cyclin B1, Cyclin E1, FOXM1,
and PCNA protein expression consistent with their role in cell
cycle regulation and proliferation (Figure 4C).

Drug Repositioning Based on Basal
Subtype Specific Modules
As discussed above, the EED, DHX9, and AURKA modules
were converted to gene expression signatures on the basis
of up-regulated genes specific to each module; as would be

expected down-regulated genes (Fold Change < 0.2) were
common for all modules. We asked the question of whether each
module/signature identified potential therapeutic opportunities.
To do so, we queried each gene signatures separately against
the LINCS database L1000CDS2 (Duan et al., 2016) in order to
identify concordant and discordant patterns of gene expression
between each module and gene expression profiles associates
with drug-induced and/or disease expression. Drugs that resulted
in a gene expression profile that was negatively correlated with
each module were identified and selected as potential candidate
compounds that had the potential to reverse the activity
of each module network that was associated with basal-like
tumors (Supplementary Figure S2). Since we have demonstrated
specificity of the modules to basal-like tumors, we may also
propose that our candidate drugs are specifically targeting basal-
like tumors.
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FIGURE 4 | The functional analysis of basal like breast cancer specific modules (A) The activity of oncogenic pathways correlated with module activities in TCGA
cohort-discovery set. (B) The activity of oncogenic pathways correlated with module activities in METABRIC cohort-validation set. (C) High module activities
characterized by high expression of cell cycle proteins.

After removing the duplicated drugs from query results, we
found that EED and AURKA modules were associated with
41 candidate compounds while DHX9 was associated with 31
candidate small molecules. Networks comprising drug candidates
and modules were found to have 114 interaction between
three modules and 80 drugs (Figure 5A). The 80 identified
drugs were categorized as molecular inhibitors (23%), anti-
neoplastic agents (15%), heterocyclic compounds (10%), anti-
infective agents (6%), or steroids (6%). Moreover, a number
of the drugs specific to each module (as well as some
common candidates) were also identified in each drug category
(Figure 5B). There are at least 19 approved, 24 investigational,
and 6 experimental drugs listed in DrugBank (version 5.1.1),
however there are perturbagens used in L1000 platform without
detailed information (Supplementary Table S4).

Nine of the drugs including selumetinib, trametinib, and
several other investigational drugs were common to each of the
three modules. Consistent with our results, selumetinib as MEK
inhibitor was reported to suppresses cell proliferation, migration,

and trigger apoptosis, following G1 arrest in TNBC cells (Zhou
et al., 2016). Furthermore, the MEK inhibitor, trametinib is also
a therapy of significant interest for the treatment of TNBC since
TNBC cell lines have been shown to be especially sensitive to this
drug (Jing et al., 2012; Davis et al., 2014). Finally, we noted some
overlap between drugs associated with each module. For instance,
the three common drugs (i.e., wortmannin, mestanolone, NVP-
TAE684) are associated with both the EED and AURKA modules
while 12 drugs (i.e., radicicol, lapatinib, alvocidib, zileuton,
geldanamycin, exemestane) are consistent between the EED and
DHX9 module (Supplementary Table S4). Intriguingly, 10 of our
candidate drugs were previously associated with the breast cancer
based on at least one of the sources including CTD, KEGG Drug,
Clinical Trials, and scientific literature (Table 2).

Since EED module has the lowest entropy level between
PPIs, we focused on 17 drug candidates which are only related
to EED module in addition to common drugs. Three of these
drugs are anti-neoplastic agents and five of them are unknown,
however, others belonged to steroids (BRD-A94793051,
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FIGURE 5 | Drug repositioning for basal like breast cancer specific modules (A) Module-drug networks (B) Drug categories of module specific drugs and common
drugs among modules.

Oxymetholone, Testosterone propionate), PLK inhibitor
(BI-2536), heterocyclic compounds (BRD-K17953061, GDC-
0980, TG101348), cardiovascular agents (BRD-K52080565,
S-2500), anti-inflammatory (oxaprozin), and anti-infective
agents (5-fluorocytosine).

Essential Metabolites and
Anti-metabolites as Drug Candidates
GEMs reconstructed for different cancer tissues have been
used for characterization of metabolic modifications; disease

TABLE 2 | Various drug candidates that already associated with breast cancer via
different sources.

Drug name Literature
evidence

CTD KEGG drug Clinical trials

Epirubicin Warm et al., 2010 X X NCT00176488

Erlotinib Catania et al., 2006 NCT01650506

Lapatinib Giampaglia et al.,
2010

X NCT00694252

Exemestane Goss et al., 2013 X X NCT00810797

Wortmannin Li et al., 2012 X

Alvocidib Murphy and
Dickler, 2015

X NCT00039455

Tyrphostin ag
1478

Zhang et al., 2008 X

Canertinib Gschwantler-
Kaulich et al.,
2016

X NCT00051051

Danazol Coombes et al.,
1983

X

Palbociclib Finn et al., 2016 X X NCT02513394

stratification and determination of drug targets using essential
genes or metabolites (Folger et al., 2011; Agren et al., 2012;
Bidkhori et al., 2018). To address this question, we first identified
a panel of 917 personalized GEMs derived from breast cancer
patients (Uhlen et al., 2017). We then categorized each GEMs
based on clinical information to create subtype-specific patient
metabolic models. These models were then used to identify
subtype-specific metabolites essential for tumor growth. After
categorization of BCS, percentage of abundance for each essential
metabolite was calculated. Significant alteration between the
abundance of basal-like and non-basal BCS were determined
based on FDR adjusted P-value threshold (P-adj < 0.05)
(Supplementary Table S5). These analyses identified 27 essential
metabolites (Supplementary Table S6); 11 were significantly
enriched in basal-like tumors while the remaining 16 were
enriched in non-basal-like samples. Further analyses determined
that the essential metabolites that are expressed at higher levels in
basal-like tumors were associated with steroid metabolism, biotin
metabolism, nucleotide metabolism, sphingolipid metabolism
and transport. Conversely, the identified metabolites down-
regulated in basal-like samples were involved in beta-alanine
metabolism, arginine and proline metabolism, cysteine and
methionine metabolism, and carnitine shuttle (Figure 6).

DISCUSSION

The dynamics of cells are regulated by PPIs and properties of
networks such as entropy provide information about the current
state of the network. Given that cancer cells are reported to have
an increase in network entropy, several previous studies have
integrated gene expression data with PPI network information
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FIGURE 6 | Significant essential metabolite differences between non-basal and basal like breast cancer specific personalized metabolic models and their
associated pathways.

to compute the energetic state of cancer cells by calculating
entropy (West et al., 2012; Teschendorff et al., 2015; Rietman
et al., 2016). Likewise, a number of studies have used a network-
based entropy approach to identify disease specific PPIs as
biomarker candidates, proliferative and prognostic markers in
lung and breast cancer, as well as to demonstrate the association
between network entropy and tumor initiation, progression,
and anticancer drug responses (Varadan and Anastassiou, 2006;
Xiong et al., 2010; Banerji et al., 2013; Lecca and Re, 2015; Cheng
et al., 2016; Ayyildiz et al., 2017).

The current study employed a novel multi-omics-based
approach to integrate genomic, proteomic and metabolomic
tumor data. Our analyses of mRNA expression data identified
three highly connected modules which are centered on the
activation of the EED, DHX9, and AURKA signaling networks.
These data demonstrated that each module is highly activated
in basal-like tumors compared to non-basal-like tumors as
well as adjacent normal tissues. Importantly, by analyzing
proteome data, our results confirmed the correlation between
the expression of genes and proteins that comprise each
identified module. By analyzing the association between module
expression and oncogenic signaling using a panel of more
than 250 gene expression signatures, we were able to assess
the functional relationship of these modules with known
oncogenic and signaling features. Our results demonstrated the
correlation between EED, DHX9, and AURKA module activity
and proliferative oncogenic pathways including RAS, PI3K, and
Rb/E2F signaling in basal-like tumors. Consistent with these

results, CHK1, CHK2, CDK1, Cyclin B1, Cyclin E1, and PCNA
protein expression levels were identified higher in tumors with
high module scores. Through integrated analyses, we identified
candidate drugs to target three modules by drug repositioning.
Utilizing multiple omics data including genome, transcriptome,
and interactome, we repurposed 519 agents for breast cancer
by incorporating data from the LINCS project (Duan et al.,
2016) into our analyses. In another drug repositioning study, five
of the identified repurposed candidate agents showed superior
therapeutic indices compared to doxorubicin in in vitro assays
in basal sub-type cell line (SUM149) in addition to luminal cell
line (MCF7) (Chen et al., 2016). Moreover, Lee et al. (2016)
developed an integrative approach for drug repositioning using
the expression signature, chemical structure, target signatures
and LINCS data. They applied this strategy to identify candidate
anti-cancer drugs for breast cancer (Lee et al., 2016). Although
there are previous computational drug-repositioning efforts
that utilized LINCS as mentioned, the methodologies are
focused on breast cancer regardless of disease heterogeneity and
subtype information.

In addition, our analyses identified subtype-specific
metabolites, including several specific to basal-like tumors, which
may provide opportunity to design anti-metabolite drugs for
breast cancer. Results in essential metabolite analysis emphasized
sphingolipids and steroid metabolism for basal-like breast cancer.
Sphingolipid levels in breast cancer tissue are generally higher
than normal breast tissue and bioactive sphingolipids, such as
sphingosine-1-phosphate (S1P) has many cellular functions like
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cell proliferation, migration, survival, immune cell trafficking,
and angiogenesis which are related to cancer progression and
metastasis (Nagahashi et al., 2016). However, sphingosine
and S1P were recently highlighted as important for signaling
mechanisms in metastatic TNBC and its targeted therapy (Maiti
et al., 2017). A recent lipidomics profiling of TNBC tumors also
supported sphingolipids as potential prognostic markers and
associated enzymes as candidate therapeutic targets (Purwaha
et al., 2018) in parallel to our results.

TNBC was associated with expression pattern of 2-pore
domain potassium (K2p) channels which enable background
leak of potassium (K+). Differential expression on K2p-channels
may be suggested as a novel molecular marker related to
potassium levels in basal like BCS (Dookeran et al., 2017). In
another study, expression of calcium-activated potassium (SK4)
channels were also associated with TNBC and cellular functions
such as proliferation, migration, apoptosis, and EMT processes
(Zhang et al., 2016).

Breast cancer is known as one of the malignancies in which
steroid hormones drive cellular proliferation (Capper et al.,
2017). As steroid metabolism associated metabolite, cholesterol
sulfate, is quantitatively the most important known sterol sulfate
in human plasma and may play a role in cell adhesion,
differentiation and signal transduction (Strott and Higashi, 2003).
Given that current standard-of-care therapy for TNBC is largely
limited to multi-agent cytotoxic chemotherapy, the potential
of incorporating identified repurposed drugs and/or targeting
identified modules and/or metabolites represents a potential
therapeutic opportunity for a subset of patents with limited
treatment options.

Given these data, we would propose that the strategy outlined
here can be used to repurposed drugs in order to identify
novel candidate compounds or drugs to be utilized in not
only monotherapy but also in combination therapy for the
treatment of TNBC. Consistent with this argument, a number
of the candidate drugs identified by our analyses have been
incorporated in ongoing clinical trials. For instance, TNBC
patients who received pre-operative sequential epirubicin and
cyclophosphamide followed by docetaxel were found to have
a significant increase in pathological complete response (PCR)
(Warm et al., 2010). Although a great number of pre-clinical
trials will be necessary to support the in silico modeling detailed
in the current study prior to initiation of clinical trials, a
large number of identified candidates have significant in vitro
and in vivo support to indicate that these represent potential
therapeutic opportunities. For instance, drugs inhibiting cyclin-
dependent kinases (CDKs), including the CDK9 inhibitor
alvocidib have been reported to be effective against TNBC
(Ocana and Pandiella, 2015).

Erlotinib also showed anti-tumor effect on TNBC in a
xenograft model (Ueno and Zhang, 2011). Likewise, targeting
the MET and EGFR receptors, which regulate RAS/ERK and
PI3K/AKT signaling, resulted in improved treatment compared
to monotherapy (Linklater et al., 2016).

The current study has defined a novel approach to identify
breast cancer subtype-specific network modules via a network
entropy-based approach. This strategy can be used for both the

identification of potentially novel signaling networks but also to
identify subtype-specific therapeutic opportunities through drug
repositioning. Importantly, we demonstrate that this approach
can be used to link signaling networks with and subtype-specific
essential metabolites which represents additional therapeutic
opportunities. As such, the current studies have the potential
enhancing the impact of existing therapeutics or multi-agent
therapeutic strategies by identifying novel drug/target networks
in the context of breast cancer and in breast cancer subtypes. On
a broader scale, this strategy is largely applicable to all cancer and
disease type/subtypes where multi-platform genomic, proteomic,
and metabolomic data exists and thus represents a potential
strategy to define novel signaling networks unique to each disease
and identify disease/subtype-specific therapeutic strategies.
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