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Abstract: Measures to reduce nitrogen oxides (NOx) formation in industrial combustion processes
often require up-scaling through pilot-scale facilities prior to being implemented in commercial scale,
and scaling is therefore an important aspect of achieving lower NOx emissions. The current paper is
a combined experimental and modelling study that aims to expand the understanding of constant
velocity scaling for industrial jet flames applying high amounts of excess air. These types of flames
are found in e.g., rotary kilns for production of iron ore pellets. The results show that, even if the
combustion settings, velocity, and temperature profiles are correctly scaled, the concentration of
oxygen experienced by the fuel during char combustion will scale differently. As the NO formation
from the char combustion is important in these flames, the differences induced by the scaling has
important impacts on the efficiencies of the applied primary measures. Increasing the rate of char
combustion (to increase the Damköhler number), by using, for example, smaller-sized particles, in the
pilot-scale is recommended to improve scaling.

Keywords: combustion; pollution; NOx; scaling; flame; rotary kiln

1. Introduction

Nitrogen oxide (NOx) is a pollutant involved in the formation of several hazardous phenomena,
most notably acid rain and photochemical smog. Legislation on emissions has motivated significant
research into pollutant mitigation technologies, and this has resulted in reductions of NOx emissions
during the last decades [1–4]. Regarding NOx emissions from stationary sources, the focus of legislative
measures has been on power generation, which has driven the development of technological measures
that are suited to these types of facilities, whereas industrial combustion processes have received less
attention. However, this situation is changing, as emissions from industrial combustion plants now
typically lie significantly above heat and power plants applying state-of-the-art technologies. Some of
the industrial combustion processes differ significantly from conventional combustion systems and
state-of-the-art technologies are not always applicable. There is, therefore, a need to adapt existing
technologies to the conditions of industrial combustion or to develop new technologies for controlling
the emissions from these processes. Since measures that affect the combustion process are usually
tested in pilot-scale facilities prior to being applied in full-scale, it is critical that the effects of scaling
are well understood.

Two commonly used principles for scaling combustion processes are: (1) constant velocity scaling;
and (2) constant residence-time scaling. To relate these scaling criteria to the heat input, it is helpful to
write the fuel input as:

Q = Kρ0u0D2
0 (1)
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where ρ0 and u0 are the inlet density and velocity of the combustion air, respectively [5]. D0 is the
diameter of the combustion air inlet, and K is a proportionality constant that relates the air flow to
the fuel input. Constant velocity scaling implies that u0 is kept constant, and constant residence-time
scaling implies that D0/u0 is kept constant. The D0/u0 ratio, which will be referred to hereinafter as the
mixing time, is representative of the flame residence time. Both scaling criteria aim at maintaining
the fractional degree of mixing over the normalized length of the combustor [6]. If the reaction rates
are faster than the mixing rate, combustion is controlled by mixing and should proceed in a similar
manner independently of the scale and scaling method. For slower processes, constant residence-time
scaling achieves a greater degree of similarity and is, in theory, the superior scaling method [6–8].
However, constant residence-time scaling is rarely applied owing to practical problems associated with
severe pressure drops and low velocities, and constant velocity scaling is, thus, often preferred [7,9,10].
Weber and Breussin [8] have stated that for swirling pulverized fuel (PF) flames, both scaling methods
achieve NOx emissions that are representative of the commercial scale when the thermal input of
the pilot-scale is above 4 MW. At lower thermal inputs, NOx formation is underestimated, especially
for constant velocity scaling. Weber and Breussin have attributed the decreased formation of NOx

to a deeper penetration depth into the reverse flow zone in the vicinity of the burner. For thermal
inputs <1 MW, they recommend constant residence-time scaling as well as a more finely milled fuel.
The differences in particle trajectories between large scale and small scale flames, using constant
velocity scaling, are demonstrated by CFD simulations in the recent work by Weber and Mancini [11],
who also provide a good overview of scaling issues. The scaling studies in literature are mainly based
on flames with a swirl-induced reverse flow zone (Type 1 and Type 2 flames, see [12,13] for more
information about the flame classification system used by the International Flame Research Foundation
(IFRF)). The novelty in this paper is the focus on jet flames (Type 0) and the application to rotary kilns
for which little, if any, pilot-scale data that relates to scaling work, exists.

One industrial process that applies a PF-jet flame is the Grate–Kiln process for iron ore induration.
In this process, combustion at high temperatures and with large volumes of excess air (4–6-times
the stoichiometric requirement) powers the heat treatment of iron ore pellets in a rotary kiln.
High temperatures and excess air are known to promote NOx formation, and the levels of NOx

emissions from these units are indeed high. Several of the commonly used mitigation strategies are not
easily applicable to the Grate–Kiln process due to practical limitations associated with the rotary kiln and
the high content of iron dust in the off-gases. The Swedish iron ore company Luossavaara-Kiirunavaara
Aktiebolag (LKAB) has worked with measures to reduce NOx emissions and are investigating how to
overcome these limitations. Our recent work [14,15] on the LKAB pilot-scale kiln led to the conclusion
that most of the NO in the Grate–Kiln process originates from the char-bound nitrogen in the fuel.
The main premise for this conclusion was that the measured flame temperatures were not sufficiently
high for significant thermal NO formation, and that the NO emissions decreased almost linearly
with the amount of fuel-N introduced (30% of the coal, containing 1.4% nitrogen, was replaced with
biomass that contained 0.1% nitrogen) [14]. LKAB has conducted several investigations of primary
NOx mitigation and combustion efficiency in a similar pilot-scale setup [14–22]. However, the PF-jet
flame suffers from scaling issues and the ways in which the pilot-scale results should be interpreted and
transferred to the commercial scale are not clear, and low-NOx combustion remains to be implemented
in industrial-scale iron ore kilns.

The current paper examines constant velocity scaling of PF-jet flames that apply a high degree
of excess air and its implications on NOx formation. The overall aim is to derive a methodology for
implementation of efficient primary NOx mitigation measures in such processes. As a case study,
this paper assesses the LKAB pilot-plant kiln and compares it to a LKAB full-scale rotary kiln using
detailed reaction modeling.
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2. Materials and Methods

This section contains brief descriptions of the full-scale iron ore rotary kiln and the pilot-scale kiln
that this work is based on, as well as descriptions of the used fuels and the detailed reaction model.
For more detailed descriptions regarding kiln design and dimensions, the reader is directed to previous
studies [14,15,23]. The scaling ratio, Ri, describes the ratio of parameter i in the full-scale to that in
the pilot-scale. Table 1 defines the four scaling ratios used in this paper. All definitions are based on
Equation (1).

Table 1. Definitions of the scaling ratios (R-values) used in this paper.

Ratio Variable Definition

RQ Fuel input [MW]
Q f ull scale

Qpilot scale

RD Diameter [m]
D0, f ull scale
D0,pilot scale

Ru Velocity [m/s]
u0, f ull scale
u0,pilot scale

=
(Q/D2

0) f ull scale

(Q/D2
0)pilot scale

=
RQ

R2
D

Rt Mixing time [s]
(D0/u0) f ull scale

(D0/u0)pilot scale
=

R3
D

RQ

In conventional furnaces, the combustion air is introduced through a burner into a confined
combustion chamber, and D0 is the diameter of the burner throat. In iron ore rotary kilns, 20–50%
of the stoichiometric air requirement for the combustion (about 5–10% of the total air) is introduced
through the burner as primary air, while the remainder is introduced as secondary air through the two
large openings located above and below the burner, respectively. A large proportion of the secondary
air is entrained in the flame. In the present work, we have designated the kiln diameter as D0 because
most of the air is introduced as secondary air.

2.1. Kilns

The data used for the full-scale kiln in this paper are from the LKAB KK2 Grate–Kiln plant in
Kiruna, Sweden. The KK2 plant produces around 4 million tonnes of iron ore pellets annually and
has been in operation since 1981. The kiln is inclined at an angle of 4◦ so the pellets gradually move
forward under gravity. The kiln also has a rotation speed of 1.4 rpm so that the pellets are thoroughly
mixed. The angle and the rotation of the kiln are not believed to influence the combustion significantly.
The iron ore pellets form a rolling bed at the bottom of the kiln, taking up about 10% of the kiln volume.
The fuel is usually a bituminous coal and the fuel heat rate is about 40 MW, depending on the pellet
production rate. The secondary air is preheated to >1000 ◦C by the processed hot pellets. No secondary
measures for NOx emissions reduction are implemented at the plant. More details about this plant can
be found in the paper of Jonsson et al. [23].

The pilot-scale kiln was designed to resemble the full-scale kiln. It was scaled to RD = 7.7
and RQ = 69. For the same fuel and stoichiometry, this resulted in Ru = 1.19 and Rt = 6.6. Thus,
constant velocity scaling was almost achieved. These numbers are calculated based on the assumption
that the full-scale kiln is operating at 40 MW. If, for example, it is operating at 34 MW (due to a lower
pellet production rate) the velocities are the same in the full-scale and pilot-scale (Ru = 1). An overview
of the dimensions of the pilot-scale kiln and the full-scale kiln are presented in Table 2.
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Table 2. Dimensions of the full-scale kiln and the pilot-scale kiln.

Characteristic Full-Scale Kiln Pilot-Scale Kiln

Length (m) 34 4.4
Diameter (m) 5 0.65

Fuel input (MW) 40 * 0.58
Gas residence time (s) ** ≈2.7 * ≈0.4

* May vary significantly depending on the production rate. ** Calculated using plug flow and a gas temperature
of 1327 ◦C.

Similar to the full-scale kiln, the pilot-scale kiln is inclined at an angle of 4◦. The pellet bed is
represented by cooling rods in the bottom of the kiln that simulate the heat sink created by the pellets
in full-scale operation. The rotation is not included. The kiln is 4.4 m in length, and a pipe extends the
total length to 14 m, so as to facilitate measurements of slagging. This extension is not considered part
of the kiln. Measurement ports are available in both horizontal and vertical positions along the length
of the kiln. Further details of the kiln and the burner can be found elsewhere [14].

2.2. Fuels

The fuel analyses for three coals tested in both the pilot-scale and full-scale are presented in
Table 3, along with a heavy fuel oil (used during start-up and to address operational issues). The coal
used in daily operation is referred to as the ‘reference coal’. The coal analyses, which are presented
on an as-received basis, were performed prior to milling and drying. All the coals were milled to
a diameter (d50) of around 35 µm, in both the full-scale and pilot-scale setups. The reference coal
contained notably less nitrogen than the other coals.

Table 3. Analysis of the fuels. The reference coal (Ref coal) is used in the full-scale plants today.

Fuel Analysis Ref Coal Coal 1 Coal 2 Oil

Proximate analysis (wet mass-%)
H2O 4.3 9.1 8.9 -

Volatiles 19.9 18.2 19.2 -
Ash 13.0 8.9 10.8 -

Ultimate analysis (dry mass-%)

C 75.5 80.1 77.4 87.6
H 4.2 3.8 4.2 12
N 1.35 2.04 2.02 0.27
O 5.0 4.0 4.1 <0.1

Heating value LHV (MJ/kg) 29.0 28.3 27.4 41.5
Max NOx emission * mgNO2/MJfuel 1529 2369 2422 213.6

* Assuming full conversion of the fuel-nitrogen to NOx and negligible thermal NOx formation. LHV, lower
heating value.

2.3. Modeling

In combustion processes, both the chemistry and the flow fields are important. However, modeling
both these aspects in detail is challenging and computationally demanding. The modeling approach of
the present work, which has also been used in our previous work [15], focused on the combustion
chemistry and applied a simplified description of the transport processes.

2.3.1. Model Description

We used a plug flow reactor (PFR) model, with the fuel entering through the main inlet and
with the primary and secondary air streams being injected gradually to the reacting flow. The air
injection profiles, as well as the temperature profile were based on available in-flame measurement
data from combusting the reference coal in the pilot-scale kiln [14]. The same profiles were applied to
the full-scale kiln. Figure 1 presents the injection profiles for the primary and secondary air streams,
and Figure 2 presents the temperature profile. Table 4 presents the combustion settings for both scales.
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Table 4. Combustion settings in the model.

Combustion Setting Full-Scale Kiln Pilot-Scale Kiln

Fuel flow (kg/s) 1.36 0.0197
Primary air flow (kg/s) 1.51 0.0219

Secondary air flow (kg/s) 51.86 0.751
λ 4 4

The detailed reaction mechanism proposed by Mendiara and Glarborg [24], which involves
C1 and C2 chemistry as well as nitrogen chemistry, is applied to describe the gas-phase chemistry.
The apparent kinetics derived from Jensen [25] for bituminous char combustion and NO reduction by
bituminous char was applied to describe the heterogeneous interactions. The volatile species were
assumed to comprise CO, CH4, H2 and HCN, and the char was assumed to consist of carbon and
char-bound nitrogen. As there are currently no data regarding the partitioning of nitrogen between
the volatiles and char, a 50/50 split was assumed. More details on how the fuel characteristics were
implemented in the model can be found in our previous paper [15].
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Throughout this paper, the degree of fuel conversion (X) at each point in the kiln will be used
when comparing the pilot-scale unit to the full-scale unit. The degree of fuel conversion is defined
as the weighted average of carbon and hydrogen conversion on a molar basis according to the
following equation:

Xi =
nC,tot

nC,tot + nH,tot
XC,i +

nH,tot

nC,tot + nH,tot
XH,i (2)

where XC,i and XH,i are the achieved conversion values of carbon and hydrogen to CO2 and H2O,
respectively, at arbitrary step i in the reactor, and nC,tot and nH,tot are the total numbers of carbon
and hydrogen atoms, respectively, in the system. The conversion values of carbon and hydrogen are
calculated as follows:

XC,i =
nCO2,i

nC,tot
(3)

XH,i =
2nH2O,i

nH,tot
(4)

where nCO2,i and nH2O,i are the local amounts of CO2 and H2O, respectively, at step (i). Using these
definitions, the fuel conversion is only dependent on the final conversion to CO2 and H2O. An alternative
way would have been to define fuel conversion as the conversion of the initial fuel. If this definition is
used, the formation of e.g., CO from CH4 would be considered as fuel conversion. The reason for not
choosing this definition was that CO was already present in the volatiles from the start and that there
was no way to differentiate between the volatile CO and the formed CO.

The gaseous nitrogen mechanism consists of 79 species and 779 reactions. However, the three
following reactions are central to NO formation and should be highlighted:

N2 + O↔ NO + N (R1)

N + O2 ↔ NO + O (R2)

N + OH↔ NO + H (R3)

Reactions (1–3) comprise the well-known thermal NO mechanism, with forward Reaction (1) being
the rate-limiting step. The reverse Reaction (1) and the forward Reaction (3) are also recognized as
being crucial steps in the conversion of the light nitrogen species released during devolatilization
(in this work, HCN). The heterogeneous mechanism related to NO formation consists of two global
and apparent reactions, i.e., the oxidation of char-N and the reduction of NO by char:

char(N) +
1
2

O2 → NO (R4)

char(C) + NO→
1
2

N2 + CO (R5)

where char(N) is the char-bound nitrogen and char(C) is the carbonaceous part of the char. The oxidation
of char(C) proceeds in a manner similar to that shown for Reaction (4) but with CO as the product:

char(C) +
1
2

O2 → CO (R6)

The reaction rate (in mole/cm3/s) of each reaction at each step of the PFR is given as an output
from the model. The rates were integrated over the volume of each step and summed to obtain the net
reaction rate in the PFR (obtained as mole/s). The net reaction rate was normalized to the fuel input
(obtaining mole/s/MW) to account for the difference in scale between the pilot and full-scale units.

Homogeneous combustion reactions are limited either by the reaction kinetics or by mixing of the
reactants, while char combustion may be limited further by the transport of oxygen to and into the
char. However, since apparent kinetics were applied, it was not possible to determine whether the
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char combustion is controlled by the transport of oxygen or by the actual kinetics of char combustion.
Nonetheless, the combustion process was defined as: (1) mixing-controlled if the O2 is consumed as
fast as or faster than the rate at which it is injected; or (2) as kinetically controlled if the O2 is consumed
slower than the rate at which it is injected. Dividing the consumption rate of O2 by the mixing rate of
O2 gives the Damköhler number:

Da =
consumption rate of O2

mixing rate of O2

this Damköhler number is based exclusively on O2 and represents the relationship between the
combustion rate and mixing rate. Using the definition above we get:

• Da ≥ 1: mixing-controlled combustion process
• Da < 1: kinetically controlled combustion process

2.3.2. Sensitivity Analysis

The sensitivity analysis includes a discussion of the fuel particle size and the relationship between
the pilot-scale and full-scale. The reason for investigating the fuel particle size is because it is one of
the few parameters that often remains constant during scaling due to practical limitations relating to
milling and feeding. A constant particle size during constant-velocity scaling may cause discrepancies
between the scales, as the time for char combustion does not decrease in proportion to the time for
mixing, if the char combustion is not mixing-controlled. Smart and Morgan [6] state that it is important
to preserve the coal particle size as it affects in-flame temperature and gas density distributions but
they also highlight the problem of keeping the particle size constant during constant velocity scaling.
Weber and Breussin [8] recommend reducing the particle size when performing prototype experiments
below 1 MW to achieve better scaling. If the combustion is not entirely controlled by mixing, a better
scaling process might be achieved with a smaller particle size, such that the specific surface area is
decreased by the value of Rt. Since the surface area is dependent upon the diameter to the power
of two, the diameter of the particles should be reduced by the square root of Rt (i.e.,

√
Rt = 2.57 for

the pilot-scale kiln). In the model, the particle size was represented by the pre-exponential factors
in the Arrhenius expressions for the heterogeneous reactions, i.e., a smaller particle size gives an
increased reaction rate corresponding to Rt. The devolatilization process and the temperature profile
are maintained independent of the particle size.

The sensitivity to scale on NOx formation using constant-velocity scaling was also mapped.
The full-scale (Q = 40 MW, D0 = 5 m) was used as the basis and scaled down to 10, 1, 0.5 and 0.1 MW.
The scaling ratios for each case are presented in Table 5.

Table 5. Scaling ratios for constant-velocity scaling of the full-scale kiln.

Q [MW] RQ RD Ru Rt

40 1 1 1 1
10 4 2.0 1 2.0
1 40 6.3 1 6.3

0.5 80 8.9 1 8.9
0.1 400 20 1 20

3. Results and Discussion

The measured NOx emissions (expressed as mgNO2/MJfuel) for the fuels used in the full-scale and
pilot-scale kilns are shown in Figure 3. The reason for normalizing the emissions is to account for small
differences in stoichiometry and fuel feed between the cases, since the conditions have varied slightly
between the measurement occasions. The limit stated in the Medium Combustion Plant Directive
(MCPD) [26] is included as reference (more information about this in Appendix A). The figure shows
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that the levels of NOx emissions are significantly higher in the pilot-scale than in full-scale. Oil has the
lowest NOx emissions in the full-scale, but by far the highest emissions in the pilot-scale. Since the
main mechanism for NOx formation during oil combustion is thermal NO, the temperatures must be
higher when combusting oil in the pilot-scale as compared to the full-scale. Even though the emissions
are high (relative to the MCPD) for the Reference coal, Coal 1, and Coal 2 in full-scale, only about 30%,
18%, and 20%, respectively, of the theoretical maximum NOx emissions originate from the fuel-bound
nitrogen. In the pilot-scale, the corresponding values are 54%, 38%, and 38%.
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The modeling results are presented in three parts. First, the modelled pilot-scale and full-scale
flames are presented so as to discuss the differences related to scaling. Then the sensitivity analyses of
particle size and scaling magnitude are presented. Finally, a discussion of the uncertainties related to
the modeling concludes the chapter. The reference coal is used as fuel in all simulations.

3.1. Modeling of the Flames

3.1.1. Combustion

Figure 4 presents the modeled fuel conversion as a function of time in the two kiln flames. The time
to reach complete fuel conversion is about five times longer in the full-scale than in the pilot-scale.
However, the mixing time is 6.6 times longer in the full-scale kiln (see Section 2.1). Since the times for
mixing and complete conversion are not changed by the same magnitude, the combustion is not entirely
mixing-controlled. Figure 5 presents the Damköhler number as a function of the fuel conversion.
The Damköhler number is greater than unity at a fuel conversion of <30%, which means that O2 is
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consumed at a rate faster than it is injected. A large fraction of the O2 consumed during this stage has
mixed with the fuel prior to ignition. In the fuel conversion range of 30–40%, the Damköhler number is
at unity, i.e., the oxygen is consumed as soon as it is mixed with the flame. After 40%, the Damköhler
number is slightly less than unity and the combustion is, thus, in the kinetically controlled regime.Energies 2019, 12, x FOR PEER REVIEW 9 of 17 
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Figure 6 presents the oxygen concentration profile, as well as the temperature profile as a function
of the fuel conversion in the two flames. In the figure, the combustion process is divided into
three zones, separated by vertical lines. The first zone, which ends at the point where the oxygen
concentration becomes zero, represents the devolatilization stage. Here, the temperature is <1200 ◦C
and the main process is CH4 conversion to CO, H2 and H2O. The second zone, which ends when
95% of the hydrogen (Xh) is converted, is where volatile combustion dominates. The third zone is
dominated by char combustion. The zones begin and end at the same fuel conversion level in the two
kilns. The O2 profiles in the first half of the fuel conversion process are similar in both flames and
can be attributed to the rapid kinetics of the homogeneous reactions that cause the process to operate
in a mixing-controlled regime (Da ≥ 1). In contrast, the heterogeneous reactions are slow and make
the char conversion process operate in a kinetically controlled regime (Da < 1), which causes the O2

levels to rise. The most distinctive difference between the pilot-scale and full-scale flames is the higher
oxygen concentration seen during char combustion in the pilot-scale. This is a consequence of the
lower Damköhler number for the char combustion in pilot-scale (Figure 5).
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Figure 6. Oxygen and temperature profiles as functions of the fuel conversion in the pilot-scale and
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Even though the oxygen concentrations in both kilns are close to zero during volatile combustion,
the homogeneous conditions still differ. This is evident in Figure 7, where the in-flame concentration
profiles of the OH and O radicals are shown. These concentrations of radicals are higher in the
pilot-scale, which means that the atmosphere is more oxidizing during the volatile combustion as well.
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3.1.2. Nitrogen Chemistry

The sum of NO formed by Reactions 1–3 is presented in Figure 8. NO formation starts at around
the same level of fuel conversion in both flame scales, although it reaches a higher level in the pilot-scale.
Since the temperature is similar at both scales in the second zone (see Figure 6), the discrepancy must
be due to a greater availability of reactants in the pilot-scale. As shown in Figure 7, the OH levels are
significantly higher in the pilot-scale, and they will promote NO formation via Reaction 3. The steep
increase in NO formation is NO formed from vol-N, while the subsequent slower continuous increase
in NO formation reflects NO formed from N2, i.e., thermal formation. The thermal mechanism is
slightly more prominent in the full-scale kiln (even proceeding after complete conversion of the fuel),
which is likely a result of the longer residence time.
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The total level of NO formation, as well as the net level of NO formation from the heterogeneous
reaction (i.e., the sum of Reactions 4 and 5) are shown in Figure 9. Comparing the y-axes in Figures 8
and 9, it is clear that heterogeneous NO formation dominates over homogeneous NO formation. The net
level of heterogeneous NO formation is negative during volatile combustion, which indicates that NO
reduction on char is faster than NO formation from char-N. During char combustion, the gradient of
NO formation is significantly steeper for the pilot-scale flame, which is a direct effect of the higher
oxygen concentration during this process (see Figure 6).
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Figure 9. Total levels of NO formation and the contributions from the heterogeneous reactions in the
pilot-scale and full-scale kilns.

Figure 10 presents an overview of the NO formation paths according to the model and compares
the modeled NO emissions with the measurements made in the pilot-scale and full-scale kilns. The blue
bar represents the modeled NO emissions and the dotted horizontal line above the blue bar represents
the measured emissions. The model under-predicts by about 35% the NO emissions from the two
flames. A likely reason for this discrepancy is the arbitrary partitioning of nitrogen between volatiles
and char in the model, which is set at 1:1 (vol-N:char-N). For this reason, simulations with partitioning
ratios of 1:3 and 3:1 are shown as error bars in the figure. A better match between the modeled values
and measurements is achieved if nitrogen partitioning is set so that 25% of the fuel-N is released with
the volatiles (i.e., 1:3). This is a plausible partitioning ratio since on a dry ash-free basis the reference
coal consists of 76% char and 24% volatiles. However, the nitrogen partitioning is dependent upon the
temperature during the pyrolysis and is not easily determined without experimentation.
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Figure 10. Levels of NO formation—total and distributed between the most important reactions—with
a 1:1 fuel-N partitioning between volatiles and char. The error bars indicate the sensitivity to fuel-N
partitioning for a 3:1 split (lower error bar) and a 1:3 split (upper error bar). The dots above the blue
bars represent the measured emissions from the pilot-scale and full-scale kilns.

The central bar in Figure 10 represents the dominating homogeneous NO reactions, and the
right-hand-side bar indicates the two global heterogeneous nitrogen reactions. The homogeneous
chemistry is dominated by Reactions 1 and 3 (i.e., N + OH and N + NO), while Reaction 2 (N + O2)
plays a minor role in the two flames. Of the remaining NO-forming reactions in the mechanism,
oxidation of NCO by O2 was found to be significant and is, therefore, included in the figure. Since all
the char-N is initially converted to NO in the model, the value for char-N oxidation is the same for
both scales and the level of NO reduction by char determines the difference between the scales.

3.2. Sensitivity Analysis

3.2.1. Char Combustion Rate

Figure 11 displays the temperature and oxygen profiles when smaller particle sizes are used in the
pilot-scale kiln, i.e., the heterogeneous reaction rates are increased by a factor of Rt (6.6). The full-scale
is shown for comparison. The O2 level is now similar during char combustion in the two scales,
although the temperature in the first two zones has increased, and the combustion zones (separated by
the vertical dotted lines) no longer appear at the same fuel conversion value. These results highlight
the difficulty associated with achieving identical combustion at different scales, since a measure that
targets one part of the combustion process may alter the combustion in another part. It should be
noted that the same temperature profile is still used in both simulations (relative to the normalized
distance), and that the higher temperature in the pilot-scale is simply the result of faster fuel conversion,
which alters the relationship between the fuel conversion profile and the temperature profile. Figure 12
presents the Damköhler numbers and confirms that the reaction rate and mixing rate in the two flames
now lie significantly closer to each other than when the same particle size (i.e., reaction rates) was used.
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Figure 12. Comparison of the Damköhler numbers when smaller particles are used in the
pilot-scale flame.

Figure 13 summarizes the contributions from the most important reactions. The net level of NO
formation is now similar in the two scales, mainly because the level of NO reduction by char is increased
relative to the base case (Figure 10). The modeling results indicate that increasing the char reaction rate
(decreasing the particle size) in the pilot-scale is a good measure to improve the representability of
the full-scale. The contributions from the dominant reactions are, however, not identical. The rates of
NO formation from the homogeneous reactions and NO reduction by char become slightly higher in
the pilot-scale flame. This is due to the NO reduction rate on char occurring on a similar timescale as
vol-N conversion, which pushes the homogeneous reactions towards more NO formation, since the
OH/NO ratio increases.

Increasing the specific surface area of spherical particles 6.6-fold is the equivalent of reducing
the particle diameter 2.57-fold, which in practice would mean a diameter in the range of 10–15 µm.
That a more finely milled fuel would be recommended is in agreement with the conclusion reached
by Weber and Breussin [8], who also proposed that constant residence time scaling would give better
results in the case of an input <1 MW. It should, however, be noted that a reduction in particle size can
influence other aspects of the combustion process, e.g., the temperature profile, which could impair the
similarity between the kilns.
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3.2.2. Scale

Figure 14 presents the outlet NO fraction from the sensitivity analysis of scaling using
constant-velocity scaling. The figure shows that the level of NO increases exponentially as the
fuel input is decreased. This is contrary to the conclusion drawn by Weber and Breussin [8] from
their experimental and modeling work on Type 1 and Type 2 flames. They found that NOx emissions
decreased exponentially when the thermal input was decreased, and they attributed this trend to
changes in the depth of penetration into the reverse flow zone. For externally staged flames, Weber [5]
observed, however, an increase in the levels of NOx with decreasing thermal input. Although it is
unclear how one can relate these previous studies to the current work, it is likely that PF-jet flames that
apply large amounts of excess air scale differently from other combustion systems, given that most of
the NO originates from char-N.Energies 2019, 12, x FOR PEER REVIEW 14 of 17 
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Figure 15 presents the contributions of the main NO-forming reactions. In similarity to the
simulations in Section 3.1, a decreased NO reduction by char is responsible for the higher NO emissions
at smaller scale. The oxidation of char-N is slightly lower at 0.1 MW than in the other cases, which is
due to the very short residence time yielding incomplete combustion. The homogeneous chemistry
varies slightly in a non-linear fashion, although these variations are small when compared to the
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heterogeneous reactions. These variations may however become significant in more conventional
flames since the contribution from char-N is usually smaller in such systems.
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3.3. Uncertainties Related to the Modeling

This section will discuss two uncertainties related to aspects of the applied model: the temperature
profile and the heterogeneous reactions.

The temperature profile is based on measurements made in the pilot-scale kiln and has been
kept constant in all the simulations. However, the heat input per volume is significantly higher in
the pilot-scale kiln (0.40 MW/m3) than in the full-scale kiln (0.06 MW/m3). Therefore, it is likely that
the flame temperature profile reaches higher levels in the pilot-scale than in the full-scale. This is
supported by the significantly higher measured level of NOx emissions when combusting oil (Figure 3).
Unfortunately, there are no reliable measurements of temperature or gas composition for oil combustion
in the pilot-scale kiln. In our previous modeling paper [15], the effect of temperature on NO formation
for the reference coal was investigated, and it was concluded that the temperature levels needed to
be 300 ◦C higher in the pilot-scale for a significant change in NO formation to occur. So, although
temperature is a central parameter in combustion, it seems reasonable to assume the same temperature
profile for the full-scale kiln as for the pilot-scale kiln.

Heterogeneous chemistry during combustion is more complex to describe accurately than
homogeneous chemistry, owing to mass transport phenomena. The apparent heterogeneous kinetics
used in the model is a simplification of the char conversion process, since no distinction is drawn
between kinetics and mass transfer, and only heterogeneous reactions with O2 and NO are included.
A sensitivity analysis of the pre-exponential A-factor and the activation energy was performed in our
previous work [15], and it showed that the apparent kinetics play an important role and can affect
significantly the NO emissions if, for instance, the pre-exponential A-factor is changed by about 90%.
However, the implication of this uncertainty for the current conclusions is only significant if it keeps
the Damköhler number above unity for the entire combustion process. As long as the Damköhler
number falls below unity and the combustion enters the kinetically controlled regime, the O2 levels
will increase faster in the pilot-scale due to the faster mixing, and NO formation will be higher as a
result. For the purpose of this paper, the apparent kinetics are deemed to be sufficient to explain the
NO trends observed during scaling.
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4. Conclusions

The constant velocity scaling criteria has been investigated for scaling of pulverized fuel jet
flames that apply a high degree of excess air, with a focus on NOx formation. This was performed by
comparing the NO formation in a full-scale rotary kiln for iron ore production (around 40 MW) with
its pilot-scale kiln (580 kW) supported by detailed reaction modelling. The measured NOx emissions
from the pilot-scale were almost twice as high as the full-scale kiln when coal was combusted, and the
NOx formation mechanisms are thus not well-scaled.

The modeling captures the main trends in NOx emissions for the pilot-scale and full-scale flames,
i.e., significantly more NOx is produced in the smaller scale. For coals, the modeling points to poor
scaling of the heterogeneous combustion, while the homogeneous reactions scale significantly better.
The reason for this discrepancy is that the Damköhler number is significantly lower in the pilot-scale
during char combustion, whereas it is preserved during the mixing-controlled volatile combustion.
As a result, the char combustion proceeds in a more oxygen-rich environment. Scaling the particle size
accordingly could, in theory, provide better scaling of the heterogeneous reactions.
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Nomenclature

Symbols
Q Fuel input
ρ0 density of combustion air
u0 velocity of combustion air
D0 Diameter of burner throat or kiln
K proportionality constant
RQ Ratio between fuel input in full-scale and pilot-scale
RD Ratio between diameter in full-scale and pilot-scale
Ru Ratio between combustion air velocity in full-scale and pilot-scale
Rt Ratio between mixing time in full-scale and pilot-scale
Xi Fuel conversion at a given point i
XC,i Conversion of fuel-carbon at a given point i
XH,i Conversion of fuel-hydrogen at a given point i
nj,i Molar flow of component j at a given point i
Da Damköhler number

Appendix A

This is a short discussion about the dashed line in Figure 3.
The emissions regulations related to heat and power generation throughout the European Union (EU) set

emission limits for coal combustion in the Medium Combustion Plant Directive (MCPD) [26], which is used as a
reference in Figure 3. This limit is given in mgNO2/m3

n corrected for 6% O2 in the flue gases. Normalization to an
oxygen concentration is, however, not applicable to the iron ore pelletization process, in which significant amounts
of oxygen react with the magnetite to form hematite. Therefore, these emissions are reported in mgNO2/MJfuel.
The conversion from mgNO2/m3

n at 6% O2 to mgNO2/MJfuel was performed by assuming an oxygen demand
of 1.6 m3

n,O2/kgfuel and a lower heating value of 29 MJ/kgfuel. The comparison to heat and power generation
is simply for the sake of discussion of the outcomes, since NOx emissions from the Grate–Kiln process are not
covered by the MCPD. Instead, it comes under national and county regulations. It should also be pointed out that
the best-available techniques (BAT) recommendations for iron and steel production [27], regarding the Grate–Kiln
process, are based on LKABs units. Therefore, we chose to relate the LKABs Grate–Kiln emissions to the limit set
by the MCPD instead.
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