
Light scalars in composite Higgs models

Downloaded from: https://research.chalmers.se, 2024-03-13 10:58 UTC

Citation for the original published paper (version of record):
Cacciapaglia, G., Ferretti, G., Flacke, T. et al (2019). Light scalars in composite Higgs models.
Frontiers of Physics, 7(12). http://dx.doi.org/10.3389/fphy.2019.00022

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



ORIGINAL RESEARCH
published: 11 March 2019

doi: 10.3389/fphy.2019.00022

Frontiers in Physics | www.frontiersin.org 1 March 2019 | Volume 7 | Article 22

Edited by:

António Pestana Morais,

University of Aveiro, Portugal

Reviewed by:

Alexander Belyaev,

University of Southampton,

United Kingdom

Tetsuo Shindou,

Kogakuin University, Japan

*Correspondence:

Giacomo Cacciapaglia

g.cacciapaglia@ipnl.in2p3.fr

Specialty section:

This article was submitted to

High-Energy and Astroparticle

Physics,

a section of the journal

Frontiers in Physics

Received: 27 November 2018

Accepted: 05 February 2019

Published: 11 March 2019

Citation:

Cacciapaglia G, Ferretti G, Flacke T

and Serôdio H (2019) Light Scalars in

Composite Higgs Models.

Front. Phys. 7:22.

doi: 10.3389/fphy.2019.00022

Light Scalars in Composite Higgs
Models
Giacomo Cacciapaglia 1,2*, Gabriele Ferretti 3, Thomas Flacke 4 and Hugo Serôdio 5

1 Faculté des Sciences, Université de Lyon, Lyon, France, 2 Institut de Physique Nucléaire de Lyon, UMR5822 CNRS/IN2P3,

Villeurbanne, France, 3Department of Physics, Chalmers University of Technology, Göteborg, Sweden, 4Center for

Theoretical Physics of the Universe, Institute for Basic Science, Daejeon, South Korea, 5Department of Astronomy and

Theoretical Physics, Lund University, Lund, Sweden

A composite Higgs boson is likely to be accompanied by additional light states generated

by the same dynamics. This expectation is substantiated when realizing the composite

Higgs mechanism by an underlying gauge theory. We review the dynamics of such

objects, which may well be the first sign of compositeness at colliders. We also update

our previous analysis of the bounds from LHC searches to the latest results and discuss

the projected reach of the High-Luminosity run.
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1. INTRODUCTION

Models of composite Higgs are a valid option for describing new physics beyond the Standard
Model (SM). In this approach, the Higgs sector is replaced by confining dynamics, with the merit
of solving the problem of hierarchy, as the only mass scale in the sector is dynamically generated,
like in quantum chromo-dynamics (QCD). Furthermore, the breaking of the electroweak (EW)
symmetry also arises dynamically, in contrast to the SM where it is merely described by a
wrong-sign mass term.

The idea of dynamical EW symmetry breaking is as old as the SM itself [1], however in its first
form lacked the presence of a light scalar degree of freedom, the Higgs boson. Later, it was proposed
that the Higgs may arise as a pseudo-Nambu Goldstone boson (pNGB) of a global symmetry
breaking [2]. This latter class of models saw a revival in the 2000’s, following the development
of holography in warped extra dimensions [3]. A minimal model of composite pNGB Higgs was
thus proposed in Agashe et al. [4], and it has since been extensively studied in the literature (see [5–
7], and references therein). The Higgs thus arises as a pNGB from the symmetry breaking pattern
SO(5)/SO(4), together with the three Goldstones eaten by theW and Z bosons.

A key ingredient is the concept of partial compositeness [8] for the SM fermions, as a means
to generate their masses and the SM flavor structures. The generation of a sizeable top-quark
mass is particularly challenging and partial compositeness provides a possible solution by mixing
the elementary fermions with a composite operator that has a large scaling dimension. This
feature, again, follows from the constructions in warped space [9, 10], where the SM fermions
mix with bulk ones. We want to stress here that the main motivation behind the introduction
of partial compositeness was to address the mass and flavor problems while avoiding the generic
appearance of large flavor changing neutral currents among SM fermions. Only later, inspired by
the holographic principle [11], did the role of the composite top partners extended to the role of
regulators of the loop divergences of the Higgs mass, by assuming the finiteness of the full one
loop expression via sum rules [11, 12]. This, in turn, implies the necessity for light and weakly
coupled spin-1/2 resonances [12, 13]. Nevertheless, alternatives to regulate the top loops exist, and
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the potential generated by such loops can be stabilized by,
for instance, the introduction of masses for the underlying
fermions [14, 15].

Another approach to composite dynamics, closer in spirit
to the origin of the dynamical EW symmetry breaking of
Technicolor, consists in defining an underlying theory in terms
of gauge and fermion degrees of freedom, that confine at low
energies [15]. In this approach, it is not possible to naturally
obtain theminimal coset.1 In turn, once the underlying dynamics
is specified, only three kinds of patterns are allowed [19, 20]:
SU(N)/Sp(N), SU(N)/SO(N) and SU(N) × SU(N)/SU(N). The
minimal model is thus based on SU(4)/Sp(4), which can be
obtained with an underlying SU(2) gauge theory [14, 21] and
features only 5 pNGBs: the Higgs doublet plus a CP-odd
singlet [14, 15]. Other minimal cosets are SU(5)/SO(5) [22] and
SU(4)× SU(4)/SU(4) [23].

The inclusion of partial compositeness poses additional
constraints in building the model, in primis the fact that many
additional underlying fermions are needed, therefore loss of
asymptotic freedom follows. In Ferretti and Karateev [24],
a systematic construction of underling models, with partial
compositeness for the top, was done. The main new ingredient
was the sequestering of QCD color charges, which need to be
carried by the underlying fermions in order to give color to
the spin-1/2 resonances, to a new species of fermions, χ , that
transforms under a different representation of the confining
group than that of the fermions, ψ , giving rise to the composite
Higgs. Thus, no dangerous mixing between the EW symmetry
breaking and potential color breaking arises. The spin-1/2 bound
states, therefore, arise as “chimera baryons” [25] made ofψψχ or
ψχχ , depending on the model. There are few other cases where
partial compositeness can be achieved with a single species of
fermions: a confining SU(3) gauge symmetry with fermions in the
fundamental, à la QCD, as proposed in Vecchi [26]; SU(6) with
fermions in the two-index anti-symmetric representation and E6
with the 27. The QCD colored fermions, in the latter cases, act as
“heavy flavors”, in order to avoid light QCD colored pNGBs.

Phenomenologically, the most interesting feature of this class
of underlying theories is the fact that global symmetries in the
effective low-energy model are determined. In particular, one
realizes that a symmetry comprising of QCD is unavoidable.
Furthermore, there is always a non-anomalous U(1) charge,
acting on both species of fermions, which is broken by (at
least) the chiral condensate in the EW (Higgs) sector of the
theory. This results in one light pNGB singlet under all the SM
gauge symmetries. This state may be the lightest of the pNGB
spectra, as it typically does not receive any mass contribution
from top and gauge loops [27]. The properties of this state
have been studied in Cai et al. [28], Belyaev et al. [29], Belyaev
et al. [27], DeGrand et al. [30], and Cacciapaglia et al. [31]. At
the LHC, it can be copiously produced via gluon fusion with the
coupling to gluons being generated by the Wess-Zumino-Witten
anomaly term [32, 33] via the presence of the χ-fermions in

1Constructions based on Nambu Jona-Lasinio models with four-fermion

interactions [16] or based on Seiberg dualities [17] have been proposed in the

literature. See also the attempt in Setford [18].

the pNGB wave function. Couplings to other pNGBs and tops
can also be predicted, once the underlying theory is specified.
Furthermore, they can be produced via the decays of the top
partner resonances [34]. The fact that the properties of this state
can be predicted in terms of the underlying theory, and their
potential lightness, is the most attractive feature. As a historical
note, they were perfect candidates to explain the WW/WZ
resonance at 2 TeV Cai et al. [28] and the γ γ resonance at
750 GeV [29] hinted at by the LHC data, which later appeared
to have been statistical fluctuations. Other light states comprise
of additional EW-charged pNGBs arising from the Higgs sector,
and QCD-colored states coming from the condensation of
the χ ’s.

In this work, we will mainly focus on the singlet pNGB
associated to the global U(1) symmetry. If both fermion species
condense, it is accompanied by a second pseudo-scalar singlet
associated to the anomalous U(1) charges. The latter will receive
a mass term from the anomaly, in a similar fashion to the η′ in
QCD. Nevertheless, it may be relatively light, as expected at large-
Nc for instance. We will therefore consider the phenomenology
at the LHC to come from the presence of both states. This work
follows Belyaev et al. [27] closely, and our main new contribution
is the update of the bounds to the latest LHC searches, and the
addition of projections at the High-Luminosity-LHC (HL-LHC)
run. We will see that the bounds on the compositeness scale
derived from the non-discovery of such a state can be much
stronger than the typical bounds from electroweak-precision
tests. The latter are usually considered the main constraints on
models of Composite Higgs. Conversely, they appear to have the
best prospects for being discovered at the LHC. The HL-LHC run
will be crucial in this case, due to the lightness of such states and
the paucity of current searches focusing on the low mass region
between 14 and 65 GeV.

Before presenting our results, we should stress that these
theories are not full Ultra-Violet (UV) completions of composite
Higgs models with partial compositeness. One point is that
the number of fermions we can introduce before loosing
confinement (asymptotic freedom) is limited, thus one can
only have enough to give mass to the top quark in this way.
Furthermore, the theory needs to lie outside the conformal Infra-
Red (IR) window [35]. It was shown that only 12 models are
consistent with these requirements, while having the minimal
Higgs cosets [36]. The second point is that the origin of the four-
fermion interactions giving rise to the mixing between the SM
tops and the composite fermions is not explained. Finally, the
consistency of flavor bounds usually requires the theory to enjoy
an IR conformal phase right above the condensation scale. This
allows to split the scale where the masses of light quarks and
leptons are generated from the confinement scale [37, 38], which
should not be far from the TeV. In the underlying theory under
study, this can be achieved by adding a few additional fermions at
a mass close to the condensation scale, such that the theory above
this scale is right inside the conformal window. Being just above
the lower edge of the conformal window is crucial if one needs the
composite fermions to have large anomalous dimensions, as the
theory is expected to be strongly interacting around the IR fixed
point near the lower edge of the conformal window. A first step
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toward the construction of truly UV complete theories can be
found in Cacciapaglia et al. [39], based on the potential presence
of a UV safe fixed point, due to large multiplicities of fermions.

As a final introductory word, we should also mention one
main benefit of this approach: once an underlying theory is
defined, it can be studied on the lattice. Thus, spectra and various
properties of the theory in the strong sector can, in principle, be
computed. This includes low-energy constants, which are crucial
for the generation of the Higgs misalignment potential and the
Higgs boson mass [40]. So far, theories based on confining
SU(4) [25, 41] and Sp(4) [42–45] are being studied. For SU(4),
preliminary results on the spectra [25] show that the chimera
baryons tend to be heavy and beyond the reach of the LHC,
while first calculations of the relevant form factors Ayyar et al.
(Unpublished) show a suppressed mixing to the top. This would
disqualify them as “light” top partners that regulate the Higgs
mass loop [12, 13], however they would still play a role in
generating the top mass and help with the flavor issue. It should
be mentioned however that current lattice results do not yet
include a realistic multiplicity of fermions, which may be crucial
as the realistic models are close to the conformal window. Finally,
we mention the possibility that spin-1/2 resonances may arise
as a bound state between a fermion and a scalar, both carrying
underlying color charges [46] (see also [17]). The price to pay,
in this case, is the presence of fundamental scalars in the theory
(unless the underlying scalars arise themselves as bound states
of a theory that confines at higher energies or are protected by
supersymmetry at high scales).

The paper is organized as follows: in section 2 we recap the
main properties of the 12 underlying models. In section 3 we
summarize the main properties of the pseudo-scalars associated
with the two spontaneously broken U(1) global symmetries and
present the updated bounds on the singlet pNGBs in section 4.
We offer our conclusions in section 5.

2. UNDERLYING MODELS FOR A
COMPOSITE HIGGS WITH TOP PARTIAL
COMPOSITENESS

In this work we are interested in the underlying models
for composite Higgs with top partial compositeness defined
in Ferretti and Karateev [24]. These models characterize the
underlying dynamics below the condensation scale 3 ≈ 4π f ,
f being the decay constant of the pNGBs. As such, the need to
be outside of the conformal window leaves only 12 models [36],
listed in Table 1. They are defined in terms of a confining
gauge interaction, that we call hypercolor (HC), and two species
of fermions in two different irreducible representations of the
HC. The two species of fermions play different roles: the EW
charged ψ ’s generate the Higgs and the EW symmetry breaks
upon condensation, and their multiplicity is chosen to match
the minimal cosets; the QCD charged χ ’s consist of a triplet and
an anti-triplet of QCD color, thus always amounting to 6 Weyl
spinors. We will also assume that both fermions condense and
thus the chiral symmetry in each sector is broken. In principle,
the χ ’s may not condense and the ’t Hooft anomaly matching

condition may lead to the presence of light composite fermions,
that may play the role of top partners [47]. However, assuming
the persistent mass condition, it is possible to show that chiral
symmetry breaking must occur in both cosets [36]: the argument
goes that by giving a common mass to one class of fermions
at a time, the chimera baryons that saturate the global ’t Hooft
anomaly would become massive and thus ineffective. The final
answer can only be found on the lattice. The phenomenology of
two of the models have been studied in detail, M8 in Barnard
et al. [48] and M6 in Ferretti [49]. Lattice studies for the two
models are also underway based on SU(4)HC [25] (which also
applies to M11), and Sp(4)HC [44, 45] (which also applies to M5).
Note that a study based on a Nambu Jona-Lasinio effective model
of M8 can be found in Bizot et al. [50]. As shown in Table 1, the
baryons that enter partial compositeness for the top arise either
as ψψχ or ψχχ bound states, depending on the representations
under HC.

It is expected that the lightest states in these models are the
pNGBs, that arise from the breaking of the chiral symmetries in
the two sectors, while the fermionic and spin-1 resonances are
expected to be heavier. The quantum numbers of the pNGBs in
the 12 models are listed in Table 2. They can be organized in
three classes:

A) The ones arising from the EW coset, i.e., the chiral symmetry
breaking in the ψ sector, only carry EW quantum numbers.
All cosets contain at least one singlet, thus being non-
minimal compared to the holographic SO(5)/SO(4) model.
The production rate of these states at the LHC is typically
very small, as it is due to EW interactions, and thus are very
difficult to observe at the LHC. The neutral components may
also couple to two gluons via loops of tops, however still
give rise to small production rates. The case of the singlet in
the SU(4)/Sp(4) coset has been studied in detail in Galloway
et al. [14] and Arbey et al. [51], note however that the
same considerations apply to singlets in the other cosets. The
SU(5)/SO(5) case can be found in Ferretti [49, 52]. Finally,
the SU(4)2/SU(4) case is special compared to the other two,
as it allows for a stable pNGB that may play the role of Dark
Matter [53].

B) The ones arising from the chiral breaking in the χ sector,
i.e., QCD coset, always carry QCD charges. A ubiquitous
member of this class is a neutral color octet [27, 54]. For all
those pNGBs, pair production via QCD interactions can be
substantial at the LHC [55] for masses below or around 1
TeV. The phenomenology of the color sextet in the context of
model M8 has been studied in Cacciapaglia et al. [54]. After
Run-I at the LHC, the bound on theirmasses can be estimated
around the 1 TeV scale. This bound is still compatible with
the fact that one-loop self-energy diagrams, involving a gluon,
put their masses roughly in that range.

C) The U(1) singlets are ubiquitous to all models. Their
phenomenology has been studied in detail in Belyaev
et al. [27]. They will be the main focus of this work. While
they are singlets under the gauge symmetries of the SM,
couplings arise via the topological WZW anomalies, which
include coupling to gluons. In this, they differ from the EW
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TABLE 1 | Model details.

Coset HC ψ χ −qχ /qψ Baryon Name Lattice

SU(5)

SO(5)
×

SU(6)

SO(6)
SO(7)

5× F 6× Sp
5/6

ψχχ
M1

SO(9) 5/12 M2

SO(7)
5× Sp 6× F

5/6
ψψχ

M3

SO(9) 5/3 M4

SU(5)

SO(5)
×

SU(6)

Sp(6)
Sp(4) 5× A2 6× F 5/3 ψχχ M5

√

SU(5)

SO(5)
×

SU(3)2

SU(3)

SU(4) 5× A2 3× (F,F) 5/3
ψχχ

M6
√

SO(10) 5× F 3× (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
×

SU(6)

SO(6)

Sp(4) 4× F 6× A2 1/3
ψψχ

M8
√

SO(11) 4× Sp 6× F 8/3 M9

SU(4)2

SU(4)
×

SU(6)

SO(6)

SO(10) 4× (Sp,Sp) 6× F 8/3
ψψχ

M10

SU(4) 4× (F,F) 6× A2 2/3 M11
√

SU(4)2

SU(4)
×

SU(3)2

SU(3)
SU(5) 4× (F,F) 3× (A2,A2) 4/9 ψψχ M12

The first column shows the EW and QCD color cosets, respectively, followed by the representations under the confining hypercolor (HC) gauge group of the EW sector fermions ψ and

the QCD colored ones χ . The −qχ /qψ column indicates the ratio of charges of the fermions under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner

structure. The column “Name” contains the model nomenclature from Belyaev et al. [27], while the last column marks the models that are currently being considered on the lattice. Note

that Sp indicates the spinorial representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric representations.

TABLE 2 | Light pNGBs in each of the 12 models.

Model EW coset QCD coset a η′

2±1/2 30 3±1 10 1±1 80 3̄2/3 3̄4/3 62/3 64/3

M1 1 1 1 1 - 1 - - 1 - 1 1

M2 1 1 1 1 - 1 - - 1 - 1 1

M3 1 1 1 1 - 1 - - - 1 1 1

M4 1 1 1 1 - 1 - - - 1 1 1

M5 1 1 1 1 - 1 1 - - - 1 1

M6 1 1 1 1 - 1 - - - - 1 1

M7 1 1 1 1 - 1 - - - - 1 1

M8 1 - - 1 - 1 - - - 1 1 1

M9 1 - - 1 - 1 - - - 1 1 1

M10 2 1 - 2 1 1 - - - 1 1 1

M11 2 1 - 2 1 1 - - - 1 1 1

M12 2 1 - 2 1 1 - - - - 1 1

For the EW coset (ψψ condensate), we list the SU(2)L multiplets with their hypercharge, for the QCD coset (χχ condensate) the QCD representation and hypercharge. We remark that

the only ubiquitous ones are the color octet and the two U(1) singlets, plus one singlet in the EW coset.

cosets, where couplings to gluons can only arise via top loops.
We can therefore expect larger production rates for them.

All models in M1-M12 preserve custodial symmetry. Indeed, this
requirement is central in their construction and determines the
minimum amount of fermionic matter present in each model.
For custodial symmetry to be preserved one needs to be able
to embed a SU(2)L × SU(2)R group into the unbroken group
H of the electroweak cosets G/H. This requirement is satisfied
by choosing H = SO(No) with No ≥ 4, H = Sp(2Np) with
Np ≥ 2 or H = SU(Nu) with Nu ≥ 4. However, the further

requirement that there be a Higgs field in the bi-fundamental of
SU(2)L × SU(2)R, requires to take No ≥ 5. Thus, ρ = 1 at tree
level in these constructions, as long as the triplet pNGBs (when
present), do not acquire a vacuum expectation value.

3. LIGHT U(1) PSEUDO-SCALARS

In this section we summarize the main properties of the two U(1)
pseudo-scalars, one of which associated with non-anomalous
global symmetry. Most of the results shown in this section can be
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found in Belyaev et al. [27], where a more detailed analysis can be
found. We refer to other results in the literature when necessary.
This section can be considered a handbook for anybody who is
interested in studying the phenomenology of such states, as we
will provide all the relevant couplings and formulas necessary to
compute cross-sections and branching ratios.

Following the notation in Belyaev et al. [27], we call two mass
eigenstates {a, η′}, with a being the lighter one, which is also
closer to the anomaly-free U(1) boson. The masses, which also
determine the mixing angle between the two states, receive three
contributions: two from the masses of the underlying fermions
ψ and χ , and one from the anomalous U(1) combination.
Assuming that mχ ≫ mψ , and neglecting the latter, the mixing
angle can be determined in terms of the mass eigenvalues. We
define the mixing angle α between the mass eigenstates and the
pseudo-scalars associated to the U(1)ψ and U(1)χ charges. Thus,
in the decoupling limitMη′ ≫Ma, the mixing angle is given by

sinα|dec. = −1/

√

√

√

√1+
q2ψNψ

q2χNχ

f 2ψ

f 2χ
, (1)

where qψ and qχ are the charges of the anomaly-free U(1)
(see Table 1), fψ ,χ are the decay constants in the two sectors,
and Nψ ,χ their multiplicity. Note that only the ratio fψ/fχ is
not fixed but depends on the strong dynamics (thus calculable
on the lattice [25]). However, we can fix it by applying the
Maximal Attractive Channel (MAC) hypothesis [56], see Table 3
inAppendix A. Once this is fixed, all the couplings of the pseudo-
scalars to SM states are fixed in terms of the properties of the
underlying dynamics, as we will show below.

The relevant effective Lagrangian for both pseudo-scalars, i.e.,
φ = {a, η′}, can be generically parameterized as

Leff ⊃
1

2
(∂µφ)(∂

µφ)−
1

2
m2
φφ

2

+
φ

16π2fψ

(

g2s K
φ
g G

a
µνG̃

aµν

+ g2K
φ
WWi

µνW̃
iµν + g′2KφBBµν B̃

µν
)

− i
∑

f

C
φ

f
mf

fψ
φψ̄f γ

5ψf

+
2v

f 2ψ
Keff
φh

(

∂µφ
) (

∂µφ
)

h+
2mZ

fψ
Keff
hZ

(

∂µφ
)

Zµh

(2)

with F̃µν = 1
2ǫ
µνρσFρσ for F = {Ga,Wi,B}. Note that we

have normalized the couplings with the decay constant in the
Higgs sector, fψ , which is directly related to the tuning in the
misalignment potential as v = fψ sin θ [27]. We could also have
defined a U(1)-singlet decay constant

fa =

√

√

√

√

q2ψNψ f
2
ψ + q2χNχ f

2
χ

q2ψ + q2χ
, (3)

as in Cacciapaglia et al. [31]. The relation between the two decay
constants is given in Table 3.

The Lagrangian in Equation (2)matches with a generic Axion-
Like Particle (ALP) Lagrangian [57–59], except that the various
coefficients can be computed. The couplings in the last two lines
are generated by loops of tops and gauge bosons (dominantly),
but differ from the results from a generic ALP Lagrangian [59, 60]
due to non-linear couplings of the pNGBs in the composite
models [31]. In the following, we shall review how each of
the terms in the effective Lagrangian can be calculated. All the
numerical coefficients, in the decoupling limit and in theminimal
mass splitting limit, are given in Tables 3, 4 in Appendix A. The
numbers we provide here assume the MAC relation between the
decay constants, as used in Cacciapaglia et al. [31], while the
values in Belyaev et al. [27] assume fψ = fχ .

The computability of all the coefficients is one of the main
appeals of these models, having an underlying gauge theory
construction. For each model that has a fixed gauge group
and representation for the underlying fermions, once a discrete
choice of the representation of the top partners under the global
symmetry is done, the phenomenology of the pseudo-scalars
is determined in terms of only three independent continuous
parameters (the masses mφ with φ = a , η′ and a common decay
constant fψ ). All the couplings and ratios of the decay constants
for the various cosets can be computed as shown in Tables 3, 4
in Appendix A. The only assumption we make is that the tops
couple dominantly to only one composite operator.

3.1. Couplings to Gauge Bosons
The general couplings of the singlet pseudo-scalars to gauge
bosons are almost entirely dictated by the quantum numbers of
the underlying dynamics, i.e.,

Ka
V = c5

(

C
ψ
V

√

Nψ
cosα +

fψ

fχ

C
χ
V

√

Nχ
sinα

)

, (4)

with K
η′

V obtained from the above expression with the

replacement α → α + π/2. In the above expression, c5 =
√
2

for models with SU(5)/SO(5) breaking and 1 otherwise, C
ψ ,χ
V are

the anomaly coefficients of the singlets associated with U(1)χ ,ψ
groups which are fully determined by the SM charges of the
underlying fermions2. Thus, the only dependence on the mixing
angle α remains, which is determined by the masses of the two
states. In the Tables in Appendix A we give values in the two
limiting cases of minimal mass splitting and decoupling.

One can rewrite the WZW interactions in terms of the
physical gauge bosons, i.e.,

Leff ⊃
φ

16π2fψ

(

g2s K
φ
ggG

a
µνG̃

aµν + g2K
φ
WWW+

µνW̃
−µν

+ e2Kφγ γ Fµν F̃
µν +

e2

s2Wc2W
K
φ

ZZZµν Z̃
µν

+
2e2

sWcW
K
φ

Zγ Fµν Z̃
µν

)

(5)

2See Table 3 in Appendix A of Belyaev et al. [27] for a list of coefficients in

all models.
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with

K
φ
γ γ = K

φ
W + K

φ
B , K

φ

Zγ = c2WK
φ
W − s2WK

φ
B ,

K
φ

ZZ = c4WK
φ
W + s4WK

φ
B .

(6)

The couplings of a and η′ to gauge bosons are thus determined
purely from the underlying dynamics with one assumption,
i.e., the validity of the MAC hypothesis. The only external
dependence arises from themasses via themixing angle α. Table 3
in Appendix A shows the resulting couplings of a and η′ for all
12 underlying models. Typically, in a generic mixing angle, the
couplings vary between the two limits shown.

The couplings to two-gauge bosons also receive contributions
at loop-level, in particular from top-loops, which are particularly
relevant at low masses and can affect the production rate via
gluon fusion and the decays. These contributions were fully
computed in Belyaev et al. [27], and their effect expressed in
terms of the Branching Ratio formulas:

Ŵ(φ → had) =
α2s (mφ)m

3
φ

8π3f 2ψ

[

1+
83

4
αs(mφ)

]

×
∣

∣

∣
Kφgg + C

φ
t C0

(

0, τφ/t , 0; 1
)

∣

∣

∣

2
(7a)

Ŵ(φ → γ γ ) =
α2m3

φ

64π3f 2ψ

∣

∣

∣

∣

Kφγ γ +
8

3
C
φ
t C0

(

0, τφ/t , 0; 1
)

∣

∣

∣

∣

2

(7b)

Ŵ(φ → WW) =
α2 m3

φ

(

1− 4τW/φ

)3/2

32π3f 2ψ s
4
W

×
∣

∣

∣

∣

K
φ
WW −

3

2
C
φ
t C1+2

(

τW/t , τφ/t , τW/t;
√
τb/t

)

∣

∣

∣

∣

2

(7c)

Ŵ(φ → Zγ ) =
α2 m3

φ

(

1− τZ/φ
)3

32π3f 2ψ s
2
Wc2W

×
∣

∣

∣

∣

K
φ

Zγ + C
φ
t

(

1−
8

3
s2W

)

C0(τZ/f , τφ/t , 0; 1)
∣

∣

∣

∣

2

(7d)

Ŵ(φ → ZZ) =
α2 m3

φ

(

1− 4τZ/φ
)3/2

64π3f 2ψ s
4
Wc4W

∣

∣

∣

∣

K
φ

ZZ + C
φ
t

[

s2W

(

8

3
s2W − 2

)

C0

(

τZ/t , τφ/t , τZ/t; 1
)

−
3

4
C1+2

(

τZ/t , τφ/t , τZ/t; 1
)

]
∣

∣

∣

∣

2

(7e)

with τa/b = m2
a/m

2
b

and Ci(τp1/t , τp1+2/t , τp2/t;
√
τf /t) ≡

m2
tCi(p

2
1, (p1 + p2)

2, p22;mf ,mt ,mt) the Passarino-Veltman
functions with the normalization given in Package-X [61].
We have used the short-hand notation C1+2 ≡ C1 + C2 and
analytical expression for some of the simplest loop function can

be found in Belyaev et al. [27]. C
φ
t is the coupling to tops, which

is discussed in the following subsection.

3.2. Coupling to Tops, Light Quarks, and
Leptons
The coupling to tops only depends on the charges under the two
U(1)’s of the composite operators that mix to the left-handed and
right-handed tops. If we assume that the two top chiralities mix
dominantly to one operator, there are only six possible charges
that enter the coupling to tops via the top mass operator:

(nψ , nχ ) = (±4, 2) , (0,±2) , (±2, 0) , for ψψχ , (8)

(nψ , nχ ) = (2,±4) , (0,±2) , (±2, 0) , for ψχχ , (9)

where nψ and nχ are the net numbers of ψ and χ fields,
respectively in the two operators coupling to the two top
chiralities (see Belyaev et al. [27] for more details). Thus, the Ca

t

coefficient reads

Ca
t = c5

(

nψ
√

Nψ
cosα +

nχ
√

Nχ

fψ

fχ
sinα

)

. (10)

Like above, C
η′

t is given by α → α + π/2.
For the light quarks and leptons, we will assume, for

simplicity, that their mass is coming from a direct coupling to
a bilinear of ψ ’s, i.e., via an effective Yukawa coupling. This
corresponds to the top case, but with fixed {nψ , nχ } = {2, 0}.

The coupling to tops above has been computed by writing
the effective operators generating the top mass, as in Golterman
and Shamir [40] and Golterman and Shamir [62]. However, in
Bizot et al. [34] it was noted that computing the coupling of the
pseudo-scalars starting from themixing to the top partners would
lead to a different expression, differing by the presence of the
mixing angles in the partial compositeness. For the top this has
a minor impact on the numerical results, and we therefore chose
to remain using the operator case.

3.3. Loop-induced Couplings to the Higgs
and to Zh
Models with a pseudo-scalar state generically contain a coupling
to Zh [60], which is generated at loop level. In our models, the
leading contributions to the effective coupling between the singlet
pseudo-scalars, Z and Higgs bosons are given by the diagrams in

Figure 1 [31]. Explicit calculation for the coupling K
φ eff
hZ

defined
in Equation (2) gives:

K
φ eff
hZ

=
3m2

t

32π2vmZ
C
φ
t

[

2(κt − κZ)B0(τφ/t)− κt
(

B0(τh/t)

− B0(τφ/t)+ (4− τZ/t)C0(τφ/t , τh/t , τZ/t; 1)
+(τφ/t + τh/t − τZ/t)C1(τφ/t , τh/t , τZ/t; 1)

)]

(11)

with B0(τp/t) ≡ B0(p
2;mt ,mt), see Belyaev et al. [27] for

the analytic expression. In the formula, the κt and κZ are the
corrections to the Higgs coupling to tops and Z, respectively,
normalized by the SM value. The loop function B0 is UV-
divergent and we have parameterized it in terms of a cutoff, i.e.,
1/ǫ → −1+ ln(16π2f 2ψ/µ

2). Note that the UV-sensitivity is only
present in the term proportional to (κt − κZ), which reflects the
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FIGURE 1 | Leading contributions to the decay φ → Zh.

FIGURE 2 | Leading contributions to the decay h → φφ.

non-linearities in the Higgs couplings, a common feature in all
composite Higgs models. The partial width for the pseudo-scalar
decay gives

Ŵ(φ → hZ) =
m3
φ

16π f 2ψ

∣

∣

∣
K
φ eff
hZ

∣

∣

∣

2
λ(1, τZ/φ , τh/φ)

3/2 (12)

with λ(x, y, z) the Källén function. For very light pseudo-scalars
the decay h → φZ is allowed, with a partial width given by the
formula above, with the replacement ofmφ ↔ mh.

At loop level, a coupling hφ2 is also generated. This is relevant
for mφ < mh/2, for which Higgs decays into two pseudo-scalars
are open. Explicit calculation of the leading diagrams, shown in
Figure 2, gives

Keff
φh =

3κt

8π2

(

C
φ
t mt

v

)2
[

B0(τφ/t)+ 2 C0(τφ/t , τh/t , τφ/t; 1)

+
1

1− 2τa/h

(

B0(τh/t)− B0(τa/t)
)

]

. (13)

The Higgs decay to two pseudo-scalars is then given by3

Ŵ(h → φφ) =
v2m3

h

32π f 4ψ

∣

∣

∣
Keff
φh

∣

∣

∣

2
(

1− 2τφ/h
)2√

1− 4τφ/h . (14)

4. LHC BOUNDS AND HIGH-LUMINOSITY
PROJECTIONS

The presence of the light composite pseudo-scalars can be tested

at the LHC via the single production via gluon fusion, which is the

dominant production mode, and further decays into a resonant

pair of SM states. In this work we include both the effect from

3There is also an additional contribution coming from the diagrams in Figure 2

that is proportional to p2
h
. This signals the presence of an effective term of the form

φ2�h, however, such contribution is always negligible.

the WZW direct coupling to gluons, and the contribution of top

and bottom loops. The cross-section calculation is performed

at NLO in QCD by use of the HIGLU [63] code. For the tops,
as shown above, we have six possible top partner assignment
choices: following Belyaev et al. [27] and Cacciapaglia et al. [31],
in the numerical results we chose the case {nψ , nχ } = {2, 0}.
A discussion of the effect of other choices can be found
in Appendix B.

The strategy for applying bounds follows Belyaev et al. [27].
We collected all available searches, looking for resonant final
states that may come from the pseudo-scalars, and extract a
bound from the production cross section times branching ratio,
assuming that the efficiencies of the experimental searches are
the same on our model. This is a reasonable assumption, as the
searches are mainly sensitive to the resonant nature of the signal,
and much less on the possible kinematical differences in the
production. Furthermore, we do not attempt to do a statistical
combination of various searches, as we cannot take into account
correlations of the systematic uncertainties in the experiments.
Thus, we simply consider the most constraining search or signal
region to extract a bound from for each final state. The final result
is shown in Figure 3 for two representative models, M8 and M9.
What connects the two is the fact that the global symmetries are
the same, thus they can be characterized by the same low energy
effective action based on the minimal SU(4)/Sp(4) EW coset and
SU(6)/SO(6) QCD coset. However, as shown in the plot, the
properties of the two pseudo-scalars are very different, hence
leading to very different bounds. Note that we have re-expressed
the bound on the cross sections into a bound on the decay
constant of the Higgs. This is possible because all the coefficients
of the couplings are calculable, as detailed in the previous section.

Before commenting on the numerical results, we will list here
all the searches we implemented.

i) The tt̄ final state is only relevant for large masses and
indicated in orange (Run-II at 13 TeV) and green (Run-I
at 8 TeV) on the side-bands of the plots. We implemented a
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FIGURE 3 | Heat-plots showing the lower bounds on the Higgs decay constant fψ in the mass plane of the two pseudo-scalars. The white triangle is not accessible

by the masses in each model. The side-bands show the limits from each individual final state. On the left column, we show the current Run-I and Run-II bounds; on

the right column, we show the projections at the High-Luminosity LHC run (the solid gray band summarizes the current bounds for comparison). More details in the

text. Here we show model M8 (top row) and model M9 (bottom row).

fully hadronic Run-II search by CMS [64], and two Run-
I searches by CMS [65] (fully reconstructed tops) and
ATLAS [66] (semi-leptonic).

ii) Di-jet searches (black line) can tag the di-gluon decay,
however they are only sensitive at relatively large masses
because of trigger limitations. We implemented Run-II
searches by CMS [67, 68] and ATLAS [69].

iii) Di-boson final states, i.e., WW (dark blue line) and ZZ
(light blue line), are mostly relevant above ≈ 160 GeV,
when resonant decays are kinematically allowed. Many
different final states are searched for at the LHC. We
include the following Run-II searches by CMS [70–77] and
ATLAS [78–81].

iv) Di-photon resonances in this model are as important at low
mass as at highmass, because they are generated at the same
level as the decays to massive gauge bosons. We show in

green the results at Run-I at 8 TeV, and in violet the ones
at Run-II at 13 TeV. The implemented searches for ATLAS
are at Run-I [82] and at Run-II [83]. For CMS, we use the
combined Run-I + Run-II results for high mass [84, 85] and
low mass [86, 87] ranges.

v) Similarly, γZ resonant search (cyan line) has an impact
at high mass. We implemented the Run-II searches from
CMS [88, 89] and ATLAS [90].

vi) A new channel we include in this work, which was
previously missed in Belyaev et al. [27], is Zh. The limit,
shown by the red line, corresponds to the ATLAS search
[91]. This channel is always significantly above he threshold,
but usually loses significance at the tt̄ threshold.

vii) At the LHC, resonant di-tau searches have been performed
for invariant masses above 90 GeV. The limit, shown by
the gray line, however, typically plays a limited role because
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the branching ratio in taus is small at such mass values. We
implemented the following Run-II searches by CMS [92, 93]
and ATLAS [94, 95]. They are typically designed to tag
supersymmetric heavy Higgses.

viii) At low mass, the di-muon final state becomes relevant.
While the branching ratio is very small, suppressed by
the muon mass, the cleanness of the final state makes
this channel attractive, as long as it can pass the trigger
requirements. The only two applicable bounds are a 7 TeV
search (lime green light) at low mass done by CMS [96],
which tags the mass range between 10 and 15 GeV thanks
to a dedicated trigger, and a 8 TeV search (dark green) done
by LHCb [97] in the same mass range.

ix) For masses below mh/2 ≈ 65 GeV, the decays of the
Higgs into two pseudo-scalars starts playing a significant
role. We implemented various searches dedicated to this
channel, with final states including bb̄µ+µ− (blue line), 4τ ’s
and 4γ ’s [98–100], with the two last channels too small to
enter in the plots. We also estimated the bound coming
from the indirect measurement of undetected decays of
the Higgs into new physics, which is currently BRBSM <

30% [101], shown by the dot-dashed blue line. In our
specific models, this is stronger than the direct searches,
mainly because at the final states the searches focused on
have small branching ratios.

x) Finally, we checked that constraints coming from associated
production of the pseudo-scalars with bb̄ [102, 103]
and tt̄ [104] are not competitive with production via Z
decays [105] (Z → aγ ).

The plots on the left column of Figure 3 show the limit on the
Higgs decay constant fψ in the plane of the two pseudo-scalar
masses and for models M8 and M9. For each point in the ma–
mη′ plane we compute independently the bounds on fψ coming
from the a and η′ resonances and then show the most stringent
one. In the two side-bands we show the strongest bound coming
from a (top band) and η′ (right band), split into the various
channel we considered. One important observation is that the
limit often passes the 1 TeV mark. This is significant as typical
electroweak precision bounds on this class of models give a lower
limit on f around this scale [106–108]. Cases where the limit can
be relaxed have been discussed in Contino and Salvarezza [109],
Ghosh et al. [110], and Buarque Franzosi et al. (Unpublished).
We note, therefore, that searches for these light pseudo-scalars
can be the most constraining probe for these class of models.
Also note the presence of a poorly constrained region for the
14 < ma < 65 GeV window of the lightest pseudo-scalar
(most evident for M9). This is mainly due to the paucity of
direct searches that are significant in this low mass window,
the strongest bound being on the new physics Higgs decay
rate. Note that the latter will not significantly improve at the
end of the HL-LHC [111]. It is therefore crucial to close this
gap with searches dedicated to this region, which is present for
all models. Note also that the constraints on M8 are always
rather mild: this is due to the coupling to gluons, which is
particularly low in this specific model. The plots, therefore, show
how the constraints are particularly sensitive to the details of the

underlying models, as the twin models M8 and M9 dramatically
show. For comparison, in Figure 4 we show the bounds for
another model, M7, based on the SU(5)/SO(5) coset, which
shows an intermediate situation. Similar plots for all the other
models are shown in Figures 7–9 inAppendix C. They all show a
similar pattern of constraints.

A new result we show in this paper is the inclusion of
projections for the HL-LHC run. First, we would like to attack
the low mass window, which is left open after the Run-II
searches, as shown in all plots. In this window, the main decay
channels are in two jets (either gluons or b quarks), followed
by taus. Di-photon final states are also present, however current
searches [83, 86, 87] cannot reach this low mass region due to
trigger limitations.

In Cacciapaglia et al. [31] we proposed a new search based on
the di-tau final state. To be able to pass the trigger requirements,
we proposed to aim at the production of a single a that recoils
against a high-pT jet. This also allows to reduce the background
level, while the reduction in the cross section still leaves a large
signal rate. We analyzed in detail the case of leptonic decays of
the two taus into different flavor leptons. Due to the high boost,
the angular separation between the two leptons is typically very
small. Thus, imposing an upper cut on the angular separation,
1Reµ < 1, allows to efficiently reduce the main background,
coming from tt̄ and Drell-Yan di-tau production. Fakes in this
channel should have a limited impact, thus allowing us to derive
reliable estimates for the reach. A key ingredient to improve the
reach in the case of a small mass below 30 − 40 GeV is the
reduction of the lower cut on the separation angle between the
two leptons. The current minimal separation used at the LHC,
see Khachatryan et al. [112] for instance, is 1Reµ > 0.1 ÷ 0.2,
as such it would lead to a degradation of the sensitivity for low
invariant masses where the boost produces very low angles [31].
It would be necessary, therefore, to relax the isolation criteria and
remove the minimal separation in order to optimize the reach.
Furthermore, due to the low statistics, it is crucial to reduce at the
maximum the systematic errors on the lepton reconstructions.
For this reason, we focused on the fully leptonic case. The
main systematics in boosted di-tau searches [113] come from
hadronic tau decays and from the invariant mass reconstruction,
which are not required in our study. We optimistically assume,
therefore, that systematic uncertainties below the % level can
be achieved. In the right plots of Figures 3, 4 and Figures 7–9
in Appendix C, we show the projected reach of this proposed
search in black. The plots show that in most models it can
effectively cover the low mass open window, with enhanced
sensitivity to the low mass end. Note also that we only
use the opposite-flavor fully leptonic channel. Nevertheless,
semi-leptonic decays may also be used, by implementing
advanced techniques, like the “mini-isolation” proposed in
Rehermann and Tweedie [114], while tests of fully-hadronic
di-tau tagging can be found in Katz et al. [115] and Conte
et al. [116].

Another method that would allow to cover the low
mass window is extracting indirect bounds from the di-
photon differential cross section measurements, as proposed
in Mariotti et al. [117]. We added a projection of this bound
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FIGURE 4 | Same as Figure 3, for the model M7, based on the EW coset SU(5)/SO(5).

at High-Luminosity in red. Figure 3 effectively shows the
complementarity between the two searches: for M8, the di-tau
search gives stronger bounds in the full mass range, while for
M9 the di-photon bound is more stringent while di-tau can only
compete at the low mass end of the window. In Figure 4 we show
another case, M7, where the complementarity between the two
methods at the low and high ends of the open mass window is
more evident. To complete the High-Luminosity projections, we
also include projections for tt̄ [118–120] (in blue), di-jet [119,
121, 122] (in green), Zh [123] (in orange), WW [124] (in cyan),
ττ [125] (in violet), and bb̄ [119, 122] (in red).

The plots on the right side of the Figures 3, 4 and Figures 7–
9 in Appendix C show that the High-Luminosity run of
the LHC will allow to effectively cover the full parameter
space of the pseudo-scalar masses for nearly all models,
provided that the searches addressing the low mass window are
implemented. This is a last chance situation, as the sensitivity
of high-energy future colliders to such low masses will be
much lower.

Before concluding the section, we would like to comment
on another search that can be potentially useful to cover
the low-mass open window, i.e., the LHCb search for dark
photons in the di-muon final state [126]. The main strength
of this search relies on the cancellation of all systematic
uncertainties. A recast of this search in the context of a two
Higgs doublet model can be found in Haisch et al. [127].
While the systematics associated to the detector effects are
reasonably similar between the pseudo-scalar resonance and the
dark photon, the production channel (gluon fusion vs. Drell–
Yann) remains different, thus a more detailed determination
of the acceptances and systematics is needed for a recast in
our case. The results of ongoing work will be presented in a
separate publication.

5. CONCLUSIONS AND OUTLOOK

We have updated the bounds from various experimental
searches on two potentially light pseudo-scalar mesons,
which arise in models of composite Higgs with top partial
compositeness, with an underlying gauge-fermion description.
We have provided a handbook containing all the relevant
information necessary to study the phenomenology in any
of the variations of the 12 possible basic models. In each
model, the couplings of the two states can be computed
in terms of the properties of the underlying gauge theory
and of the two decay constants in the two sectors, one
related to the EW symmetry breaking and the other to QCD
carrying states.

We found that, in most models, scanning for masses up
to 10 TeV, the non-observation of a resonance allows to
set a bound on the compositeness scale, that surpasses the
typical bound from electroweak precision tests. This result
shows how the observation of these states can be a smoking
gun for these class of theories, while also carrying precious
information on the details of the underlying models. In all
cases, there is a poorly constrained region for masses between
10 and 65 GeV, where the “standard” channels relying on
Higgs decays or di-muon searches, give very weak bounds in
these models.

We thus reviewed two proposals to cover this window:
one based on the search for boosted di-tau systems, and the
other on indirect bounds from the di-photon differential cross
section measurements. At the High-Luminosity LHC, these
two strategies would allow to close the gap. In fact, they are
complementary in two aspects: the di-tau is more sensitive to
small masses while the photon is more sensitive to larger masses;
in models where the photon coupling is suppressed, the tau
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channel is most constraining, and vice versa. Finally, we included
the projected sensitivity of Zh, WW, γ γ , tt̄, bb̄, ττ and di-jet
searches at High-Luminosity, to push the bounds higher. Our
results also show the necessity to keep looking for tt̄ resonances
down to the mass threshold, as this is the most sensitive channel,
in these models, above 350 GeV.
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