
In search of an evolutionary coding style

Downloaded from: https://research.chalmers.se, 2024-03-13 06:48 UTC

Citation for the original published paper (version of record):
Lundh, T. (2000). In search of an evolutionary coding style. Stony Brook IMS Preprint, 00(03)

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

In search of an evolutionary coding style

Torbjörn Lundh∗

Department of Mathematics

S-412 96 Göteborg, Sweden

torbjrn@math.chalmers.se

Stony Brook IMS Preprint #2000/3
March 2000

Keywords: style, code, evolution, artificial life, emer-
gence, complexity, DNA, Avida, stylometry, GRASP,
Halstead’s complexity.

Abstract

In the near future, all the human genes will be iden-
tified. But understanding the functions coded in the
genes is a much harder problem. For example, by
using block entropy, one has that the DNA code is
closer to a random code then written text, which in
turn is less ordered then an ordinary computer code;
see [17].

Instead of saying that the DNA is badly written,
using our programming standards, we might say that
it is written in a different style — an evolutionary
style.

We will suggest a way to search for such a style
in a quantified manner by using an artificial life pro-
gram, and by giving a definition of general codes and
a definition of style for such codes.

1 Background

Let us as a background cite three different sources.
The first is J. Madox’s comment on page 376 in

[11].

“In genetics for example, the task of under-
standing the functions of all the 100,000 hu-
man genes will require a much greater ef-
fort than that involved in their identifica-
tion, and by a factor 10 or more.”

Chris Adami from Caltech made, in his survey talk
at Renaissance Technologies in Stony Brook 10/27/98
about artificial life, a brief remark about the quality

∗This work was done at SUNY Stony Brook under the sup-
port (408003356-8) from the Swedish Natural Science Research
Council, NFR.

of the evolved program codes in his avida set up. He
said something like this:

“The codes that are evolved will eventually
be almost totally unreadable. Things are
never used only once, but two or more times.
It is a kind of a ‘madman’s’ code.”

In recent years, a lot of examples have been found
where genes have been “reused” for different purposes
during development. As an example, take the runt
gene in Drosophila, which is used in sex determina-
tion, segmentation and central nervous system cre-
ation. In [7] the authors write:

“As mature organisms we are composed of
an astonishing array of diverse cell types—
all derived from a single-celled zygote.
When faced with the task of generating such
cellular diversity in a reproducible fashion,
how has the embryo chosen to respond? Re-
cent work in a number of developmental sys-
tems has suggested that the embryo has em-
ployed two approaches. First, given finite
resources, the embryo has efficiently chosen
to reutilize a limited set of proteins in differ-
ent temporal and spatial contexts to create
cellular diversity. Second, the embryo has
also chosen to install molecular redundan-
cies to ensure the reproducibility of these
patterns from individual to individual.”

How can we capture these comments about the
style or quality of the computer code and the DNA,
in a quantified manner? Can we do that in such a
general manner that we will be able to use analogous
quality measure both for carbon– and silicon based
genetic codes?

1.1 Plan of the paper

We give a straightforward but general definition of
a “code”, a general definition of the “style” of such

2 Torbjörn Lundh

codes using a given set of measures. We will also
suggest such measures of characteristic features, such
as some type of “madness”, the robustness, and the
amount of reuse, of such codes. Finally, we will make
some “baby–experiments” by running the avida pro-
gram and analyze samples of the evolved code, gen-
erate two simulated programs in the same function
class, and eventually stylistically compare the real
evolved code with these simulated codes, all of this
will be done in a C++ program. Some results will be
graphically displayed at the end.

1.2 Future goals

One could then more systematically run the avida
program (or something similar) and analyze the
evolved codes stylistically with more realistic, and a
higher number of comparasion codes. By changing
parameters for the set up in avida, one might even-
tually capture some common features. By comparing
the carbon based programming style and the silicon
based style, it might be possible to find some common
parts that would describe the natural programming
style for evolution. That would in turn help us read
carbon based code. And it would also give us some
hints how to create more robust computer programs,
by looking at how nature has solved such problems.

1.3 Questions

Is there an existing way to study the style or quality
of the DNA? And is there any existing theory in the
information sciences that deals with this on the sili-
con side? We are aiming at a complexity level higher
than the usual information theory measures, such as
the notion of entropy (see the comment in Section
6.2).

1.4 Acknowledgement

I would very much like to thank professor G. Thom-
sen for listen to my ideas and for his constant encour-
agement. I would also like to thank him for making
me feel so much at home in his Xenopus lab, and
teaching me the basics in frog handling and cultural
behaviour in the life sciences.

I would also like to thank Dr D. Slice for his interest
and all his help and suggestions.

B. Cohen has been a good source for me concerning
the existing computer code complexity measures. He
has also been a fruitful discussion partner.

I am grateful to S. Sutherland for reading an earlier
version of this paper and giving me useful comments
and pointing out errors and weaknesses.

Finally I would like to thank D. Brander for play-
ing squash with me and for trying to teach me some
grammar. (All the remaining language errors are nat-
urally completely my own fault.)

2 A general code

We will give a general definition of a code as a string
of generalized “letters” from a given alphabet, that
when interpreted, will define a function. This inter-
pretation is not unique, i.e. many different codes will
produce the same function. That fact will give us a
way to study classes of codes. That is, two codes are
in the same class if their interpretation gives equiva-
lent functions.

2.1 Codes

We will give a definition of a code by using an under-
lying alphabet, and a generalized interpretor.

Definition 2.1 Let us define a code to be a finite
string of “letters” taken from an “alphabet”, A,

Code = {αi}ki=1, where αi ∈ A,

such that when the code is interpreted, the code
will represent a well defined function (or a process),
Codej → fj, with a domain Dfj

such that for all in-
puts, x ∈ Dfj

, to the interpretation of the code, will
give fj(x) as the output

1.

2.2 Classes of codes

From the above definition of codes, we see that differ-
ent codes can have the same function representation,
see Example 2.5 below.

Let us therefore introduce the following classifica-
tion. Let the code Codef and the codes Codefi

have
the functions f and fi as their representations.

Definition 2.2 Let the code class with respect to the
function f be the following (infinite) set of codes.

Cf = {Codefi
: fi(x) = f(x), for all x ∈ Df}.

Remark 2.3 If the interpretor is not able to produce
a well defined function from the code Code, we say
that Code is in the error class Cε. That (huge) class
can be viewed as the complement to all interpretable
codes.

1Note that we here consider a function in a general sense,
i.e. not necessarily numerical.

In Search of an Evolutionary Coding Style 3

Question 2.4 With the suggested norm of Cf below,
is Cf compact? Do there exist extremal codes?

Example 2.5 Let

f(x) =
1

x− 2
,

g(x) =

{

x+2
x2−4 if x 6= −2
− 1

4 if x = −2

and

h(x) =

− 1
4 if x = −2

− 1
2 if x = 0
−1 if x = 1
1 if x = 3
1
2 if x = 4

Note that Codeg and Codef are both in Ch; and Cf =
Cg ⊂ Ch.

Remark 2.6 One common way to view functions is
as black boxes. Here we are interested of the internal
structure of such black boxes performing equivalent
tasks.

3 The style of a code

We will now give a description of a method to charac-
terize different coding styles. Since different codes do
not differ in function in the same class, we say that
they differ in style. How can we characterize such
style?

Given a set of measures on the codes, we propose
a way to characterize style of a subset of codes in the
code class as an extremal unit weight vector that will
act as a stylistic “fingerprint”. We will also give an
algorithm for “stylistic translations”, and an index
which reveals how well a given subset represents a
common style.

The methods we use apply very elementary mathe-
matics, and maybe even more basic statistical meth-
ods. That will hopefully make it accessible to a wide
scientific audience who are interested in “style”.

3.1 A measure on Cf

Let us now study measures on Cf . Let

µi : Cf → [0, 1].

Let us consider the following profile measure

µ = (µ1, µ2, . . . , µn)

of codes in Cf . If a given measure has a range outside
[0, 1], let us use the transformation

x→ x

1 + x

to make it fit into [0, 1].

We define the following scalar measure.

νw(Codeg) = w · µ(Codeg),

where w is a normalized weight vector such that
||w|| = 1, for some norm || · ||. For example, let

||w|| = ||w||p =
(n
∑

i=1

|wi|p
)

1
p

,

where p ≥ 1. As a default norm, let us use ||·|| = ||·||2.

3.2 Extremal weights

Let us use the above measure to try to capture a
characterization of “style” of codes.

Suppose that we have two sample sets, A and B,
of codes in Cf . We will try to find a style characteri-
zation of the codes in A relative to B.

We can think of A as the set of codes we are stylis-
tically interested in and B as a complementary envi-
ronment.

Let us define a vector u = (u1, u2, . . . , un) in the
following way.

u =
∑

ai∈A

∑

bj∈B

(µ(ai)− µ(bj)). (1)

Let us now normalize u to a unit vector.

w+ = w+(A) =
u

||u|| . (2)

Let us now study the random variable

X = νw(ai)− νw(bj), (3)

where ai is a randomly chosen code in A, with uni-
form probability2, and bj is randomly chosen in B.
Note that X is dependent on the chosen w.

Proposition 3.1 Let X be the random variable de-
fined in (3) and let w+ be the unit vector from (2).
Then we have that picking w = w+ will maximize
the expected value of X, E(X).

2The probability to choose ai is 1/#(A).

4 Torbjörn Lundh

Proof: Let #(·) denote the cardinality of a set and
let M = #(A)#(B). The expectation for a general
weight vector w will be easily computed.

E(X) =
1

M

∑

ai∈A

∑

bj∈B

(νw(ai)− νw(bj)) =

=
1

M

∑

ai∈A

∑

bj∈B

(w · µ(ai)−w · µ(bj)) =
w · u
M

.

Since ||w|| = 1 we have that

|E(X)| ≤ ||u||
M

.

Let us now look at the special case w = w+. We
have then that

E(X) =
w+ · u
M

=
1

M

u

||u|| · u =

=
||u||2
M ||u|| =

||u||
M

.

Thus we see that taking w to be w+ will maximize
E(X). 2

3.3 A fingerprint on the hyper sphere

We can now view the unit vector w+(A) = w+ on
the unit hyper3 sphere as a “fingerprint” of the style
of codes in A relative to B with respect to the list of
given measures in µ.

Remark 3.2 If there is a superset of codes B1 ⊃ B
which is enough separated, then the fingerprint w+ of
A relative to B1 can be expected to be a more refined
characterization of the “style” in A than the w+ of
A relative to B.

3.4 A universal character

One would hope that similar classes, Cf , would give
similar fingerprints w+ for different function codes
created by the same code writing agent.

3.5 Stability with respect to the vec-

tor µ

There is a stability feature built into w+ in the sense
that if you would like to find a stylistic quality in a
group of codes, you try to find “relevant” measures
in the vector µ. What happens if, in addition to
your relevant measures, you also take a sequence of

3if n > 3

irrelevant measures (where, for example, the codes
look more or less randomly distributed, or even just
the same)? If the environment, i.e. B, is rich enough,
then your profile will just be about zero at the tail,
where the non-relevant measures are. That means
you don’t have to be restrictive when you pick your
measures — if some happen to be worthless, that will
be taken care of by itself.

3.6 Is there a common style in A?

Given two subsets, A and B in Cf , of codes, we have
now a method for finding a common style in A, in
relation to B, as a unit vector w+(A). (As a special
case, we can let B be the complement of A in Cf .
Then we can talk about the style of A.)

This process can be executed even if A and B are
just randomly chosen subsets in Cf where we can not
expect to find any stylistic common features in A in
comparison to all the codes in B. How can we find
out if A really has a common style, in comparasion
to B, that can be captured by the chosen measure
profile µ?

Let us go back to Equation (3) and the random
variable X. Let us also define a similar s.v. Y such
that

Y = νw(ci)− νw(cj),

where ci and cj are randomly chosen, with equal
probability, in A ∪ B. Note that the underlying w

is w+(A). From Proposition 3.1 above, the expected
value of X will then be maximal. Let us denote that
value by m, i.e. let E(X) = m. From the proof of
Proposition 3.1 we see that

m =
||u||

#A#B
.

Hence, loosely speaking, m is large if A has a char-
acteristic style that is captured by the measure profile
µ. How large can m get? Or in other words: how
large can ||u|| get? Since all the measures µk(·) are
bounded above by 1 and below by 0 we have that a
component ui of the u vector is also bounded.

uk =
∑

ai∈A

∑

bj∈B

(µk(ai)− µk(bj)) ≤

≤
∑

ai∈A

∑

bj∈B

(1− 0) = #A#B = M.

If we are using the standard norm || · || = || · ||2, we
get that ||u|| ≤ nM2 and hence ||u|| ≤ √nM .

Let us normalize m to get the following index

θ =
m√
n
.

In Search of an Evolutionary Coding Style 5

We see that θ ∈ [0, 1] and it will be closer to 1 when
the fingerprint is good.

On the other hand, due to the Remark 3.3 below,
we might also need an invariant index.

Let us use the variances of the random variables
X,Y in the following way. Let

σ2
A = E((X −m)2), and let σ2

AB = E(Y 2).

Note that we immediately have that E(Y) = 0. Let
us suggest an index η of how well the measure profile
µ can capture a common style, if it exists at all, in A
in comparison to the codes in B. Let

η = η(A,B,µ) =
σ2
AB

σ2
A

=
E(Y 2)

E(X2)−m2
. (4)

Remark 3.3 Note that if all the measures in µ are
multiplied by a factor k < 1, i.e. µi → kµi, then
m → km, σ2

A → k2σ2
A, and σ2

AB → k2σ2
AB. Hence η

would not change, but θ → kθ.

3.6.1 Principal component analysis

A very illustrative, and very popular, technique when
looking for connections in a multidimensional en-
vironment is the principal component analysis. It
is a two dimensional diagram with coordinate axis
the two eigenvectors with the largest eigenvalues of
the covariance matrix M. Let C = A ∪ B and let
N = #C. We denote the codes in C by cj , then

Mi,j = Cov

(

(µi(c1), µi(c2), . . . , µi(cN)),

(µj(c1), µj(c2), . . . , µj(cN))

)

.

For more details, see any book in multivariate anal-
ysis, for example [13].

If in such a diagram, the codes A we are interested
in are clearly separated from the B codes, then we
could say that there is a common style in A, and if
that is the case and if the largest eigenvalue is con-
siderably larger then the second one, then the finger-
print w and the first eigenvector should be close to
each other. That is indeed the case in Figure 7.

3.6.2 Cluster analysis

Another tool from the multivariate toolbox could be
used to study the question about a common style in
A. This method is based on an iteration fusion of
close points until the desired number of subsets are
obtained. To measure the closeness, we might pick
our scalar measure νw+ .

In order to check if there is a common style in A,
we can ask how well the points in A are clustered.

3.7 Style translations by iterations

Using the above construction, let us here indicate an
algorithm how to “stylistically translate” a code a in
A ⊂ Cf , into the style in B ⊂ Cf .

1. Compute

v =
∑

bi∈B

(µ(bi)− µ(a)).

2. Find the dominating component of the vector v,
i.e. let

vm = max
1≤i≤n

|vi|.

3. Study the measure µm and stylistically rewrite
a such that µm(a) would increase approximately
vm units (decrease if vm < 0).

4. Iterate the process until sufficient accuracy is at-
tained. The accuracy is measured by ||v||.

Suppose the final accuracy is δ and denote the
rewritten a by a′. Let w = w+(B) and let Z be
the random variable

Z = νw(bi)− νw(a′),

for a randomly chosen bi in B. Now the expected
value of Z will be

E(Z) =

∑

i∈B w · (µ(bi)− µ(a′))
#(B)

,

where #(·) stands for the number of elements in the
set. That is

E(Z) =
w · v
#(B)

.

Now if we have the norm || · || as the default || · ||2 we
can use Cauchy–Schwarz’ inequality to get that

|E(Z)| ≤ δ

#(B)
.

In other words, the fingerprint w+ of B would hardly
“feel” the difference between a′ and the codes in B if
δ is small.

4 Different levels of Code

So far we have just been studying a code on a singular
level. In this section we will describe a way to sep-
arate the codes into different levels. One could then
ask questions about the styles on different levels. Are
the styles similar even on different levels, etc?

6 Torbjörn Lundh

We will view a code as a composition of lower level
codes. Let us use the definition of emergence given
in [4] on p. 518.

P is an emergent property of S2

⇐⇒
P ∈ Obs2(S2), but P 6∈ Obs2(S1

i1
) ∀i1.

Let us explain this more in detail, and similarly dis-
play a concrete example of a computer code, where
the inputs are integers.

In this case, let S0 be input values, e.g. S0
i ∈ N,

and let {Inti}ni=0 be a given sequence of sets of in-
teractions, e.g. Int0 = {+,−}, Int1 = {∗,÷} ∪ Int0,
Int2 = {=, <,>} ∪ Int1, etc. Let {Obsi}ni=0 be the
related observational function, e.g. Obs0(x) = value
of x as an integer, Obs2(x > y) = true or false.

From the given sequences {Inti}ni=0 and {Obsi}ni=0

we get the higher order structures as a “reaction”, R,
in the follwing manner.

S1 = R(S0,Obs0, Int0),

S2 = R(S1,Obs1, Int1),

see [4] for details.
We have then that in our example, −1 is an emer-

gent property of S1 = Z, 1/2 is an emergent property
of S2 = Q, and “true” is an emergent property of S3,
etc.

Given such sequence {Inti}ni=0 we can define a code
of degree k as a consecutive string of the total code
which has the property of Obsk, i.e. if the code can
produce an output that is an emergent property of
Sk.

We can then view the final code of degree n,
Coden, as a composition of sub-codes of degree n−1,
Codein−1, etc.

Note that Baas indicates this application in men-
tioning the word hyperalgorithms on p. 526 in [4].

How can one think of a good implementation of
these functions? The choice of the interactions Int
will give us a chance to find fine structures. What
happens to our example if we start by Int0 = {+}
and then Int1 = {−} ∪ Int0 etc? Is there a “natural”
choice of that interaction sequence for a given case?

5 Some measures

Let us list a couple of measures that would be useful
to capture some of the features mentioned in the Sec-
tion 1 above, and which also utilizes different levels
of codes discussed above.

5.1 Spaghetti

Let us propose a kind of “code-madness-measure” us-
ing the above hierarchies of codes.

Letmk be the maximum numbers of Codek−1 codes
in a Codek. More precisely, Let

ηik = max{j : Codei,jk−1 ⊂ Codeik},

and let

mk = max
i

ηik and sk =
∑

i

ηik.

Now, we define the “spaghetti length” at level k to
be

Sk(Coden) =
mk

sk
and

S(Coden) = max
k

Sk(Coden).

5.2 Reuse

Let 0 < k ≤ n

Ri
k(Coden) =

max #Codek−1 ⊂ Codek used i times or more

sk
.

Let us use the conventions R2
k(Code) = Rk(Code)

and Ri
2(Code) = Ri(Code).

5.3 Redundancy

A very important feature in evolutionary driven codes
are their robustness. There are good measures of ro-
bustness given in the literature. One way to measure
it is to to check the probability that the code “sur-
vives” a one point mutation.

The redundancy in a code of degree k, could be
measured in the following way.

Let m be the maximal number of subunit codes
of type Codek−1 in the code of type Codek, that can
be taken away without affecting the output of the
Codek code, and let n be the total number of subunits.
Let us then define the redundancy in code C of type
Codek by

Red(C) =
m

n
.

5.4 Brittleness

Another function that might be better to use in some
ways would be a “brittleness” function that we define
in the following way.

Letm and n be as above and let d(k) be the number
of Codek−1 codes in a Codek code, that when removed

In Search of an Evolutionary Coding Style 7

totally, or partially, destroys the code Codek. The we
define the brittleness of Codek as.

Britt(Codek) =
d(k)

n−m
.

That can be viewed in the following way. Let us think
of Codek as a chain and the subunits as links in that
chain. Then the length of the chain will be n−m and
d(k) will be the number of links that are can not be
removed without breaking the chain.

Note also that in the special case when we either
have one or two links for each step in the chain, that
d(k) = n− 2m.

Note that the probability to survive a deletion of
a randomly chosen subcode is 1 − d(k)/n. That
is, if there would just be one sublevel to the code,
1 − d(k)/n would be the usual robustness measure
mentioned above.

6 Five applications

Since we are mainly interested in searching for a evo-
lutionary universal coding style, we are of course in-
terested in the two special cases when the code is
a computer code, and when it is a sequence of the
DNA. We have tried to make the above definitions
of codes and style general enough to be able to deal
with those cases.

As a by-product, we noted that this theoretical
framework could also be applied to other areas where
‘style’ is essential. The applications that comes closes
to our mind was art, music and literature. As a third
application we will comment how the above stylistic
fingerprint could be used for a common framework in
“stylometry” in the study of authorship attribution.
Our hope is that if a theory is not only applicable to
the special cases it was aimed for under its construc-
tion, but also to a different case, it might be a sound
approach in that theory.

A fourth possible application would be a stylis-
tic investigation of the internal architecture of black
boxes in the theory of neural nets, and its carbon
based version—the brain.

The fifth application is about artificial life. We will
make a small experiment in such an environment.

6.1 Computer code

By looking at the indicated toy-example above where
we had natural numbers as inputs and +,− as the
first interactions, it is not to hard to imagine that
you would get the intuitive “usual meaning” increase
in complexity in substructures in the code from lower

order arithmetic operations, more complex functions,
subroutines, program parts, the complete program.

Note that what usually is seen as a good program-
ming style, that is separate codes into small, more
or less, independent units, and not too many jumps
back and forth, will give you a low S(Code); see Sec-
tion 5.1.

Let us now mention three existing families of com-
puter code measures. See also [10] and [12] for a de-
tailed description of the two first examples and many
others.

6.1.1 Halstead’s Complexity Measures

In 1977 M. Halstead introduced a tool to measure the
complexity of a computer program. It is perhaps the
most well known measure of that kind.

The measure, or more precisely the family of five
measures, is based directly on the code in the fol-
lowing way. Let n1 be the number of distinct op-
erators, n2 the number of distinct operands, N1 the
total number of operators, and N2 the total number
of operands. From these numbers, the following mea-
sures are constructed.

Program vocabulary n = n1 + n2.
Program length N = N1 +N2.
Difficulty D = n1N2

2n2
.

Volume V = N log2(n).
Effort E = DV .

The Halstead’s measure seems to be a good can-
didate for measures in the stylistic search since it is
only based on textual information and due to the fact
that it has been used in many contexts and over such
a long time and hence its properties are quite well
known.

6.1.2 McCabe’s Cyclomatic Complexity

In 1976, T. McCabe introduced a measure of the
number of linearly independent paths through a com-
puter program as a measure of the complexity of the
code.

The cyclomatic complexity, CC, is computed in
the following way. Let us study a schematic graph of
the program and count the number of edges E, the
number of nodes N , and the number of connected
components c. Then

CC = E −N + c.

If a program has a CC higher than 50 it is said to be
unstable, since it is then “very likely” break down if
it is altered.

8 Torbjörn Lundh

The Cyclomatic Complexity is more of a measure
of the inner logical complexity then the textual Hal-
stead’s measure.

6.1.3 GRASP

Let us describe an ongoing project at Auburn, Al-
abama, which address a numerical local measure of
computer codes, and its display. See [9] for further
information and down–loading of the program.

“The overall goal of the GRASP project
is to improve the comprehensibility of soft-
ware. Thus, it is important to be able to
identify complex areas of source code. The
Complexity Profile Graph (CPG), a new
graphical representation based on a com-
posite of statement level complexity met-
rics provides the user with the capability to
quickly recognize complex areas of source
code. The CPG is significant in that it
shows the complexity of a program unit as a
profile of statement level complexity metrics
rather than as a single, global metric.”

First the program code is parsed into non over-
lapping segments; then a series of measures, briefly
described below, is applied to each segment, giving a
local complexity measure of the program code.

The content complexity of a segment S in the code
is defined as

η(S) = log(
∑

T∈S

Weight(T)),

where T are tokens in the segment S. For example,
in [9], the weights for Ada 95 are given in the table
below.

Token Description Symbol Weight

Logical operators and, or, not, ... 1.5

Comparison op. <, >,=, <=, ... 1.5

Left parenthesis (1.3

Identifiers var1, proc1, ... 1.0

Others +, −, ·, /,), . . . 1.0

“The context complexity provides a baseline
level of complexity for segments of simple
statements nested within a compound state-
ment, which itself may be nested several lev-
els deep. The complexity of a compound
statement is based on three aspects: inher-
ent complexity, reachability, and breadth.”

These three complexities are added, with weights,
to obtain the context complexity.

Combining the content complexity and the context
complexity, by a weighted sum, gives the profile met-
ric µ(S) for a segment S.

The local metric µ can then be graphically pre-
sented as a histogram to give indications where the
code is more complex. Thus that would help a pro-
grammer to point out code segments that would need
some extra thought.

6.1.4 Finding a coding style

Suppose that we would like to find a way to assign
a specific style to a programmer. How could we do
that?

Suppose he writes in C++. Then one might take
a sample of his codes, look at his functions and sub-
routines. Go to other programmers and find as many
functions as possible from that environment that one
would like to be able to identify “our” programmer
in the future.

Sort the codes into function classes Cf where our
programmer has written af ∈ Cf and other program-
mers bf,j ∈ B ⊂ Cf .

Let us now take a wide variety of measures of com-
puter codes, such as those mentioned above, e.g. Hal-
stead’s measures etc. Let us call the vector of those
measures µ, where each µi is a function of a C++
code to the unit interval [0, 1].

Let use equation (1).

u =
∑

f

∑

bf,j∈B

(µ(af)− µ(bf,j)).

Now,

w+ =
u

||u||
will be the stylistic fingerprint of this programmer
with respect to the vector of measures µ and in the
chosen environment. Note that w+ will be heavily
dependent on the chosen reference codes, so it is im-
portant that that environment is chosen carefully.

6.2 DNA

It is hard to get a handle on the DNA code with
usual computer code tools. As an example in [17] the
authors study block entropies for DNA to find some
indication of structure.

Definition 6.1 Let the length of the alphabet be λ.
Then the (normalized) n–block entropy of a sequence
is defined as

Hn = −
λn

∑

i=1

p
(n)
i logλ p

(n)
i ,

In Search of an Evolutionary Coding Style 9

where p
(n)
i is the probability of the ith combination of

n “letters”.

In the summary of [17] one can read the following.

“Surprisingly, DNA sequences behave closer
to completely random sequences than to
written text. The very strict syntax of com-
puter languages on the other hand is re-
flected by a very low average information
content of its sub-strings.”

To us that means that the style of DNA sequences
is not just close to chaos, but rather written in such
a different style compared to written text, and even
more different from computer codes.

The inputs, S0 here are the amino acids, and one
could take perhaps Int0 to be “putting next to”, or
sequencing.

The letters on the DNA level should be the four
bases, the words are then three letters word coding
for a amino acid. Add to the dictionary special start
and stop words for the genes.

One could also study the situation on the amino
acid level, i.e. one level up from the bare DNA code.
That would give us 20 letters in an alphabet.4 The
words would here be the genes.

6.2.1 Hopes

One would hope that some hypothetical insight of a
universal evolutionary driven style would give some
hints how to better “read” the DNA code.

We would therefore try to find measures that are
general enough in the below described computer ex-
periment, so that some hypothesis about the DNA
code could eventually be made.

There are indications that evolutionary driven
code, may not be “optimal” in a basic sense, but
might include peculiar turns and twists. See for ex-
ample p. 180 in [11] where J. Madox discuss RNA
Editing

“The puzzle is to know why these changes,
which are presumably advantageous to the
organism, have not been incorporated in
the gene themselves, thus avoiding the need
for editing by way of afterthought—not to
mention the need for a separate biochemical
mechanism for carrying it out.”

He also addresses, on p. 203, the “junk code” in
eukaryotic cells.

4The alphabet is not unique, e.g. different spelling in ex-
ample some bacterias and humans for some amino acids.

“At the very least, this complication is an
extra metabolic cost for eukaryotic cells. It
is also potentially a source of error. What
countervailing selective advantage can there
possibly be in this arrangement?”

6.3 Literature

Let us now turn our attention to something differ-
ent. Let us look at some examples in literature where
“style” has been in the focus.

On p. 74 in [14] the author discuss computational
differences between grammatical errors and stylistic
weaknesses.

In [15], seven important problems with the exist-
ing authorship attribution studies are listed and dis-
cussed and some solutions proposed. The proposed
solution to problem number three is to

“study style in its totality. Approximately
1,000 style markers have already been iso-
lated. We must strive to identify all of the
markers that make up “style” — to map
style the way biologists are mapping the
genes.”

Furthermore, the suggested solution to problem five
is to

“Develop a complete and necessar-
ily multi–faceted theoretical framework on
which to hang all non-traditional authorship
attribution studies.

Publish the theories, discuss the theo-
ries, and put the theories to experimental
tests.”

As an example of a suggested metric from the lit-
erature studies, one can take the Yule’s coefficient
advocated among many others in [5]. Let {fij} rep-
resent the observed frequencies in a “two way contin-
gency table” and let the Yule’s coefficient (see [20])
be defined as

Y =

√
c− 1√
c+ 1

, where c =
f11f22

f12f21
.

6.3.1 Stylometry: Finding the author

Let us now treat a hypothetical case, using the meth-
ods from Section 3, on the authorship attribution
problem.

What do we mean by a code in this case? Let us
look at Definition 2.1. We will interpret the “let-
ters” as word taken from the “alphabet” which will

10 Torbjörn Lundh

in this case be a complete dictionary of the language
in question. What about the functions?

Scarry gives in [16] a description how we can think
about the reading process; see the following quote
from the first chapter:

“When we say ’Emily Brontë describes
Catherine’s face,’ we might also say ’Brontë
gives us a set of instructions for how to
imagine or construct Catherine’s face.’ This
reformulation is accurate if cumbersome, in
that it shifts the site of mimesis from the
object to the mental act.”

So, in this case we might think about the func-
tions as descriptions, or simply constant functions,
where the interpreter is the reader.5 Examples of in-
terpreted functions would be text where “boy meets
girl”, or “prince meets ghost”. An even more refined
version would be “boy meets girl described in an En-
glish sonnet”.

Suppose now that we want to test the hypothesis
that author X has written a given sonnet s. Then we
might gather all know sonnets written by X into the
set A as a subset of reference sonnets from that time
period in S. Now ai ∈ A means sonnet number i in
A.

One wants to have as large environment S as pos-
sible, but at the same time also as narrow as possible,
i.e. from the same time period, etc. This has then to
be chosen carefully and with great knowledge about
the literature period and its authors. Let now B be
the set of comparison sonnets.

On the other hand when it comes to choose met-
rics, then we pick as many as it is numerically com-
putable in reasonable time, which depends both on
our time and our computer. For example, there has
been some new interesting development using neural
networks in authorship attributions, see for example
[19]. An even more exciting method was used in [8]
where they used genetic algorithms in order to find
the best features to measure. We can use such nets
and genetically derived measures in our set of mea-
sures too!

Now, apply equation (1) to get the vector u which
then is normalized to w+. That will be the stylistic
finger print of author X, given the above constructed
framework.

How good and reliable is this fingerprint? Suppose
that A is large and S is rich, not only large but more

5Here it is easy to see the crucial importance of the inter-
preter. I would for example be an extremely poor interpretor
of a French text, even if I would get some picture of a story at
the end.

or less complete with respect to the author represen-
tation. Then η from equation (4) would be a good
measure how reliable w+ is. We want η to be large
of course, but what is large enough?

To answer that we need to study the actual dis-
tributions of the sonnets evaluated by νw, make ap-
proximations and perform hypothesis tests.

The nice thing about this method is that one does
not have to argue which measure should be applied.
Just apply them all!

Talking about measures, there has been a very ani-
mated debate about the values of using computers in
literary studies. R. Quiones said in [6] “Why don’t
they simply read the plays?”. A literature expert
reading a text is undoubtly very hard to beat when
it comes to authorship attributions. But let us look
at this situation having our suggested definition of
measures of codes in mind. Isn’t the expert using a
long array of measures, weighted together in an in-
tricate and sometimes subconscious way? One mea-
sure could be: “X would never use that word in two
consecutive sentences”. The measure would be the
characteristic function of that event in the text, and
the weight would be heavily negative. The more skill
and familiarity the expert has about such tasks, the
lager the array µ, and the more subtle the weighing
process would be. It may seem like a trivialization to
think in those terms, but since the task is very hard
and complex, one would not expect that a computer
would be programmed in the near future that would
be generally better than a literature expert. Com-
pare with the relatively straightforward problem to
play chess.

6.4 Neural nets

P. Adams in [2] pointed out the possibility of strong
evolutionary forces acting inside the brain in the pro-
cess of learning. “Good” synapses will be rewarded
by being strengthened, and “bad” will be punished
by being weakened. What is good and bad are much
more intricate and implicit qualities compared to the
genetic evolution, but maybe evolutionary forces are
in command in the learning process on a time scale
of seconds instead of millenias. And if there is a uni-
versal coding style—that should then be found in the
style of the programming of the neural nets too.

6.5 Artificial life

Avida, see [3] and [1], is a program in the Tierra
class, see [18]. Unlike Tierra it gives a natural 2 di-
mensional picture of an evolutionary process. Like
Tierra, Avida is not a simulation of real carbon based

In Search of an Evolutionary Coding Style 11

DNA, but a real evolution in a silicon based (simple)
world. We will now do an experiment in the Avida
world.

7 A small experiment

Let us try some of the above concepts in a Avida
experiment. We will deliberately try to make it as
simple as possible in order to get some output in a
straightforward way. But we will keep all the doors
open to make variants and generalizations in the fu-
ture.

We use Avida version 1.0.1 that is available on the
web; see [3].

When running the program, you have the possibil-
ity to extract individuals and saving their data and
their genetic code. To read more about this, see
the documentation on [3] or even better—the book
[1]. The code and the data is saved to files such as
153-aagxs.

The data in 153-aagxs tells you, for example, that
in addition to being able to replicate itself, the code
also performs some other tasks. In this specific case,
it takes input from a stack, performs a logical XOR
twice, performs three NOTs, etc. For this, it is re-
warded with a bigger time slice, and hence will repro-
duce (and survive) better.

7.1 The function class

Let us as the function f defining the code universe
Cf , take a function that exactly performs the above
described set of tasks, e.g. three NOTS etc.

As the subspace A we simply take the generated
avida code in 153-aagxs.

7.2 Comparison codes

To get a comparison environment, let us construct
(or simulate) two, man–made codes that perform the
operations in f .

We use a very simple approach and simulate two
different codes in B. One with no loop, except for
the self–copying loop, and one with as many loops as
there are logical tasks to be done. Furthermore, we
don’t actually write the codes but simulate the writ-
ing using a very rigid approach of making all the log-
ical statements from combinations of NANDs6, and
then in detail study the needed operations just in one
NAND.

6This is the base for the default reward list for completed
tasks in time slicing; see the file task.set in the Avida package.

This approach will give us a list of operations, and
operands needed to fulfill f . We can now try to look
for style.

7.3 The measure

To start with something, we used the Halstead’s mea-
sures as our µ. That is, let

µ = (vocabulary, length, difficulty, volume, effort).

7.4 Simulations

The actual simulations is done by extracting crea-
tures, i.e. individual programs, from a run of the
Avida program, as described above. The extraction
consists of some data, the table of performance, but
also the program itself. We then use a C++ program
to automatically analyze the extraction by first read-
ing of the data and the performance table, and then
find the Halstead’s measure vector µ for the actual
code. The C ++ program then also uses the perfor-
mance table to simulate the two different comparison
codes described in Section 7.2 above and to calculate
their Halstead’s measures respectively. The program
then also computes w when A has only the code of
extracted individual, and B consist of the two com-
parison codes. (w for other combinations of A and
B are also considered.) The results are then exported
to a Maple file where one can more easily work with
the output.

7.5 Preliminary results

Since #A is one, and #B is two, we can not talk
about results in any statistical sense of course. Nev-
ertheless, we can present some outcome that should
be seen as a indicator of what eventually can be done.
Even if we have a very small Cf , since essentially every
creature represents a unique list of performed tasks,
which leads to essentially a unique function f ; we
have many classes Cf , and we are free to change pa-
rameters, such as the initial random seed, the reward
table for the tasks, etc. We can therefore compare
profiles; see for example Figure 2.

Let us more in detail see what kind of output you
can get by going back to our old friend, born after
19441 generations, 153-aagxs.

After feeding the file 153-aagxs into the C++ pro-
gram, which disects the code, and simulates the two
comparison codes, we get as outputs things like: The
Halstead’s measures:

n1 = 19, n2 = 3, N1 = 153, N2 = 31

12 Torbjörn Lundh

difficulty = 98.1667

volume = 820.535

effort = 80549.2.

And we also get

θ = 0.0085549 and η = 391865,

which does not really tell you much in this meager
situation (η is huge since the variance of X is so ex-
tremely tiny for this special case). We can view w+

in a diagram; see Figure 3. (Remember that we nor-
malized the measures into [0, 1] by the transforma-
tion x

1+x in order to make the weights in w play in
the same division.)

54321

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Figure 1: Here is an example of a fingerprint after
about 1000 generations using Halstead’s complexity
measures as µ.

54321

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Figure 2: Here are seven fingerprints after about
8500. Can we hope for some convergence? And if
so, what will that tell us?

54321

1

0.8

0.6

0.4

0.2

0

Figure 3: Here is w+ when A is the single Avida
generated code 153-aagxs and B consists of the no-
loop-code and the all-loop-code, both based entirely on
NAND combinations.

In Search of an Evolutionary Coding Style 13

54321

0.8

0.6

0.4

0.2

0

Figure 4: w+ when A is 153-aagxs and B is the
single no-loop-code.

54321

1

0.8

0.6

0.4

0.2

0

Figure 5: Here is A 153-aagxs and B is the all-loop-
code.

54321

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 6: w+ when A is the all-loop-code and B is
the no-loop-code.

L

N

A

1.11.0951.091.0851.08

1.48

1.478

1.476

1.474

Figure 7: Here is a picture of a principal component
analysis, see Section 3.6 of the µ vector for the three
different codes connected to 153-aagxs. The letter
A stands for the Avida code and the letters N and L

for the no–loop code and the loop code. We see that
the two simulated codes, N and L, are more together
indicating that they are more similar to each other
than the evolutionary generated code from Avida.

14 Torbjörn Lundh

References

[1] C. Adami Introduction to Artificial Life, Springer–Verlag, 1998.

[2] P. Adams Hebb and Darwin, J. of Theoretical Biology, 195, 419–438, 1998.

[3] Avida http://www.krl.caltech.edu/avida/

[4] N. Baas Emergence, Hierarchies, and Hyperstructures, Artificial Life III, Ed. C. Langton, SFI Studies
in the Sciences of Complexity, Proc. Vol. XVII, Addison-Wesley, 1994.

[5] C. Delcourt About the Statistical Analysis of Co-occurrence, Computers and Humanities 26, 21–29, 1992.

[6] E. Dolnick The Ghost’s Vocabulary, The Atlantic Monthly, 82–86, October 1991.

[7] J. Duffy and P. Gergen Sex, Segments, and the Central Nervous System: Common genetic mechanisms
of cell fate determination, Adv. in Genetics, Vol. 31, 1–28, 1994.

[8] R.S. Forsyth and D.I. Holmes Feature-finding for text classification Literary and Linguistic Computing,
11, 163–164, 1996.

[9] GRASP http://www.eng.auburn.edu/department/cse/research/grasp/

[10] C. Jones Software Metrics: Good, Bad, Missing, Computer 27, 9, 98-100, 1994.

[11] J. Madox What remains to be discovered, The Free Press, NY, 1998.

[12] J. Marciniak ed. Encyclopedia of Software Engineering, John Wiley & Sons, 131–165, 1994.

[13] F. Murtagh and A. Heck Multivariate Data Analysis, D. Reidel Publishing Company, Dordrecht, Hol-
land, 1987.

[14] Y. Ravin Grammar Errors and Style Weaknesses in a Text-Critiquing System, Chapter 6 in Natural
Language Processing: The PLNLP Approach, Kluwer Academic Publishers, 1993.

[15] J. Rudman The State of Authorship Attribution Studies: Some Problems and Solutions, Computers and
Humanities 31, 351–365, 1998.

[16] E. Scarry Dreaming by the Book, Farrar Straus Giroux, 1999.

[17] A.O. Schmitt and H. Herzel Estimating the entropy of DNA sequences, Journal of Theoretical Biology
188: (3) 369-377, 1997

[18] Tierra http://www.hip.atr.co.jp/∼ray/tierra/tierra.html

[19] F.J. Tweedie, S. Singh, and D.I. Holmes An introduction to Neural Networks in Stylometry Research in
Humanities Computing, 5, 249–263, 1996.

[20] G. U. Yule, On the Methods of Measuring Association between Two Attributes, Journal of the Royal
Stat. Soc., 75, 579–642, 1912.

