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Abstract. A two-scale model for reinforced concrete, in which the macroscopic problem formula-
tion is enriched by an effective reinforcement slip variable is considered. The corresponding subscale
problem on the Representative Volume Element (RVE) is defined in terms of finding the response
of the RVE subjected to effective variables (strain, slip, slip gradient) imposed from the macroscale.
In this contribution, the two possible approaches of prescribing the effective reinforcement slip are
discussed. Namely, a boundary definition of the macroscopic slip can be employed and the variable
is thus prescribed only at boundary of the RVE, which corresponds to Dirichlet boundary conditions.
Alternatively, a volumetric averaging measure can be used to define the effective reinforcement slip.
In this case, the effective variables are imposed on the RVE in a weak sense via Lagrange multipliers.
It is shown that the weak enforcement of reinforcement slip and its gradient resulted in objective inter-
pretation of the effective variable (and its work conjugates), which was not pathologically dependent
on the size of the RVE.

1 INTRODUCTION

Cracking of concrete at moderate load levels
significantly influences the durability and ser-
vice life of reinforced concrete structures, as
cracks enable the ingress of harmful substances
into the cross-section [1–3]. As a result, corro-
sion of reinforcement can occur. It is therefore
vital to be able to model the cracking process in
detail. In this aspect, not only cracking of the
concrete must be captured by a suitable mate-
rial model, but also the bond between steel and
concrete plays an important role in the process.
Thus, it needs to be taken into consideration in
the analysis [4, 5].

Although steel–concrete interaction can be

modelled in a number of ways, bond-slip mod-
els have been widely used for modelling the re-
sponse of reinforced concrete structures. The
bond-slip interaction can be modelled by direct
resolution of the interface around rebars with
interface elements. Although being straightfor-
ward (and readily available in most commercial
codes), this approach requires much modelling
effort, as the interface around every reinforce-
ment bar must be resolved. For large struc-
tures, this can result in very large and compu-
tationally expensive models, which limits the
method to small structures or parts of a struc-
ture. The computational cost can be reduced
by employing multiscale modelling methods. In
short, these methods enable the study of large-
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scale structures, full resolution models of which
would be too expensive [6, 7]. An example is
the FE2 method [8,9], which connects the scales
in a nested way, i.e. the macroscopic response
is obtained via computational homogenisation
performed on the subscale Representative Vol-
ume Elements (RVEs). Even though still com-
putationally very expensive, this method is well
suited for parallel computing, as all RVE prob-
lems can be solved independently of each other.

However, steel–concrete bond in conjunc-
tion with multiscale modelling has not been
studied in the literature to the same extent [10,
11, 13]. In recent works by the authors [12, 13],
a two-scale model of reinforced concrete, which
considered the steel–concrete interaction was
developed. Furthermore, it was enriched by a
novel effective reinforcement slip macroscopic
variable. This enrichment resulted in a localised
effective strain field at the macroscale. In the
model, the effective slip was prescribed only at
the boundary of the RVE, which resulted in the
pathologically RVE-size dependent effective re-
sponse. Another possibility is to construct a
volumetric definition of the effective reinforce-
ment slip, whereby the macroscopic variable
would be prescribed in the volume of the RVE
in a weak (average) sense.

In this contribution, the two possible ap-
proaches of prescribing the effective reinforce-
ment slip are further discussed. It is shown that
the weak enforcement of reinforcement slip and
its gradient results in more objective interpreta-
tion of the macroscopic variable (and its work
conjugates), which is not pathologically depen-
dent on the size of the RVE.

2 TWO-SCALE MODEL
In the FE2 method, the solution field is split

into “smooth” (macroscopic) and “fluctuation”
parts [14]. The problem can then be recast into
a large-scale problem in terms of finding the re-
sponse of the structure consisting of a homoge-
neous material with “effective” properties. This
effective response is in turn obtained via com-
putational homogenisation [15] of the response
of a Representative Volume Element (RVE),

which reflects the underlying heterogeneity and
randomness of the material. The procedure is
as follows: the large-scale (macroscopic) field
is used as an input to the RVE problem. The
boundary value problem on the RVE is then
solved, and the subscale solution fields are ho-
mogenised (in practice, this is often synony-
mous to averaging) to produce the large-scale
work conjugates. At the same time, the macro-
scopic tangent stiffness can be computed [16].
These effective values are then used to evalu-
ate internal force vectors at the large-scale, and
the procedure is repeated until the internal and
external forces are balanced. Since in practice
the numerical integration is performed at Gauss
points, it is enough to consider the RVE at these
locations only.

3 LARGE-SCALE PROBLEM
In the previous work of the authors, the

large-scale problem on the effective displace-
ment field, ū was enriched by an effective rein-
forcement slip variable, s̄. This vectorial mea-
sure represented the translation of the reinforce-
ment grid relative to the concrete. The effec-
tive quantities entering the subscale RVE prob-
lem were then identified to be the gradient of
the displacement, i.e., the effective strain (ε̄), as
well as the effective slip (s̄) and its gradient (ḡ).
The governing partial differential equations for
a structure subjected to traction t̂ at the external
boundary Γext can be expressed as:∫

Ω

σ̄ : δε̄ dΓ =

∫
Γext

t̂ · δū, (1)∫
Ω

τ̄ b · δs̄+ σ̄s : ḡ dΩ = 0, (2)

where the effective work conjugates (effective
stress σ̄, effective transfer stress τ̄ b, and effec-
tive reinforcement stress σ̄s) are obtained from
computational homogenisation.

4 SUBSCALE PROBLEM
At the subscale, the material is modelled in

detail, paying special attention to heterogene-
ity. In case of reinforced concrete, the rein-
forcement bars, concrete and the bond between
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them are considered. The structural problem on
the RVE is posed in terms of finding the per-
tinent displacement fields in concrete (uc) and
steel (us). It is assumed, that the bond stress, tΓ
is a function of reinforcement slip, el ·(us−uc),
where el is a unit vector in the direction along
the reinforcement bar. Furthermore, the trans-
verse reinforcement displacement is assumed
identical to that of the surrounding concrete,
i.e., us,⊥ = e⊥ · us.

The macroscopic quantities are imposed on
the RVE via suitable boundary conditions. It
is important that the boundary conditions fulfil
so-called Hill-Mandel macrohomogeneity con-
dition, i.e., that there is work equivalence across
the scales. Two common types of bound-
ary conditions fulfilling this criterion are the
Dirichlet and Neumann type boundary condi-
tions. For the Dirichlet boundary conditions,
a macroscopic gradient can be imposed on the
RVE directly by prescribing the value of the
subscale field at the boundary of the RVE.
In case of Neumann boundary conditions, no
quantities are strongly prescribed for the RVE.
Rather, we satisfy homogenisation conditions in
a weak sense, e.g. by ensuring that the vol-
ume average of a subscale quantity is equal to
its effective macroscopic value. 1 The way the
micro-to-macro transition is defined is a mod-
elling choice. Note that no such definition is
needed in case of Dirichlet boundary condi-
tions, as the macroscopic value comes directly
from the boundary values. Here, we considered
the two methods of applying the effective slip
on the RVE.

4.1 Boundary definition of slip

In case of the boundary definition of slip
(Dirichlet BC), the macroscopic variables (ε̄, s̄,
ḡ) are used to prescribe the deformation of both
concrete and steel reinforcement at the bound-

ary of the RVE, i.e.,

uc = ε̄ · [x− x̄], (3)
us,l = el · ε̄ · [x− x̄] + el · s̄

+ el · ḡ · [x− x̄], (4)
us,⊥ = e⊥ · ε̄ · [x− x̄], (5)

where uc is the deformation in the concrete, us,l

is the longitudinal displacement of steel rein-
forcement, and u⊥ is the transverse displace-
ment of reinforcement. The subscale problem
can then be solved for the remaining degrees of
freedom, and the effective work conjugates can
be computed.

4.2 Volumetric definition of slip
In order to derive the formulation of the sub-

scale problem, we must first define a suitable
micro-to-macro ansatz. To this end, we con-
sider the total displacement field in the form
u = (uc,us), and we define the functions
s̄�(u) and ḡ�(u). These modelling assump-
tions govern how the subscale variables are
averaged to produce an effective macroscopic
value. For the homogenisation condition of the
slip, we simply take it to be the difference be-
tween the average longitudinal displacement in
reinforcement and the average deformation of
concrete in that direction. In the case of slip gra-
dient we apply similar logic, the homogenised
value being the the difference between average
deformation gradients along steel and in con-
crete. To complete the formulation, we specify
that the homogenised values shall be equal to
macroscopic ones. These constraints are then
applied on the equation system via Lagrange
multipliers, i.e.,

−s̄�(u) · δτ̂ = −s̄ · δτ̂ , (6)
−ḡ�(u) : δσ̂s = −ḡ : δσ̂s, (7)

where the Lagrange multipliers τ̂ and σ̂s can
be shown to be equal to the effective work con-
jugates τ̄ b and σ̄s, respectively. The equation

1Here, due to volumetric constraint, Lagrange multipliers will reside in the interior of the domain. We refer to this as
a realisation of Neumann boundary conditions.
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system is then expanded to the form

 K −AT −BT

−A 0 0
−B 0 0

uτ̂
σ̂s

 =

 0
−s̄
−ḡ

 (8)

from which the displacements and Lagrange
multipliers can be solved for iteratively. Matri-
ces A and B are the discretised versions of the
homogenisation functions s̄�(u) and ḡ�(u).

5 APPLICATION EXAMPLE

To illustrate the influence of the chosen def-
inition of macroscopic reinforcement slip, a se-
ries of rebar pull-out tests was simulated. In the
test, three φ20 rebars with lengths 0.2 m, 0.4 m,
and 0.6 m, respectively, were pulled out of a
square concrete RVE, with the side length equal
to the length of the rebar. The pull-out was
carried out by prescribing a given macroscopic
slip via chosen boundary condition (boundary
or volumetric definition of effective slip). In
this case, the macroscopic reinforcement slip
was imposed in steps of ∆s̄ = 5 × 10−5 m.
The bond-slip input for the rebars is schemat-
ically shown in Figure 1, and the parameters of
the interface are summarised in Table 1. The
novel boundary condition types were imple-
mented in the open source C++ code OOFEM
(www.oofem.org) [18].

s3s2s1

τbf

τbmax

s

τ

Figure 1: Bond–slip relation for good bond conditions
[17].

Table 1: Interface parameters.

s1 1.0mm

s2 2.0mm

s3 6.5mm

τbmax 15.4MPa

τbf 6.2MPa

From the simulations, it was of interest to obtain
the effective bond stress–slip relation for the
different rebars. Hence, the average bond stress,
t̄Γ was calculated at each load step and is plot-
ted against the macroscopic slip in Figure 2 for
the boundary definition of slip. As can be seen
in the figure, the response is highly dependent
on the length of the rebar. The bond–slip in-
put was recovered for the shortest rebars, while
the effective response deviated much more from
it for the longer bars. This is caused by the
fact that the macroscopic slip is only defined at
the boundary (ends) of the reinforcement bars.
In order to illustrate this phenomenon, subscale
results were consulted, and the local reinforce-
ment slip was plotted along the rebars in Fig-
ure 3.
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Figure 2: Average bond stress–macroscopic slip rela-
tions for reinforcement bars of different lengths using the
boundary definition of macroscopic slip.

4

www.oofem.org


Adam Sciegaj, Fredrik Larsson, Karin Lundgren and Kenneth Runesson

−0.2 0 0.2
0

1

2

3

x [m]

Sl
ip

,s
[m

m
]

L =0.2 m L =0.4 m
L =0.6 m

Figure 3: Reinforcement slip variation along the rebars of
different lengths at the macroscopic slip 1.5mm obtained
with the boundary definition of macroscopic slip.

It is noteworthy, that the subscale results
were extracted at the load step corresponding
to macroscopic slip value of 1.5 mm. It can be
clearly seen that the local slip profile reached
the prescribed value only at the ends of the re-
bars, while decreasing rapidly in the interior
of the bar, especially for longer reinforcement
bars. This in turn causes the bond stresses in-
side the rebar to be lower than at the ends, pro-
ducing a lower average value. This explains the
effective relations in Figure 2, where the peak of
average bond stresses decreases for longer rein-
forcement bars. Also, much larger values of the
macroscopic slip are needed for longer bars in
order for the effective bond–slip relation to fully
develop until the pull-out plateau.

In contrast to the boundary definition of
macroscopic slip, the corresponding results for
the volumetric definition are presented in Fig-
ures 4 and 5. Here, it can be seen that the same
response is obtained regardless of the length of
the rebar, and the bond–slip input is directly re-
covered in all cases. Moreover, the macroscopic
slip values needed to fully develop the bond–
slip relation are consistent with each other and
much lower than for the previously discussed
boundary definition of the macroscopic vari-
able.
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Figure 4: Average bond stress–macroscopic slip relations
for reinforcement bars of different lengths using the vol-
umetric definition of macroscopic slip.

Looking at the slip profiles in Figure 5, it
can be seen that the local slip is uniformly dis-
tributed along the rebars, reaching the macro-
scopic value not only at the ends (boundary),
but also in the interior of the reinforcement bars.
Note that the local slip does not need to be con-
stant in the RVE. This only holds true in this
specific example. The results signify that this
volumetric definition of the macroscopic slip is
objective across the scales, i.e., the physical in-
terpretation of the effective slip variable is not
dependent on the size of the RVE.
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Figure 5: Reinforcement slip variation along the rebars of
different lengths at the macroscopic slip 1.5mm obtained
with the volumetric definition of macroscopic slip.
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6 CONCLUSIONS
In this contribution, the issue of micro-to-

macro transition of reinforcement slip in two-
scale modelling of reinforced concrete is furhter
studied. Two different definitions of the effec-
tive reinforcement slip are considered, namely
a boundary and a volumetric one. By the for-
mer definition, the macroscopic variable is pre-
scribed only at the boundary of the Representa-
tive Volume Element (RVE), and can be imple-
mented in a straightforward form of Dirichlet
boundary conditions. The latter definitions re-
quires that the average local slip (as well as its
gradient) along the reinforcement bars is equal
to the macroscopic one. These constraints are
applied on the RVE in form of Lagrange multi-
pliers, which corresponds to Neumann bound-
ary conditions, and the subscale problem can
then be solved iteratively.

In a series of reinforcement pull-out tests it
is demonstrated that the boundary definition of
slip gives rise to highly RVE-size dependent
response, which is undesirable from the mod-
elling point of view. The volumetric definition
of effective reinforcement slip acted as a rem-
edy to this pathological RVE-size dependence
of the effective bond–slip response. For fu-
ture work, the novel volumetric micro-to-macro
transition should be studied on structures glob-
ally, i.e., the influence of the new type of bound-
ary conditions on the structural response in the
two-scale model is of interest.
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