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Simulating complex many-body quantum phenomena is a major scientific impetus behind the development
of quantum computing, and a range of technologies are being explored to address such systems. We present the
results of the largest photonics-based simulation to date, applied in the context of subatomic physics. Using an
all-optical quantum frequency processor, the ground-state energies of light nuclei including the triton (3H), 3He,
and the alpha particle (4He) are computed. Complementing these calculations and utilizing a 68-dimensional
Hilbert space, our photonic simulator is used to perform subnucleon calculations of the two- and three-body
forces between heavy mesons in the Schwinger model. This work is a first step in simulating subatomic many-
body physics on quantum frequency processors—augmenting classical computations that bridge scales from
quarks to nuclei.
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I. INTRODUCTION

Photonics is at the forefront of experimental quantum
computing, as evidenced by pioneering demonstrations of the
variational quantum eigensolver (VQE) algorithm [1–3], of
molecular vibronic spectra and dynamics simulations [4,5],
and of experimental Hamiltonian learning [6]. It offers a
versatile platform to process quantum information with low
noise in a multitude of encodings, ranging from spatial or po-
larization degrees of freedom [7,8] to temporal modes [9,10].
Rapid progress in integrating optical components on-chip
[11–13] is paving the way to large-scale spatial-encoding-
based photonic quantum processors. Other encodings, how-
ever, also provide a path to scalable quantum architectures.
For example, frequency encoding—routinely used in fiber op-
tics to multiplex information transmission and processing—
has been adapted for scalable quantum computing [14]. A
single fiber can support thousands of frequency modes that
can be manipulated in a massively parallel fashion at the
single-photon level. This particular framework for photonic
quantum computing relies on qubits encoded in narrow fre-
quency bins, where quantum gates are based on standard
telecommunication equipment: electro-optic phase modula-
tors (EOMs) and Fourier-transform pulse shapers [14]. A
variety of basic quantum functionalities have recently been
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demonstrated experimentally in this approach in the form of a
quantum frequency processor (QFP) [15–17].

Solving quantum many-body systems, whose resource re-
quirements scale exponentially with the number of particles, is
an area in which quantum devices are anticipated to provide a
quantum advantage. Recently, quantum many-body problems
in chemistry, condensed matter, and subatomic physics have
been addressed with quantum computing using two-to-six
superconducting qubits, for example, Refs. [18–22], and up
to tens of trapped ions, for example, Refs. [23–25].

A major goal in nuclear physics research is to tie the
effective field theory (EFT) descriptions of nuclear matter and
heavy nuclei to their microscopic origin, quantum chromo-
dynamics (QCD), through numerical calculations with lattice
QCD. Important steps are being taken toward this objective
[26–37]. A hierarchy of EFT models [38–40] is used to
describe heavier nuclei [41–44], and lattice QCD calculations
have been used to constrain EFT parameters over a range
of unphysical quark masses [28,29,34–36]. However, such
microscopic descriptions are computationally challenging for
all but the lightest nuclei and hypernuclei [26,27,29–33] due
to signal-to-noise problems [45–49]. Augmenting classical
calculations with their quantum counterparts [50–53] offers an
analogous roadmap for quantum-enabled subatomic physics,
as depicted in Fig. 1. At the EFT level, a subatomic system can
be simulated as a collection of nucleons with EFT parameters
input from experimental data or from ab initio, Minkowski-
space quantum simulations of lattice QCD. In this article, we
take the first steps to meeting this “Grand Challenge.”
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FIG. 1. Quantum simulation for subatomic physics. Ideally,
quantum simulation applied to both QCD (left side) and EFT (right
side) will enable high-precision predictions of static and dynamic
properties of nuclei and nuclear matter. EFT parameters may be
determined from experiment or by a complementary program of
classical and quantum simulation.

We report the application of a QFP to many-body sub-
atomic systems. With Hilbert spaces of up to 68 dimensions,
this work may represent the largest simulation of nuclei and
lattice field theories on a photonic device to date. Using an
EFT description, we experimentally implement the VQE al-
gorithm to calculate the binding energies of 3H, 3He, and 4He.
Further, we employ VQE to determine the effective interaction
potential between composite particles directly from an un-
derlying lattice quantum gauge field theory—the Schwinger
model. This serves as an important demonstration of how
EFTs themselves can be both implemented and determined
from first principles by means of quantum simulations.

II. QUANTUM FREQUENCY PROCESSOR (QFP)

For implementing quantum simulations, we utilize our
previously developed QFP: a photonic device that processes
quantum information encoded in equispaced narrow-band
frequency bins, described by operators c†

n (cn) for n ∈ Z that
create (annihilate) a photon in a mode centered at ωn = ω0 +
n�ω, where �ω is the frequency-bin spacing and ω0 is an off-
set [14,54]. An arbitrary, unitary mode transformation matrix
V can be implemented on QFP by interleaving pulse shapers
and EOMs [14], and recent experiments have demonstrated
high-fidelity single-qubit [15,16] and two-qubit [17] gates.

Figure 2 shows the experimental setup for our all-optical
QFP. The input state preparation, frequency operations, and fi-
nal energy measurements can all be realized with off-the-shelf
fiber-optic components, including EOMs (EOSpace), pulse
shapers (Finisar), and an optical spectrum analyzer (OSA,
Yokogawa). The capability of transmitting optical informa-

FIG. 2. Experimental setup including our all-optical quantum
frequency processor.

tion within a single-mode fiber from generation to detection
facilitates parallel computations in a low-noise fashion.

As detailed in the Methods section, for many-body Hamil-
tonians projected onto single-particle subspaces a variational
wave function can be mapped onto a mode-entangled state
of a single photon so that the state preparation procedure
in the VQE algorithm amounts to coherent frequency comb
generation. However, more complicated (e.g., multiphoton)
entangled photonic states could be employed as well, mod-
ifying only the “state preparation” portion of the apparatus
in Fig. 2. By working with multiple photons in the QFP,
qubit degrees of freedom can be identified with photon oc-
cupations of frequency-bin pairs. For example, ten frequency
bins, discussed below, can be mapped onto five qubits with
a five-photon input state. Such a mapping and the ability to
implement a universal gate set endows the QFP with similar
quantum capabilities and scaling as other digital quantum de-
vices. Note that the QFP utilized in this work can in principle
support the Hilbert space of up to 33 qubits [15,55]. Scaling
this hardware to larger numbers of qubits will require further
engineering in order to build multiple multiphoton sources
and reduce loss in the system, which should ultimately en-
able a concrete quantum advantage over classical computing.
This quantum advantage is not present in the single-photon
methods employed in this work.

In this initial experiment, however, we focus on the sim-
pler case of single-photon encoding for demonstrating the
basic approach. The source we utilize for the state prepara-
tion is a wavelength-division multiplexing transmitter (Ortel)
possessing four cw laser modules emitting single-tone op-
tical signals at 192.0, 192.4, 192.8, and 193.2 THz. We
combine all four signals with a fiber coupler and send
them through an EOM driven at 25 GHz, which creates
four parallel frequency combs at the output (each of which
contains ∼10 frequency bins) with a total of 40 avail-
able comb lines. This allows us to implement up to eight
parallel Hadamard gates (50:50 beamsplitters): two comb
lines per gate plus four comb lines for guardbands (i.e.,
two gates per each ten-line subcomb) to prevent cross-
contamination during the subsequent frequency beamsplitting
operations (photons from one gate jumping over to an adjacent
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gate during the calculation) [15]. We then choose the best
five beamsplitters for the subsequent operation, excluding
those with higher imbalance in reflectivity and transmissivity.
Note that despite these calibration measures, we still observe
the residual nonuniform performance across different gates
stemming from the noise background of the input light source,
and the optical path length change in the QFP due to tem-
perature drifts in long-term measurements. Finally, filtering
out extra input frequencies, as well as manipulating ampli-
tude and phase for all five remaining frequency-bin pairs, is
realized by a pulse shaper immediately following the comb
generation.

III. MAPPING SYSTEMS ONTO THE QFP

In all quantum simulations here, our starting point is a
second-quantized Hamiltonian HSQ which, depending on the
problem, contains one-, two-, and three-particle terms written
as products of fermionic creation and annihilation operators.
Our goal for these Hamiltonians is to compute the smallest
eigenvalue using the QFP hardware. A scalable path to this
goal has been outlined in the literature in the form of the
VQE algorithm [56]. There, each fermionic operator in HSQ is
mapped onto a set of qubits such that fermionic commutation
relationships are preserved. As a result HSQ is mapped onto
H̃SQ, which is a sum of strings of Pauli operators. Then quan-
tum hardware is used to prepare a variational trial quantum
state of qubits |� = �(θ1, . . . , θM )〉 in the form of a param-
eterized quantum circuit with M parameters. Subsequently,
the expectation value of the Hamiltonian in the state |�〉,
〈�|H̃SQ|�〉 is computed by repeating the state preparation
and energy measurement multiple times. A classical computer
calculates the direction in the parameter space and new param-
eter values {θ ′

1, . . . , θ
′
M} that yield a lower energy value. The

energy calculation is then repeated on quantum hardware with
the updated trial state |�(θ ′

1, . . . , θ
′
M )〉 until a (local) minimum

of the energy is obtained.
For all pre-error-corrected quantum hardware—of which

the QFP is an example—the depth of the circuit that prepares
and measures the variational state |�〉 is limited by noise.
This effectively limits the size of fermionic systems that
can be simulated on existing devices. To extend quantum
simulations to subatomic systems beyond the deuteron [20]
and Schwinger models beyond two spatial lattice sites [21,23],
we have recently proposed a preconditioning strategy [21]
that transforms H̃SQ into block-diagonal form by projecting
it onto eigenstates of operators that represent good quantum
numbers (e.g., parity, momentum, total spin) for the system
of interest. As a result, H̃SQ = ⊕

i Hi, where Hi can now be
interpreted as single-particle Hamiltonians acting on smaller
subspaces than the original Hilbert space corresponding to
H̃SQ. A Hamiltonian Hi, specified by a d×d Hermitian matrix
with elements hkl in some basis, can be mapped onto a
Hamiltonian Hi

QFP that describes a frequency-bin multiport
device implementable with the QFP:

Hi
QFP =

d−1∑
k=0

hkkc†
kck +

d−1∑
k, l = 0

k < l

[hklc
†
kcl + h∗

kl c
†
l ck], (1)

where hkl are the entries in Hi. In this encoding, we have
mapped the original Hamiltonian H̃SQ onto a set of single-
particle systems defined by Eq. (1). To find ground-state
energies of each single-particle Hamiltonian Hi we implement
a variant of the VQE algorithm adapted for the QFP hardware.
For the trial variational wave function |�〉 we utilize an ansatz
based on unitary coupled-cluster (UCC) theory [56]. The UCC
wave function can be written as

|�〉 = exp

(
d−1∑
k=1

θk[c†
0ck − c†

kc0]

)
|10 · · · 0〉, (2)

where the state |0 · · · 1k · · · 0〉 denotes a single excitation
(photon) in the frequency bin k and none in the remaining
d − 1. The operator exponent can be evaluated explicitly in
this case, leading to the following (d−1)-parameter state:

|�〉 = cos φ |10 · · · 0〉 − sin φ

φ

d−1∑
k=1

θk|0 · · · 1k · · · 0〉, (3)

with φ =
√∑d−1

k=1 θ2
k . In the context of the QFP, the UCC wave

function |�〉 represents a superposition of a single photon
over d frequency bins.

With the Hamiltonian and UCC wave function defined,
we use our QFP to estimate the expectation value 〈Hi

QFP〉 =
Tr[|�〉〈�|Hi

QFP] for given parameter values {θk}, by first
preparing |�〉 and experimentally reconstructing the elements
of the single-particle density matrix ρkl = (1/2)〈�|c†

kcl +
c†

l ck|�〉. Measuring ρkl is equivalent to placing the state |�〉
on a 50:50 beamsplitter implemented between frequency bins
k and l , and recording the difference in the flux of detected
particles in those modes immediately after the beamsplitter.
Similarly, elements ρkk can be measured by preparing the
state |�〉 and measuring the photon flux in each mode k
by using a photodetector. After repeating this process for
all combinations of modes k and l , 〈Hi

QFP〉 = Tr[ρHi
QFP] =∑

kl ρklhkl can be estimated. Recent formulations of VQE,
which use the current estimate of the energy 〈Hi

QFP〉 to gen-
erate parameter updates {δθk} via a gradient-based classical
optimizer, generally require many evaluations of 〈Hi

QFP〉 to
arrive at converged parameters. We instead use a method
which merges the UCC ansatz with a many-body formalism
called the anti-Hermitian contracted Schrödinger equation
[57]. This allows us to approximate the gradient of parameters
using the measured ρkl of each iteration [58] and arrive at con-
vergence with significantly fewer evaluations of 〈Hi

QFP〉. For
example, in the problems we explore here our method required
∼20 iterations to converge compared to ∼500 iterations
when using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [59].

In practice, the measurement of the elements ρkl us-
ing the single-photon state |�〉 as an input is equiva-
lent to a measurement with a coherent frequency comb
where the relative amplitude of each comb line is set to
θk sin φ/φ (for lines k = 1, . . . , d − 1) and cos φ (for the
line k = 0) with respect to a reference coherent-state ampli-
tude α. Indeed, one can verify by a direct calculation that

012320-3



HSUAN-HAO LU et al. PHYSICAL REVIEW A 100, 012320 (2019)

〈�comb|Hi
QFP|�comb〉 = |α|2〈�|Hi

QFP|�〉, where

|�comb〉 = |α cos φ〉 ⊗
∣∣∣∣αeiπ θ1 sin φ

φ

〉

⊗ · · · ⊗
∣∣∣∣αeiπ θd−1 sin φ

φ

〉
. (4)

Moreover, the measurements of ρkl for nonoverlapping sets of
indices k, l can be implemented in parallel, thus reducing the
simulation time, as the QFP has an intrinsic ability to perform
the same operation on different sets of modes in parallel.
Previously, we implemented near-unity fidelity frequency-bin
beamsplitters in parallel, with a theoretical predicted fidelity
F = 0.9999. Such Hadamard gates can be achieved by driv-
ing two EOMs with π -phase-shifted sinewaves at frequency
�ω (with maximum temporal phase modulation � = 0.8169
rad) and applying a step function with π phase jump between
the two computational modes on the central pulse shaper.
The corresponding beamsplitter possesses 47.81% reflectivity
R (mode-hopping probability) and 49.79% transmissivity T
(probability of preserving frequency), with 2.4% of the pho-
tons scattered outside of the computational space.

Despite such high fidelity, the residual imbalance in R
and T is undesirable, leading to higher error in calculation
of the ρkl elements. Accordingly, in this work we further
reduce the Hadamard gate’s bias, achieving R = 48.7% and
T = 48.77% (corresponding to a fidelity F = 0.999 999) by
increasing � to 0.8283 rad on both EOMs, while the QFP’s
central pulse shaper remains unchanged.

After setting up the Hadamard gates, we utilize the first
pulse shaper to equalize the amplitude across all ten input
frequency bins. The relative spectral phase within every fre-
quency pair is also fine-tuned until we find the in-phase con-
dition as the reference—defined such that the lower (higher)-
frequency bin obtains the maximum (minimum) optical power
after the Hadamard operation. To compute ρkl , we manipulate
the relative amplitude and phase of a frequency pair ck and cl ,
and record the optical power difference between two modes
after the beam-splitting operation. To reconstruct the full
density matrix, a total number of d (d − 1)/2 beam-splitting
operations is required in every iteration. Hence, the usage
of five parallel beamsplitters (as well as the natural paral-
lelization in pulse shapers and the OSA) reduces the required

number of computations by a factor of 5 before updating the
trial state for the next iteration.

IV. NUCLEAR STRUCTURE CALCULATIONS

Organizing principles rooted in the global symmetries of
QCD have been successfully encoded in low-energy EFT
frameworks describing nuclear forces, providing a system-
atically improvable approach to calculations of nuclei. At
low resolution, i.e., at long wavelengths, details about the
strong but short-ranged nuclear forces, or about QCD, are
not revealed, and the lightest nuclei can be understood in
terms of contact interactions of pairs and triplets of nucleons
[38,60–63]. In our model, we employ a Hamiltonian at next-
to-leading order (NLO) in pionless EFT and adjust its parame-
ters to the S-wave effective range expansions and the deuteron
binding energy; the strength of the three-body contact is
adjusted to the triton binding energy. The Coulomb force
between protons is also included. We employ a finite basis
consisting of eigenstates of the spherical harmonic oscillator
with energy spacing h̄ω = 22 MeV in a discrete variable
representation [36,64], with the two- and three-body poten-
tials acting only between states with excitation energies up
to and including 2h̄ω. This discretization maps nucleon fields
onto annihilation operators with an interaction-momentum
cutoff of 337 MeV. Next, we project this second-quantized
Hamiltonian HSQ onto Hilbert spaces with spin and parity of
Jπ = 0+ for 4He and Jπ = 1/2+ for 3H and 3He, and the re-
sulting Hamiltonian matrices Hi are evaluated for the smallest
eigenvalue on the QFP, as described in the Methods section.

The data of Table I depicted in Fig. 3 shows the ground-
state energies of 3H, 3He, and 4He computed with the VQE
algorithm on the QFP as a function of the effective spatial
extent, L, of the model space. For the weakly bound three-
nucleon states of 3H and 3He, the energy is found to decrease
noticeably with increasing L. For these systems as well as
4He, extrapolations to large model spaces can be reliably
performed (shown as shaded regions) using the leading-order
expression given in Eq. (C2). For each nucleus, the model-
space-extrapolated binding energy (shown as the red point at
right) is consistent within systematic-dominated uncertainties
with the corresponding tuned NLO EFT prediction. We note
that the underlying Hamiltonian of NLO pionless EFT is
known to reproduce experimental data to much better than the
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FIG. 3. Results of the nuclear ground-state energies for 3H, 3He, and 4He nuclei computed with the QFP (blue data points) for Hilbert
spaces with effective spatial extent L with estimated systematic uncertainties. Also shown are the leading-order extrapolations [see Eq. (C2)]
to infinite model spaces with propagated uncertainties (gray bands), the resulting extrapolated energies E∞ (red point at right), the tuned NLO
EFT predictions (dark blue solid line), and the known high-precision values of the binding energies (dashed gray line).
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FIG. 4. The e+e− densities (〈ρ〉) and energy density in the electric field (〈E 2〉) for Q = −1 static charges separated by one spatial lattice
site. The left panel shows the raw distributions, the center panel has the vacuum removed, and the right panel also has the contributions from
the individual charges removed. The horizontal black dashed lines are the analytic values of the local densities, while the error bands (not
seen on this scale) represent fluctuations over the last ten iterations of the VQE. The values shown in each panel are presented in Table VI in
Appendix F.

naive ∼10% accuracy based upon power counting due to the
relative size of coefficients in the effective range expansion.

V. SCHWINGER-MODEL SIMULATIONS

Quantum electrodynamics in 1+1 dimension, the
Schwinger model [65,66], has been long studied as an
example of confinement and chiral symmetry breaking in
quantum field theory [67] and is receiving new attention in the
context of quantum simulation [21,23,68–75]. To represent
this continuous theory on computational devices, we employ
staggered fermions [76] mapped to spin degrees of freedom
as shown in Eq. (D1). Fluctuations in the truncated, quantized
electric field are accompanied by pair (e+e−) creation and
annihilation satisfying Gauss’s law. Previous works have
calculated static and dynamic observables resulting from
these fluctuations on quantum devices [21,23]. In this article,
we introduce nondynamical static charges, which are screened
by deformations in the quantum vacuum and interact with the
fermions only through their contribution to Gauss’s law. Such
systems are analogous to mesons found in nature containing a

TABLE I. Simulation results for the ground-state energies of the
light nuclei at NLO in the pionless EFT obtained with the QFP.
The first two columns designate the nucleus (model space) and
the dimensionality of the Hilbert space. The third column indicates
the computations per iteration. The energy and associated standard
deviation are quoted from the last five iterations of a converged VQE
(statistical uncertainty only). The final column indicates the total
time to complete 25 iterations.

Computations/ Time
d Iteration VQE energy (min)

3H (Nmax = 2) 5 10 −7.5075(1) 2.3
3H (Nmax = 4) 15 105 −8.031(6) 27.1
3H (Nmax = 6) 34 561 −8.12(2) 134.6
3He (Nmax = 2) 5 10 −6.7942(1) 2.3
3He (Nmax = 4) 15 105 −7.3380(3) 26.9
3He (Nmax = 6) 34 561 −7.470(9) 133.8
4He (Nmax = 2) 5 10 −27.9301(2) 2.2
4He (Nmax = 4) 20 190 −28.03(1) 48.6
4He (Nmax = 6) 64 2016 −27.78(2) 500

bottom or charm quark; thus we denote them “heavy mesons.”
The Hilbert space of each static-charge distribution is reduced
by enforcing Gauss’s law and projecting onto ground-state
quantum numbers of parity and charge conjugation.

The energy and wave function of the vacuum, of single
static charges, of two like-sign and two opposite-sign static
charges separated by a distance r, and of three static charges
of the distinct charge combinations separated by distances
r12 and r13 were calculated on the QFP by applying VQE
to eight-fermion-site, Schwinger-model Hamiltonians. These
solutions may be combined to compute the heavy-meson
mass, the full potential energy between two and three static

TABLE II. Simulation results for ground-state energies in the
Schwinger model obtained using the QFP. The first two columns
designate the configuration of static charges and the symmetry-
projected dimensionality of the Hilbert spaces. The third column
indicates the computations per iteration [less than dsym(dsym − 1)/2
due to matrix sparsity]. The energy and associated standard deviation
are quoted from the last ten iterations of a converged VQE. The final
column indicates the total time to complete 50 iterations.

Computations/ Time
dsym Iterations VQE energy (min)

Vac 9 15 −2.01503(1) 7.1
(0) 26 154 −0.73167(2) 75
(0,0) 9 21 0.91843(2) 11.4
(0,2) 16 42 0.68691(1) 20.1
(0,4)a 17 45 0.59856(6) 67.0
(0,1) 41 225 −0.92433(2) 99.3
(0,3)b 58 222 0.289190(9) 298
(0,0,0) 7 15 6.42752(8) 7.3
(0,0,2) 5 9 2.428332(1) 4.5
(0,0,4) 5 9 2.300160(2) 4.7
(0,2,4) 5 9 2.210773(3) 4.7
(0,0,1) 59 385 0.5418(4) 173
(0,0,3) 31 87 1.83890(1) 40.1
(0,2,1) 35 217 0.22861(4) 99.6
(0,2,3) 62 406 0.3731(1) 194.6
(0,2,5) 24 105 1.535129(9) 46.9
(0,4,1) 68 448 0.3466(3) 196.8

aObtained with three beamsplitters and 100 iterations.
bObtained with 150 iterations.
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FIG. 5. The left panel shows the potential between two like-sign static-charged sources (upper curves) and between opposite-sign charges
(lower curves) as a function of separation (in lattice units). The symmetric gray curves represent the extracted lattice potential, including the
presence of image charges. The blue and green bands represent the infinite-volume potentials using correlated extracted values of the couplings
and masses (see Appendix E for details). The center panel shows the three-body potential for three like-sign static charges. The right panel
shows the three-body potential for two like-sign and one opposite-sign static charges.

charges over a range of separations, and local modifications
to the vacuum structure due to static charges. As an example,
Fig. 4 shows the local e+ and e− probabilities and energy
density of the electric field for the ground state of two static
negative charges with separation (r = 2), computed from the
VQE results (see Table II). Using this and the other four
configurations of two-body static charges (see Appendix A
and E), Fig. 5 (left) shows the potential energy as a function
of separation. For distances large compared with the radius of
the heavy meson, the potential is expected to fall as the sum of
exponentials with arguments set by the light-hadron spectrum.
Short-distance deviations from these forms are expected to
be a small effect in subsequent analyses. Fitting to the re-
sults of the QFP, including the effect of image charges from
the boundary conditions, and isolating the infinite-volume
limit, gives the phenomenological fit potentials in Fig. 5.
These phenomenological potentials are matched through the
Schrödinger equation to a low-energy EFT description of
the Schwinger model in terms of local contact operators,
the analog of the pionless theory, H = −CN (N†N )2 + · · · at
leading order for a given heavy-meson mass. The three-body
potentials are extracted in similar ways, with the two-body
potentials removed. Two slices of the three-body potential
are displayed in Fig. 5 (right two panels), showing expected
rapid suppression as the bodies separate. Phenomenological
three-body potentials can further be extracted and used to
constrain the coefficients of three-body EFT parameters.

Note that the demonstrated calculation is for a single lat-
tice spacing and spatial volume. Modifying these parameters
towards the continuum would provide higher resolution of
extracted potentials and corresponding EFT parameters.

VI. DISCUSSION

Establishing a direct connection between the fundamental
building blocks of our universe, the quarks and gluons, and the
properties and dynamics of matter under a range of conditions

faces challenges beyond the capabilities of foreseeable classi-
cal computation. From exponentially-growing Hilbert spaces
required to describe nuclei, to sign problems in evaluating
finite density systems, anticipated developments in quantum
devices and quantum information offer the hope of address-
ing Grand Challenge problems in subatomic physics. For
example, VQE algorithms implemented with error-corrected
qubits are anticipated to provide a scalable path to solving
these problems on future quantum devices. However, cur-
rently available hardware is too noisy to demonstrate such
quantum advantages. Here we explored a way to implement
VQE optically using the QFP with classical preprocessing. In
particular, we use classical resources to project many-body
fermionic Hamiltonians corresponding to nuclear and quan-
tum field theory systems onto a hierarchy of single-particle
Hamiltonians that can be simulated efficiently on the QFP.
This demonstration of controlled, single-photon-equivalent,
quantum-correlated manipulation is a first step towards scal-
able QFP simulations where input states are modified to
consist of multiple photons. Together, the QFP and such
state preparation of higher complexity is expected to require
resources that scale polynomially with the size of the quantum
system and thus exhibit a quantum advantage.

In this work, we have presented results from the largest
photonics-based quantum simulation, using an all-optical
quantum frequency processor, to demonstrate the poten-
tial of quantum technology for calculations in subatomic
physics. We presented the two- and three-body interactions
between composite objects informing the low-energy EFT
of the Schwinger model, which shares characteristics with
QCD. Further, representing a key ingredient in the connec-
tion between quarks, gluons, and nuclei, a low-energy EFT
of QCD was used to calculate the binding energies of 3H,
3He, and 4He. While the results of our calculations are not
of comparable complexity or precision to those that can
be achieved today with classical computation, they are an
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encouraging first step in exploring the utility of optical quan-
tum devices for addressing “Grand Challenges” in subatomic
physics.

The U.S. Department of Energy (DOE) will provide public
access to these results of federally sponsored research in
accordance with the DOE Public Access Plan [93].
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APPENDIX A: RESULTS

The following section provides details of the VQE imple-
mentation on the QFP for the light nuclei and Schwinger-
model systems presented in the main text.

APPENDIX B: OPTIMIZATION

In order to optimize the parameters of the trial wave
functions employed in this work, we have implemented an
approximate gradient method based on the measured reduced
density matrix elements. For calculating the derivative of the
energy employing the UCC wave function of Eq. (2), a single
gradient element becomes

χk = δ〈HSQ〉
δ�k

= 〈�|[c†
0ck,HSQ]|�〉 + H.c.

= 2
∑

l

(ρ0l hlk − ρkl hl0) , (B1)

where it should be noted that this expression depends only on
the already-measured reduced density matrix elements used
to evaluate the energy. Once scaled by an appropriate quantity
�, which is analogous to a time step, each parameter can be

updated as follows:

�k → �k + �χk . (B2)

This procedure was iterated until a change in energy dropped
below a given threshhold.

For systems where the initial trial wave function for the
ground state was nondegenerate, an additional step was taken
to improve convergence. The elements of Eq. (B1) vary quite
radically, both in their absolute size and the rate at which
they vanish as the minimum is approached. Drawing from
the similarity of this method to [57,77], it is clear that one
can do appreciably better by normalizing the elements to the
diagonal Hamiltonian matrix elements, yielding a new update
procedure:

�k → �k + �
χk

hkk − h00
. (B3)

For the systems treated in this work, this modification de-
creased the number of steps required to reach convergence by
a factor of 2–3.

APPENDIX C: NUCLEAR STRUCTURE

A Hamiltonian from the NLO pionless EFT [38,60–62], a
systematically improvable approach to nuclear interactions at
low energies, is employed for computations of the nuclei 3H,
3He, and 4He, with a momentum-space potential

V = V (1S0 )
NN (p′, p) + V (3S1 )

NN (p′, p) + VNNN ,

V (1S0 )
NN (p′, p) = C̃1S0

+ C1S0
(p′2 + p2) ,

V (3S1 )
NN (p′, p) = C̃3S1

+ C3S1
(p′2 + p2) ,

VNNN = cE

F 4
π χ

∑
1�i �= j�A

�τi · �τ j . (C1)

Here, p and p′ denote magnitudes of the incoming and out-
going relative three-momentum, respectively. The nucleon-
nucleon potentials VNN act in the singlet and triplet S waves,
with C̃1S0

= −0.7617 MeV−2, C1S0
= 2.9098 MeV−4, C̃3S1

=
−1.2014 MeV−2, and C3S1

= 3.3984 MeV−4, respectively.
These parameters were determined by fits to the effective
range expansion in the respective partial waves and to the
deuteron binding energy. The three-nucleon potential VNNN

employs the isospin operators �τi for the nucleon i, the pa-
rameters Fπ = 92.4 MeV, and χ = 700 MeV. The parameter
cE = 0.019 29 is adjusted to reproduce the triton binding en-
ergy. This EFT is implemented as a discrete variable represen-
tation (DVR) [78–80] in the harmonic oscillator basis, using
translationally invariant Jacobi coordinates and the infrared
corrections of Refs. [36,81]. The potentials act only between
states with excitation energies up to and including 2h̄ω, while
the kinetic energy is not truncated. While our results are insen-
sitive to the ultraviolet cutoff of the potential, we have chosen
to work with a cutoff of 337 MeV and h̄ω = 22 MeV. Figure 6
shows phase shifts in the singlet and triplet S-wave channels
obtained from the pionless theory with matched EFT param-
eters and compares them to the corresponding phase shifts
obtained from the high-precision CD Bonn potential [82].
Our NLO EFT potentials reproduce the phase shifts within
uncertainty estimates. These systematic theory uncertainties,
shown as shaded regions in Fig. 6, result from estimates of the
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FIG. 6. Nucleon-nucleon phase shifts in the singlet (left) and triplet (right) S-wave channels (in degrees) as a function of relative
momentum. The solid (black) lines correspond to high-precision results obtained with the CD Bonn potential. The dashed (red) lines correspond
to results obtained from the NLO pionless EFT, while the shaded (red) region includes estimates from higher orders in the pionless EFT
expansion that are not included in the interactions employed on the QFP.

contributions from terms that are higher order (NNLO) in the
pionless EFT but are not included in our calculations.

Using standard tools [83,84], Hamiltonian matrices in
Hilbert spaces with spin and parity Jπ = 1/2+ and 0+ for
the three-nucleon systems 3H, 3He, and 4He, respectively,
are computed. Limiting the total number of harmonic os-
cillator quanta to Nmax = 2, 4, 6 leads to dense Hamiltonian
matrices of dimension d = 5, 15, 34 and d = 5, 20, 64 for
the nuclei with mass numbers A = 3 and A = 4, respectively.
These Hamiltonian matrices provide the inputs for the VQE
algorithm.

At low energies, states projected onto a finite harmonic os-
cillator basis closely resemble those projected onto modes of
a spherical cavity with a hard-wall radius L ∼ [Nmax/(mω)]1/2

[85]. It can be shown [85], using a development that parallels
that of Lüscher and others, that to establish finite-volume
corrections to localized states in lattice QCD calculations
[86,87], the leading finite-model-space shifts in the energy of
an isolated bound state have the form

E (L) = E∞ + ae−2k∞L. (C2)

From bound-state energies E (L) determined in three finite
model spaces, and the separation momentum

k∞ = 1

h̄

√
−2m[E∞(A) − E∞(A − 1)] (C3)

of the A-body system [88,89], we determine the amplitude a
and the infinite-model-space energy E∞ by a fit. Using the val-
ues of L tabulated in the Supplemental Material of Ref. [90],
the binding energies E (L) computed in finite model spaces
using our QFP, that are shown in Table III, are extrapolated to
infinite model spaces.

Table III also shows the results of exact diagonalizations of
the Hamiltonian matrices describing the light nuclei in Hilbert
spaces with a range of Nmax, as indicated. Diagonalizations
in large model spaces of size NA (N3 = 40 and N4 = 20 for
nuclei with mass number A = 3 and A = 4, respectively) are
essentially converged with respect to the size of the model
space. The infinite-model-space extrapolation results obtained
by fitting Eq. (C2) to the data obtained with Nmax = 2, 4, 6
are also shown; these results are close to the (essentially)
exact numerical results, and higher-order corrections to the
leading-order result (C2) are suppressed by powers and ex-
ponentials of k∞L [91]. Our extrapolated results for 3He
and 4He are close to their experimental values, consistent
with expectations from a leading-order Hamiltonian within
statistical and systematic uncertainties. (We remind the reader
that the three-body EFT parameter was adjusted to reproduce
the ground-state energy of 3H.) The results obtained from
the QFP, that are shown in Fig. 3 of the main text, are also
given in Table III. Through repeated measurements using the

TABLE III. Ground-state energies of light nuclei obtained from Hamiltonian diagonalization of the NLO pionless EFT using the QFP
compared to the exact results for model spaces of size Nmax = 2, 4, 6 and their extrapolation to infinite model space Nmax = ∞. For comparison,
the experimentally known values are given (Exp.), along with the results obtained from exact diagonalizations in a large model space, NA. For
the quantum frequency processor, systematic simulation uncertainties of (0.1%, 0.5%, 1%) in the VQE for Nmax of (2, 4, 6) are extrapolated to
the infinite model space as shown in Fig. 3 of the main text. This extrapolation uses the form of Eq. (C2), defining k∞ through the separation
energy and enforcing the constraint a < 1 GeV.

Quantum frequency processor Exact diagonalization

Nmax
3H 3He 4He 3H 3He 4He

2 −7.508(8) −6.794(7) −27.93(3) −7.513 −6.800 −27.947
4 −8.031(40) −7.338(37) −28.03(14) −8.060 −7.366 −28.106
6 −8.120(81) −7.470(75) −27.78(28) −8.275 −7.600 −28.148
NA — — — −8.482 −7.830 −28.165
∞ −8.51(9) −7.89(8) −28.04(14) −8.47 −7.84 −28.17
Exp. −8.482 −7.718 −28.296 −8.482 −7.718 −28.296
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QFP, we have identified a systematic uncertainty of ±1% that
accompanies each measurement, which is significantly larger
than the associated statistical uncertainties. In extrapolating
to infinite model space, this systematic uncertainty of each
point is uniformly sampled over in performing a Monte Carlo
to determine the uncertainty of each binding energy as a
function of L, including the L → ∞ limit. For each nucleus,
a value of the binding for each of the three measured L
values is uniformly sampled from the interval arising from
the systematic uncertainty. These samples are then used in a
two-parameter fit of the form in Eq. (C2), where the difference
in binding energies is used to relate k∞ to E∞ via Eq. (C3).
These fit parameters define a curve as a function of L. This
process is repeated a large number of times to establish the
shaded fit region and infinite-model-space value.

APPENDIX D: LATTICE HAMILTONIANS
FOR SCHWINGER-MODEL SIMULATIONS

In 1 + 1 dimensional quantum electrodynamics, latticized
with staggered fermions [76] and transformed to spin de-
grees of freedom using the Jordan-Wigner transformation, the
Hamiltonian of the Schwinger model [65,66] can be written as

H̃SQ = x
Nf s−1∑
n=0

(σ+
n L−

n σ−
n+1 + σ+

n+1L+
n σ−

n )

+
Nf s−1∑
n=0

(
�2

n + μ

2
(−)nσ z

n

)
. (D1)

The kinetic (hopping) term contains raising and lowering
operators L±, modifying the value of the electric field that
is naturally quantized (between truncations ±) in one
dimension. Choosing periodic boundary conditions for this
one-dimensional spatial lattice produces a Hamiltonian
with discrete rotational symmetry. While this representation
is perfectly suited for qubit implementation—creating a
latticized, tensor-product structure with single qubits at
the sites to represent fermion occupation and registers
of log2(2 + 1)� qubits on each link for the electric
field—the additional constraint of Gauss’s law makes this
representation both excessive for physical states and sensitive
to noise within the quantum computation. Instead, the lattice
configurations in the physical sector (that satisfy Gauss’s law)
are classically enumerated and mapped onto quantum states
of the Hamiltonian. Because of the locality of interactions,
the Hamiltonian remains sparse in this representation. By
working only with configurations in the physical subspace,
the Hilbert space dimension in terms of Ns, the number of
spatial sites, is reduced from elog(64)Ns to 1.02(1)e1.1772(2)Ns and
the four-spatial-site lattice becomes accessible to our QFP.

In order to calculate the mass of the heavy meson MH , com-
prised of a static charge (denoted by Q or Q̄) and light degrees
of freedom, as well as the two- and three-body potentials,
17 different configurations of up to three static charges are
needed on a four-spatial-site lattice: the empty configuration
of the vacuum, a single static charge, five separations of
two static charges, and ten three-static-charge configurations.
These configurations are detailed in Table IV. In the second
column of this table, the symmetric gauge field truncation

TABLE IV. Properties of the systems studied with our quantum
device. The first column indicates the locations of static charges [with
charge −Q (+Q) for odd (even) sites, respectively]. The electric field
truncation  determines the dimension of the underlying Hilbert
space d , and symmetries of the static-charge configuration allow
reductions to dsym. The values of  are chosen to achieve sub-
% precision in the ground-state energy and representative wave
functions.

 d Symmetries dsym EGS precision

Vac 3 53 P, �p 9 0.2%
(0) 4 50 P 26 0.4%
(0,0) 5 16 P 9 0.2%
(0,2) 5 31 P 16 0.09%
(0,4) 5 35 P 17 0.05%
(0,1) 5 67 CP 41 0.8%
(0,3) 8 95 CP 58 0.15%
(0,0,0) 12 13 P 7 5×10−7%
(0,0,2) 5 5 5 0.04%
(0,0,4) 4 5 5 0.6%
(0,2,4) 4 9 P 5 0.1%
(0,0,1) 7 59 59 0.13%
(0,0,3) 7 31 31 0.7%
(0,2,1) 6 67 P 35 0.6%
(0,2,3) 7 62 62 0.1%
(0,2,5) 7 46 P 24 0.74%
(0,4,1) 7 68 68 0.1%

 is chosen to reduce truncation systematic errors on the
ground-state energy to below the 1% precision, expected to
be attainable with optical quantum hardware.

While the systems studied can be numerically solved with
high precision using classical techniques, their dimensionali-
ties are nontrivial with respect to the capabilities of present-
day quantum computing devices. With this in mind, it is con-
venient to further reduce the latticized, electric-field-truncated
Hamiltonians by projecting into the symmetry sectors of
momentum �p, parity (P), and charge parity (CP), as done in
Ref. [21]. For all but the vacuum state, the presence of static
charges at specified lattice points removes the possibility of
momentum projecting—the discrete, rotational symmetry of
the lattice has been broken. Beginning with a Hilbert space di-
mension of 53, projecting the vacuum to the zero-momentum
subspace by creating a basis of rotationally invariant linear
combinations results in a vastly reduced Hilbert space of
dimension 15—a size amenable with only four qubits. Further
projecting the vacuum into a sector of positive parity about
any one of the four rotationally equivalent symmetry axes
results in a nine-dimensional Hilbert space to be explored
with optical hardware. Such parity projections are possible for
eight of the static charge configurations about unique parity
axes (e.g., parity axis through sites 2 and 6 for static charges
located at 0, 2, 4).

Configurations containing one Q and one Q̄ do not contain
states of definite parity but, rather, of parity and charge
conjugation. As illustrated in Ref. [21], charge conjugation
on a staggered lattice of fermions may be consistently defined
by altering the sign of all charges and introducing a shift of a
half-spatial site in order to maintain the staggered distribution
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of the two-component Dirac spinor with negative (positive)
charges on even (odd) fermion sites. For example, in the
case of Q and Q̄ at locations 0 and 3, respectively, a parity
axis between fermion sites 1 and 5 and a subsequent charge
conjugation with clockwise half-spatial-site shift defines a
valid CP symmetry:

C+P|Q · ·Q̄ · · · ·〉 = C+| · ·Q · · · ·Q̄〉 = |Q · ·Q̄ · · · ·〉. (D2)

Projecting into a sector of positive CP, the sector containing
the ground state of the Q and Q̄ system results in a Hilbert
space dimensionality reduction from 95 to 58 states. This
brings the system within reach of advances in quantum optical
devices presented in the main text.

APPENDIX E: POTENTIALS AND EFFECTIVE
INTERACTIONS FROM SIMULATIONS

OF THE SCHWINGER MODEL

Hybrid classical-quantum VQE calculations were
performed to determine ground-state energies of systems con-
taining two or three static charges from a set of Hamiltonian
matrices, providing both eigenvalues and eigenvectors
through a customized VQE algorithm using the UCC ansatz.
Differences between these ground-state energies and their
wave functions reveal the interaction potentials between the
static charges and the induced modifications to the vacuum
charge distributions. To compute the potential energy between
static charges located at r = 0 and r = 3, for example, the
ground-state energy of the Hamiltonian matrix defining the
truncated Hilbert space with one charge located at r = 0 and
an anticharge located at r = 3, E (QQ)(0, 3), is determined
along with the wave function. From these the energy of the
vacuum is removed to give �E (QQ)(3) = E (QQ)(0, 3) − Evac.
This energy difference is independent of where it is evaluated
by the discrete rotational symmetry and CP symmetry of
the lattice discretization. A similar calculation is performed
of the energy of a single static charge, E (Q)(0), that leads
to the mass of the heavy meson, MH = E (Q)(0) − Evac. The
two-body potential between the static charges is defined
by the difference V (QQ)(3) = �E (QQ)(3) − 2MH . The other
two-body potentials, V (QQ)(r) and V (QQ)(r) for r even and
odd respectively, are found similarly. Extraction of the
three-body potentials requires a further subtraction, and as
an example, consider the potential between static charges
at r = 0 and r = 2 and a static anticharge at r = 3. The
energy of the vacuum is subtracted from the ground-state
energy, �E (QQQ)(0, 2, 3) = E (QQQ)(0, 2, 3) − Evac. From
this, the masses of three heavy mesons are removed,
�2E (QQQ)(0, 2, 3) = �E (QQQ)(0, 2, 3) − 3MH . To define
the residual three-body potential, the contributions from
the two-body interactions are removed, V (QQQ)(0, 2, 3) =
�2E (QQQ)(0, 2, 3) − V (QQ)(2) − V (QQ)(1) − V (QQ)(3). The
values obtained in the simulation for the vacuum energy, the
mass of the heavy meson, the two- and three-body potentials,
obtained with a mass μ = 0.1 and hopping term coefficient
x = 0.6 defining the Schwinger-model Hamiltonian, are given
in Table V. The two- and three-body potentials are displayed
in Fig. 5 of the main text and Fig. 8 appearing later in this
section.

TABLE V. The vacuum energy, the mass of the heavy meson, and
the two- and three-body potentials extracted from the VQE imple-
mentation. The uncertainties result from propagating 1% systematic
uncertainties in the simulated ground-state energies. The second
column indicates the Jacobi coordinates for the three-body systems.
The final column shows the calculated values of the potentials at the
simulation-implemented values of , electric field truncation.

O (R1, R2) 〈O〉 ± σO Exact

Evac −2.014 ± 0.020 −2.0158
MH 1.283 ± 0.021 1.2825
V QQ(0) 0.368 ± 0.048 0.3683
V QQ(2) 0.136 ± 0.048 0.1372
V QQ(4) 0.047 ± 0.048 0.0482
V QQ̄(1) −1.475 ± 0.048 −1.4756
V QQ̄(3) −0.262 ± 0.047 −0.2606
V QQQ(0, 0, 0) (0, 0) 3.49 ± 0.17 3.4901
V QQQ(0, 0, 2) (0, 2) −0.05 ± 0.13 −0.0464
V QQQ(0, 0, 4) (0, 4) 0.00 ± 0.13 0.0033
V QQQ(0, 2, 4) (2, 3) 0.06 ± 0.13 0.0561
V QQQ̄(0, 0, 1) (0, 1) 1.29 ± 0.13 1.2872
V QQQ̄(0, 0, 3) (0, 3) 0.16 ± 0.13 0.1591
V QQQ̄(0, 2, 1) (2, 0) 1.21 ± 0.13 1.2097
V QQQ̄(0, 2, 3) (2, 2) 0.14 ± 0.11 0.1383
V QQQ̄(0, 2, 5) (2, 4) 0.09 ± 0.13 0.0867
V QQQ̄(0, 4, 1) (4, 1) 0.20 ± 0.11 0.2008

The ground-state energies determined with VQE have both
statistical uncertainties, determined by variations in the last
several iterations, and systematic uncertainties. The dominant
systematic uncertainty is reproducibility of the simulation
results, which was estimated by variations in results collected
during multiple long runs on a representative set of Hamil-
tonian matrices, repeated throughout the course of the data
collection. This variation was found to be less than 1%, and
we assign a systematic uncertainty of 1% to each energy
measurement as a conservative estimate.

Beyond numerical determination of the two-body poten-
tials between static charges, it is worth making the connection
to nuclear physics phenomenology through parametrization
of the potentials based upon the spectrum of the Schwinger
model, and through matching to the appropriate low-energy
EFT. In the 1 + 1 dimensional Schwinger model, the potential
between charges falls with distance as the sum of exponen-
tials, as the spectrum does not contain a massless particle.
With the parameters that were used in the simulation, the
number of measurements of the potentials are few: three for
the QQ systems and two for the QQ system. Consequently,
we fit a single exponential in both channels, with the un-
derstanding that they are expected to reproduce the correct
behaviors at long distances, but are merely parametrizations
at intermediate and short distances. Results obtained for,
and from, these parametrizations have associated unquantified
model uncertainties. We write the parametrizations of the
infinite-volume two-body potentials as

V (QQ)(r) = (
g(QQ))2

e−M (QQ)r,

V (QQ)(r) = −(
g(QQ)

)2
e−M (QQ)r , (E1)
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FIG. 7. Monte Carlo samples and 68% confidence ellipses of
the couplings and masses of the QQ and QQ two-body interactions.
The ellipse associated with the QQ system (left panel) is described
by eigenvectors (0.176, 0.984) and (−0.984, 0.176) with associated
semiaxis radii 0.177 and 0.984. The ellipse associated with the QQ
system (right panel) is described by eigenvectors (−0.977, 0.211)
and (−0.211, −0.977) with associated semiaxis radii 0.332 and
0.0236.

where the couplings, g(QQ) and g(QQ), and the masses, M (QQ)

and M (QQ), are treated as fit parameters. We expect the masses
to be close to the mass of the lightest vector meson but
modified by the close proximity of other states.

As our calculations are performed in a finite volume sub-
ject to periodic boundary conditions, the potentials experi-
enced by static charges are modified by the presence of image
charges, separated by a distance nL, where n is an integer
and L is the spatial extent of the lattice. As a result, the
potentials extracted from our lattice calculations will be of the
form [86,87]

V ( j),L(r) =
+∞∑

n=−∞
V ( j)(|r + nL|) , (E2)

where j = QQ, QQ correspond to the potentials in Eq. (E1).
Fitting these forms for the two-body potentials to the results
obtained with the QFP leads to(

g(QQ))2 = 0.365(52), M (QQ) = 0.61(14)(
g(QQ)

)2 = 3.75(31), M (QQ) = 0.937(71) , (E3)

where the quoted uncertainties are determined by projec-
tion of the elliptical contours of Fig. 7 onto each axis—the
resulting uncertainties being slightly enlarged with respect
to those quoted for single-variable, marginalized probability
distributions. These quantities have support in the ultraviolet
structure of the theory and are modified in the finite volume by

FIG. 8. The potential between three static charges represented
by Jacobi coordinates in one dimension, R1 = |r2 − r1| and R2 =
|r3 − R1

2 |, with r1,2,3 the QQQ or QQQ distances from the origin.
The physical configurations of static charges on the lattice associated
with the blue and green paths through the grid of three-body potential
values are depicted by the schematic diagrams at the corners.

terms that are exponentially small, determined by the ratio of
L, where  is the ultraviolet scale [86,87]. Assuming that
there is a scale separation between the masses in the finite-
volume effects and the ultraviolet scale, the fit parameters in
the potentials can be used to extrapolate to an infinite volume
simply by inserting them into the potentials in Eq. (E1). Both
the periodic- and infinite-volume potentials are shown in the
left panel of Fig. 5 of the main text.

These potentials can be used directly for phenomenological
applications (in 1 + 1 dimensions) for processes involving
heavy mesons of finite mass and momentum up to the ultra-
violet scale of the theory. Results from these potentials are
expected to exhibit deviations from actual predictions of the
Schwinger model due to the limited form fit to the data. For
low-energy processes, calculations can be reorganized and
generally made simpler by matching to a low-energy EFT
with consistent power counting that is explicitly constructed
to faithfully reproduce the low-energy behavior of S-matrix
elements. In nuclear physics, the low-energy behavior (below
the t-channel cut in one-pion exchange) of few-nucleon sys-
tems is reproduced by the pionless EFT [60–62], consisting of
contact operators of δ functions and (covariant-)derivatives,
and gauge-invariant operators describing interactions with
external probes [92].

As an example, we outline the matching between the
Schwinger model and its low-energy EFT, in which there are
only dynamical heavy mesons. Using the fit values of the EFT
parameters and their associated uncertainties in the infinite-
volume QQ potential, we solve the Schrödinger equation to
produce zero-energy wave functions. Far from the potential,
the wave functions are straight lines and define the scattering
lengths. These wave functions can be reproduced by a δ-
function potential, with strength C0 arising from an effective
potential of the form Veff (r) = C0δ(r). For a heavy meson of
mass M (EFT)

H = 4.5 that is chosen for the sake of demonstra-
tion only, C0 = −0.117(30), which should be compared to
the naive estimate from the Born term of C0 = −8.0(0.2).
The potential also admits two bound states, a “shallow”
one with E ∼ −0.59 and a deep one with E ∼ −2.4, which
corresponds to a positroniumlike state.
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FIG. 9. Local properties of the vacuum with three static charges, with Q and Q̄ located at lattice sites (0, 2) and 1, respectively. The
uncertainties, which are too small to be visible, represent the stability of these local properties over wave functions extracted over the last
ten VQE iterations. The horizontal dashed lines are the values calculated through exact diagonalization. The values shown in each panel are
presented in Table VII.

It is convenient to work with Jacobi coordinates in pre-
senting the three-body potentials. These relative coordinates
are defined by R1 = |r1 − r2| and R2 = r3 − R1/2, where we
have worked with the convention that the first two particles
are identified as those with the same charge. The results of our
experiments are presented in Table V and displayed in Fig. 8.
The three-body potentials are found to fall rapidly with either
of the Jacobi coordinates, as expected. While these poten-
tials could be matched to the low-energy EFT, with operator
structures of the form O ∼ (N†N )3, to be used in other more
complex calculations, we leave that for future investigations.

The deformations to the vacuum structure resulting from these
three-body forces, arrived at by taking differences in the
energy density in the electric field and in the probabilities
of the electron and positron states, have been calculated. In
Fig. 9, we show the modifications to the vacuum structure for
V (QQQ)(0, 2, 1), corresponding to the three-body system with
Jacobi coordinates R1 = 2 and R2 = 1.

A single-hadron quantity that we derive from our results is
the charge radius of the heavy meson. Unlike classical lattice
QCD calculations, where contributions from both connected-
quark and disconnected-quark must be calculated, unless a
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FIG. 10. Local properties of the vacuum and a single static charge located at r = 0 that creates a heavy meson. The uncertainties, which
are too small to be visible, represent the stability of these local properties over wave functions extracted over the last ten VQE iterations. The
horizontal dashed lines are the values calculated through exact diagonalization. The values shown in each panel are presented in Tables VIII
and IX.
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TABLE VI. Measured and exact expectation values for the local
charge density and energy in the electric field as shown in Fig. 4 of
the main text, with two static charges located at sites 0 and 2. The
uncertainties on measured values represent statistical fluctuations
over the last ten wave functions of the VQE iterations and do not
include estimates of associated systematic uncertainties. Note, from
Table IV, that parity has been enforced for this system, leading to
spatially symmetric locations having the same values.

r 〈ρ〉 〈ρ〉exact 〈E 2〉 〈E 2〉exact

GS probabilities associated with two static charges at r = 0, 2

0 0.115596(19) 0.115881 0.29668(15) 0.297446
1 0.59336(29) 0.594892 0.29668(15) 0.297446
2 0.115596(19) 0.115881 0.81892(16) 0.818435
3 0.82624(16) 0.826473 0.018040(24) 0.01883
4 0.121542(27) 0.125071 0.114283(24) 0.117114
5 0.228433(50) 0.234066 0.114283(35) 0.117114
6 0.121542(27) 0.125071 0.018040(25) 0.01883
7 0.82624(16) 0.826473 0.81892(16) 0.818435

Vacuum subtracted

0 −0.053082(14) −0.0571012 0.21208(15) 0.210749
1 0.42468(30) 0.42191 0.21208(15) 0.210749
2 −0.053082(14) −0.0571012 0.73432(16) 0.731738
3 0.65757(15) 0.653491 −0.066560(31) −0.0678671
4 −0.047135(27) −0.0479109 0.029682(21) 0.0304174
5 0.059756(43) 0.0610843 0.029682(21) 0.0304174
6 −0.047135(27) −0.0479109 −0.066560(31) −0.0678671
7 0.65757(15) 0.653491 0.73432(16) 0.731738

1-Body subtracted

0 −0.031897(61) −0.0278071 −0.24139(13) −0.238353
1 −0.46919(27) −0.46415 −0.24139(13) −0.238353
2 −0.031897(61) −0.0278071 0.20279(19) 0.204377
3 0.18521(19) 0.187407 −0.0140797(97) −0.012637
4 −0.013040(63) −0.00937306 0.004098(51) 0.00738809
5 0.00891(10) 0.0149761 0.004098(51) 0.00738809
6 −0.013040(63) −0.00937306 −0.0140797(97) −0.012637
7 0.18521(19) 0.187407 0.20279(19) 0.204377

symmetry forbids one or both of the contributions, the quan-
tum computation allows for a direct determination of relevant
quantities from the wave function of the system. In the case
of the heavy meson formed around a static quark at r = 0, the
charge radius can be determined by a direct evaluation of the
discrete sum

〈r2〉Q =
NQ/2∑
n=0

(−1)n n2 Prob(n) , (E4)

where Prob(n) is the probability of finding an electron or
positron at the nth site. The sum is cut off at half of the
lattice to minimize the contribution from the image charges,
introducing an uncertainty naively estimated to be the average
size of the last two contributions. We find the square-charge
radius of the heavy meson containing a positively charged
static charge, determined from the charge distribution shown
in Fig. 10, to be

〈r2〉Q = −1.76(32) (E5)

TABLE VII. Measured and exact expectation values for the local
charge density and energy in the electric field as shown in Fig. 9,
with three static charges located at sites r = 0, 1, 2. The uncertainties
on measured values represent statistical fluctuations over the last ten
wave functions of the VQE iterations and do not include estimates of
associated systematic uncertainties. Note, from Table IV, that parity
has been enforced for this system, leading to spatially symmetric
locations having the same values.

r 〈ρ〉 〈ρ〉exact 〈E 2〉 〈E 2〉exact

GS probabilities associated with three static charges, at r = 0, 1, 2

0 0.16927(16) 0.168397 0.82064(80) 0.826857
1 0.6272(17) 0.640306 0.82064(80) 0.826857
2 0.16927(16) 0.168397 0.35567(99) 0.348244
3 0.40786(86) 0.402136 0.05647(12) 0.057447
4 0.150959(62) 0.152525 0.099227(72) 0.0989282
5 0.19755(14) 0.197266 0.099227(72) 0.0989282
6 0.150959(62) 0.152525 0.05647(12) 0.057447
7 0.40786(86) 0.402136 0.35567(99) 0.348244

Vacuum subtracted

0 0.00060(15) −0.00458463 0.73604(81) 0.74016
1 0.4585(17) 0.467324 0.73604(81) 0.74016
2 0.00060(15) −0.00458463 0.27107(99) 0.261547
3 0.23918(85) 0.229154 −0.02813(12) −0.0292501
4 −0.017718(72) −0.0204571 0.014626(67) 0.0122311
5 0.02887(14) 0.0242844 0.014626(67) 0.0122311
6 −0.017718(72) −0.0204571 −0.02813(12) −0.0292501
7 0.23918(85) 0.229154 0.27107(99) 0.261547

1-Body subtracted

0 −0.42515(22) −0.418321 −0.22082(77) −0.209597
1 −0.4427(16) −0.420459 −0.22082(77) −0.209597
2 −0.42515(22) −0.418321 −0.2105(10) −0.21426
3 −0.20467(92) −0.205913 −0.003783(77) −0.000725653
4 −0.009048(21) −0.00497328 −0.00841(12) −0.00712178
5 −0.01640(23) −0.014303 −0.00841(12) −0.00712178
6 −0.009048(21) −0.00497328 −0.003783(77) −0.000725653
7 −0.20467(92) −0.205913 −0.2105(10) −0.21426

2-Body subtracted

0 0.50834(19) 0.501635 0.49244(61) 0.492946
1 1.0275(13) 1.03178 0.49244(61) 0.492946
2 0.50834(19) 0.501635 0.00088(82) −0.00837237
3 0.00966(69) 0.00184607 0.01489(11) 0.0147168
4 0.01936(10) 0.0168098 0.004382(45) 0.00071903
5 0.008576(91) 0.00141658 0.004382(45) 0.00071903
6 0.01936(10) 0.0168098 0.01489(11) 0.0147168
7 0.00966(69) 0.00184607 0.00088(82) −0.00837237

in lattice units. Similarly, the radius of the energy density in
the electric field can be computed as

〈r2〉E2 = 0.33(15) . (E6)

While there appears to be a large difference between these
two radii, one must keep in mind that they are derived by
weighting with distances that are constrained by the lattice
spacing, or half-lattice spacing, and presently unquantified
discretization effects are expected to be significant in these
quantities. Further calculations at a smaller lattice spacing are
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TABLE VIII. Measured and exact expectation values for the
vacuum local charge density and energy in the electric field as shown
in Fig. 10 (with zero external static charges). The uncertainties on
measured values represent statistical fluctuations over the last ten
wave functions of the VQE iterations and do not include estimates of
associated systematic uncertainties. Note, from Table IV, that parity
and translation invariance have been enforced.

r 〈ρ〉 〈ρ〉exact 〈E 2〉 〈E 2〉exact

GS probabilities associated with vacuum

0-7 0.168677(14) 0.172982 0.0846006(74) 0.0866971

required to perform an extrapolation to the continuum limit
and to provide a complete quantification of uncertainties.

It is interesting to note that there are static-charge con-
figurations, such as the three-body QQQ̄ system at locations
(0, 4, 1), that do not allow reduction of the Hilbert space
through symmetry projections. It is this system in particular
that has required the largest Hilbert space (68 dimensions) to
achieve 1% precision on the ground-state energy used in the
calculation of the corresponding three-body potential. While
these symmetry projections have been critical for constructing
systems with a dimension manageable with current quantum
hardware and for removing dynamically irrelevant sectors
from the perspective of the ground-state properties, it is in-
teresting to note that knowledge of the symmetry properties
without explicit projection could be used to probe systematic
errors or noise within the quantum computation. For example,
the local expectation values of the charge density and energy
in the electric field shown in Fig. 9 for the (0, 2, 1) QQQ
system are currently forced theoretically to satisfy the parity
projection through fermion site 1. If the 67-dimensional sys-
tem (that before parity projection) was instead implemented
by the QFP, deviations from this exact spatial symmetry would
be indicative of the systematic uncertainty in the structure of
the ground-state wave function.

APPENDIX F: CALCULATED VALUES

In this section, we present the values of local probabilities
in the ground state (GS) of the vacuum, a single static charge,

TABLE IX. Measured and exact expectation values for the local
charge density and energy in the electric field as shown in Fig. 10,
with one static charge located at site zero. The uncertainties on
measured values represent statistical fluctuations over the last ten
wave functions of the VQE iterations and do not include estimates of
associated systematic uncertainties. Note, from Table IV, that parity
has been enforced for this system, leading to spatially symmetric
locations having the same values.

r 〈ρ〉 〈ρ〉exact 〈E 2〉 〈E 2〉exact

GS probabilities associated with one static charge, at r = 0

0 0.176000(24) 0.174705 0.588000(12) 0.587352
1 0.615612(14) 0.616012 0.0346655(84) 0.0351434
2 0.140169(14) 0.141965 0.112730(12) 0.113403
3 0.194102(24) 0.196036 0.082055(12) 0.0830207
4 0.163090(23) 0.165461 0.082055(12) 0.0830207
5 0.194102(24) 0.196036 0.112730(12) 0.113403
6 0.140169(14) 0.141965 0.0346655(84) 0.0351434
7 0.615612(14) 0.616012 0.588000(12) 0.587352

Vacuum subtracted

0 0.007323(37) 0.00172308 0.503399(19) 0.500655
1 0.446935(26) 0.44303 −0.049935(15) −0.0515537
2 −0.028508(25) −0.0310171 0.028130(18) 0.0267057
3 0.025425(33) 0.0230541 −0.002545(17) −0.0036764
4 −0.005587(30) −0.00752077 −0.002545(17) −0.0036764
5 0.025425(33) 0.0230541 0.028130(18) 0.0267057
6 −0.028508(25) −0.0310171 −0.049935(15) −0.0515537
7 0.446935(26) 0.44303 0.503399(19) 0.500655

and two- and three-static-charge systems, that are shown in
Figs. 9, 10, and Fig. 4 in the main text. Table VI contains
the measured and exact expectation values of the local charge
density and energy in the electric field with two static charges
located at r = 0, 2, as shown in Fig. 4 of the main text.
Table VII contains the same quantities for three static charges
located at r = 0, 1, 2, as shown in Fig. 9. Table VIII contains
the measured and exact expectation values for the vacuum
local charge density and energy in the electric field as shown
in Fig. 10. Table IX contains the same quantities for one static
charge located at r = 0, as shown in Fig. 10.
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Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt,
L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson,
Multidimensional quantum entanglement with large-scale inte-
grated optics, Science 360, 285 (2018).

[13] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara,
L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph et al., Large-
scale silicon quantum photonics implementing arbitrary two-
qubit processing, Nat. Photon. 12, 534 (2018).

[14] J. M. Lukens and P. Lougovski, Frequency-encoded photonic
qubits for scalable quantum information processing, Optica 4, 8
(2017).

[15] H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird,
A. M. Weiner, and P. Lougovski, Electro-Optic Frequency
Beam Splitters and Tritters for High-Fidelity Photonic Quantum
Information Processing, Phys. Rev. Lett. 120, 030502 (2018).

[16] H.-H. Lu, J. M Lukens, N. A Peters, B. P. Williams, A. M.
Weiner, and P. Lougovski, Controllable two-photon interfer-
ence with versatile quantum frequency processor, Optica 5,
1455 (2018).

[17] H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters,
A. M. Weiner, and P. Lougovski, A controlled-NOT gate for
frequency-bin qubits, npj Quantum Inf. 5, 24 (2019).

[18] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus
et al., Scalable Quantum Simulation of Molecular Energies,
Phys. Rev. X 6, 031007 (2016).

[19] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[20] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen,
T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P.
Lougovski, Cloud Quantum Computing of an Atomic Nucleus,
Phys. Rev. Lett. 120, 210501 (2018).

[21] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C.
Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage,
Quantum-classical computation of Schwinger model dynamics
using quantum computers, Phys. Rev. A 98, 032331 (2018).

[22] H. Lamm and S. Lawrence, Simulation of Nonequilibrium Dy-
namics on a Quantum Computer, Phys. Rev. Lett. 121, 170501
(2018).

[23] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A.
Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P. Zoller,
and R. Blatt, Real-time dynamics of lattice gauge theories
with a few-qubit quantum computer, Nature (London) 534, 516
(2016).

[24] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition with a
53-qubit quantum simulator, Nature (London) 551, 601 (2017).

[25] C. Kokail, C. Maier, R. van Bijnen, R. Brydges, M. K. Joshi,
P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and
P. Zoller, Self-verifying variational quantum simulation of the
lattice Schwinger model, Nature (London) 569, 355 (2019).

[26] T. Yamazaki, Y. Kuramashi, and A. Ukawa (PACS-CS Collab-
oration), Helium nuclei in quenched lattice QCD, Phys. Rev. D
81, 111504(R) (2010).

[27] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu, K.
Orginos, A. Parreno, M. J. Savage, A. Torok, and A. Walker-
Loud (NPLQCD Collaboration), The deuteron and exotic two-
body bound states from lattice QCD, Phys. Rev. D 85, 054511
(2012).

[28] N. Barnea, L. Contessi, D. Gazit, F. Pederiva, and U. van Kolck,
Effective Field Theory for Lattice Nuclei, Phys. Rev. Lett. 114,
052501 (2015).

[29] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin,
T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-
Loud (NPLQCD Collaboration), Hyperon-Nucleon Interactions
and the Composition of Dense Nuclear Matter from Quantum
Chromodynamics, Phys. Rev. Lett. 109, 172001 (2012), .

[30] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin,
T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-
Loud (NPLQCD Collaboration), Light nuclei and hypernuclei
from quantum chromodynamics in the limit of SU(3) flavor
symmetry, Phys. Rev. D 87, 034506 (2013).

[31] T. Yamazaki, Ken-ichi Ishikawa, Y. Kuramashi, and A. Ukawa,
Helium nuclei, deuteron and dineutron in 2+1 flavor lattice
QCD, Phys. Rev. D 86, 074514 (2012).

[32] T. Inoue, S. Aoki, B. Charron, T. Doi, T. Hatsuda, Y. Ikeda,
N. Ishii, K. Murano, H. Nemura, and K. Sasaki (HAL QCD
Collaboration), Medium-heavy nuclei from nucleon-nucleon
interactions in lattice QCD, Phys. Rev. C 91, 011001(R) (2015).

[33] T. Yamazaki, Ken-ichi Ishikawa, Y. Kuramashi, and A. Ukawa,
Study of quark mass dependence of binding energy for light
nuclei in 2+1 flavor lattice QCD, Phys. Rev. D 92, 014501
(2015).

[34] J. Kirscher, N. Barnea, D. Gazit, F. Pederiva, and U. van Kolck,
Spectra and scattering of light lattice nuclei from effective field
theory, Phys. Rev. C 92, 054002 (2015).

[35] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,
and U. van Kolck, Ground-state properties of 4He and 16O
extrapolated from lattice QCD with pionless EFT, Phys. Lett.
B 772, 839 (2017).

[36] A. Bansal, S. Binder, A. Ekström, G. Hagen, G. R. Jansen, and
T. Papenbrock, Pion-less effective field theory for atomic nuclei
and lattice nuclei, Phys. Rev. C 98, 054301 (2018).

[37] T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda,
T. Inoue, N. Ishii, H. Nemura, and K. Sasaki (HAL QCD

012320-15

https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/ncomms1570
https://doi.org/10.1038/ncomms1570
https://doi.org/10.1038/ncomms1570
https://doi.org/10.1038/ncomms1570
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1364/OPTICA.5.000534
https://doi.org/10.1364/OPTICA.5.000534
https://doi.org/10.1364/OPTICA.5.000534
https://doi.org/10.1364/OPTICA.5.000534
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1103/PhysRevLett.120.030502
https://doi.org/10.1103/PhysRevLett.120.030502
https://doi.org/10.1103/PhysRevLett.120.030502
https://doi.org/10.1103/PhysRevLett.120.030502
https://doi.org/10.1364/OPTICA.5.001455
https://doi.org/10.1364/OPTICA.5.001455
https://doi.org/10.1364/OPTICA.5.001455
https://doi.org/10.1364/OPTICA.5.001455
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevD.81.111504
https://doi.org/10.1103/PhysRevD.81.111504
https://doi.org/10.1103/PhysRevD.81.111504
https://doi.org/10.1103/PhysRevD.81.111504
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevLett.114.052501
https://doi.org/10.1103/PhysRevLett.114.052501
https://doi.org/10.1103/PhysRevLett.114.052501
https://doi.org/10.1103/PhysRevLett.114.052501
https://doi.org/10.1103/PhysRevLett.109.172001
https://doi.org/10.1103/PhysRevLett.109.172001
https://doi.org/10.1103/PhysRevLett.109.172001
https://doi.org/10.1103/PhysRevLett.109.172001
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1103/PhysRevC.91.011001
https://doi.org/10.1103/PhysRevC.91.011001
https://doi.org/10.1103/PhysRevC.91.011001
https://doi.org/10.1103/PhysRevC.91.011001
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1103/PhysRevC.92.054002
https://doi.org/10.1103/PhysRevC.92.054002
https://doi.org/10.1103/PhysRevC.92.054002
https://doi.org/10.1103/PhysRevC.92.054002
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1103/PhysRevC.98.054301
https://doi.org/10.1103/PhysRevC.98.054301
https://doi.org/10.1103/PhysRevC.98.054301
https://doi.org/10.1103/PhysRevC.98.054301


HSUAN-HAO LU et al. PHYSICAL REVIEW A 100, 012320 (2019)

Collaboration), Systematics of the HAL QCD potential at low
energies in lattice QCD, Phys. Rev. D 99, 014514 (2019).

[38] P. F. Bedaque and U. van Kolck, Effective field theory for few-
nucleon systems, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002).

[39] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern
theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).

[40] R. Machleidt and D. R. Entem, Chiral effective field theory and
nuclear forces, Phys. Rep. 503, 1 (2011).

[41] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, Recent
developments in no-core shell-model calculations, J. Phys. G:
Nucl. Part. Phys. 36, 083101 (2009).

[42] B. R. Barrett, P. Navrátil, and J. P. Vary, Ab initio no core shell
model, Prog. Part. Nucl. Phys. 69, 131 (2013).

[43] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W.
Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea,
B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M.
Miorelli, G. Orlandini, A. Schwenk, and J. Simonis, Neutron
and weak-charge distributions of the 48Ca nucleus, Nat. Phys.
12, 186 (2016).

[44] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen,
J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A.
Schwenk, Structure of the Lightest Tin Isotopes, Phys. Rev.
Lett. 120, 152503 (2018).

[45] G. Parisi, The strategy for computing the hadronic mass spec-
trum, Phys. Rep. 103, 203 (1984).

[46] G. P. Lepage, The analysis of algorithms for lattice field the-
ory, in Boulder ASI 1989:97-120 (1989), pp. 97–120, https:
//lib-extopc.kek.jp/preprints/PDF/1990/9003/9003479.pdf.

[47] S. R. Beane, W. Detmold, T. C Luu, K. Orginos, A. Parreno,
M. J. Savage, A. Torok, and A. Walker-Loud, High statistics
analysis using anisotropic clover lattices, II. Three-baryon sys-
tems, Phys. Rev. D 80, 074501 (2009).

[48] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno,
M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD Col-
laboration), High statistics analysis using anisotropic clover
lattices, I. Single hadron correlation functions, Phys. Rev. D 79,
114502 (2009).

[49] M. L. Wagman and M. J. Savage, Statistics of baryon correla-
tion functions in lattice QCD, Phys. Rev. D 96, 114508 (2017).

[50] E. Ovrum and M. Hjorth-Jensen, Quantum computation algo-
rithm for many-body studies, arXiv:0705.1928.

[51] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms
for quantum field theories, Science 336, 1130 (2012).

[52] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum computa-
tion of scattering in scalar quantum field theories, Quantum Inf.
Comput. 14, 1014 (2014).

[53] K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook, Quan-
tum simulation of quantum field theory using continuous vari-
ables, Phys. Rev. A 92, 063825 (2015).

[54] L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar,
J.-M. Merolla, and K. P. Huy, Frequency-bin entangled photons,
Phys. Rev. A 82, 013804 (2010).

[55] Significant technical challenges remain in demonstrating entan-
gling operations in a space of this size.

[56] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[57] D. A. Mazziotti, Anti-Hermitian Contracted Schrödinger Equa-
tion: Direct Determination of the Two-Electron Reduced

Density Matrices of Many-Electron Molecules, Phys. Rev. Lett.
97, 143002 (2006).

[58] T. D. Morris, Improved optimization of unitary coupled cluster
ansatz (unpublished).

[59] R. Fletcher, Practical Methods of Optimization (Wiley,
New York, 1987).

[60] D. B. Kaplan, M. J. Savage, and M. B. Wise, Two nucleon
systems from effective field theory, Nucl. Phys. B 534, 329
(1998).

[61] U. van Kolck, Effective field theory of short range forces,
Nucl. Phys. A 645, 273 (1999).

[62] D. B. Kaplan, M. J. Savage, and M. B. Wise, A new expansion
for nucleon-nucleon interactions, Phys. Lett. B 424, 390 (1998).

[63] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Renormaliza-
tion of the Three-Body System with Short-Range Interactions,
Phys. Rev. Lett. 82, 463 (1999).

[64] J. C. Light and T. Carrington, Discrete-variable representations
and their utilization, in Advances in Chemical Physics, edited
by I. Prigogine and S. A. Rice (John Wiley & Sons, New York,
2007), pp. 263–310.

[65] J. S. Schwinger, Gauge invariance and mass. II, Phys. Rev. 128,
2425 (1962).

[66] S. R. Coleman, R. Jackiw, and L. Susskind, Charge shield-
ing and quark confinement in the massive Schwinger model,
Ann. Phys. 93, 267 (1975).

[67] J. Potvin, A nonperturbative study of hadronization with heavy
sources: The screening length as a function of the quark mass
in the Schwinger model, Phys. Rev. D 32, 2070 (1985).

[68] M. C. Banuls, K. Cichy, K. Jansen, and J. I. Cirac, The mass
spectrum of the Schwinger model with matrix product states,
J. High Energy Phys. 11 (2013) 158.

[69] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice
Schwinger model with a topological term at θ = π using the
Grassmann tensor renormalization group, Phys. Rev. D 90,
074503 (2014).

[70] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormal-
ization group approach to one-flavor lattice Schwinger model,
Phys. Rev. D 90, 014508 (2014).

[71] M. C. Banuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Thermal evolution of the Schwinger model with matrix product
operators, Phys. Rev. D 92, 034519 (2015).

[72] M. C. Bañuls, K. Cichy, K. Jansen, and H. Saito, Chiral con-
densate in the Schwinger model with matrix product operators,
Phys. Rev. D 93, 094512 (2016).

[73] M. C. Banuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn,
Density Induced Phase Transitions in the Schwinger Model: A
Study with Matrix Product States, Phys. Rev. Lett. 118, 071601
(2017).

[74] B. Buyens, F. Verstraete, and K. Van Acoleyen, Hamiltonian
simulation of the Schwinger model at finite temperature, Phys.
Rev. D 94, 085018 (2016).

[75] B. Buyens, J. Haegeman, F. Hebenstreit, F. Verstraete, and K.
Van Acoleyen, Real-time simulation of the Schwinger effect
with matrix product states, Phys. Rev. D 96, 114501 (2017).

[76] J. B. Kogut and L. Susskind, Hamiltonian formulation of Wil-
son’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[77] S. R. White, Numerical canonical transformation approach
to quantum many-body problems, J. Chem. Phys. 117, 7472
(2002).

012320-16

https://doi.org/10.1103/PhysRevD.99.014514
https://doi.org/10.1103/PhysRevD.99.014514
https://doi.org/10.1103/PhysRevD.99.014514
https://doi.org/10.1103/PhysRevD.99.014514
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1016/0370-1573(84)90081-4
https://doi.org/10.1016/0370-1573(84)90081-4
https://doi.org/10.1016/0370-1573(84)90081-4
https://doi.org/10.1016/0370-1573(84)90081-4
https://lib-extopc.kek.jp/preprints/PDF/1990/9003/9003479.pdf
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.79.114502
https://doi.org/10.1103/PhysRevD.79.114502
https://doi.org/10.1103/PhysRevD.79.114502
https://doi.org/10.1103/PhysRevD.79.114502
https://doi.org/10.1103/PhysRevD.96.114508
https://doi.org/10.1103/PhysRevD.96.114508
https://doi.org/10.1103/PhysRevD.96.114508
https://doi.org/10.1103/PhysRevD.96.114508
http://arxiv.org/abs/arXiv:0705.1928
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://doi.org/10.1103/PhysRevA.92.063825
https://doi.org/10.1103/PhysRevA.92.063825
https://doi.org/10.1103/PhysRevA.92.063825
https://doi.org/10.1103/PhysRevA.92.063825
https://doi.org/10.1103/PhysRevA.82.013804
https://doi.org/10.1103/PhysRevA.82.013804
https://doi.org/10.1103/PhysRevA.82.013804
https://doi.org/10.1103/PhysRevA.82.013804
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0370-2693(98)00210-X
https://doi.org/10.1016/S0370-2693(98)00210-X
https://doi.org/10.1016/S0370-2693(98)00210-X
https://doi.org/10.1016/S0370-2693(98)00210-X
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1103/PhysRevD.32.2070
https://doi.org/10.1103/PhysRevD.32.2070
https://doi.org/10.1103/PhysRevD.32.2070
https://doi.org/10.1103/PhysRevD.32.2070
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.014508
https://doi.org/10.1103/PhysRevD.90.014508
https://doi.org/10.1103/PhysRevD.90.014508
https://doi.org/10.1103/PhysRevD.90.014508
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1063/1.1508370
https://doi.org/10.1063/1.1508370
https://doi.org/10.1063/1.1508370
https://doi.org/10.1063/1.1508370


SIMULATIONS OF SUBATOMIC MANY-BODY PHYSICS ON … PHYSICAL REVIEW A 100, 012320 (2019)

[78] J. C. Light, I. P. Hamilton, and J. V. Lill, Generalized discrete
variable approximation in quantum mechanics, J. Chem. Phys.
82, 1400 (1985).

[79] D. Baye and P.-H. Heenen, Generalised meshes for quan-
tum mechanical problems, J. Phys. A: Math. Gen. 19, 2041
(1986).

[80] R. G. Littlejohn, M. Cargo, T. Carrington, K. A. Mitchell, and
B. Poirier, A general framework for discrete variable represen-
tation basis sets, J. Chem. Phys. 116, 8691 (2002).

[81] S. Binder, A. Ekström, G. Hagen, T. Papenbrock, and K. A.
Wendt, Effective field theory in the harmonic oscillator basis,
Phys. Rev. C 93, 044332 (2016).

[82] R. Machleidt, High-precision, charge-dependent Bonn nucleon-
nucleon potential, Phys. Rev. C 63, 024001 (2001).

[83] P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, Few-
nucleon systems in a translationally invariant harmonic oscil-
lator basis, Phys. Rev. C 61, 044001 (2000).

[84] P. Navrátil, Local three-nucleon interaction from chiral effective
field theory, Few-Body Syst. 41, 117 (2007).

[85] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Corrections to
nuclear energies and radii in finite oscillator spaces, Phys. Rev.
C 86, 031301(R) (2012).

[86] M. Lüscher, Volume dependence of the energy spectrum
in massive quantum field theories. I. Stable particle states,
Commun. Math. Phys. 104, 177 (1986).

[87] M. Lüscher, Volume dependence of the energy spectrum in
massive quantum field theories. II. Scattering states, Commun.
Math. Phys. 105, 153 (1986).

[88] S. König and D. Lee, Volume dependence of n-body bound
states, Phys. Lett. B 779, 9 (2018).

[89] C. Forssén, B. D. Carlsson, H. T. Johansson, D. Sääf, A. Bansal,
G. Hagen, and T. Papenbrock, Large-scale exact diagonaliza-
tions reveal low-momentum scales of nuclei, Phys. Rev. C 97,
034328 (2018).

[90] K. A. Wendt, C. Forssén, T. Papenbrock, and D. Sääf, Infrared
length scale and extrapolations for the no-core shell model,
Phys. Rev. C 91, 061301(R) (2015).

[91] R. J. Furnstahl, S. N. More, and T. Papenbrock, Systematic
expansion for infrared oscillator basis extrapolations, Phys.
Rev. C 89, 044301 (2014).

[92] J.-W. Chen, G. Rupak, and M. J. Savage, Nucleon-nucleon
effective field theory without pions, Nucl. Phys. A 653, 386
(1999).

[93] http://energy.gov/downloads/doe-public-access-plan.

012320-17

https://doi.org/10.1063/1.448462
https://doi.org/10.1063/1.448462
https://doi.org/10.1063/1.448462
https://doi.org/10.1063/1.448462
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1063/1.1473811
https://doi.org/10.1063/1.1473811
https://doi.org/10.1063/1.1473811
https://doi.org/10.1063/1.1473811
https://doi.org/10.1103/PhysRevC.93.044332
https://doi.org/10.1103/PhysRevC.93.044332
https://doi.org/10.1103/PhysRevC.93.044332
https://doi.org/10.1103/PhysRevC.93.044332
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/j.physletb.2018.01.060
https://doi.org/10.1016/j.physletb.2018.01.060
https://doi.org/10.1016/j.physletb.2018.01.060
https://doi.org/10.1016/j.physletb.2018.01.060
https://doi.org/10.1103/PhysRevC.97.034328
https://doi.org/10.1103/PhysRevC.97.034328
https://doi.org/10.1103/PhysRevC.97.034328
https://doi.org/10.1103/PhysRevC.97.034328
https://doi.org/10.1103/PhysRevC.91.061301
https://doi.org/10.1103/PhysRevC.91.061301
https://doi.org/10.1103/PhysRevC.91.061301
https://doi.org/10.1103/PhysRevC.91.061301
https://doi.org/10.1103/PhysRevC.89.044301
https://doi.org/10.1103/PhysRevC.89.044301
https://doi.org/10.1103/PhysRevC.89.044301
https://doi.org/10.1103/PhysRevC.89.044301
https://doi.org/10.1016/S0375-9474(99)00298-5
https://doi.org/10.1016/S0375-9474(99)00298-5
https://doi.org/10.1016/S0375-9474(99)00298-5
https://doi.org/10.1016/S0375-9474(99)00298-5
http://energy.gov/downloads/doe-public-access-plan

