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Abstract—5G new radio (NR) provides new opportunities for
accurate positioning from a single reference station: large band-
width combined with multiple antennas, at both the base station
and user sides, allows for unparalleled angle and delay resolution.
Nevertheless, positioning quality is affected by multipath and
clock biases. We study, in terms of performance bounds and
algorithms, the ability to localize a vehicle in the presence of
multipath and unknown user clock bias. We find that when
a sufficient number of paths is present, a vehicle can still be
localized thanks to redundancy in the geometric constraints.
Moreover, the 5G NR signals enable a vehicle to build up a
map of the environment.

I. INTRODUCTION

Vehicles rely on a variety of sensors to localize themselves
and build and maintain a (dynamic) map of the environment
[1]. Most modern cars are equipped with a GPS receiver,
which provides absolute location information, and with a radar
sensor providing relative location information with respect
to detected objects in the environment. GPS operates by
estimating pseudoranges with respect to at least four satellites,
and solving a system of equations for the user position and
clock bias. The main impairments are blocking of GPS signals
due to non-line-of-sight (NLOS) and multipath propagation,
as signals are reflected on buildings and other objects [2].
These impairments lead to positioning errors varying from
around one meter in ideal conditions to ten meters or more
in GPS-challenged areas, such as urban canyons. In contrast,
radar sensors explicitly rely on multipath propagation: by
measuring the transmitted signal reflected from objects, a radar
can determine the relative position (bearing and range) with
respect to the sensor coordinate frame [3].

The ability to combine sensing and positioning function-
ality has recently emerged, mainly in the context of ultra-
wide bandwidth communication: with a sufficiently large
bandwidth, multipath components become resolvable in the
delay domain so that specular paths can be associated with
reflectors (or strong scatterers) in the environment [4]. When
the locations of reflectors are known, multipath propagation
can then help to obtain the position the user. Furthermore,
techniques such as simultaneous localization and mapping
(SLAM) can be employed to track the user position as well
as building up a map of the environment [5], [6]. Conversely,
a known user position directly benefits the ability to map the
environment. Similar ideas were explored in the context of
millimeter-wave communication (mmWave) [7], which will be
part of the 5G mobile communication standard. In mmWave,

large antenna arrays at the transmitter and receiver provide a
high degree of angular resolvability. This means that multipath
components can be estimated not only in terms of delay, but
also angle. This idea has led to several works on mmWave
positioning, which found that a user can process signals from
a single base station in order to (i) determine its own position
and orientation; (ii) estimate the reflectors in the environment,
provided the base station and user were synchronized [8], [9].
The synchronization assumption can be relaxed when a two-
way protocol is executed between the user and base station,
though this leads to additional overheads and challenges in
both the uplink and downlink beamforming [10]. The use of
signal strength ranging combined with direction estimation has
been also proposed to avoid the need of synchronization [11],
but this causes a performance degradation because the large
bandwidth of mmWave is not efficiently used for ranging.

In this paper, we propose to use downlink mmWave signals
from a single base station to jointly estimate the vehicle posi-
tion and orientation, the environment, and the vehicle’s clock
bias. Thereby, the environment is parametrized by the location
of virtual anchors (VA) representing specular reflections and
scattering of the transmitted signal on objects. Through a
Fisher information analysis, we reveal that multipath propa-
gation is beneficial to estimate the vehicle’s clock bias (with
respect to the base station), though with some performance
penalty compared to a perfectly synchronized scenario. How-
ever, in the absence of multipath components, localization
of a unsynchronized user using a single base station would
be impossible. Moreover, we present a generic downlink
positioning system and then analyze specific components of
such a system.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. State Model

We consider a scenario as shown in Fig. 1 with a single
static base station (BS), a single mobile user equipment (UE)
mounted on a vehicle, and M — 1 reflecting surfaces, each
parameterized by a point f,, and a normal vector u,,. The
BS is located at xpg = [0,0, zs]T € R3, so that with each
reflecting surface we can associate a virtual anchor location
[12]:

XVAm = P’mXBS + tma (1)

where P,,, = I3 — 2umu% is a Householder matrix and
t,, = 2flu,,u,, is a translation vector. Finally, the UE



Fig. 1. Scenario with one base station (blue), one vehicle (heading shown
with an arrow), and 4 virtual anchors (each corresponding to a vertical wall).

state s = [XEE « QUE.k Bi]T comprises the vehicle’s position,
orientation (i.e., the vehicle heading since we consider that
the vehicle can only rotate around the vertical axis) and clock
bias, and it is governed by transition function p(sk|sip—1).
The epoch duration depends on how frequently the position
is updated. We assume the UE has a priori information in a
factorized form p(xva m), P(XuE,k), P(aue,k) and p(By); and
demonstrate in Sec. III how this form can be maintained after
updating with measurements.

B. Measurement Model

The BS periodically sends a mmWave positioning reference
signal (PRS). At epoch k, the received signal at the UE is [13]

yi(t) = 2
Li—1
w! Z hikave(01k)aps (d1.k)Frpr(t — 71.) + Wiln(t),
1=0
where Ly is the number of resolvable propagation paths, Fy, is
a precoder matrix, pg(¢) the training signal, W a combiner
matrix, h; is a complex channel gain, ayg and agg are the
antenna response vectors, and 7; i, 6; 1, and ¢; ; denote time
of arrival (TOA), direction of arrival (DOA), and direction
of departure (DOD), respectively, of path [ at epoch k. Both
DOA and DOD have azimuth and elevation components. The
AWGN at the receiver is denoted n(¢) and has known power
spectral density.

From the observation (2), several techniques exist to recover
the triplet of TOA, DOA, and DOD, such as based on sparse
recovery [8] or subspace methods [14], which achieve a good
balance between estimation accuracy and computational com-
plexity. Assuming that the L; propagation paths are resolvable
in the delay and angular domain, a channel estimation routine
provides

Zige = (110, 0k, &1k + e, 1€{0,1,..., L, — 1} (3)

where n;;, ~ N(0,X%; %), in which X, depends on the
channel as well as the precoding, combining, duration of the
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Fig. 2. The stages of 5G mmWave downlink positioning: the vehicle
estimates channel parameters from a dedicated PRS (including precoding and
combining), which it associates to prior map information and then uses to
refine the vehicle position, heading, and clock bias.

training signal, and the receiver. Let the measurement set be
Ly—1

Z, = {zi11},, » where the measurements are unordered as

explained below.

C. Problem Formulation

Our goal is to determine the marginal posterior distributions
P(xva,m|Zr), p(xuEk|Zk), p(aug,k|Zy) and p(By|Zy), given
prior distributions on the UE state and possibly some of the
VAs. Note that this problem is challenging, due to the unknown
clock bias between BS and UE.

III. PROPOSED SOLUTION

In this section, we outline the proposed positioning solution,
and display the geometric relations between the channel and
the location parameters. Since it is not a priori known which
measurement in Zj corresponds to which VA source, a sub-
optimal method to deal with this data association problem is
presented. Finally, the algorithm to solve the positioning and
mapping problem via belief propagation on a factor graph is
presented.

A. 5G Downlink Positioning

Our solution approach is shown in Fig. 2. First, the
mmWave-PRS signals are designed based on prior location
information (from the previous epoch, combined with a pre-
diction to the current epoch) as well as possibly updated
information obtained from channel estimation, required dur-
ing data transmission. The mmWave-PRS can fill the entire
bandwidth in order to localize all users simultaneously' and
should be designed for sufficient angular coverage. Then,
each UE performs channel estimation. Since the estimates
of the L paths are not yet tied to the M virtual anchors,
a data association step must follow. Subsequently, the UE
performs positioning and mapping. These estimates can then
be provided as inputs for 5G data communication [15]. The
mobility model (including a model for the clock) is used to
predict the state of the user at the next epoch &k + 1.

IThis is essentially an advantage of downlink positioning. In uplink posi-
tioning all users could also also transmit their mmWave-PRS simulatenously
and use the entire bandwidth; however, the BS would be forced to separate
each signal by applying a spatial filter, making the receiver more complex.
Nevertheless, the model (3) is still valid, with DOA and DOD switching roles.
The analysis, data association and positioning can be applied with only minor
modification.



In the following, we will focus on a single epoch and
remove the epoch index k, with the understanding that the
proposed technique should be combined with a Bayesian filter,
such as an extended Kalman filter. Moreover, we will assume
that the PRS design and channel estimation are given and limit
our discussion to data association and positioning, starting
from (3). We are assumed to be provided with (possibly
uninformative) prior information about the UE state (in the
form p(xyg), p(aur), p(B)) and prior information regarding
some VA (in the form p(xva,m), m = 1,..., M). The number
of paths may be greater or smaller than M. First, we will
determine the mapping from the location parameters to the
channel parameters.

B. Relation Between Channel and Location Parameters

Between each virtual anchor xva ,, and the user position
xyg, the incidence point of the specular reflection on the
reflecting surface is given by the point where the straight line
between the VA and UE crosses the reflecting surface (which
is itself midway between the BS and the VA), as shown in
Fig. 1. It is given by

(fm - XVA,m)Tum
(XUE - XVA7m)Tum
Here, u,,, = (XBS — XVAtm)/H(XBS — XVA,m)H and fm =
(xBs +Xva,m)/2. Note, this allows to find explicit expressions
of X ,, that only depend on Xvya n, Xs, and xyg (not shown).
Next, we state the relations between the channel parameters
Tm> O = [0 ,0%]T, and ¢, = [¢¢], 9] and the system
state.
e Delays: For the LOS path (m = 0), 79 = ||xBs —
xugl|/c + B, where ¢ denotes the speed of light. For
a NLOS path m > 0, 7,,, = ||xva.m — Xug||/c + B.
o Direction of departure: For the LOS path,

Xs,m = XVA,m T (xUE — Xva,m). (4)

¢ = arctan (ﬁ) ®)
¢ = arcsin (’ZUE_ZBS> ’ ©6)
[xuE — xBs|

where arctan(-) is the four-quadrant inverse tangent.
Similarly, for the m-th NLOS path

@ = arctan (éZsm) )
s,m
(b;l@ = arcsin (M) . 8)
||Xs,m, - XBS”

o Direction of arrival: Here we note that the DOA is
measured in the local frame of reference of the UE, so
that the UE orientation must be accounted for. For the
LOS path

0y = m + arctan (yUE> — Qug 9

68! — arcsin (M) ,
[xBs — xuE|

2This is equivalent to 7, = ||XBS — Xs,m||/c + ||Xs,m — xuE||/c+ B.

(10)

since the DOA elevation measurement does not depend
on the UE orientation, while for the [-th NLOS path

. Yva,m — YUE
0% = arctan [ =02 ) — QUE (11D
m
IVA,m — TUE
. ZVA,m — ZUE
0211 = arcsin <> .
[Pva,m — PUEl|

C. Data Association

12)

Although the channel estimator provides estimates of the
parameters TOA, DOA, and DOD of each path, it does not
reveal which z; corresponds to the LOS path and which
z; corresponds to which VA. We consider a simple tech-
nique based on the global nearest neighbor assignment [16],
which provides hard decisions regarding the associations of
measurements to VAs.> At the current epoch, let M be the
number of candidate VAs (including the base station) and L the
number of propagation paths (one per observation vector z;).
Each measurement can be explained as coming either from a
previously seen VA or as a new VA.* We create an Lx (M +L)
matrix that captures the corresponding likelihoods:

S = [SP BnIyL],

where I, is an L x L identity matrix, Sx > 0 is the new target
rate and SP is an L x M matrix, with entries

[SP]1m = p(z1|VAR),

13)

(14)
in which

p(z1|VAp,) = E {p(zi|xva,m, XuE, vE, B)} (15)

= \/ﬁﬂi {GXP (;(Zl — ) B (2 - nm)> } ~

Here, |X;| is the determinant of X;, which was defined in
(3), and the function 7, (Xva m, XUE, @UE, B) comprises the
TOA, DOA, and DOD computed according to Section III-B
from the location of the m-th VA (or base station) and UE
state. The expectation in (15) can easily be computed through
Monte Carlo integration from the priors. Given the matrix S,
we then find an optimal assignment by solving the following
optimization problem

L-1M+L

maximize Z Z Z1,m log Spm (16a)
=0 m=1

s.t. xm € {0,1}, VI,m, (16b)

M+L
Z Tim =1, VI, (16¢)
m=1
L-1
Z Tim <1, Ym, (16d)
1=0

which can be solved efficiently with the Kuhn-Munkres algo-
rithm [18], [19]. This approach can determine the LOS path
and find new VAs.

3A probabilistic/soft data association can also be considered, though this
may need modification to the positioning algorithm [17].

4False alarms due to clutter and missed detections are not considered, for
simplicity.



fT(\
f9(1 fB
féo
fue fa
I
fo, fva,
O Variable

Fig. 3. Factor graph representation of (18) and the message passing schedule.
Here, fx refers either to the prior of state variable X or the likelihood of
the estimate of a channel parameter X.

Remark 1. The data association and the localization may be
improved by constraining the joint probability density function
(PDF) of all VA’s and the UE state when computing (15). For
instance, when (XUEfxsﬂ,,,)T(stfoA,m) < 0 for any m, the
UE is on the wrong side of the reflecting surface and the joint
PDF would be zero. Since our proposed algorithm (see Section
III-D) only provides the marginal PDFs, we can account for
this by removing samples that violate such constraints. The
association could further be extended to account for gating,
when measurements are unlikely with respect to the a priori
distribution.

D. Positioning and Mapping Algorithm

Once data association has been performed, we have associ-
ated with each measurement z; either an existing VA, a new
VA (with uniform prior), or a false alarm. Assuming no false
alarms, we re-order the VA indices to match the measurement
indices. The global posterior distribution can then be expressed
as

S XvA,L—1|Z) 17

1

pP(XUE, QUE, B,XvaA 1, - -
L

—

= p(xug)p(ave)p(B) | | p(xva,) (18)

1

|~
=l

L

x p(zo|xuE, avug, B)
l

p(z1|XuE, aur, Xva,i, B).
1

We make a tacit assumption that factors are removed when
needed (e.g., when the data association detects that LOS is not
present, the factor with zy is removed). We aim to compute
the marginal posteriors, which can be achieved by executing
belief propagation on a factor graph representation of (18),
shown in Fig. 3, where we further approximated 3; from
(3) to have a diagonal structure.”> As can be seen, the graph
has many cycles, so care needs to be taken when deciding
the message passing schedule. In the mmWave regime, we

5The proposed technique can be applied, with minor modification, for
general ;.

consider accurate measurements of the channel parameters, but
possibly uninformative priors on clock bias, UE orientation, as
well as UE and VA locations. Our proposed message passing
schedule is then as follows.

©® The LOS DOD and UE position prior are
combined into a message jfix,(XUg) =
H fregs s —xue (XUE) £, —xe (XU ). This message captures
the knowledge of the UE position based on the
LOS DOD (which is always informative, as it is not
connected to any other vertex in the graph) and the
prior. At the same time all other priors (provided they
are informative) send messages to their associated
variables (UE bias and orientation, VA position).

(D The message jix, (XuE) is sent to all TOA, DOA, DOD
likelihoods for all paths (except DOD for LOS path), and
the message fixy, ,(Xva,) is sent to TOA, DOA, DOD
likelihoods for [-th NLOS path.

@ Each likelihood function, except for DOD, sends a
message to bias or orientation. For instance, the message
from the TOA likelihood fr, (xug, B,xvya,;) to B is
given by

ps.,—B(B) = /MxUE (XUE) Hcya,i— £, (XVA,L)
X fr,(xug, B,xva,)d~ {B},

where d~ {B} denotes integration over all variables
except B.

(® Now the bias and orientation have been updated, they
can send a message back to the likelihood functions. For
instance, the message from B to f, (xug, B,xva 1) is
given by

By, (B) = p(B) [ nr., ~5(B).
Ul
@ All likelihoods, except for LOS DOD, send messages to
the UE position variable, and so do NLOS likelihoods
to VA position variable. For instance, the message from
le (XUE, B, XVA,Z) to Xyg 1S given by

(19)

(20)

1if,, —xus (XUE) = /MB»fTZ (B) 1)

X flxcyn 1= fr, (XVALL) fr (XUE, B, Xva1)d~ {xuE}.

Now, the outgoing messages from the UE position and
the VA position towards all the likelihood functions can
be computed, so we can go back to step (D.
After a sufficient number of iterations between steps (D-@),
the algorithm is stopped and approximate marginal posteriors
are found by multiplication of all incoming messages to the
associated variables. For instance, for the UE position,
L1
p(xur|Z) o p(xur) [ ] #r., —xvs(xus)
1=0

X Hfe, —xuE (XUE)Mf(pl —xu (XUE), (22)

and similarly for all the other variables.



IV. FUNDAMENTAL PERFORMANCE ANALYSIS

To gain further understanding in the problem in terms of
identifiability and achievable performance, we complement the
algorithm description with a Fisher information analysis.

A. Non-Bayesian Case

Consider ¢ € R**3L to comprise all the location parameters
(UE position and orientation and clock bias, VA positions),
while n € R°F comprises all the channel parameters. The
Fisher information matrix (FIM) of the channel parameters
is block diagonal and given by the inverse of the covariance
matrix, i.e., J(n) = blkdiag ([Efl]le_Ol). The FIM of the
location parameters is found by [20]

J(C) = Vin(§)IM()Ven(<),

where the Jacobian [V¢(n(€))]i,; = 0[n(¢)]i/9[¢];, with the
relation 7(¢)) previously explicitly described in Section III-B.
The computation of the Jacobian is straightforward but tedious,
so it is omitted here for brevity. In case J(¢) is singular, this
means that not all the location parameters are identifiable.

(23)

B. The Use of Prior Information

When there is prior information p(¢) available, we can
compute a hybrid FIM for a fixed (:

Jhybrid(c) _ J(C) +Jprior7 (24)

in which JP™°" comprises the information due to the prior
(which is independent on the value of (). The FIM in (24)
should be interpreted as obtained from receiving sets of two
sources of information: one from the channel estimates and
one from the prior.®

V. RESULTS
A. Simulation Environment

We consider a scenario with 4 vertical walls, a BS at
location [0,0,5]T m, a UE at location [20,10,0]T m and 0
degrees orientation. Virtual anchors are placed in locations
[-20,0,5] m, [80,0,5]T m, [0,—20,5]T m, and [0, 80, 5]T
m, as depicted in Fig. 1. The measurement covariance matrix
is set to diagonal, with 0.1 m standard deviation for TOA es-
timation, and 0.01 rad standard deviation for angle estimation
(both DOA and DOD, azimuth and elevation). In terms of
prior information, the UE has location standard deviation of
3.2 meters (only in the horizontal plane, perfect knowledge of
the vertical coordinate), while the VA 1, 2, 3 have location
standard deviation of 10 meters (also in the horizontal plane),
except for the VA 4 at location [0, 80, 5] m, for which no prior
information is available. We set Sn < miny ., Sl]?m, needed for
the data association (13).

%Note that the hybrid FIM characterizes the achievable performance for a
deterministic estimation problem, where the unknown parameter ¢ is fixed,
and the estimator uses those two sources of information. It is not a Bayesian
FIM, which represents the average achievable performance for the ensemble
of cases where the parameter values are drawn from the distribution of the
prior and the estimator exploits the knowledge of this distribution.

T T T
—8—LOS + NLOS + unknown bias
—8—LOS + NLOS + known bias
] === NLOS + unknown bias
‘\ — &= NLOS + known bias
\ ——LOS + NLOS + unknown bias + map
\ —%—LOS + NLOS + known bias + map

=== NLOS + unknown bias + map
" === NLOS + known bias+ map

PEB [m]

(=)
o

k. kel . Lot ) ;

0 2 4 6 8 10 12
Number of NLOS paths
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the UE orientation, while dashed lines correspond to perfect knowledge of
the UE orientation.
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the theoretical performance bounds.

B. FIM Analysis

We have studied the identifiability of the positioning prob-
lem by considering the scenario above and adding additional
virtual anchors (randomly placed). From the inverse of the
FIM J(n), we can derive several quantities of interest, includ-
ing the position error bound (PEB), the orientation error bound
(OEB), the bias error bound (BEB), and the VA error bound
(VAEB), which are lower bounds on the achievable accuracy
of the position of the UE, the orientation of the UE, the clock
bias of the UE, and the VA position, respectively. The PEB
is shown as function of the number of NLOS path in Fig. 4.
We observe a number of interesting facts. In all cases, having
more paths is beneficial. The best performance is achieved
when the both LOS and NLOS paths are available, and when
the clock bias and VA positions are known (referred to as
“map”), while the worst performance is achieved when only
NLOS paths are available, and neither the clock bias nor the
VA positions are known. Provided enough paths are available,
the system state is always identifiable in spite of the fact that
the UE has not a synchronized clock. With an unknown clock
bias, one NLOS path is needed when LOS is present. When
LOS is not present, at least three NLOS paths are needed, or
only two in case map information is available (i.e., the position
of the VAs). These results are corroborated by Fig. 5, which
clearly confirms that the clock bias can be estimated even
with one-way transmission as long as the scenario provides

enough diversity in terms of NLOS paths. In the absence of
map information, the PEB for the scenario from Fig. 1 ranges
from 2.5 m (NLOS only, unknown bias), over 1 m (LOS and
NLOS, unknown bias), to 40 cm (LOS and NLOS, known
bias); and the BEB ranges from 2 m (NLOS only, unknown
bias) to 0.5 m (LOS and NLOS, unknown bias), while the
availability of map information reduces the bounds in one
order of magnitude or more.

C. Data Association

Once channel parameter estimates are available, the expec-
tation in (15) is computed using Monte Carlo integration with
1000 samples. We evaluate the data association performance
in terms of the data association error probability (i.e., the
probability that a measurement is incorrectly assigned) as a
function of the a priori uncertainty in the clock bias. The
optimization problem (16a) is solved using the Kuhn-Munkres
algorithm, which has complexity O(L?). Uncertainty in the
clock bias and UE orientation affects the TOA measurements
and azimuth DOA measurements, respectively. We investigate
the impact on the data association when these measurements
are included or not in the computation of the data association
likelihood. Fig. 6 shows the corresponding results. When the
clock bias is known well (i.e., less than 1 meter uncertainty)
it is beneficial to include the TOA measurements. However,
when the clock bias is highly uncertain, the best performance



is achieved when both TOA and azimuth DOA measurements
are ignored. In conclusion, channel parameters that relate to
highly uncertain parameters should be avoided during data
association.

D. Localization Performance

We study the localization performance after (perfect) data
association, using the algorithm described in Section III-D, in
four different cases: the prior for the bias B is informative
(standard deviation 0.1 m) or uninformative (standard devi-
ation 100 m); the prior for the orientation ayg is informa-
tive (standard deviation 0.01 rad) or uninformative (standard
deviation 7/2). We use 100 samples for approximating the
posterior distributions and perform 10 iterations of message
passing. After 200 Monte Carlo runs, we evaluate the root
mean squared error (RMSE) of the UE position, the UE bias,
the UE orientation, and the VA location, as a function of the
iteration index. The results are shown in Fig. 7, including
the hybrid bounds derived from (24) (horizontal lines). We
observe that in all cases, the algorithm can operate close
to the bound and converges after 2 or 3 iterations. It is
clearly shown in Fig. 7a that knowing B is in general more
beneficial than knowing ayg, as the latter parameter can be
accurately estimated from the LOS path, while the former
cannot. Fig. 7d demonstrates that having prior information
yields better localization accuracy for VA 1-3, compared to
VA 4. The final performance under uninformative priors on
the clock bias and UE orientation is approximately 40 cm UE
error, 40 cm clock bias error (1.3 ns), 0.06 rad orientation
error, and 0.6 m (resp. 0.8 m) VA location error for VAs with
informative prior (resp. uninformative prior).

VI. CONCLUSION

5G mmWave signals have unique properties for precise
positioning of vehicles and can complement existing on-board
sensors. We remove the common assumption of synchro-
nization between vehicle and base station by proposing a
framework for joint estimation of the vehicle’s position and
heading, as well as the clock bias. The method relies on the
ability to resolve multipath components and estimate their
angles and delays, so as to build up a map of the propagation
environment. A Fisher information analysis reveals that the
LOS and only one NLOS paths are sufficient to estimate all
parameters. In case that the LOS is not present, then three
NLOS paths are needed. The performance is also evaluated
through a belief propagation method, which is able to attain
the performance bounds.
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