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Surfaces of d-wave superconductors may host a substantial density of zero-energy Andreev states. The zero-
energy flat band appears due to a topological constraint, but comes with a cost in free energy. We have recently
found that an adjustment of the surface states can drive a phase transition into a phase with finite superflow that
breaks time-reversal symmetry and translational symmetry along the surface. The associated Doppler shifts of
Andreev states to finite energies lower the free energy. Direct experimental verification of such a phase is still
technically difficult and controversial, however. To aid further experimental efforts, we use the quasiclassical
theory of superconductivity to investigate how the realization and the observability of such a phase are influenced
by sample geometry and surface ruggedness. Phase diagrams are produced for relevant geometric parameters. In
particular, critical sizes and shapes are identified, providing quantitative guidelines for sample fabrication in the
experimental hunt for symmetry-breaking phases.
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I. INTRODUCTION

Quasiparticle scattering at interfaces and inhomogeneities
of unconventional superconductors leads to pair breaking and
the formation of Andreev states [1–3]. In a d-wave supercon-
ductor, these states form a spin-degenerate flat band at zero
energy (midgap) that influences tunneling properties, leading
to, e.g., zero-bias conductance peaks [4–7]. Furthermore, the
Andreev states are bound within a few coherence lengths
of the scattering centers, and might influence the supercon-
ducting state as a whole in mesoscopic systems [8]. The flat
band of zero-energy states is enforced by topology [9], but
costs free energy. There are several suggested mechanisms for
shifting the states away from the Fermi energy, and thereby
lowering the free energy in a phase transition where time-
reversal (T ) and possibly more symmetries are broken. In one
scenario, a subdominant attractive pairing channel is assumed
to exist [5,10–12], for instance, s wave. At a temperature
T ∗

s , which depends on the interaction strength in the sub-
dominant channel, it then becomes energetically favorable to
form a composite order parameter �d ± i�s, which breaks
T symmetry and places the Andreev states at ±�s. In a
second scenario [13,14], the repulsive Coulomb interaction
in the system may lead to a spin split of the Andreev states,
thereby introducing a magnetic transition at a temperature T ∗

m.
In a third scenario there are no additional interaction terms
in the Hamiltonian. Instead, the appearance of spontaneous
superflow sustains Doppler shifts (ε → ε − vF · ps, where vF

is the Fermi velocity and ps is the superfluid momentum) of
the Andreev states to finite energies. This was first shown
to be possible at translationally invariant surfaces [15–18].
In this case, the transition temperature T ∗ ∼ (ξ0/λ)Tc � Tc,
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where Tc is the superconducting transition temperature of the
d-wave superconductor, is very low due to the unfavorable
ratio between the superconducting coherence length ξ0 and
the penetration depth λ, which appears as a parameter when
screening of the surface magnetic field is taken into account.
In a ribbon geometry [19–23], Andreev states at the two op-
posite edges interact and hybridize, which provides additional
energy shifts that enhance the transition temperature to T ∗ ∼
(ξ0/D)Tc, where the ribbon width D satisfies ξ0 < D � λ.
Recently [24–26], we have shown that allowing also a break-
down of translational invariance, a single surface will sustain
a superflow profile with a texture (see Fig. 1). The texture
involves parts with counterdirected superflow that enables a
restricted length scale of the order of the coherence length
scale for the backflow in the bulk. The associated magnetic
flux is then restricted to the coherence length scale, in contrast
to the penetration depth scale in the translational invariant
case. A high transition temperature, T ∗ ∼ 0.18Tc, can be
achieved for the ideal case of a maximally pair-breaking
specular surface of a clean d-wave superconductor. This T ∗ is
relatively high, making this scenario very competitive, as long
as T ∗ > {T ∗

s , T ∗
m}, which depends on the interaction strengths

in a particular superconducting material.
There are many experiments that support the claims of

symmetry-broken phases [8,27–33]. However, there are sev-
eral other experiments that report no signatures and, in partic-
ular, no direct imaging of the currents or magnetic fields that
would arise in the different scenarios [34–38]. Within the sce-
nario of spontaneous superflow with a texture, the breaking of
translational invariance leads to inhomogeneous broadening
of surface properties probed experimentally on a long length
scale compared with the coherence length. The spontaneous
currents arrange themselves as small loop currents, where
neighboring loops have opposite circulation and magnetic
field directions. Given the short length scale and the fact that
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FIG. 1. A d-wave superconducting grain at temperature T =
0.1Tc with spontaneous superflow (colors) that spontaneously breaks
translational (along individual surface segments) and time-reversal
symmetries. The Andreev states exist only at the pair-breaking edges,
which for this sample the geometry occurs along the nodal directions.
There is no superflow at surfaces along the lobe directions, since
those surfaces have no Andreev states. The inset shows the vector
field ps (superfluid momentum) with a periodic structure of topolog-
ical defects [25] in the form of edge sources and sinks.

there is no net current flow or flux, such a phase could easily
have escaped observation. Such small fluxes and flows would
be very difficult to detect unless using very local probes, e.g.,
single-spin detectors [39], scanning-tunneling spectroscopy
[40,41], nano–superconducting quantum interference devices
(SQUIDs) [42], magnetometry [43], and diamond cantilevers
[44,45].

To aid such experimental verification, we study in this
paper how the realization and observability of the translational
symmetry-breaking phase is influenced by sample geometry
and surface roughness. In addition, we suggest indirect ob-
servation by, e.g., penetration-depth measurements [46] and
nanocalorimetry [47,48].

II. METHODS

We study two-dimensional superconducting grains of vari-
ous geometries and sizes, with an anisotropic order parameter.
In particular, we consider d-wave superconductivity with a
cylindrically symmetric Fermi surface (see Fig. 1), but other
order parameters that enable surface Andreev bound states
are also of relevance (e.g., polar p-wave superconductors
[49–53]). In the present system, the angle between the sample
interface and the crystal ab axes (hence the d-wave order
parameter lobes) directly influences the spectral weight of
midgap Andreev states. The grains are assumed to be in

vacuum and equilibrium, with spin degeneracy and negligible
spin-orbit coupling. Furthermore, the grains are assumed to be
clean with perfectly specular interfaces, but effects of disorder
and diffuse scattering are discussed.

We utilize the quasiclassical theory of superconductivity
[54–60], in which the Green’s function ĝ(pF, R; z) governs
quasiparticle and pair propagation through the Eilenberger
equation

ih̄vF · ∇R ĝ +
[
τ̂3

(
z + vF · e

c
A

)
− ĥ, ĝ

]
= 0̂, (1)

with the normalization condition

ĝ2 = −π21̂. (2)

Here, pF is the quasiparticle momentum at the Fermi surface,
R the center-of-mass coordinate, z the energy, h̄ the reduced
Planck constant, vF the Fermi velocity, e the elementary
charge, c the speed of light, A the electromagnetic gauge
field, and τ̂3 the third Pauli matrix, where the hat symbol
denotes Nambu (electron-hole) space. The self-energies ĥ are
expressed in terms of the superconducting order parameter �,

ĥ =
(

0 �

�̃ 0

)
, (3)

and the quasiclassical Green’s function is described in terms
of the quasiparticle and pair propagators g and f , respectively:

ĝ =
(

g f
− f̃ g̃

)
. (4)

The tilde symbol denotes particle-hole conjugation:

α̃(pF, R; z) = α∗(−pF, R; −z∗). (5)

To solve the Eilenberger equation, the Riccati formalism is
used [61–67], in which the quasiclassical Green’s function is
parametrized in terms of two particle-hole coherence func-
tions γ (pF, R; z) and γ̃ (pF, R; z),

ĝ = − iπ

1 + γ γ̃

(
1 − γ γ̃ 2γ

2γ̃ −1 + γ γ̃

)
, (6)

yielding two Riccati equations:(
ih̄vF · ∇R + 2z + 2

e

c
vF · A

)
γ = −�̃γ 2 − �, (7)(

ih̄vF · ∇R − 2z − 2
e

c
vF · A

)
γ̃ = −�γ̃ 2 − �̃. (8)

In this paper, a pure d-wave order parameter is assumed:

�(pF, R) = �d (R)ηd (θF), (9)

ηd (θF) =
√

2 cos(2θF), (10)

where ηd is the d-wave basis function, and θF is the angle be-
tween the Fermi momentum and the crystal â axis. The order
parameter is solved self-consistently from the gap equation
with the Matsubara technique:

�d (R) = λd NFkBT
∑

|εm|��c

∫
dθF

2π
η∗

d (θF) f (pF, R; iεm), (11)
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where λd is the pairing interaction, kB the Boltzmann constant,
εm the Matsubara energy, �c a cutoff energy, and NF the
normal-state density of states at the Fermi surface (per spin).

We are using an electromagnetic gauge where the vector
potential due to an external magnetic field directed perpendic-
ular to the superconducting plane is given by

Aext (R) = 1
2 Bext × R. (12)

The total vector potential should also include the induced field
Bind(R) generated by the currents in our grain, computable
through the Maxwell equations. However, for the type-II
superconductors that we are considering, the back-coupling
can safely be neglected, as we have discussed in more detail
in Refs. [24,25,68,69].

This theoretical formalism is implemented numerically to
run on graphics processing units, where the above equa-
tions of motion are solved in parallel over different de-
grees of freedom, until self-consistency is achieved (see
Refs. [24,25,68,69] for more details). Finally, various quan-
tities are calculated, e.g., the gauge-invariant superfluid mo-
mentum ps which we have identified [25] as the order param-
eter of the symmetry-broken phase

ps(R) = h̄

2
∇χ (R) − e

c
A(R), (13)

where χ is the superconducting phase. The local density of
states (DOS) at energy ε is calculated as a Fermi-surface
average

N (R; ε) = −NF

π

∫
dθF

2π
Im[g(pF, R; ε + iδ)], (14)

where δ → 0+ guarantees a retarded Green’s function. The
current density is calculated according to

j(R) = 2πeNFkBT
∑
εm

∫
dθF

2π
vFg(pF, R; iεm). (15)

In the absence of impurity scattering, the free-energy differ-
ence between the superconducting and the normal state, at
temperature T , may be calculated as [54]

�(T ) =
∫

dR

{
B2(R)

8π
+ |�(R)|2NF ln

T

Tc

+2πNFkBT
∑
εm>0

[ |�(R)|2
εm

+ iI (R, εm)

]}
, (16)

I (R) =
∫

dθF

2π
[�̃(pF, R)γ (pF, R; iεm)

−�(pF, R)γ̃ (pF, R; iεm)], (17)

where B is the induced magnetic field and Tc the supercon-
ducting transition temperature. The heat capacity is obtained
from the free energy according to

C(T ) = −T
∂2�(T )

∂T 2
. (18)

III. RESULTS AND DISCUSSION

We start by varying the angle between the interface and the
crystal â axis (Sec. III A), thus controlling the pair-breaking

FIG. 2. The surface density of states averaged over one side
of a 60ξ0 × 60ξ0 square grain with Im z = δ = 0.02kBTc. Different
curves correspond to different values of θ , as indicated by colors.
(a) Above the transition, the peak is narrow (note the logarithmic
scale on the ordinate). The steps at ε ≈ 1kBTc ≈ �0/2 come from
the features in the DOS at the square corners, with �0 ≈ 2.14kBTc

being the bulk gap. (b, c) As the temperature is lowered, the midgap
states are broadened due to the presence of spontaneous superflow.

effect. We then vary the area of the grain to study finite-size
effects (Sec. III B). Critical angles and areas are identified.
These results are used to analyze superconducting grains of
various shapes and different degrees of surface roughness
(Sec. III C). We limit ourselves to mesoscopic roughness (see
below), and we consider clean superconductors.

A. Critical interface angle

As the angle θ between a specular d-wave interface and
the crystal â axis is varied from perfectly aligned (θ = 0◦)
to perfectly misaligned (θ = 45◦), the surface DOS changes
from the typical gapless bulk DOS to one with a large zero-
energy peak, as illustrated in Fig. 2(a). The states in the peak
come from quasiparticles that scatter between directions with
a sign change in the order parameter. These midgap states
(MGSs) are thus enforced by the order parameter symmetry
and associated with a significant increase in free energy and
also a suppression of the order parameter at the interface.
As the temperature is lowered, there is a phase transition at
T ∗ where superflow appears spontaneously. The energy is
lowered by Doppler shifting the zero-energy states to finite
energies, as seen in Fig. 2(b). The magnitude of superflow, the
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FIG. 3. (a)–(c) Free-energy difference between phases with and
without spontaneous superflow, and (d)–(f) sample-averaged magni-
tude of the spontaneous superfluid momentum. These quantities are
plotted versus the angle θ between the grain edges and the crystal
â axis in a square grain with area A = (60ξ0)2, as illustrated in the
inset in (a). Here, the units are �0 ≡ ANFk2

BT 2
c and p0 ≡ 2πkBTc/vF.

Note the varying scales in (a)–(c).

ps field seen in Fig. 1, increases as the temperature is lowered
[25], as does then the Doppler shift and the energy gain as
well, as seen by comparing Figs. 2(b) and 2(c). Figures 3(a)–
3(c) show the free-energy gain �� versus θ , defined as

�� = �S − �ms, (19)

where �S and �ms are the free energies of the systems with
and without spontaneous superflow, respectively. The latter
might exhibit a higher free energy and is therefore referred
to as a metastable state (ms). Figures 3(d)–3(f) show the
sample-averaged magnitude of the superfluid momentum p̄s

versus θ , defined as

p̄s = 1

A

∫
dR|ps(R)|, (20)

where A is the sample area. From these figures, it is possible
to identify a lowering of the free energy with ps �= 0. A critical
phase transition temperature T ∗(θ ), defined as the temperature
where p̄s becomes finite, is plotted in a phase diagram in
Fig. 4. Error bars originate from the uncertainty due to the
discrete angular resolution. The transition temperature T ∗
closely follows the spectral weight of the MGS peak, which
can be controlled by various parameters such as surface
roughness or, as in this case, by the interface orientation
θ . This can be shown from a very general argument as
follows. The gain in free energy due to a small shift of
zero-energy states with narrow DOS NMGS(ε) = Nbsδ(ε) by

FIG. 4. Phase diagram showing the transition temperature T ∗ of
the symmetry-broken phase, as a function of the angle θ between
a vacuum-superconductor interface and the d-wave crystal â -axis,
in a grain of area A = (60ξ0 )2 (see inset). Error bars denote the
uncertainty due to the discrete angular resolution. T ∗(θ ) is roughly
described by the angular dependence of the MGS peak NMGS, de-
noted F (θ ) (dashed line), defined in Eq. (27).

�ε (e.g., ∝ vF · ps Doppler shift) is [70]

�Fb(T ) = −
∫ ∞

−∞
dε kBT ln

(
2 cosh

ε

2kBT

)

× [Nbsδ(ε − �ε) − Nbsδ(ε)], (21)

which for �ε � kBT reduces to

�Fb(T ) ≈ −Nbs
(�ε)2

8kBT
. (22)

The same spectral shift of the continuum states, however,
increases energy, also ∝ (�ε)2 (e.g., superflow energy ∝ p2

s )
as �Fc(T ) = A(T )(�ε)2, where the parameter A(T ) depends
on the mechanism of the energy increase, and in principle
should take into account the reduction of continuum states by
Nbs. The instability occurs when their sum is negative:

�Fb(T ∗) + �Fc(T ∗) � 0

⇒ T ∗ ≈ const
Nbs

A(T ∗)
.

(23)

Assuming that A(T ) is relatively insensitive to temperature
and to the transfer of spectral weight to bound states, the main
effect on the transition temperature is from varying Nbs:

T ∗ = const × Nbs . (24)

This argument can be further adjusted for broadening of the
bound states by impurities, for example, and corrected for the
continuum reduction δT ∗ ∝ O(N2

bs). For the θ rotation of the
crystal axes we can estimate the height of the bound-state peak
Nbs analytically. Neglecting the order parameter suppression,
the low-energy Green’s function at the surface is (|z = ε +
iδ| � |�in,out|)

g(z) = π

z

2|�in�out|
|�in| + |�out|�(−�in�out ), (25)

where � is the Heaviside function, and �in/out =
�(θF), �(π − θF) are the order parameters for incoming
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and outgoing trajectories, respectively. Averaging the DOS
over the Fermi surface, as in Eq. (14), we get

NMGS(ε, θ ) = −2NF Im
�0

ε + iδ

2

π
F (θ ), (26)

⇒ Nbs ∝ F (θ ) ≡ 1 − cos2 2θ

sin 2θ
ln

(
1 + tan θ

1 − tan θ

)
, (27)

where �0 is the bulk gap amplitude. Scaling of transition
temperature by the zero-energy spectral weight F (θ ) is shown
by the dashed line in Fig. 4. It shows a very close relation with
the full numerical result, given the roughness of our estimate.

The phase diagram in Fig. 4 shows that there is robustness
of the symmetry-broken phase against surface disorder at
d-wave interfaces, and that even completely circular inter-
faces will host the phase as long as the radius of curvature
is large enough, as seen in, e.g., Fig. 1.

B. Critical grain area

The spectral weight of zero-energy states is peaked at the
interface, but extends almost 10ξ0 away from it. Square grains
with side lengths smaller than 20ξ0 therefore exhibit pro-
nounced finite-size effects, e.g., suppressed superconductivity
and a reduced Tc, due to overlapping regions of MGS. In larger
systems, the MGS from different interfaces will no longer
overlap except in the corners. Quantities which are directly
tied to the MGS, e.g., |ps(R)| and j, are therefore expected to
show a saturation for larger grain sizes.

We now quantify how the side length L of a square grain
with maximally pair-breaking interfaces (θ = 45◦) influences
the transition temperature T ∗, the heat capacity jump, as well
as the average current magnitude of the symmetry-broken
phase. Since the phase under investigation is a second-order
phase transition, the transition temperature is appropriately
extracted from where there is a discontinuity in the heat capac-
ity [25]. Figure 5(a) shows T ∗(L) with and without an external
magnetic field (circles and squares, respectively, left axis),
and Tc(L) of the grain (thick dashed line, right axis). Here
and in the following, the external magnetic field corresponds
to half a flux quantum spread across the grain area, Bext =
�0/2L2, where �0 ≡ hc/2|e| is the unit of flux quantum.
The deviation from Tc(L) = T bulk

c indicates finite-size effects.
Hence, T ∗ decreases with L due to superconductivity being
suppressed in the grain. The suppression is stronger with an
external field as the resulting screening currents also suppress
superconductivity. As the side length increases, the regions
of MGSs no longer overlap and saturate to fixed sizes and
shapes. The transition temperature therefore also saturates to
a fixed value. Figure 5(b) shows how the sample-average heat-
capacity jump changes with the side length (with and without
external field), while Fig. 5(c) shows the sample-averaged
magnitude of the current, defined as

j̄ = 1

A

∫
dR|j(R)|. (28)

The heat-capacity jump in the bulk normal-superconducting
phase transition is given by

�Cd = 2α

3
Ak2

BTcNF, (29)

FIG. 5. Effect of sample size L × L with maximal pair-breaking
edges (see inset) on (a) the transition temperature into the sponta-
neous superflow phase (circles and squares, left axis) and the su-
perconducting transition temperature of the grain (dashed line, right
axis), (b) the heat capacity jump of the spontaneous superflow phase
transition, and (c) the sample-averaged current magnitude at T =
0.1Tc. Error bars denote uncertainty due to (a) discrete resolution in
temperature and (b) numerical uncertainty in the heat capacity.

where α = 8π2/[7ζ (3)] and ζ is the Riemann zeta function.
Again, finite-size effects can be seen in Figs. 5(b) and 5(c)
due to suppression of superconductivity at smaller L. Fur-
thermore, since the superfluid momentum is directly tied to
the MGS, both ps and j saturate to fixed profiles at larger L.
Sample-averaged quantities, e.g., j̄ and (CS − Cms)/�Cd, thus
scale as L−1, as evident by the fit. The fit breaks down at the
onset of finite-size effects, resulting in a maximum at a finite
L = Lc ≈ 30ξ0.

These results imply that the observability of the phase
through sample-averaged observables is maximized at a finite
side length. This ratio will depend on the shape of the sam-
ple, and in particular the angles of the interfaces. Therefore,
for, e.g., thermodynamic experiments aiming to verify the
symmetry-broken phases, it might be advisable to fabricate
thin rectangular grains or square grains of side lengths ∼30ξ0,
for example, depending on the type of experiment. On the
other hand, if the goal is instead to avoid this phase, very small
grains with L < Lc are advisable.

C. Surface roughness

With the quantitative knowledge about how the size and the
angle of the pair-breaking interfaces influence the symmetry-
broken phase, we now qualitatively study the effect of surface
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FIG. 6. (a) Mesoscopic surface roughness, where the disorder
is on the coherence length scale or larger. The roughness is mod-
eled as mesoscopic facets that scatter incoming quasiparticle states
specularly. (b) In contrast, atomic surface roughness, where the
disorder is on the atomic scale, i.e., generally much smaller than
the superconducting coherence length, leads to diffuse scattering
of any incoming quasiparticle state. This type of roughness is not
considered in this work.

roughness. There are two well-defined regimes of surface
roughness, here referred to as mesoscopic roughness (or
ruggedness) and atomic surface roughness, as illustrated in
Fig. 6.

Mesoscopic surface roughness refers to interfaces with a
disorder that is on the order of the superconducting coher-
ence length ξ0 or larger, i.e., mesoscopic facets that scatter
specularly. For high-temperature superconductors the coher-
ence length is very short and this kind of ruggedness in-
stead of atomic scale roughness can be a relevant regime.
Figure 7 shows spontaneous magnetic fields caused by spon-
taneous superflow in square grains with side lengths of 150ξ0

[Figs. 7(a)–7(d)] and 60ξ0 [Figs. 7(e)–7(h)], with varying
degrees of mesoscopic roughness. It is seen that, despite
a rugged surface profile, the spontaneous superflow might
appear. The two key prerequisites are that the facet angle with
respect to the crystal â axis must lie within the critical angle
quantified in Fig. 4, and that the area around the facet is large
enough to accommodate the superfluid momentum profile.
These findings illustrate that the symmetry-broken phase is
relatively robust against mesoscopic roughness.

Atomic surface roughness, on the other hand, refers to
surfaces that have a disorder that is on the atomic length
scale, e.g., the Bohr radius a0 or the Fermi wavelength λF,
which are both generally smaller than the superconducting
coherence length. This disorder will lead to diffuse scattering
of any incoming quasiparticle state, with a finite probability
of backscattering. Hence, while a clean pair-breaking d-wave
interface will induce a sign change for most quasiparticle
scattering trajectories, diffusivity will severely reduce the
number of such trajectories and thus also the spectral weight
of midgap states. The inclusion of diffuse surface scattering
is beyond the scope of this paper, but we note that it was
previously shown that the symmetry-broken phase in ribbons
persisted up to roughly 80% diffusivity [21]. For polar p-wave
superconductors with the nodal direction along the interface,
the order-parameter sign change accompanies all scattering
trajectories independent of conservation of p‖ (in contrast
to d-wave superconductors). The zero-energy states in such
a p-wave superconductor will thus be completely robust
against surface diffusivity and backscattering, as was shown
in Refs. [53,71]. However, since the sign change in the order
parameter in that case comes from reflected trajectories, the
robustness might be lost at interfaces with finite transmission
into other systems, e.g., in junctions [3]. In summary, the
crucial factor for the phase to appear is a significant spectral
weight of midgap states caused by sign-changing quasiparticle
scattering trajectories.

IV. SUMMARY AND CONCLUSIONS

The goal of this paper has been to provide a more com-
plete picture of spontaneous symmetry breaking tied to zero-
energy Andreev states, and to discuss experimental conditions
where such phases can be observed. As an example, we have

FIG. 7. D-wave grains with side lengths (a)–(d) 150ξ0 and (e)–(h) 60ξ0, and with different degrees of mesoscopic surface roughness (gray
boundaries) of the type introduced in Fig. 6(a). Colors indicate the magnitude of magnetic fields induced by spontaneous currents, with a
maximum and minimum flux density of roughly ±10−5�0/ξ

2
0 , where �0 ≡ hc/2|e| is the magnetic flux quantum.
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considered a particular phase with a spontaneous superfluid
momentum due to pair-breaking interfaces in unconventional
d-wave superconductors [24–26]. However, the results and
the analysis presented in this paper can be extended to other
phases and systems that host surface Andreev states, e.g.,
p-wave superconductors [49–53].

In particular, we have studied how the realization of such
phases is influenced by suppressing the spectral weight of
the midgap states (via changing the angle θ between the
pair-breaking interface and the d-wave crystal â axis), by the
side length L of the grain, as well as by surface roughness.

It was found that the transition temperature T ∗(θ ) into
the symmetry-broken phase follows the angular dependence
of the zero-energy state peak NMGS(θ ), showing robustness
against variations in θ , even appearing at completely circular
interfaces.

Furthermore, it was found that the sample-averaged ob-
servables (e.g., the heat-capacity jump in the phase transition)
scale as L−1, down to a critical side length L = Lc. At this
side length, superconductivity starts becoming suppressed.
Hence, sample-averaged observables are generally maximized
at Lc. The critical side length depends on the shape of
the sample; e.g., it was found that Lc ≈ 30ξ0 for a square
grain.

With the above quantitative knowledge about how the
shape and the size of the grain influence the symmetry-broken
phases, grains with different degrees of mesoscopic surface
roughness were analyzed. The conclusion was that any pair-
breaking interface can generate spontaneous superflow, as
long as the interface is within the critical angle and there
is enough area around the interface to form the associated
spontaneous currents. Finally, we discussed atomic surface
roughness, referring to interfaces with diffuse quasiparti-
cle scattering. Due to the results of Refs. [21,53,71], the
translational symmetry-breaking phase is expected to survive
considerable atomic surface roughness, but more research is
required.

We have seen that any effect that reduces the spectral
weight of zero-energy states may impede the realization of
the symmetry-broken phases and the formation of the sponta-
neous superfluid momentum with associated magnetic flux.
In the same way, broadening of the Andreev state peak in
the density of states can also be detrimental. Broadening can
be due to impurity scattering [72], and will also be induced
when the edge is contacted by, for instance, a metal probe

with a finite transparency T at the interface. For impurities
the broadening � is set by the impurity strength and density
of impurities, while the interface to a metal contact gives a
broadening of order �dT (see, e.g., the review in Ref. [3]).
When the broadening becomes of the same order of magnitude
as the Doppler shifts, i.e., when � ∼ kBT ∗, the broken sym-
metry phase might not be energetically favorable anymore.

In conclusion, the advice to experimentalists aiming to
study these phases is therefore to use systems with a max-
imized spectral weight of zero-energy Andreev states, with
minimal interference from effects that broaden these states
(e.g., atomic-scale surface roughness, impurities, and strong
external fields). For measurements of sample-averaged (e.g.,
thermodynamic) quantities, it is desirable to maximize the
pair-breaking surface-to-volume ratio, as long as the volume
does not become so small that superconductivity is severely
suppressed. Thus, a specific suggestion would be to use heavy
ion bombardment to induce well-defined pair-breaking chan-
nels [46]. Another suggestion would be to deposit on a sub-
strate a large array of rectangular or square-shaped thin-film
d-wave grains with maximally pair-breaking edges, where
the smallest side length is L = Lc ≈ 30ξ0, and then look for
either a heat-capacity jump at T = T ∗ with nanocalorimetry
[47], or the mesoscopic currents and flux that we previously
reported on [24–26] with local probes, e.g., single-spin de-
tectors [39], scanning-tunneling spectroscopy [40,41], nano-
SQUIDS [42], magnetometry [43], and diamond cantilevers
[44,45].

There are still open questions regarding the survival of
these symmetry-breaking phases at semitransparent or trans-
parent interfaces, and how they are influenced by quantum-
size effects using fully microscopic theories [73–80]. Fur-
thermore, it would be interesting to see how the translational
symmetry-breaking phase survives diffuse surface scattering
[21,53], impurity effects [72], and in p-wave systems [49–53].
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