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ARTICLE

A consensus S. cerevisiae metabolic model Yeast8
and its ecosystem for comprehensively probing
cellular metabolism
Hongzhong Lu1,5, Feiran Li1,5, Benjamín J. Sánchez1, Zhengming Zhu1,2, Gang Li 1, Iván Domenzain 1,

Simonas Marcišauskas 1, Petre Mihail Anton 1, Dimitra Lappa 1, Christian Lieven 3,

Moritz Emanuel Beber 3, Nikolaus Sonnenschein3, Eduard J. Kerkhoven 1 & Jens Nielsen 1,3,4

Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a

platform for model simulations and integrative analysis of omics data. This study introduces

Yeast8 and an associated ecosystem of models that represent a comprehensive computa-

tional resource for performing simulations of the metabolism of Saccharomyces cerevisiae––an

important model organism and widely used cell-factory. Yeast8 tracks community develop-

ment with version control, setting a standard for how GEMs can be continuously updated in a

simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and

coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains.

Through integration with enzyme constraints (ecYeast8) and protein 3D structures

(proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale

level, enabling prediction of how single nucleotide variations translate to phenotypic traits.
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In the era of big data, computational models are instrumental
for turning different sources of data into valuable knowledge
for e.g. biomedical1,2 or industrial use3. As a bottom-up sys-

tems biology tool, genome scale metabolic models (GEMs) con-
nect genes, proteins and reactions, enabling metabolic and
phenotypic predictions based on specified constraints4,5. The
quality and scope of GEMs have improved as demonstrated by
the models for human6, yeast7, and E. coli8. With their thousands
of reactions, genes and proteins, GEMs also represent valuable
organism-specific databases. Therefore, it is important to keep
track of changes as new knowledge is added to GEMs, in order to
make model development recorded, repeatable, free and open to
the community. Approaches to record updates of a GEM exist for
this purpose9,10, albeit with some limitations on their simplicity
and flexibility.

S. cerevisiae is a widely used cell factory11,12 and is extensively
used as a model organism in basic biological and medical
research13,14. Recently, the emergence of technologies, such as
CRISPR15 and single cell omics data generation16, have acceler-
ated the developments in systems biology. Consistent with strong
research interests in yeast, the relevant GEMs have also under-
gone numerous rounds of curation since the first published ver-
sion in 200317. These GEMs have contributed significantly to
systems biology studies of yeast including their use as platforms
for multi-omics integration18,19, and use for in silico strain
design20,21. However, the hitherto latest version, Yeast722, with
only 909 genes, falling behind the latest genome annotation,
presents a bottleneck for the use of yeast GEMs as a scaffold for
integrating omics datasets.

Metabolism is complex and regulated at several different
levels23,24. Traditional GEMs only consist of reactions and their
related gene and protein identifiers, and therefore cannot accu-
rately predict cellular phenotypes under varied environmental
conditions other than nutritional conditions, e.g. simulating the
impact of temperature on growth rates25. Recently, enzyme
constraints26 and protein 3D structures27 have been integrated
into GEMs, thereby expanding their scope of application and
laying the foundation for whole cell modelling. GEMs constrained
with kcat values and enzyme abundances have been able to
directly integrate proteomics data and correctly predict cellular
phenotypes under conditions of stress26. GEMs with protein 3D
structures connect the structure-related parameters and genetic
variation27 with cellular metabolism6, thus enlarging the predic-
tion scope of GEMs. However, it remains challenging to directly
predict cellular metabolism based on changes in protein
sequences with current GEMs. Advanced functional mutation
cluster analysis constrained with protein 3D structures is there-
fore needed to integrate knowledge on protein structures
into GEMs.

This study presents Yeast8, the latest release of the consensus
GEM of S. cerevisiae22,28–30. We also introduce a model ecosys-
tem around this GEM, including ecYeast8, a model incorporating
enzyme constraints; panYeast8 and coreYeast8, representing the
pan and core metabolic networks of 1011 S. cerevisiae strains; and
proYeast8DB, a database containing 3D structures of metabolic
proteins. This model ecosystem has the ability to meet wide
application demands from the large scientific yeast community in
systems and synthetic biology of yeast.

Yeast8 is a consensus GEM maintained in an open and
version-controlled way. Through ecYeast8 and proYeast8DB,
multiple parameters related to protein kinetics and 3D structures
could be integrated based on gene–protein-reaction relations.
Furthermore, with panYeast8 and coreYeast8, 1011 strain-specific
GEMs were reconstructed and compared. Thus, with Yeast8 and
its model ecosystem, we demonstrate that the metabolism of yeast
can be characterised and explored in a systematic way.

Results
Recording community developments of yeast GEMs with
GitHub. We devised a general pipeline to record updates to the
model using Git (https://git-scm.com/), a version control system,
and GitHub (https://github.com/), a hosting service for Git
repositories (Fig. 1a and Supplementary Fig. 1). Hereby, we
record everything related to updates of the GEM, including
datasets, scripts, corrections and each released version of the
GEM (Supplementary Fig. 1). This Git version-controlled model
enables open and parallel collaboration for a wide community of
scientists. With Git and GitHub, each version of the yeast GEM
can be released periodically, which helps to promote the simul-
taneous development of a model ecosystem around yeast GEM
(Fig. 1b).

Increasing the scope of the yeast metabolic network. We sys-
tematically improved the yeast GEM while moving from Yeast7
to Yeast8 through several rounds of updates (Fig. 1c and Sup-
plementary Fig. 2). To improve the genome coverage, we added
additional genes from iSce92631. Besides, all functional gene
annotations of S. cerevisiae from SGD32, BioCyc33, Reactome34,
KEGG35 and UniProt36 were collected and compared (Supple-
mentary Fig. 3) to update gene–protein-reaction relations (GPRs),
as well as adding more GPRs. With Biolog experiments, i.e.
evaluation of growth on a range of different carbon and nitrogen
sources (Supplementary Data 1), and metabolomics mapping (see
methods), extra reactions were added to enable the model to
ensure growth on the related substrates, as well as connecting
those metabolites with high confidence with the GEM. The bio-
mass equation was modified by adding nine trace metal ions and
eight cofactors. Additionally, 37 transport reactions were added in
order to eliminate 45 dead-end metabolites. To improve lipid
constraints, we reformulated reactions of lipid metabolism using
the SLIMEr formalism, which Splits Lipids Into Measurable
Entities37. As SLIMEr imposes additional constraints on both the
lipid classes and the acyl chain distribution from metabolomics
data, it improved the model performances in lipid metabolism.

In each round of model updates, standard quality-control tests,
such as reaction mass balance check and ATP yield analysis, were
performed. The results in Supplementary Fig. 2 and Supplemen-
tary Fig. 4 indicate that the gene (reaction) coverage in the model
and its performance were improved during the iterative update
process, which was also shown by comparing Yeast8 to Yeast7
(Fig. 1d–f). To facilitate the multi-omics integrative analysis and
visualisation, we established a map of yeast metabolic pathways in
SBGN (System Biology Graphical Notation) format (Supplemen-
tary Fig. 5) using CellDesigner38.

Expanding Yeast8 to enable enzyme constraints. To enhance
model prediction capabilities of Yeast8, ecYeast8 was generated
by accounting for enzyme constraints using the GECKO frame-
work26 (Fig. 1b, Supplementary Table 1). In enzyme-constrained
models, metabolic rates are constrained by the intracellular
concentration of the corresponding enzyme multiplied by its
turnover number (kcat value) to ensure that fluxes are kept at
physiologically possible levels. Compared with Yeast8, ecYeast8
has a large reduction in flux variability for most of the metabolic
reactions in both glucose-limited and glucose-excess conditions
(Fig. 2a).

To further evaluate the predictive strength of ecYeast8, we
compared the predicted maximum growth rate to that obtained
from experiments in which we cultivated yeast (strain S288c) on
322 different combinations of carbon and nitrogen sources using
microtiter plates (Fig. 2c). Here, the measured maximum specific
growth rate for each carbon source under all nitrogen sources was
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scaled based on the growth on ammonia as a reference, with
results displaying that the mean error for the predicted and scaled
measured cell growth rate in ecYeast8 was 41.9%, which is
significantly lower than using Yeast8 and traditional flux balance
analysis alone (Fig. 2d–f). With ecYeast8, it is also possible to
estimate flux control coefficients (FCC) of enzymes for growth on
different carbon sources (Fig. 2b), i.e. enzymes exerting the
majority of flux control on growth. For instance, growing on
glucose, the major flux controlling enzyme is one of the isoforms
of glyceraldehyde-3-phosphate dehydrogenase (Tdh1) whereas on
fermentative carbon sources, such as ethanol and acetate, the
majority of control is with Oli1, a key component of ATP
synthase, which has earlier been identified to be important for
respiratory metabolism in S. cerevisiae39. This type of analysis
using ecYeast8 can provide clues for in silico cell factory design26.

Generation of panYeast8 and coreYeast8. To investigate the
correlation between phenotype and genotype, we used genomics
data of 1011 S. cerevisiae strains from a recent genome-
sequencing project and designed a pipeline to reconstruct
GEMs for each strain (Supplementary Fig. 6a)40. Similar to the
CarveMe method41, a pan model for all yeast strains was firstly

reconstructed based on Yeast8 and the comprehensive pangen-
ome annotation (Supplementary Note 1). Using panYeast8 and
the gene presence matrix for the 1,011 strains42, strain-specific
GEMs (ssGEMs) could be generated automatically (Supplemen-
tary Fig. 6a). The reaction number in the models was found to be
in range from 3969 to 4013 (Fig. 3a and Supplementary Fig. 7a).

After reconstruction of the ssGEMs, we formulated coreYeast8
based on shared reactions, metabolites and genes in all the strains,
which contained 3895 reactions, 2666 metabolites and 892 genes.
Even though there were 478 variable genes, only 147 reactions
were found to be variable due to the existence of a large number
of isoenzymes, which suggested that during the evolution of yeast,
the increased number of gene copies with similar functions
increased the robustness of cellular function at the protein level.
We calculated the ratio of accessory genes (not included in the
coreYeast8) based on subsystems defined in the KEGG database
and found that the accessory genes were primarily engaged with
alternative sugar metabolism and other secondary metabolism
pathways (Supplementary Fig. 8). The number of reactions in
coreYeast8 was relatively close to Yeast8, signifying that S.
cerevisiae metabolism is well conserved among the 1011 yeast
strains. It should be noted that coreYeast8 reflects the core
metabolic functions for all S. cerevisiae strains, and can therefore
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be seen as a benchmark for reconstructing GEMs for other yeast
strains. Similar to the core E. coli GEM8, we observed that
coreYeast8 could not grow in silico in a minimal medium since it
lacks the ability to synthesise all required precursors for biomass
production (Supplementary Note 1, Supplementary Table 2). This
can be partly related to the definition of ‘core biomass
compositions’ in our model, which still hints that the ability of
particular yeast strains to grow on a minimal medium seems to be
an acquired phenotype.

Evaluation of 1011 strain-specific GEMs. Using the 1011 GEMs,
we estimated in silico substrate usage (including carbon, nitrogen
and phosphorus) as well as the yield of 26 metabolites and bio-
mass for growth on minimal media (Fig. 3b–f). From the sub-
strate usage analysis, we found that some of the domesticated
strains from the ecological origin “Industrial” had a smaller range

of substrates usage, suggesting that the domestication process
may have resulted in the loss of functions that were not routinely
used. As for the yield of biomass, it could be observed that the
yield varied greatly between strains from different ecological
origins. By comparison, the biomass yield was relatively lower for
strains with the ecological origin ‘Human’, i.e. strains that have
been isolated from humans (Fig. 3b), likely due to an adaptation
towards growth on complex media, as many building blocks are
provided by the host and the yeasts have adapted to these
conditions.

To further compare the metabolic potential of different strains,
we calculated the maximum yields of 20 amino acids and six key
precursors in a minimal medium from 1011 ssGEMs (Fig. 3f) and
the results illustrated that the gene background can have a
remarkable effect on the ranges of maximum yields of desired
products. Additionally, taken strains from ‘Industrial’ ecological
origin as an example, a considerable variation in the strains’
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capability to synthesise these amino acids was found (Fig. 3e).
Combining genotype information, model simulation and pheno-
type data40 revealed that variations in the simulated maximum
yields of amino acids are primarily due to differences in the
energy pathways used for ATP regeneration and the absence of
some essential genes in amino acid synthesis (Supplementary
Note 1). This shows that simulations with ssGEMs can be
instrumental to evaluate the potential of a strain in producing
specific chemicals, as well as enable analysis of the relation
between genotype and phenotype.

Next, we classified the strains based on the genes and reactions
contained in the 1,011 ssGEMs, as well as the in silico substrate
usage. Using PCA analysis we found that the strains could be
subdivided into several distinct groups according to the existence
of genes and reactions (Supplementary Fig. 7e, f). However,

strains from different ecological origins can be clustered together,
reflecting the high conservation in yeast metabolism. A decision
tree algorithm was further employed to classify strains based on
their substrate usage, while this initially indicated that strains
from ‘Human’ can be separated from ‘Wine’ only based on the
maximum growth rate on two substrates (lactic acid and sorbitol,
Fig. 3d). When using hierarchical cluster analysis based on the
reaction existence in ssGEMs for yeast strains from specific
ecological origins, taking ‘Human’ as an example, these strains
could be further divided into smaller groups based on the variable
reactions shared between these strains (Supplementary Fig. 7g).
The above analysis makes it clear that the model itself and the
related simulation can classify different yeast strains, which in
turn can be complementary to classical strain classifications based
on single-nucleotide polymorphism (SNP) data40.
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Characteristics of metabolism displayed with proYeast8DB.
Phenotype is not only determined by absence or presence of
genes, but also by SNPs. As SNPs occur randomly, we need a way
to test which SNPs are significant, by looking at their distribution
over the protein structure. To enable such analysis, we collected
PDB files for all the metabolic proteins in Yeast8, generating the
proYeast8DB database (Supplementary Fig. 9a and Fig. 4a). Low
quality PDB files were filtered out in order to only maintain high
quality PDB files for our following analysis (Supplementary
Note 2, Supplementary Fig. 9b–e).

To explore the potential functions of protein residue muta-
tions, all the 16,258,509 homozygous SNPs from the 1011 S.
cerevisiae genome-sequencing project40 were collected (Supple-
mentary Fig. 10a, b) and classified as synonymous SNPs (sSNPs)
and nonsynonymous SNPs (nsSNPs). The distribution and
correlation of relative values in nsSNPs and sSNPs (Supplemen-
tary Fig. 10c, d) stated clearly that there were fewer nsSNPs than
sSNPs, meaning that the variation in protein sequences was
significantly smaller than variations in nucleotide sequences. An
analysis concerning the correlation between nsSNPs in genes with
the corresponding protein abundances and number of reactions
catalyzed by the corresponding protein was further conducted
(Supplementary Fig. 10e, f). These results hinted that genes
having high protein abundance and encoding enzymes catalyzing
a large number of reactions tended to have fewer nsSNPs. From

this, it transpires that genes catalyzing abundant enzymes or
enzymes with many metabolic functions are likely to be more
conserved in evolution. In addition, enzymes with high flux
control coefficients related to the growth on different carbon
sources (Fig. 2d) had fewer nsSNPs (Supplementary Fig. 11),
which shows genes with a high impact on cell growth may be
more conserved43.

To get further insight into which parts of metabolism may be
sensitive or prone to mutations we chose the top 30 genes with
the smallest and largest number of relative nsSNPs and conducted
a GO-term analysis using DAVID 6.744 (Supplementary Table 3
and 4). Genes with the least amount of nsSNPs were enriched in
thiamin metabolic process (P value= 0.0001) and glycolysis (P
value= 0.0003), indicating that these pathways are conserved in
the evolution of S. cerevisiae. By comparison, genes with the most
nsSNPs were enriched in organic acid biosynthetic process (P
value= 0.02), carboxylic acid biosynthetic process (P value=
0.02), etc.

Following the findings mentioned above, we then mapped all
nsSNPs onto the 3D protein structures of proYeast8DB using
CLUMPS method45, which could find proteins with significant
SNP clusters within the protein structures. As an example, using
the above nsSNP data as input, we ran the CLUMPS pipeline for
three different groups of S. cerevisiae strains: Wild, Wine, and
Bioethanol strains (Fig. 4b). With a cut-off P value of 0.05,
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proteins with significant mutation enrichment from each group
of strains were identified (Fig. 4b). From the Wine group, we
found GO terms like ‘electron transport chain’ (P value= 0.018)
and ‘glutathione metabolic process’ (P value= 0.006, Supple-
mentary Table 5), with glutathione metabolism being known to
be distinct for wine yeasts, where it plays a role in anti-oxidation
of various aromatic compounds46,47.

Interestingly, we discovered that the Bioethanol group
contained four proteins (YML100W, YAR035W, YJL068C,
YMR246W) belonging to the GO term ‘cellular response to heat’
(P value= 0.041, Supplementary Table 6), among which,
YML100W is a large subunit of the trehalose 6-phosphate
synthase/phosphatase complex, which is known to contribute to
survival from acute heat stress. Two mutations were identified in
the protein encoded by YML100W, both are located in a small
cluster in the protein’s 3D structure, despite being separated by
seven residues in the primary protein sequence (Fig. 4c). The
annotation from the mutfunc database48 (http://mutfunc.com/)
suggested that mutation at site of 422 in YML100W occurred in a
conserved zone (Fig. 4c). We further wanted to know whether the
mutations in these four proteins affected the phenotype of S.
cerevisiae strains. Firstly, we classified all the strains based on
residue mutations from these four proteins (Fig. 4e). It could be
found that the relative growth rate at 42 °C was significantly
higher for strains with more than six mutations in these four
proteins than for strains that had less than two mutations.
Similarly, the relative growth rates based on mutations only from
YML100W were also analyzed, which indicated that the
contribution of the two mutations from this single protein is
smaller than over six mutations from all four proteins (Fig. 4f),
further demonstrating that the ability to grow at elevated
temperatures requires epistatic interactions of mutations in
several genes (or proteins).

Systematic analysis of ecYeast8 and proYeast8DB. To further
display the value of the yeast model ecosystem, we combined
ecYeast8 and proYeast8DB (Fig. 5a) to identify genes and their
mutations that are related to a specific phenotype. Based on
growth rate data provided in Peter et al.40 (Fig. 5b), we selected
50 strains with the highest, medium, and lowest relative growth
rate on complex medium with glycerol as the carbon source
(growth with glucose was used as reference) (Fig. 5c). We then
ran the hotspot analysis pipeline based on proYeast8DB to find
hotspot zones of proteins for each group of strains. In parallel, we
performed in silico flux control analysis to calculate FCCs for
each protein by using ecYeast8 with growth as the objective
function on the same medium. Hotspot analysis demonstrated
that each group of strains has a set of unique hotspot zones in
different proteins (Fig. 5d).

With the FCCs as filtering criteria, four proteins were identified
with relatively high FCC (>0.01) from 50 strains with highest
relative growth rate, among which YJL052W, one of the isozymes
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is
located in the key pathway related to glycerol utilisation (Fig. 5f).
When we listed all mutations of YJL052W, there exist six residue
mutations at site of 31, 73, 24, 70, 125 and 248. Interestingly, we
found four mutations at site of 24, 31, 70 and 73 were close to
each other, far away from the other two mutations at site of 125
and 248 (Fig. 5e). The mutation at position of 31 and 73 were
identified successfully using our hotspot analysis pipeline and the
remaining two mutations at position of 24 and 70 could be
filtered out according to the definition of important clusters in a
hotspot zone, which should be made up of the significant pairs of
two residues, separated by at least 20 amino acids in the original
protein sequence49. When the CLUMPS analysis was employed

for the different combinations of mutations in the above site, the
P value for mutations at site of 24, 31, 70 and 73 is 0.0247 and P
value for mutations at site of 31 and 73 is 0.0195 (Supplementary
Table 7). However, if all the six mutated positions are considered,
the P value is 0.7817. Therefore, mutations at position of 24, 31,
70 and 73 as a whole could form into a larger hotspot zone. From
the protein functional annotation36, we found that this hotspot
zone was very close to the binding site of NAD+ at site of 33
and 78.

We queried whether there were correlations between mutations
occurring in hotspot zones and the growth phenotype. From the
remaining 746 strains which were not used for the above hotspot
analysis, we found eight strains that exhibit more than one
mutation in the hotspot zone and another 15 strains having two
mutations in YJL052W, but in the non-hotspot zone. Comparing
the relative growth rate of these two groups of strains with the
remaining, we saw that the former 8 strains grows faster on
complex medium with glycerol as the carbon source than both
the latter 15 strains, as well as all other strains not containing the
mutations in hotspot zone (Fig. 5g), indicating that the mutation
that happened in the hotspot zone is possibly beneficial for cell
growth. Therefore, such an comprehensive analysis with our
model ecosystem can enable identification of the potential
mutation targets related to a specific phenotype.

Discussion
As part of this study, we have developed Yeast8 aided by version
control and open collaboration, which has provided a platform
for a continued community-driven expansion of the model. This
platform can greatly accelerate iterative updates of the model, and
we believe that this approach should become the future standard
for developing GEMs for other organisms. Yeast8 is the currently
most comprehensive reconstruction of yeast metabolism, but it
also represents a model that can be used for simulations. The
platform provided through the GitHub repository enables addi-
tion of new knowledge when it is acquired as well as using this for
further improving the model for simulations. Yeast8 is in line
with the latest trend of performing model quality-control analysis
in a standardised manner with memote50. Integrating consistent
model evaluation with community model development will be
instrumental to accelerate high quality development of GEMs.

Through developing Yeast8, we have significantly improved the
metabolic scope of the consensus GEM of S. cerevisiae. As more
evidences from experiments and bioinformatics analyses are
revealed and utilised to update GEMs, these models will move
closer to the in vivo network. Based on Yeast8, we developed
strain specific GEMs, enzyme-constrained GEMs (ecYeast8), etc.,
which together form a model ecosystem around the yeast GEM
and improve cellular phenotype predictions. As an example,
ecYeast8 verifies that the yeast phenotypes are to a large extent
determined by protein resources allocation, which is consistent
with recent research39. We expect predictions of ecYeast8 to
further improve as more organism-specific kinetic data becomes
available, hopefully generated in a high-throughput and sys-
tematic way51. By comparing panYeast8, coreYeast8 and
1,011 strain specific models, it can be concluded that metabolic
capabilities are largely conserved for all S. cerevisiae strains, which
is consistent with a recent study52. However, through strain
specific GEM simulations, we have found subtle metabolic dif-
ferences among the strains in the utilisation of substrates and the
maximum yield of 26 chemicals. Exploring these differences
constrained with more physiological data can guide future
metabolic engineering and help to evaluate the potential of any
given strain for any desired product, as well as provide clues
about the mechanisms of evolutionary adaption. Currently, only
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in silico simulations were conducted using 1011 yeast ssGEMs;
therefore, future experimental evidence for other non-reference
strains will be important to evaluate the reliability of our model
predictions.

With the increasing use of adaptive laboratory evolution in
metabolic engineering it is important to have methods for rapid
assessment of mutations in strains with improved phenotypes.
Our multi-scale model analysis will be easily applicable in this
area. As a further extension of Yeast8, we developed proYeast8DB

by collecting and evaluating the yeast metabolic protein 3D
structures from public databases53,54. This enabled identification
of mutational hotspots associated with specific phenotypes. Fur-
thermore, through combining the predicted targets from ecYeast8
and proYeast8DB, we demonstrated how to identify mutations in
enzymes with high flux control over a given pathway, which may

also be associated with desirable phenotypes. It should be noted
that although proYeast8DB is useful for connecting GEMs to
protein structure information like PDB identifiers and protein
parameters, it is still challenging to directly predict phenotypes
using the model with protein structure variations as input. High
quality 3D protein structures at genome scale are still scarce53,
thus the breakthrough in 3D proteins structure simulations55 and
the related residues functional predictions are strongly expected.
Nevertheless, like Recon3D6 and the E. coli GEM-PRO27, the
proYeast8DB holds value as a means to explore the relation
between the cell genotype and phenotype with clear evidence.

Yeast8 will continue to be developed together with its ecosys-
tem of models. As a whole, they are expected be a solid basis for
developing a whole cell model of an eukaryal cell, which may
serve as a stepping stone to a wider use of model simulations in
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life sciences, resulting in reducing the costs of developing bio-
technology processes and drug discovery.

Methods
Tracking model changes with version control. Git and GitHub were used to
develop yeast-GEM in a traceable way. Git is used to track any changes of yeast-
GEM, which are stored online in a GitHub repository (Supplementary Fig. 1). The
structure of the yeast-GEM repository on GitHub contains the following three
main directories:

(1) ComplementaryData, which contains the related database annotation and
physiological data used for yeast-GEM updates. This data is generally stored as tab-
separated value (.tsv) format for easier tracking of changes; (2)
ComplementaryScripts, which contains all the scripts used to update yeast-GEM;
(3) ModelFiles, which contains different formats of yeast-GEM for various
applications. The.txt and.yml (YAML) formats make it convenient to visualise any
changes in GitHub or Git local clients. The.xml (SBML) format makes it easy to
import the model across different toolboxes and programming languages.

As a standard step, a commit is needed when updating yeast-GEM. To make
commits easy to understand, semantic commit messages are used (Supplementary
Fig. 1c). To enable parallel model development, different branches of yeast-GEM
are used, including a ‘master’ branch and a ‘devel’ (development) branch.
Developers, and even other people from the community, can create new branches
from the development branch to introduce their changes, and then request to
merge them back through pull-requests. These changes are only merged to the
development branch, and in turn the changes in the development branch are
merged periodically to the master branch, which contains the stable releases of
the model.

General procedures used to standardise annotation of metabolites and
reactions. For the newly added reactions, their MetaNetX IDs were obtained
according to a direct search in the MetaNetX56 database using the related meta-
bolite name or EC number information. MetaNetX IDs were also obtained by
reaction ID mapping from the KEGG35, Rhea57 and BioCyc33 databases. The
reaction reversibility was corrected based on the BioCyc and BiGG databases58.
MetaNetX IDs were also used to obtain the EC number for the corresponding
reactions. As the MetaNetX database does not have the reaction name information,
the name of each new reaction was obtained based on the reaction ID mapping in
databases of KEGG, ModelSeed and BioCyc.

The compartment annotation of new reactions was refined based on
information from the UniProt36 and SGD32 databases. The subsystem annotation
was firstly obtained from KEGG35, and if no subsystems were found there,
information from BioCyc or Reactome34 was used instead. If the reaction had no
gene relations, we assumed that it occurred in the cytoplasm.

For all the metabolites contained in newly added reactions, the related
MetaNetX IDs were obtained based on the reaction MetaNetX IDs. If not available,
they were obtained by ID mapping based on KEGG IDs or ChEBI IDs. Once the
metabolite MetaNetX IDs were obtained, the charge, formula, KEGG IDs and
ChEBI IDs were obtained for the correspondent metabolite based on metabolites
annotation in MetaNetX.

Model update from Yeast7 to Yeast8. Firstly, all the annotations regarding
metabolite ChEBI IDs and KEGG IDs (Supplementary Table 8) were corrected in
the latest version of the consensus GEM of yeast (version 7.6) based on the
metabolite annotation available in KEGG and ChEBI59. Additionally, several genes
from iSce92631 that were not included in yeast 7.6 were added, as with all genes
related to metabolic processes and transport in SGD, BioCyc, Reactome, KEGG
and UniProt. The main databases used for model curation could be found in
Supplementary Table 9.

In the Biolog experiments, the strain S288c was grown on 190 carbon sources,
95 nitrogen sources, 59 phosphorus sources, and 35 sulphur sources. The result
showed that S288c could grow on 28 carbon sources, 44 nitrogen sources, 48
phosphorus sources and 19 sulphur sources. Based on these results new essential
reactions were added to make the model capable of predicting growth on the
related substrates. Meanwhile, all the metabolomics data contained in the YMDB
database (measured metabolites) and the latest metabolomics research
(Supplementary Table 10) were collected and compared with that in yeast GEM. A
standard annotation was given for all these metabolites and a pipeline was designed
to add the metabolites into the GEM without bringing any new dead-end
metabolites. Detailed procedures in model curation are available in
the Supplementary Methods.

Model validation with varied experimental data sources. To compare the
metabolites coverage, the YMDB database60 was parsed. There are 2024 metabo-
lites for yeast, among which 871 were measured in S. cerevisiae. For each meta-
bolite, ChEBI ID and KEGG ID were assigned, and based on them the
corresponding MetaNetX ID was matched. For metabolites from Yeast7 and
Yeast8, the MetaNetX ID of each metabolite was also obtained based on ID
mapping.

The in silico growth on 190 carbon sources, 95 nitrogen sources, 59 phosphorus
sources, and 35 sulphur sources were calculated and compared with phenotype
data. The results can be divided into a confusion matrix, which contains: (1) G/G:
in vivo growth/in silico growth (true positive); (2) NG/NG: in vivo no growth/in
silico no growth (true negative); (3) G/NG: in vivo growth/in silico no growth (false
negative); (4) NG/G: in vivo no growth/in silico growth (false positive);

The model quality is then evaluated based on accuracy (Eq. 1) and the
Matthews’ Correlation Coefficient (MCC)61 (Eq. 2). Accuracy ranges from 0 (worst
accuracy) to 1 (best accuracy). MCC ranges from −1 (total disagreement between
prediction and observation) to+ 1 (perfect prediction).

Accuracy ¼ TPþ TN
TPþ TNþ FTþ FN

ð1Þ

MCC ¼ TP ´TN� FP ´ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ð2Þ

To conduct gene essentiality analysis, we used the essential gene list from the
Yeast Deletion Project, available at http://www-sequence.stanford.edu/group/
yeast_deletion_project/downloads.html, which was generated from experiments
using a complete medium. Accuracy and MCC were computed as described above.

The simulated aerobic and anaerobic growth under glucose-limited and
nitrogen-limited conditions were compared with reference data62. The following
procedure was employed to simulate chemostat growth in glucose-limited
conditions. Firstly set the lower bound of glucose and O2 uptake reactions using
experimental values. Glucose and oxygen uptake fluxes are negative and therefore
the lower bounds are fixed to represent the maximum uptake rates. Secondly
maximise the growth rate.

As for nitrogen-limited conditions, since protein content in biomass drops
dramatically under nitrogen-limited conditions, the biomass composition was
rescaled according to reference conditions63, then set the lower bound as measured
for NH3 and O2 uptake reactions using experimental values and finally maximise
the growth rate.

Visualisation of Yeast8. The maps of yeast-GEM were drawn for each subsystem
using cellDesigner 4.438 (Supplementary Fig. 5). In-house R scripts were used to
produce the map of each subsystem automatically based on Yeast8. Afterwards, the
graph layout was adjusted manually in cellDesigner 4.4 to improve its quality and
the whole yeast map in SBGN format could be found in https://github.com/
SysBioChalmers/Yeast-maps/tree/master/SBMLfiles.

Generation of ecYeast8. The ecYeast8 model was generated based on the latest
release of the GECKO toolbox, available at https://github.com/SysBioChalmers/
GECKO. For each reaction, the algorithm queries all the necessary kcat values from
the BRENDA database64, according to gene annotation and a hierarchical set of
criteria, giving priority to substrate and organism specificity. The kcat values are
then added to reactions according to:

� 1

kijcat
vj þ ei ¼ 0 ð3Þ

0 � ei � Ei½ � ð4Þ

vj � kijcat � Ei½ � ð5Þ
where vj represents the flux through reaction j, ei represents the amount of enzyme
allocated for reaction j, Ei represents the total concentration of enzyme i, and kcat
represents the highest turnover number available for enzyme i and reaction j. The
detailed procedure to generate ecYeast8 can be found in the supplementary
material of the GECKO paper26.

Simulations with ecYeast8. To predict the maximum growth rate under different
carbon and nitrogen sources using ecYeast8, the following procedure was used.
Firstly remove any constraints for the related uptake rates of carbon and nitrogen
sources. Next, set minimal media made up of the related carbon and nitrogen
sources. Lastly, simulate a growth rate maximisation, whereby the optimal value is
fixed for posterior minimisation of the total protein usage. This provides a parsi-
monious flux distribution.

For comparative FVA between Yeast8 and an ecYeast8, the maximum growth
rate and the optimal glucose uptake rates obtained with ecYeast8 are used as fixed
value and upper bound, respectively, in the original GEM in order to perform a fair
comparison of flux variability for the same growth phenotype.

Flux control coefficients (FCCs) are defined as a ratio between a relative change
in the flux of interest and a relative change in the correspondent kcat of 0.1%, which
can be described by:

FCCi ¼
vup � vb

vb

� �
=

1:001kijcat � kijcat
kijcat

 !
ð6Þ

where vb and vup are the original flux and new fluxes respectively when the kcat is
increased by 0.1%.
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Re-annotation of the pan-genome from the 1011 yeast genome-sequencing
project. To construct the pan model of yeast (panYeast8), the latest genomics
research by Peter et al has consulted40. In Peter’s study, 1011 yeast strains genomes
had been sequenced and analysed. A pan-genome was obtained from all these
strains, made up of by 6081 non-redundant ORFs from S. cerevisiae S288C
reference genome, and 1715 non-reference ORFs (nrORFs) from the other strains.
For the 7796 ORFs, a panID was given for each of them. By comparison, 4940
ORFs are conserved in all these strains while 2846 ORFs are variables across all
these strains. The annotation of non-redundant 6081 ORFs can be taken directly
from the latest S. cerevisiae S288C genome annotation, while related gene–protein-
reactions (GPR) can be obtained from Yeast8 directly.

As mentioned in Peter’s article there are 774 nrORFs with the ortholog genes
from S. cerevisiae S288C genome40. The blast analysis, along with the gene
annotation of KEGG web service35, and EggNOG web service65, were employed to
check and improve the original ortholog relation. To evaluate the ortholog gene
relations qualitatively, the bi-directional blast hit (BBH) analysis was further
conducted using Diamond66. Here the best hit in BBH analysis with pidentity
larger than 80% were finally chosen and prepared for a panYeast8 formulation.

To further search reliable new reactions connected with nrORFs, the annotation
results from KEGG and the EggNOG web service were used. According to the
format request for the two web services, the protein fasta files of pan-genome were
uploaded onto KEGG (https://www.genome.jp/tools/kaas/) and EggNOG (http://
eggnogdb.embl.de/#/app/emapper). For the KEGG annotation, a BBH (bi-
directional best hit) assignment method with the default parameters was used. For
the EggNOG annotation, the HMMER with the default parameters was used. In the
EggNOG annotation, each protein will be mapped onto KO ID and BiGG reaction
ID while for the KEGG annotation, each protein will be given a unique KO ID. So
if the KO ID for a protein is different between KEGG and EggNOG, then the KO
ID given by KEGG will be preferred in the further analysis. If the KO ID was given
for one protein by EggNOG, but not in KEGG, then this annotation will be also
used for the pan-genome annotation. When the KO ids are obtained, the lists of
KOs from nrORFs are compared with the reference ORFs. New KO ids for the
nrORFs were subsequently extracted. Following this, the rxnID was obtained based
on KO-rxnID mapping from KEGG database.

Generation of panYeast8, coreYeast8 and strain specific GEMs. For ortholog
genes (e.g. gene C) obtained from pan-genome annotation, they can be merged
based on the reference gene (e.g. gene A) function in the original model according
to the following rules: (1) if A or B catalyze the same isoenzyme, the GPR rule
could be changed to ‘A or B or C’ in panYeast8; (2) if A and B belong to a complex,
the GPR rule should be updated from ‘A and B’ into ‘(A and B) or (C and B)’.
Secondly, 51 new reactions with 13 new genes were merged into panYeast8. As for
the genes identity in the model, in order to reduce chaos, the original gene IDs and
gene names from original Yeast8 were kept, while for newly added genes, the
panIDs defined in Peter’s work9 were used to represent the gene name.

Collapsed genes in pan-genome but could be found in yeast GEM, and will be
replaced with the corresponding ortholog genes defined in pan-genome. ssGEMs
for 1011 strains were reconstructed based on panYeast8 along with the related
strains specific genes list (Supplementary Fig. 6a). A Matlab function was
developed to generate strain specific models automatically. Based on current gene
existence information, if one gene from a complex is missing, then the reaction is
removed; and if a gene from two isoenzymes is missing, then the reaction will be
kept, though the GPRs will be updated to remove the missing gene. After the
reconstruction of 1011 ssGEMs, coreYeast8 was generated based on common
reactions, genes, and metabolites across the 1011 ssGEMs.

Strain classification based on PCA, decision tree and cluster analysis. The
hierarchical cluster analysis based on the reaction existence in ssGEMs for yeast
strains is based on R package––dendextend (https://CRAN.R-project.org/package
= dendextend). For the PCA analysis of strains based gene (or reaction) existence
in ssGEMs, R function-prcomp has been used in this article. The decision tree
classification of strains according to the maximum growth rate on different carbon
sources was carried out using the R package––rpart (https://cran.r-project.org/web/
packages/rpart/). For the hyperparameters tuning, two R packages—ParamHelpers
(https://CRAN.R-project.org/package= ParamHelpers) and mlr (https://CRAN.R-
project.org/package=mlr) were further used.

Protein structure collection for proYeast8DB. To establish the protein 3D
structure models for all genes from yeast GEM (and a few metabolic genes not
included in current Yeast8), all the protein structures of S. cerevisiae S288C from
the SWISS-MODEL database67 (https://Swissmodel.expasy.org) on 20 July 2018
were downloaded. The total number is about 20332 PDB files including the 8109
modelling homology PDB files (PDB_homo) and 12223 experimental PDB files
(PDB_ex). Meanwhile all the PDB_ex of S. cerevisiae S288C stored in RCSB PDB54

database were further downloaded. The protein sequences contained in each
PDB_ex were also downloaded. The above two sources of PDB files were merged to
obtain the comprehensive PDB files database for S. cerevisiae S288C. With the
metabolic gene list of S. cerevisiae S288C to query PDB files database, most genes,
with the exception of roughly 217 proteins (in Yeast8.3) could be found in the

related PDB files. To fill this gap, the SWISS-MODEL web service was further used
to build the PDB_homo for 217 proteins. As a result, each of metabolic protein
could have at least one PDB file. All the original proteins annotation, like the
residues sequence and protein length, were downloaded from the SGD database.

Once the PDB files were collected, the parameters of PDBs were extracted and
calculated for quality analysis. As for the PDB_homo, the default parameters from
the ftp of the SWISS-MODEL database were obtained, and included the protein
UniProt ID, the protein length, the related PDB ID (connected with chainID), the
structure sources, the coordinates of proteins residues covered with PDB structures,
the coverage, the resolution, and QMEAN. As for PDB_homo, besides the above
default parameters from the SWISS-MODEL database, a greater number of
parameters were obtained by parsing the PDB_homo atom files provided by the
SWISS-MODEL with an in-house python script, which included the methods used
to obtain the PDB files, the model template, the protein oliga state, the GMQE,
QMN4, sequence identity (SID), and sequence similarity (SIM). In summary, each
PDB_homo contains 18 parameters for further PDB quality analysis.

Some of PDB_ex parameters, like coverage and template ID can also be found
from the SWISS-MODEL database. The other important parameters like
resolution, ligands, and oliga state were obtained by parsing PDB_ex files from
RCSB PDB database using (https://github.com/williamgilpin/pypdb). The chainID
for each PDB_ex was downloaded from the SIFTS database68.

Quality analysis of protein 3D structure. As one protein could be connected with
several PDB files in different quality levels, it is essential to filter out the PDB of low
quality. In this work, mainly four import parameters, that are sequence identity
(SI), sequence similarity (SS), resolution, and QMEAN, were used to classify the
PDB_homo. By using a simple normal distribution to describe all these parameters
of PDB_homo, a Z score test can be done to calculate the threshold value for P
value set at 0.1. The cut-off value of sequence identity, the sequence similarity,
resolution, and QMEAN are 17.58, 0.25, 3.8 Å and −6.98 respectively. As stated in
the SWISS-MODEL database, however, a PDB_homo with the QMEAN smaller
than −4 is of low quality. To ensure PDB_homo of higher quality in this work, the
critical parameters are reset as the following: QMEAN ≥−4, SI ≥ 0.25, SS ≥ 0.31,
and Resolution ≤ 3.4 Å.

In order to check whether there exists a gap in the PDB_ex files, all residue
sequences from PDB databases for each chain of one PDB file were downloaded. At
some points, however, residue sequences provided by PDB databases were not
consistent with residue sequences contained in the structure. To solve this issue, a
Biopython package69 was used to obtain residue sequences for each chain of one
PDB file. Next, all residue sequences were blasted with original protein sequences
for S. cerevisiae S288C from SGD with the aid of Diamond66 in order to check
whether there existed gaps (mismatches or mutations) in the residue sequences
from PDB_ex when compared with the original residue sequences. The PDB_ex
has been chosen with the thresholds: pidentity= 100 and resolution ≤ 3.4 Å;
otherwise a PDB_homo from SWISS-MODEL database will be used.

Establishing relations of protein domain, gene, protein and reactions
(dGRPs). In this work, the Pfam32.0 database70 (https://pfam.xfam.org/) was
mainly used to annotate the domain information of proteins from S. cerevisiae
S288C. If a structure covered all residues of any given domain, it was assigned to
that very domain. For each domain, the coordinates of start and end, the name, the
domain function description, the domain type, e_value, the related PDB ID, and
protein ID, were all summarised. According to the GPRs of Yeast8, the relation
between gene ID and reaction ID could be obtained. Following this, the domain
information could be connected with each pair of gene and reaction based on the
ID mapping.

SNP collection and relative coordinates mapping. Starting from the vcf file
provided by the recent 1011 yeast strains genomes sequencing projects40 the
homozygous SNP from the massive data file (Supplementary Fig. 10a) were firstly
extracted. The SNPs of low total quality with depth being <2.0, mapping quality
<40, genotype quality < 30, and Genotype depth <5 were filtered out based on a
series of standard parameters according to the Broad Institute Genome analysis
Toolkit (GATK)71.

After filtration, the reliable SNP can be obtained for each strain. The data
furthermore contains each SNP’s strain name, chromosome, coordinates, ref, and
alt nucleotide base. In the annotation phase, the SNP type and related gene names
were further annotated based on the coordinates and the annotation information of
S. cerevisiae S. cerevisiae S288C reference genome (version R64-1-1) from NCBI. If
the SNP was not located on CDS zone of gene, it was classified as a type of
‘INTEGENIC’. If not this classification, it was otherwise given a gene systematic
name, consistent with the gene name format in Yeast8. Based on the above SNP
annotation information only those belonging to the metabolic genes (gene list in
Yeast8 and some other metabolic genes not contained in Yeast8 until now) were
chosen. According to the SNP annotation information and the protein sequences of
the related genes, the SNPs are classified as the sSNP (synonymous single
nucleotide polymorphism) and nsSNP (nonsynonymous single nucleotide
polymorphism). The relative numbers of sSNPs and nsSNPs for each gene were
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calculated, which is equal to the total sSNPs or nsSNPs divided by the related
protein length.

Before mapping, the coordinates of mutated residues from each nsSNP need to
be calculated. Firstly, the relative coordinates of mutated residues on the original
protein sequence can be obtained based on the coordinates of nsSNP on the
chromosome. Following this, according to the coordinates mapping between the
original protein sequences and the relative residues coordinates in the proteins
structure, the relative coordinates of the mutated residues in the protein structures
can be estimated and used in the following calculation.

CLUMPS method to calculate p-values of mutation enriched PDB files.
Referring to Kamburov’s method45, a WAP score to calculate the pairwise distances
between mutated residues for a protein 3D structure.

WAP ¼
X

q;r
nqnre

�d2q;r

2t2 ð7Þ

Where dq,r in this article is defined as the Euclidean distance (in Å) between α
carbons of any two mutated residues. t is defined as a ‘soft’ distance threshold,
which equals to 6 Å. nq and nr are the normalised numbers of samples contains the
mutations using the followed sigmoidal Hill function:

nq ¼
Nm
q

θm þ Nm
q

ð8Þ

Where Nq is the number of samples with a missense mutation impacting residue q
of the protein and θ= 2 and m= 3 are parameters of the Hill function controlling
the critical point (centre) and steepness of the sigmoid function, respectively.
Formula (2) was used to normalise the sample number contained in residue
mutations q and r, both of which can avoid the impact of higher frequent mutated
residues in the samples. A detailed description of each formula can be found in
Kamburov’s article45.

The CLUMPS method can be divided into four steps. Firstly, prepare the
needed SNP information and structure information of one protein. Secondly, with
the normalised mutation number occurring in specific positions, calculate the
WAP scores of the samples. Next, assuming that the uniform distribution of
mutations across the protein residues covers the given structure, calculate each
WAP score in 10 randomisations to obtain the null distribution. During the
sampling process, the mutation number of residues occurring in random locations
was kept the same as the original values. Lastly, calculate the right tailed P value in
the null distribution for the given mutated protein structures based on the original
WAP score and all the sampled WAP scores. The right tailed P value is defined as
the number of samples with WAP scores larger than the original WAP scored,
divided by the total number of samples.

For proteins with P value smaller than 0.05 from strains group of “Bioethonal”
and “Wine”, GO-enrichment analysis using DAVID6.7 on-line web service72 was
carried out.

Hotspot analysis of nsSNP mutation. The hotspot analysis pipeline for yeast
mainly refers to Niu et al.’s work49. All the SNP and structure information (similar
to CLUMPS’ analysis method) were prepared for a group of strains with specific
phenotypes. Before carrying out the cluster analysis, the mutated paired residues of
significance were filtered according to reference49. These important paired residues
should meet the followed three criteria: the distance between two residues should
be smaller than 10 Å for all the intramolecular clusters analysis; the two residues
should be separated by at least 20 residues in the original protein sequence; and a
permutation method ought to be used to calculate the P value for each paired
residues (Eq. 9), with a threshold set at 0.05.

P value ¼ n1
n2

ð9Þ

Where n1 is the number of paired residues with the distance smaller than that in
the paired residues of target and n2 is the total number of paired residues.

Once the paired residues of significance have been obtained, the clusters made
up of paired residues were obtained based on the undirected graph theory, which
was realised using the function ‘decompose.graph’ from the R package igraph
(https://igraph.org/). For each cluster, its closeness can be calculated using the
function of ‘closeness.residual’ from the R package entiserve73. The detailed
principle could be also find in the original research49. As the last step, when a
cluster was estimated, the P value was calculated based on the CLUMPS analysis
pipeline in this work.

Prediction of mutations function. To look into the effect of the mutations,
mutfunc48 (http://mutfunc.com/) and SIFT (http://snpeff.sourceforge.net/SnpSift.
html) were employed to predict the potential effects of nsSNP on protein function.

Growth test using Biolog with different substrate sources. The Phenotype
MicroArray (PM) system was used to test growth on every carbon, nitrogen,
phosphorus and sulphur sources74. A total of 190 carbon sources, 95 nitrogen
sources, 95 phosphorus, and sulphur sources were tested. The PM procedures for S.
cerevisiae S288C were based on the protocol of Yeast version of the PM system.

Growth profiling in different media. A total of 14 carbon sources and 23 nitrogen
sources were combined by orthogonal experiments. Every carbon source and
nitrogen source used in the medium were the same C-mole and N-mole as glucose
(20 g L−1 glucose) and ammonium sulphate (7.5 g L−1 (NH4)2SO4), respectively.
For all other substrate sources, the same minimal medium was used (14.4 g L−1

KH2PO4, 0.5 g L−1 MgSO4∙7H2O, trace metal and vitamin solutions)75. Strains
were cultivated in 96-well plates, and growth performance was determined with
Growth Profiler 960 (Enzyscreen B.V., Heemstede, The Netherlands). The max-
imum specific growth rate (μmax) was calculated with the R package—growthrates
(https://github.com/tpetzoldt/growthrates).

Statistical analysis. For two group comparison in this work, a two tailed Wil-
coxon rank sum test was used.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The yeast-GEM project with all related data sources can be found at https://github.com/
SysBioChalmers/yeast-GEM, and a full documentation on how the repository works and
how to contribute is available at https://github.com/SysBioChalmers/yeast-GEM/blob/
master/.github/CONTRIBUTING.md. The panYeast with all related data sources can be
found in https://github.com/SysBioChalmers/panYeast-GEM. The genomic data used in
this work is from40.

Code availability
Matlab scripts for development of yeast GEM and panYeast can be found in the above
two corresponding repositories. R scripts to carry out the CLUMPS and hotspot analysis
can be found at: https://github.com/SysBioChalmers/proYeast8-GEM.
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