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Abstract—The implementation difficulties of combining distri-
bution matching (DM) and dematching (invDM) for probabilistic
shaping (PS) with soft-decision forward error correction (FEC)
coding can be relaxed by reverse concatenation, for which the
FEC coding and decoding lies inside the shaping algorithms. PS
can seemingly achieve performance close to the Shannon limit,
although there are practical implementation challenges that need
to be carefully addressed. We propose a hierarchical DM (HiDM)
scheme, having fully parallelized input/output interfaces and a
pipelined architecture that can efficiently perform the DM/invDM
without the complex operations of previously proposed methods
such as constant composition DM (CCDM). Furthermore, HiDM
can operate at a significantly larger post-FEC bit error rate
(BER) for the same post-invDM BER performance, which facil-
itates simulations. These benefits come at the cost of a slightly
larger rate loss and required signal-to-noise ratio at a given post-
FEC BER.

Index Terms—Bit error rate, block error rate, distribution
matching, forward error correction, implementation, modulation,
optical fiber communication, probabilistic shaping, reverse con-
catenation.

I. INTRODUCTION

Multilevel modulation formats have been intensively inves-
tigated in coherent optical communications due to the growing
traffic demands and requirements for high spectral efficiency.
To relax the signal-to-noise ratio (SNR) requirements for such
formats, two independent approaches can be employed. The
first is coding, or forward error correction (FEC), where hard-
and soft-decision schemes for fiber-optic communications have
demonstrated bit error rates (BER) as low as 10−15 [1], [2].
The second is shaping, which aims at reducing the average
signal energy by spherically confining the modulation levels
in signal space.

Two shaping approaches can be distinguished; geomet-
ric shaping, which uses uniform (equiprobable) modulation
levels that are selected to be more or less spherically dis-
tributed, and probabilistic shaping (PS), which is based on
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using low-amplitude constellation points more frequently.
Both schemes aim at approximating a Gaussian distribution,
which is capacity-achieving for the Gaussian channel. The
ultimate SNR improvement for a multidimensional quadra-
ture amplitude modulation (QAM) format relative to the
Gaussian channel capacity approaches πe/6 (1.53 dB) as
the number of dimensions tends to infinity, as shown, e.g.,
by Forney and Wei [3], who also demonstrated a simple
approach to create multidimensional shaped constellations.
Calderbank and Ozarow pointed out that an equiprobable
(uniform) multidimensional constellation could be viewed as
a lower-dimensional nonequiprobable (nonuniform) signaling
scheme [4]. Kschischang and Pasupathy [5] studied nonuni-
form signaling (probabilistic shaping), and showed that high
shaping gains could be realized already for relatively low
dimensions and with limited complexity based on Huffman
codes. However, the varying bit rate and synchronization
problems of such schemes may preclude their usefulness in
practical systems. In [6], these drawbacks were proposedly
amended by keeping a constant bit-to-symbol rate at the
expense of dropping (puncturing) bits.

As coherent optical communication assisted by digital signal
processing has been realized [7], multidimensional signaling
for optical links has regained interest, and efficient formats
were proposed for the inherently four-dimensional optical
signals [8]. For the nonlinear optic channel, variants of multi-
dimensional geometric shaping [9]–[12] have been studied, as
well as probabilistic shaping [13], [14], based on the scheme
proposed in [6].

When combining coding and shaping, there are numerous
issues to consider, e.g., the ordering of the schemes and the fact
that the presence of one scheme may affect the performance of
the other. While these issues were not discussed in the earlier
works [3], [5], [8], [9], an outer FEC is often assumed [11],
[12], or even necessary [6], [14].

On the other hand, recently Böcherer et al. [15] intro-
duced probabilistic amplitude shaping (PAS) based on a
reverse concatenation architecture, meaning that the FEC
coding/decoding is performed inside the shaping algorithm,
thus acting on nonuniformly distributed bits. This may realize
improved performance and also enable rate adaptation in the
shaping scheme rather the FEC, which may provide increased
granularity. We note that reverse concatenation was indeed
studied much earlier, in [16], and the use of soft-decision
FEC was also investigated [17], [18]. Since its emergence,
the PAS scheme in the transmitter and its termination in the
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receiver have been called distribution matching (DM) and
distribution dematching (invDM), respectively, and we will use
this terminology henceforth.

With the normal (nonreverse) concatenation architecture,
invDM should be placed before soft-decision FEC decod-
ing. Then soft demapping must convert the multidimensional
fine-bit-resolution signals into logarithmic ratios of post-
probabilities (a posteriori log-likelihood ratios or L-values)
[19, Eq. (3.31)] for the decoder, which is prohibitively complex
to implement for long codes. On the other hand, reverse con-
catenation changes the invDM input/output signals to binary
sequences. This makes the implementation of invDM much
simpler, and enables the number of dimensions (the code
length) to be larger, leading to better performance.

As the DM for reverse concatenation PS, constant compo-
sition DM (CCDM) based on arithmetic coding was proposed
in [20] and examined for a fiber-optic channel in [21]. These
state-of-the-art works show great performance by an almost
ideal DM. However, there is room for simplification of these
in high-throughput optical fiber communication systems. DM
and invDM consume nonnegligible circuit resources, and in
practice there will be implementation penalties caused by im-
perfect signal processing used in deployable hardware at high
throughputs, relative to the achievable rate that assumes ideal
DM and FEC. In addition, system performance monitoring
must be reconsidered when we employ reverse concatenation
PS; since the invDM may cause the BER to increase, post-
invDM BER should be used instead of post-FEC BER.

In this paper, we propose and analyze in detail a DM
scheme, which was briefly introduced in [22]. We compare
it with CCDM. We also, for the first time, explain the shaped
frame structure, show the result of the DM-to-invDM back-
to-back error insertion test, and suggest a method to estimate
the post-invDM BER from the post-FEC BER.

This paper is organized as follows: In Secs. II and III, we
describe the basic system model and relevant performance
metrics. Implementation issues are discussed in Sec. IV, and
the proposed DM and framing are discussed in Sec. V. Sim-
ulation results comparing our proposed scheme with CCDM
are described in Sec. VI. The proposed error-rate estimation
is presented in Sec. VII. A summary of the work and a future
outlook are provided in Sec. VIII.

II. SYSTEM MODEL

Fig. 1 shows the system model and the corresponding per-
formance metrics to be discussed later. We consider shaping
of one-dimensional pulse amplitude modulation (PAM). How-
ever, its extension to two-dimensional QAM or optical four-
dimensional modulation (two quadratures in two polarizations)
is straightforward.

The notation is summarized in Tab. I. Throughout the paper,
we use boldface symbols to denote vectors and calligraphic
symbols to denote sets. At the transmitter side, the incoming
binary sequence is framed into blocks of A ∈ BNblock bits by
following, e.g., the modern optical transport network (OTN)
standard protocol [23], [24] of n×100G optical transport units
(OTUCn). . In the DM, the binary sequence A′ ∈ BNu is

Fig. 1. System model including signal notation and performance metrics.
TABLE I

DEFINITIONS OF NOTATION.
Parameter Description
Nblock Block size of OTUCn, 130560n
n “n” in “OTUCn”
Nu Number of DM input bits per DM word
Ns DM word length (number of PAM symbols per DM word)
nc Number of information bits per FEC codeword
k Number of parity bits per FEC codeword
m Number of bits per QAM symbol
B {0, 1}
X 2m/2-ary PAM symbol set for even m (m ≥ 2)
R Real number set

converted to the shaped bit sequence D ∈ BmNs/2 including
placeholders for FEC parity bits in the following block, where
m is the number of bits in a QAM symbol. The bit sequence
D determines the absolute amplitudes of Ns PAM symbols.
A systematic binary FEC encoder generates nc−k (uniformly
distributed) parity bits from k payload bits D′ ∈ Bk, and
outputs the FEC codeword B ∈ Bnc . The bits B′ ∈ Bm
are mapped to the QAM symbol X ∈ X 2, where X
denotes a PAM symbol set. A bullet in Fig. 1 indicates a
length conversion, e.g., B and B′ have the same elements
from B but have different lengths of nc and m for interfacing,
respectively, the FEC encoding output and symbol mapping
input.

At the receiver side, the received QAM symbol Y ∈ R2

is demapped by bit-metric decoding to a posteriori L-values
L′ ∈ Rm [19, Eq. (3.31)], where R denotes a real number
set. Based on the L-values L ∈ Rnc , FEC decoding recovers
the payload bits D̂

′
∈ Bk. The decoded bit sequence D̂ ∈

BmNs/2 is dematched to Â
′
∈ BNu , and finally Â ∈ BNblock is

deframed.

III. PERFORMANCE METRICS AND PERFORMANCE
MONITORING

A. Achievable rates and metrics as post-FEC BER predictor

Traditionally, the performance requirement for the optical
layer has been a BER after FEC decoding down to 10−15
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following standards for fiber communications [2], [25]. More
modern performance metrics are based on information theory,
which quantifies achievable information rates (AIRs) to lower-
bound the capacity. The mutual information of the transmitted
symbol X and the received symbol Y , I(X;Y ), is such
an AIR, which is achievable with nonbinary coding, bit-
interleaved coded modulation (BICM) with iterative demap-
ping, or multilevel coded modulation [26]. For BICM without
iterative demodulation, an AIR is given by the generalized
mutual information (GMI) [19, Eq. (4.55)]. The GMI works
as a good post-FEC BER predictor for uniform and indepen-
dent pragmatic signaling [27]. A practical, nonideal FEC has
a rate loss, e.g., the required FEC code rate Rc for a post-FEC
BER < 10−15 is smaller than the normalized GMI (NGMI)
GMI/m [27, Tab. III].

For reverse concatenation PS with matched bit-metric de-
coding (bmd), an AIR in bit per channel use (bpcu) is [15],
[28]

Rps
bmd = H(X)−

m∑
i=1

H(Bi | Y ), (1)

where H(·) and H(· | ·) denote entropy and conditional en-
tropy, resp., and Bi denotes a bit at bit level index i before
QAM symbol mapping. Rps

bmd takes the same value as a
modified expression of GMI applicable to PAS defined in
[29, Eq. (1)] with a matched auxiliary channel q, which was
also shown in [30, Sec. III]. Eq. (1) quantifies the rate
as a common expression for pragmatic BICM and reverse
concatenation PS. While Rps

bmd is the rate with ideal FEC and
ideal DM, the information rate in bpcu with a practical FEC
(discussed in the previous paragraph) is defined as

R =
Nu

Ns/2
≤ H(X)− (1−Rc)m, (2)

where the symbol entropy H(X) is calculated from the
probability mass function (PMF) of the transmitted QAM
symbol X , PX(x), x ∈ X 2. Note that H(X) is equivalent to
2H(X) in the case of PAS, where X denotes a PAM symbol
in X . Non-ideal DM has a rate loss, i.e., difference between
the entropy and the information rate, shown in [15, Sec. V-B],
[31, Eq. (4)], [32, Eq. (21)] for PAS, which can be expressed
as

Rloss = H(X)− (1−Rc)m−
Nu

Ns/2
≥ 0 (3)

for reverse concatenation PS. The inequality is not restricted
to PAS but more general. For certain (high performance) DMs
[20], [31]–[35], the loss is mainly due to a finite (insufficient)
length of the DM word.

As post-FEC BER predictors for PS systems using QAM,
the NGMI was proposed in [29, Eq. (6)] as

NGMI = 1− 2H(X)− GMI
m

, (4)

which means GMI/m in a non-shaped case.
The asymmetric information (ASI) [30], [36, Eq. (11)]

ASI = 1− h(La | |La|) (5)

= 1− 1

m

m∑
i=1

h(Bi | Li) (6)

was also proposed for the same purpose, where h(·) denotes
differential (continuous) entropy. We denote the symmetrized a
posteriori L-value, or asymmetric L-value, with La = (−1)B ·
L, where B ∈ B is a sample of B, and L ∈ R is a sample
of L corresponding to the sampled bit B.

In practice, soft-demapping circuits operate with a finite
bit resolution, which causes a minor performance loss. Here
GMI, NGMI, and ASI can account for that loss because GMI
is based on both the received symbol Y and the auxiliary
channel q [27, Sec. III-C] and the ASI is based on the L-
values just before the FEC decoder, while (1) does not account
for it. The post-FEC BER can be estimated from the NGMI
or the ASI. However, since the performance requirement for
reverse concatenation PS is a post-invDM BER of < 10−15,
one needs to account for a potential BER increase due to the
invDM operation. We will discuss this further in Sec. VII.

B. Block performance monitoring

In many modern communication systems, higher-layer pro-
tocols apply packet-oriented transmission, where the whole
packet is discarded if any bit therein is received in error. BER
metrics such as post-FEC BER or post-invDM BER might
not be well suited to characterize the performance of such
systems. Instead, systems using OTN framing are evaluated
based on the background block error rate (BBER) and the
severely errored second rate (SESR) [23], [24]. A severely
errored second is a second with over 30 % block errors. The
BBER is equal to the number of erroneous blocks normalized
by the total number of transmitted blocks , disregarding those
appearing during a severely errored second (the block size of
OTUCn is given in Sec. II). The SESR is the probability of a
severely errored second, and used as a long-term performance
monitoring metric. As BBER is a more basic performance
metric, we will not consider SESR in this paper.

The BBER requirement depends on the link conditions, but
a typical value is, e.g., around 10−7. For reverse concatenation
PS, a large Ns can cause a long error burst from the residual
error after FEC decoding, although a large Ns leads to smaller
DM rate loss Rloss. As the block performance monitoring is
critical for system design, we will simulate and analyze its
behavior in the next section. Note that higher layer packets
have smaller or larger sizes compared with the block size of
OTUCn, so both the post-invDM BER and the BBER must
be considered. In addition, we will consider the FEC frame
error rate (FER), which is the probability of an erroneous FEC
frame, or codeword, after FEC decoding.

IV. IMPLEMENTATION ISSUES

The state-of-the-art performance of PAS DM is provided by
a coding scheme for m-out-of-n codes [37] or CCDM [20].
With this technique, a rate loss Rloss of almost zero is possible,
provided that the DM word-length is large enough (typically
Ns ∼ 103 − 104). However, this requires a prohibitively
complex hardware implementation. Recently, several attempts
have been made to find a better balance between performance
and complexity [31]–[35], [38]–[44]. In [38], [39], fixed-
length to fixed-length conversion was used, which is simple
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TABLE II
BITS (B′) TO SYMBOL’S ABSOLUTE AMPLITUDE (|X|) CONVERSION FOR

32-PAM.
B′ |X| B′ |X| B′ |X| B′ |X|

0000 1 0110 9 1100 17 1010 25
0001 3 0111 11 1101 19 1011 27
0011 5 0101 13 1111 21 1001 29
0010 7 0100 15 1110 23 1000 31

enough to implement, but the performance is limited. In [40], a
fixed-length to variable-length conversion scheme with small
address size look-up tables (LUT) was considered, showing
a bounded conversion speed variation. However, this scheme
can cause a large error burst after invDM if there is an error
before the invDM. A small LUT for a fixed-length to variable-
length conversion was combined with a periodical uniformal-
ization process in [41] to act as a fixed-length to fixed-length
conversion. However, practical implementations of the fixed-
length to variable-length conversion requires deeply sequential
processing, and a large amount of parallelization (i.e., a large
chip area) is required to realize the high throughput. In [42]–
[44], separate DM is applied to each modulation bit level for
efficient implementation, and bit-wise DM like [37], [39], [41]
can be combined with it. Its performance mainly depends on
the bit-wise DM, and it is also useful for approaching the
water-filling capacity on transmission over parallel channels
having different SNRs [43]–[45]. Other approaches to improve
the performance with limited DM word length include parti-
tioning and combining short constant-composition DM words
[31], enumerative sphere shaping and its approximations [32]–
[34], and shell mapping [35]. Their implementability on high-
throughput signal processing still needs to be investigated.

An FEC coding scheme has another drawback due to the
throughput increase from reverse concatenation PS. Consider
two cases, nonshaped BICM and reverse concatenation PS,
assuming the same client (pre-DM) bitrates, same FEC code
rates Rc, and symbol rates. To distinguish the two cases,
we introduce mu and ms as the number of modulation bits
m for the nonshaped and shaped cases, resp. The shaped
signal requires ms/mu times larger FEC throughput than the
nonshaped one, because the bit rate is increased by the DM.
Then the FEC circuit size and the power consumption will be
increased by the ratio ms/mu for the shaped case. Note that
there is an FEC code rate restriction of Rc ≥ (ms − 1)/ms
in the case of PAS to assign the uniformly distributed FEC
parity bits to sign-bit positions without degrading the PMF of
P|X|(|x|). In a generalization of the PAS, the parity bits can
be placed outside the sign-bit, which relaxes this constraint
[39].

V. PROPOSED HIERARCHICAL DM (HIDM)
Here we propose , and describe for the first time in detail,

a hierarchical DM (HiDM) with reasonable complexity, thus
compatible with practical hardware limitations. It was briefly
introduced in [22].

Our aim is not to generate an arbitrary distribution of
the transmitted symbols, but to approximate the Maxwell–
Boltzmann (MB), or quantized Gaussian, distribution, which

Fig. 2. Example of the proposed hierarchical DM (HiDM), where Nu = 15
uniform input bits A′ are converted into mNs = 20 output bits D (4 uniform
and 16 shaped bits). The non-shaped (uniform) bits will be used as sign bits
of the 32-PAM symbols with Ns = 4. The bar charts illustrate probabilities
of being ‘1’ for the respective bits.

is the most commonly considered distribution in probabilistic
shaping research. The MB distribution with parameter λ is
given by the PMF

PMB
X (x) =

exp(−λx2)∑
ξ∈X exp(−λξ2)

(7)

for any x ∈ X . For a given base constellation and average
symbol energy, the MB distribution maximizes the entropy
[5]. Furthermore, it approximates well the distribution that
maximizes the mutual information over the Gaussian channel
under an average energy constraint [6]. Conversely, if the in-
formation bit rate and base constellation are fixed, minimizing
the average symbol energy results in a distribution similar to
MB, as will be exemplified in Sec. VI.

In principle, a DM with the best performance at a finite
DM word length could be realized by a single look-up table
(LUT), whose average symbol energy corresponding to the list
of output bits D is minimized. However, when the DM word
length Ns is large such as 20, the LUTs for DM and invDM
are prohibitively large to be implemented in hardware. Thus
we will demonstrate how to use small- to medium-size LUTs
and combine them hierarchically to construct a larger set of
output bit sequences than what each LUT can provide.

The input to the DM in Fig. 1 is the bit sequence A′ ∈ BNu .
Of those bits, N sb

u are converted by the shaping. The number
of shaped bit levels per QAM symbol is msb, which means
that msbNs/2 of the mNs/2 DM output bits D are shaped.
The parameters m, msb, Nu, N sb

u , Ns are dependent. The
number of unshaped bits per DM word must be the number of
FEC encoder input bits RcmNs/2 subtracted by the number
of shaped bits msbNs/2, i.e,

Nu −N sb
u =

(
Rcm−msb)Ns/2. (8)
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TABLE III
THE CONTENTS OF THE LUTS SHOWN IN FIG. 2, INCLUDING EXPECTED SYMBOL ENERGY AND PMF.

LUT3 LUT2 LUT1
input output E[|X|2] PMF input output E[|X|2] PMF input output |X| PMF

000 00 00 21 1/8 00 00 000 000 5 1/8 000 0 0000 1 23/128
001 00 01 41 1/8 00 01 000 001 21 1/8 000 1 0001 3 23/128
010 01 00 41 1/8 00 10 001 000 21 1/8 001 0 0011 5 11/64
011 01 01 61 1/8 00 11 001 001 37 1/8 001 1 0010 7 11/64
100 00 10 63 1/8 01 00 000 010 53 1/16 010 0 0110 9 3/32
101 10 00 63 1/8 01 01 010 000 53 1/16 010 1 0111 11 3/32
110 00 11 83 1/8 01 10 001 010 69 1/16 011 0 0101 13 3/64
111 11 00 83 1/8 01 11 010 001 69 1/16 011 1 0100 15 3/64

10 00 000 011 101 1/32 100 0 1100 17 1/128
10 01 011 000 101 1/32 100 1 1101 19 1/128
10 10 010 010 101 1/32 101 0 1111 21 0
10 11 001 011 117 1/32 101 1 1110 23 0
11 00 011 001 117 1/32 110 0 1010 25 0
11 01 010 011 149 1/32 110 1 1011 27 0
11 10 011 010 149 1/32 111 0 1001 29 0
11 11 000 100 165 1/32 111 1 1000 31 0

Next we will explain how N sb
u uniform input bits can be

converted into msbNs/2 nonuniform bits that generate prob-
abilistically shaped output symbols.

A. Principle of operation

A small example of the proposed HiDM for generating a
sequence of four PS-32-PAM symbols is shown in Fig. 2,
where m/2 = 5, the shaped bit levels for a PAM symbol
isb = (2, 3, 4, 5), msb = 2 |isb| =8, N sb

u = 11, and Ns = 4
(i.e., four PAM symbols or two QAM symbols). For simplicity,
we assume here an FEC code rate of Rc = 1. Hence, the
DM has 15 uniform input bits and 20 output bits. Four of
the input bits remain untouched by the DM, while 11 input
bits are converted into 16 shaped bits. Tab. II shows the
assumed bit-to-symbol mapping table for 32-PAM. The DM
consists of three small LUTs, called LUT1, LUT2, and LUT3,
hierarchically organized in a tree-like structure with three
layers. Each layer comprises one or more LUTs, which are
the same within each layer. The LUT contents including the
expected one-dimensional energy E[|X|2] and probabilities of
each small-DM word, PMF, are shown in Tab. III.

At first, three uniformly distributed information bits are
input to LUT3 and converted into four output bits, which
will act as constraint bits in the connected lower-layer DMs.
The four constraint bits are separated into two lines of two
constraint bits, each having mark ratios1 of 0.25 and 0.375,
which together with two uniformly distributed information bits
are fed into each LUT2. The behavior of the resulting bit
probability statistics, i.e., mark ratios, are shown by the bar
charts in Fig. 2. The constraint bits are chosen so that the
expected symbol energy becomes small. LUT2 converts four
input bits into six output bits, which are again separated into
two lines and treated as constraints bits in the next layer.
Inputting each set of three constraint bits having mark ratios
of 0.016, 0.281, and 0.438 with one uniformly distributed

1A “mark” is a bit equal to ‘1’, and the probability for that bit being ‘1’
is commonly referred to as “mark ratio”.

information bit, each LUT1 generates four output bits having
mark ratios of 0.016, 0.300, 0.531, and 0.5 shown by red bar
charts. Note that the output bits from the LUTs are dependent.
The output bits from LUT1 will now determine the absolute
amplitudes |X| of the symbol sequence X . In this example,
the PMF of |X| becomes nonuniform and one-sided MB-like,
as shown in the last column of Tab. III. The generated DM
words are not constant composition.

The expected energy in Tab. III is derived from the expected
energies in the lower layers. E.g., the LUT2 entry with output
bits ‘000 001’ generates input sequences ‘000u’ and ‘001u’ to
layer 1, where ‘u’ denotes a uniform choice of ‘0’ or ‘1’. The
average energies of these sequences are (12 + 32)/2 = 5 and
(52+72)/2 = 37, resp., and hence E[|X|2] = (5+37)/2 = 21
for ‘000 001’ in LUT2, as shown on the second row of Tab. III.
Each list is sorted from lower to higher energy, and lower
chosen more frequently by the constraints from higher layers.

From these values, the information rate of the PAM symbol
is 15/20 × 5 = 3.75, and the entropy is 3.93, and the rate
loss Rloss becomes 0.18 bits per dimension. When the five
output bits are mapped to a Gray-coded 32-PAM symbol,
the expected energy per one-dimensional symbol is 57. The
constellation gain, defined as [5, Eq. (8)]

G =
d2min(2

β − 1)

6E
, (9)

where dmin, β, and E denote minimum Euclidean distance,
spectral efficiency (bpcu) at an FEC code rate of 1, and average
symbol energy, resp., will be 0.22 dB.

Additional flexibility and finer granularity can be obtained
by increasing the number of layers, the number of LUTs
connected between layers, the number of input information
bits to each layer’s LUT, and the number of constraint bits in
each layer, which gives better adaptation of the PMF PX(x)
to an approximated MB distribution and more significant per-
formance improvements. Each LUT and thus the whole DM
function are one-to-one mappings, so that they are reversible
for the invDM. All constraint bits are used for the selection of
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symbols to minimize the expected symbol energy. The recipes
for designing the LUTs will be discussed next in Sec. V-B.

B. Recipe for LUT-tree construction and LUT content design

In this section, we describe how to design the HiDM, to
realize flexible rates and/or maximization of the constellation
gain at given input/output rates. We denote by L the number
of layers and by T` the number of LUTs in layer ` = 1, . . . , L,
where TL = 1. The number of input bits to each LUT on layer
` is denoted by v` = r`+s`, where r` bits come from an LUT
on layer `+1 and s` bits are take directly from the DM input.
Each LUT on layer `+1 is connected to t` = T`/T`+1 different
LUTs on layer `, and hence the number of LUT output bits
is u`+1 = t`r`. The total number of shaped DM output bits is
T1u1, corresponding to T1u1/(m/2 − 1) PAM symbols, and
the corresponding number of DM input bits is N sb

u =
∑
` T`s`.

The number of unshaped bits passing untouched through the
HiDM is given by (8).

Using this notation, the HiDM LUT tree is designed by
repeating the following steps for ` = 1, 2, . . .:

1) Select the number of output bits u` of each LUT in layer
`. The number of output bits should not be too large, like
20 or above, since it would require a big memory size in
the invDM. Suitable values are in the range from 2 to 14
bits, e.g., (u1, u2, u3) = (4, 6, 4) bits in Fig. 2.

2) Select the number of input bits s` that are taken from the
DM input, observing that the rate will not be so flexible
if s`/u` is small. Also select the number of input bits
r` that come from LUTs in layer `+1. The higher-layer
LUT storage size will be big if this value is too high. In
Fig. 2, (s1, s2, s3) = (1, 2, 3) and (r1, r2, r3) = (3, 2, 0).

3) Select the number of LUTs t` in layer ` connected to a
single LUT in layer `+ 1.

4) Terminate when number of output PAM symbols
T1u1/(m/2 − 1) is sufficient, where T1 = t1t2 · · · t`.
Let L = `.

Once the LUT-tree configuration is established, the contents
in each LUT is determined by the following sorting method.
The contents of the LUTs are another critical matter for HiDM,
so its basic concept is shown here, again using the small
example shown in Tab. III.

1) List the output DM words of each LUT in layer 1 by
sorting them in an ascending order of symbol energy, as
shown in LUT1 in Tab. III. There are 2u1 candidates, and
the top 2v1 words (that is, those having smallest symbol
energy) are selected.

2) For ` = 2, . . . , L, calculate the expected energies for all
possible output words from the LUT in layer `, using the
procedure described in Sec. V-A. Sort these words by an
ascending order of energy, as shown in LUT2 in Tab. III.
There are 2u` candidate words, of which the top 2v` are
valid.

If we change the parameters (r1, s1, u2, s3) from (3, 1, 6, 3)
in Fig. 2 into (2, 2, 4, 4), the number of input bits and the
DM information rate in the HiDM becomes 20 and 20/20 =
1, resp. We can also change s` to have a desired DM code
rate with a granurality of 1/20. When implementing a fully

flexible-rate HiDM in hardware, the LUT architecture should
support a DM information rate of 1, an external circuit should
control the used/unused information bit input path, and the
LUT contents should ignore the unused bits.

C. Complexity
The complexity of the required circuitry is dominated by the

number of stored bits in the LUTs, which determines the area
in the hardware implementation. The number of stored bits for
all LUTs in layer ` is T`2v`u`. In the example of Fig. 2, the
number of stored bits are 32, 192, and 256 in layers 3, 2, and
1, resp., thus in total 480. The corresponding LUTs on the
invDM side have T`2u`v` stored bits, which in the example
gives 48+512+256 = 816 bits in total for the three layers. If
we would instead use a single LUT, i.e., 11-bit input and 16-bit
output on the DM side and conversely on the invDM side, the
number of stored bits would be 211 × 16 = 32768 and 216 ×
11 = 720896, resp. Thus, HiDM saves circuit resources by a
factor of 68 and 883 in the DM and invDM, resp., already in
this small-scale example. Note that the performance of HiDM
is always inferior to a DM with a single LUT that can have
the optimum list (lowest average symbol energy) for the DM
words, but the gain in complexity and memory size can be
considerable,

HiDM with DM word length Ns ≈ 100 or 1000 can be
realized by LUTs with reasonable sizes. The DM does thus not
require complex operations such as integer additions or multi-
plications. The conversion process is purely fixed-length input
and fixed-length output (there is no variable length part). Either
bit-wise [42] or symbol-wise [20] DMs are possible, and MB-
like distributions can be approximated with high granularity.
This DM achieves a high throughput because the architecture
consists of a fully parallelized input/output configuration, as
well as a bit-scramble selector and a permutation mapper
[39]. The hierarchical operation is fully pipelined, so a small
number of instances is enough.

In contrast, arithmetic coding based DM, e.g., a coding
scheme for m-out-of-n codes [37] and CCDM [20] re-
quires high-precision integer multiplications, which limits the
throughput, and a large number of instances (at least ∼ Ns)
would be required2. Then the equivalent DM word-length is
in the order of N2

s or more, as will be further discussed in the
next section.

D. Frame structure
An example of a frame structure used for the transmission

line (channel) with the CCDM (a) and the proposed HiDM (b)

2Here “instance” refers to the number of DM circuits that have to be
implemented in parallel on the ASIC. While the latest CMOS logic circuitry
can operate at hundreds of GHz, the throughput of optical communication
links reaches hundreds of Gb/s to Tb/s. CCDM requires sequential operation,
so one CCDM circuit can generate the absolute amplitude of one PAM symbol
per clock cycle using a straight-forward implementation, although it depends
on the logical circuit design. Then to generate Ns PAM absolute amplitudes,
Ns clock-cycles are needed. Until completing one DM word, one cannot input
information bits for the next DM word. Thus Ns parallel CCDM circuits are
necessary for real-time operation. When the clock speed is 500 MHz, 320
Gsymbol/s is achieved, which would be sufficient for the required throughput.
On the contrary, HiDM outputs, e.g., 320 Gsymbol/s per HiDM circuit at a
clock-cycle, so it requires just a few instances.
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Fig. 3. Frame structure with (a) CCDM or with (b) HiDM. One blue (filled)
rectangle shows one DM word.

are shown in Fig. 3. The blue (filled) rectangles show one DM
word. As discussed in Footnote 2, while one CCDM circuit
generates one symbol per clock-cycle due to the sequential
operation, HiDM generates many symbols per clock-cycle
because of the parallel output interface. This leads to the
difference in Figs. 3(a) and (b)3. The FEC is assumed to be
a DVB-S2 low-density parity-check code [46] with codeword
length nc = 64800 and code rate Rc = 5/6. The modulation
format is Gray-coded 16-PAM. The most significant (i = 1,
sign-bit) and the least significant (i = 4) bit-levels for the 16-

3A HiDM-like frame structure for CCDM can be realized by rearrangement
of the memory, but it will significantly increase the latency.

PAM symbols are not shaped to simplify the implementation.
Thus, msb/2 = 2 and the shaped bit levels are isb = {2, 3}.
The number of input bits N sb

u is 1014 or 507, the number
of output PAM symbols Ns is 640 or 320, and the number of
output bits msbNs/2 is 1280 or 640 for CCDM or HiDM, resp.,
in this example. The HiDM is designed using seven layers. In
layer 1, there are 64 small LUTs, each having u1 = 10 output
bits. Thus, the total number output bits from the proposed
DM is 640, which equals msbNs/2. The required storage
sizes for HiDM with these parameters and two instances are
manageable, with values of 3.7× 106 for DM and 6.8× 106

for invDM, while that for two instances using a single LUT
would be prohibitively large, i.e., 2·2507 ·640 = 5.4×10155 for
DM and 2 · 2640 · 507 = 4.6× 10195 for invDM. Thus, HiDM
reduces the total storage size by more than 10194 times, though
there is a performance drawback compared to using a single
LUT.

The information rate R is 5.83 bpcu, which is equivalent
to 128-QAM with Rc = 5/6. The equivalent word-length for
CCDM and HiDM are 518400 (> N2

s ) and 320, resp. While
810 DM words are equally mapped to 32 FEC codewords in
parallel for the CCDM, 50 or 51 DM words are included in an
FEC codeword sequentially for the HiDM. The bit indices 0–
53999 of the FEC codeword correspond to the payload bits and
indices 54000–64799 to the parity bits. The less significant bits
are placed at lower bit indices of the FEC codeword to balance
the pre-FEC performance and the FEC decoding capability.

VI. SIMULATIONS

To evaluate the post-FEC and post-invDM performance with
reverse concatenation PS, we conducted numerical simulations
of PS-256-QAM transmission over the Gaussian channel. The
same combinations of FEC and PS were examined as in
Sec. V, i.e., the DVB-S2 low-density parity-check code with
Rc = 5/6. The number of decoding iterations was 20 and more
than 1600 FEC codewords were examined per simulation. The
soft-demapping input and output interfaces were quantized
with 7 and 4 bits, resp., which gives less than 0.1 dB SNR
penalty. Two DM schemes were implemented, HiDM and
CCDM. For comparison we also simulated nonshaped BICM
128-QAM with a Gray-like labeling [47, Slide 10].4 Its most
significant bit (i = 1) and parts of the second significant bit
(i = 2, which are sign bits) were occupied by the FEC parity
bits, for the same information rate.5

Before evaluating the error rates, we summarize the statis-
tics of the PMF P|X|(·) in Tab. IV for CCDM, HiDM, and the
MB distribution with λ = 0.1373. We also give the average
symbol energy E, the two-dimensional entropy 2H(X), the
spectral efficiency β at Rc = 1, the DM rate loss Rloss (which
equals 2H(X) − β in this case), and the constellation gain
G. For CCDM, β can be increased to 2 · (2 + 1015/640) at

4There is no perfect Gray code for cross-QAM constellations such as this
128-QAM, which leads a performance drawback.

5Performance comparisions between shaped and non-shaped signals raises
the question of whether to use different base constellations or different FEC
code rates. For ease of hardware implementation and flexible setting of
spectral efficiencies, we chose the same FEC code rate but different base
constellations in this paper.
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TABLE IV
RESULTING STATISTICS BY SHAPING.

CCDM HiDM MB
Ns (PAM-symbol) 640 320 320 –

P|X|(1) 0.2484 0.2453 0.2376 0.2628
P|X|(3) 0.2484 0.2453 0.2376 0.2355
P|X|(5) 0.1625 0.1625 0.1684 0.1891
P|X|(7) 0.1625 0.1625 0.1684 0.1360
P|X|(9) 0.0695 0.0719 0.0757 0.0877
P|X|(11) 0.0695 0.0719 0.0757 0.0506
P|X|(13) 0.0195 0.0203 0.0183 0.0262
P|X|(15) 0.0195 0.0203 0.0183 0.0121

E 72.50 74.00 74.70 68.31
2H(X) (bpcu) 7.214 7.242 7.252 7.169

β at Rc = 1 (bpcu) 7.169 7.169 7.169 7.169
Rloss (bpcu) 0.045 0.073 0.083 0
G (dB) 1.186 1.097 1.056 1.444

a target PMF of (7) with λ = 0.0133, but it was reduced to
2 · (2 + 1014/640) to fit to the frame. Its influence on Rloss
and G is 0.004 bpcu and 0.01 dB, resp. HiDM shows 0.13 dB
and 0.39 dB performance loss compared with CCDM and the
MB distribution, resp. If the DM word length Ns of CCDM
is decreased from 640 to 320, then the constellation gain G
becomes almost the same as HiDM.

Fig. 4 shows the simulation results in terms of post-FEC
BER, post-invDM BER, FER, and BBER as a function of the
SNR. Here we assume the use of OTUC1 framing, so the
block size is 130560 bits. The post-FEC BER at low BERs is
similar among the bit levels, due to the bit level mapping in
the FEC codeword space [15]. CCDM shows 0.13 dB lower
required SNR than HiDM at a post-FEC BER of 10−6, and
128-QAM BICM performed further 0.8 dB worse than HiDM.
The difference in the required SNR of 0.13 dB between CCDM
and HiDM agrees well with the difference in constellation gain
G shown in Tab. IV. If we decrease the DM word length Ns
to 320 for CCDM, the required SNR is expected to increase
by around 0.1 dB, according to the difference in constellation
gain G.

The error rate increase by the invDM for the reverse
concatenation PS is characterized by the post-invDM BER
Epost-iDM to post-FEC BER Epost-FEC ratio,

rE1 =
Epost-iDM

Epost-FEC
, (10)

which are 200 and 5.5 for CCDM and HiDM, resp., at around
Epost-FEC = 10−6. This relation is expected to be valid also at
lower error rates, according to the analysis in the next section.

To quantify the amount of burst errors after the invDM, the
ratio of BBER Eblock to post-invDM BER Epost-iDM,

rE2 =

{
Eblock/Epost-iDM (CCDM, HiDM)
Eblock/Epost-FEC (BICM) , (11)

is useful, which is found to be 500, 11000, and 20000 for
CCDM-based PS-256-QAM, HiDM-based PS-256-QAM, and
BICM 128-QAM, respectively, as shown in Fig. 4. If rE2 is
smaller, the erroneous frame has a larger number of errors, so
the error bursts are more severe. The error burstiness of HiDM-
based PS-256-QAM is 11000/500 = 22 times lower than with
CCDM. It means that the HiDM can be concatenated with an

Fig. 4. Simulation results of (a) CCDM-based PS-256-QAM, (b) HiDM-based
PS-256-QAM, and (c) BICM-based 128-QAM.

outer hard-decison FEC if needed because of the significant
reduction of the burstiness of the residual errors.

VII. POST-INVDM PERFORMANCE ESTIMATION AT LOW
ERROR RATES

We estimated the post-invDM BER from the post-FEC BER
by inserting random errors into each DM word before the
invDM operation. Fig. 5 shows the simulation configuration
for the DM to invDM back-to-back error insertion test. As
before, the shaped bit levels are isb = {2, 3} and msb/2 =
2. The number of information bits N sb

u = 1014 and 507 for
CCDM and HiDM, resp. The information bits were fed to the
DM, msbNs/2 = 2Ns shaped bits were generated, errors were
inserted into the shaped bits, and the invDM recovered the
shaped information.
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Fig. 5. Simulation setup for DM to invDM back-to-back error insertion test.

Fig. 6. Simulated post-invDM BER under a single error per DM word at the
input of the invDM for PS-256-QAM.

Fig. 6 shows the simulated post-invDM BER E sb
post-iDM as

a function of the number of erroneous bits per DM word,
both computed for the shaped bits only. The expected value
of E sb

post-iDM for CCDM is 0.5 for any number of errors, whereas
for HiDM it increases from 0.027 for a single error to 0.16 for
10 errors. The expected number of errors after post-invDM α
is 507 for CCDM and 13.4 for HiDM with a single bit error.

The ratio rE1 of 200 or 5.5 in the previous section corre-
sponds to the expected error count under the single-error input
assumption. Although the FEC decoder can output an error
burst, at least the bit-level dependence is weak according to
the simulation results in Fig. 4. Under the single-error input
condition, the post-invDM BERs for the shaped bits and the
total bits, E sb

post-iDM and E total
post-iDM, are bounded as

E sb
post-iDM ≤ min

{
α ·msbNs/2

N sb
u

Epost-FEC,
1

2

}
, (12)

E total
post-iDM ≤ γinE sb

post-iDM + (1− γin) Epost-FEC. (13)

The fractions of shaped DM input and output bits (i.e., the
fractions of A′ and D that are shaped in the DM) are, resp.,

γin =
N sb

u

Nu
, (14)

γout =
msb

Rcm
. (15)

The BBER can be bounded as

Eblock ≤ min
{
Nblock (γoutθ + 1− γout)

k ·Nu/(RcmNs/2)
EFEC-fr, 1

}
, (16)

TABLE V
SINGLE-ERROR PARAMETERS

CCDM HiDM BICM
α 507 13.4 −
θ 32 ≤2 1
γin 0.543 0.543 0
γout 0.6 0.6 0

Fig. 7. Post-invDM BER from simulation or estimation under the assumption
of a single-error input to the invDM per DM word.

where the FEC FER EFEC-fr is also bounded as

EFEC-fr ≤ min {k · Epost-FEC, 1} . (17)

The parameters α and θ, which denote the number of output
error bits of the invDM with a single-error input and the
number of OTUC1 block errors with a single FEC codeword
error, resp., are shown in Tab. V, along with γout and γin. In
the simulations, the number of information bits for the FEC is
k = 54000. If the expected number of errors in an erroneous
FEC codeword is larger than 1 due to the bursty nature of FEC
decoders, EFEC-fr becomes closer to Epost-FEC. The quantity Nu/
(RcmNs/2) in (16) is 0.875 for CCDM/HiDM-based PS-256-
QAM and 1 for BICM-based 128-QAM.

The ratio rE1 can be calculated based on (12) and (13),
which gives rE1 = 348 and 9.7 for CCDM and HiDM, resp.
These theoretic results are of the same order as the simulation
results in the previous section. This single-error scenario gives
the largest rE1 (the post-invDM BER would be worse than the
case with burst errors).

In Fig. 7, we estimated the post-invDM BER and BBER
as a function of the post-FEC BER at low error rates using
the bounds (13) and (16). The post-invDM BER E total

post-iDM
estimates agree well with the simulation results. To achieve
a post-invDM BER of 10−15, a post-FEC BER of 3 · 10−18
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(for CCDM) or 10−16 (for HiDM) is required. We can thus
conclude that the FEC design and evaluation becomes more
difficult with reverse concatenation PS than with BICM, due
to the requirement of such low post-FEC BERs. If the code
would have an error floor just below a post-FEC BER of
10−15, the required SNR for a post-invDM BER of 10−15

would be significantly larger. Also, simulations to evaluate a
post-FEC BER of 3·10−18 to ensure that there is no error floor
are very challenging (to transmit 1018 bits at 100 Gbit/s takes
107 s, or 3.8 months). HiDM requires an order of magnitude
higher error rate than CCDM, so the gap between BICM and
reverse concatenation PS is greatly reduced. As for the BBER
Eblock, estimations and simulations approach each other in the
low post-FEC BER regime, where the single-error assumption
works well. The bounded BBER as a function of the post-FEC
BER for HiDM is almost the same as for BICM-based 128-
QAM. The BBER bound for HiDM is 16 times lower than
for CCDM in the case of the same post-FEC BER, because
the HiDM places the DM word on the local area due to the
high throughput feature compared with the CCDM, as shown
in Fig. 3. When the DM word length Ns is increased, the post-
FEC error rates are reduced, but the bounds on E sb

post-iDM and
Eblock in (12) and (16) increase proportionally to Ns.

VIII. SUMMARY AND OUTLOOK

We proposed HiDM for low-complexity implementation
of reverse-concatenation PS, and evaluated its end-to-end
performance for high-throughput fiber-optic communications.
As the post-invDM BER and BBER performance depends
on the FEC decoding, invDM processing, and cross-layout
of the FEC codewords and the DM words, we demonstrated
frame structure examples considering the combined FEC and
PS. By a back-to-back error insertion test and a single-error
assumption, very low post-invDM error rates can be estimated
from the post-FEC BER, which allows relaxed requirements
for the post-FEC BER if HiDM is used instead of CCDM. The
combination of known post-FEC BER prediction techniques
using NGMI or ASI with the proposed post-invDM error rate
estimation from post-FEC BER would be an interesting topic
for further studies. Other future research directions include
a careful design of DM/invDM algorithms considering the
implementation combined with FEC to reach the desired BER
and BBER performance targets.
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