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Abstract
In this paper a numerical multiscale method for discrete networks is presented. The
method gives an accurate coarse scale representation of the full network by solving
sub-network problems. The method is used to solve problems with highly varying
connectivity or random network structure, showing optimal order convergence rates
with respect to the mesh size of the coarse representation. Moreover, a network model
for paper-based materials is presented. The numerical multiscale method is applied to
solve problems governed by the presented network model.
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1 Introduction

Network structures are used to model a wide variety of phenomena, such as flow
in porous media, traffic flows, elasticity of materials, body deformation in com-
puter graphics, molecular dynamics, and fiber materials. In these applications, the
microscale behaviour determines the macroscale properties of the system. Often a full
microscale model is difficult or impossible to work with because of the vast compu-
tational complexity. Therefore, there is an interest in constructing coarser, but still
accurate, representations of the entire system. Such a procedure is sometimes referred
to as upscaling or homogenization. In this work a numerical upscaling method for
discrete networks is presented.

There exist several numerical upscaling methods for partial differential equations
(PDE) based on the idea of homogenization, such as the heterogeneous multiscale
method (HMM) [20], the multiscale finite element method (MsFEM) [8], and the
more recent works [3,17]. The upscaling approach presented in this paper is based
on the localized orthogonal decomposition method (LOD) [4,15], which in turn is
inspired by the variational multiscale method (VMM) [9]. Multiscale methods applied
to network problems are for instance investigated by Ewing [5] and Ilev et al. [11] who
study the heat conductivity of network materials and develop an upscaling method
by solving the heat equation locally over small sub-domains. These local solutions
are used to compute an effective global thermal conductivity tensor. Della Rossa
et al. [2] investigate network models of traffic flows and derive a governing PDE
for the macroscale by formulating traffic flow equations for single network nodes
and interpreting the relations as finite difference approximations. The macroscale
parameters are resolved using a two-scale averaging technique. Chu et al. [1] develop
amultiscalemethod for networks representing flows in a porousmedium. Themedium
is modelled as a network where nodes represent pores and edges represent throats.
The conductance of each throat is assumed to be given by Hagen–Poiseuille equation,
and using mass conservation equations for the flow through the network, a model for
the microscale is attained.

The numerical upscaling method proposed in this work is developed for general
unstructured networks. The network is supposed to represent the microscale, and the
macroscale is represented by a finite element mesh which is coarse in comparison to
the fine scale network. The coarse grid does not have to be related to the network
in any way except that both cover the same computational domain, and therefore
the method can be applied to arbitrary network geometries. The coarse FEM grid is
used to define a macroscale solution space spanned by basis functions defined at each
coarse grid node as in standard FEM. The upscaling idea is to modify the coarse basis
functions to account for the microscale features of the network. This is accomplished
by solving local sub-network problems at each coarse basis function. The modified
basis functions are thereafter used to solve a global low-dimensional system resulting
in an accurate macroscale solution. The method leads to modified basis functions that
decay exponentially, and hence localization of the local sub-network problems can
be utilized, reducing the computational cost considerably while preserving optimal
convergence rates.
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Numerical upscaling of discrete network models

Moreover, this paper includes a two-dimensional networkmodel, which can be used
to model paper-based materials in form of fiber networks. The macroscale mechani-
cal properties of paper-based materials are of great interest. Paper is a heterogeneous
material built up of fibers bonded together into a network structure. The mechanical
properties of paper depend primarily on the properties of the fibers and the bonds
between them. In [12,14,19], computational fluid dynamics and advanced contact
modeling are used to simulate the paper forming process. One future aim is to utilize
that framework together with the proposed multiscale method to create virtual fiber
networks and investigate the macroscale mechanical properties. A network represen-
tation including fibers and bonds is a suitable methodology to study the mechanical
properties of paper [10,13,18]. Moreover, the varying properties of single fibers and
bonds, as well as an interest for fracture propagation simulations, call for an upscal-
ing approach. The presented network model is based on forces arising at the nodes
when the network is displaced, acting to restore the initial configuration. The network
model is similar to lattices models like [16,21] where edges are represented by springs.
Moreover, angle springs between pair of edges are included. A novelty of the network
model in this work is a third type of force phenomenon resulting in an effect simi-
lar to the Poisson effect. Force equilibrium equations at each node result in a matrix
equation which can be very large. For a regular network, the model converges to the
linear elasticity equation when the length of the network edges tends to zero. The
numerical upscaling method is applied to the network model and numerical examples
are solved to demonstrate the convergence rates of the method. The examples show
how the proposed numerical upscaling method resolves fine scale features which the
standard FEM cannot.

The outline of this text is as follows. In Sect. 2, the general problem formulation is
stated. Thereafter, in Sect. 3, the theory of the numerical upscalingmethod is presented.
Sect. 4 contains error analysis, and in Sect. 5, the two-dimensional network model is
described. In Sect. 6, numerical examples are presented, showing the convergence rates
of the proposed method. Lastly, in Sect. 7, conclusions and future work are discussed.

2 Problem formulation

Consider a problemmodelled by a network with properties governed by a connectivity
matrix K ∈ R

n×n . The matrix K can for instance be the discrete Poisson operator
describing heat conduction, the finite difference discretization of the linear elasticity
operator, or represent a more complex model, such as of the mechanics of a fiber
network. Let F ∈ R

n denote the load vector and let the solution vector be denoted
u, belonging to a vector space V ⊂ R

n . The network problem can be stated in two
equivalent ways, either:

Find u : K̄ u = F̄, (2.1)

or:

Find u ∈ V : vT Ku = vT F, ∀v ∈ V . (2.2)
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(a) (b) (c)

Fig. 1 Three examples of networks: a regular square network (a), a regular square network with randomly
perturbated nodes (b), and a fiber network (c) (generated as in [12])

In the first formulation, (2.1), K̄ and F̄ denotes modifications of K and F by explicitly
including the restriction of u to the space V , for instance by holding some nodes fixed.
To ensure existence and uniqueness of the second formulation, (2.2), it is assumed that
K is symmetric and positive definite on V . A matrix K ∈ R

n×n is positive definite on
a subset V ⊂ R

n if vT Kv > 0 for all nonzero v ∈ V . Moreover, a symmetric positive
definite matrix K constitutes a scalar product 〈u, v〉 = uT Kv on V , a property that
will be used later.

In Fig. 1 three examples of networks are shown. The network in Fig. 1a exemplifies
a finite difference grid for the unit square, with K as the resulting discretization
of the linear elasticity operator. This problem setup can be used to find the node
displacements u under applied node forces F . To attain a solvable system Ku = F ,
some degrees of freedom have to be prescribed, resulting in the restricted solution
space V . The network in Fig. 1b can represent a conductive medium, governed by
the discrete Poisson equation. The temperature at each node is contained in u. The
network in Fig. 1c is a fiber network building up a paper sheet. The fibers are modelled
as chains of edges connected at nodes with bonds between fibers at common network
nodes.

The objective of this paper is to develop a numerical upscaling method for net-
works, circumventing the computational issues arising when materials of macrosize
are considered. The idea is to reduce the size of the system by introducing a subspace
Vms ⊂ V , as a coarse representation of the network. This space is called the multiscale
space and it should fulfil the condition that dim Vms is much lower than dim V . The
multiscale solution is attained from the problem

Find u ∈ Vms : vT Kums = vT F, ∀v ∈ Vms.

The aim is to construct a multiscale space such that an error ‖u − ums‖ is
small. To achieve this, a FE-type coarse space is first introduced, which does
not have the desired approximation properties. This coarse space is then modi-
fied by solving local sub-networks problems, resulting in the desired multiscale
space. In the following section such a numerical homogenization method is pre-
sented.
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3 Numerical homogenization of networks

Consider a networkwith N nodes and properties governed by a symmetric and positive
semi-definite matrix K ∈ R

n×n , where n = d ·N is the number of degrees of freedom
of the network, and d denotes the number of degrees of freedom at each node. For
instance, for an elastic network,where node displacements are to be solved, the number
of degrees of freedom at each node will be two or three, depending on if the network
is two- or three-dimensional. In the following presentation the space is assumed to be
two-dimensional, but the method works analogously for three dimensions. Denote by
pi ∈ R

2 the position of the node corresponding to degree of freedom i = 1, . . . , n.
Note that groups of d degrees of freedom correspond to the same position.

Let the solution vector be denoted u ∈ R
n . The ordering of nodes and their degrees

of freedom is arranged such that if d = 2, u(1) and u(2) correspond to the first and
second degree of freedom of node 1, u(3) and u(4) correspond to the first and second
degree of freedom of node 2, and so on, with analogous ordering if d is larger. Here
u(i) denotes the i :th component of vector u. Let F ∈ R

n denote the load vector.
The system Ku = F is not necessarily solvable without prescribing some degrees of
freedom. Consider fixed constraints with zero displacement (non-zero displacement
is treated in Sect. 3.4) and let ND ⊂ {1, . . . , n} be the set of indices corresponding
to the fixed degrees of freedom. Let N = {1, . . . , n}\ND . Denote by V ⊂ R

n the
restricted solution space defined by

V = {v ∈ R
n : v(i) = 0, i ∈ ND}.

The variational formulation of the network displacement problem reads:

Find u ∈ V : vT Ku = vT F, ∀v ∈ V . (3.1)

For the problem to be solvable it is assumed that K in addition to being symmetric,
also is positive definite on the restricted solution space V .

3.1 Coarse grid representation

The overall idea of the upscaling method is to introduce a coarse grid, representing the
network at themacroscale. See Fig. 2a for an illustration of a networkwith a coarse grid
representation. At each coarse node, d number of basis functions are defined similarly
as in the finite element method. These basis functions span a low dimensional solution
space which gives an insufficient description of the fine scale features. To include the
fine scale information, the basis functions are modified by solving local sub-network
systems. Thereafter the modified basis functions are used to solve a global system,
smaller than the full system including all nodes, resulting in an upscaled approximation
of the original problem. In what follows, the details of this procedure are described.

Let the coarse grid be denotedT , containing M coarse nodes and letm = d ·M be
the degrees of freedomof the coarse grid.One choice of coarse grid is a quadrilateration
as in Fig. 2a. It is assumed that the coarse grid constitutes a good approximation of
the computational domain of the network, and that each coarse element contains at
least one network node and that N > M . Let Λi : R2 → R, i = 1, . . . ,m, denote
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(a) Network and FEM quadrilat-
eration.

(b) A bilinear basis function i:
R
2 → R of the FEM grid.

(c) The interpolated bilinear ba-
sis function i ∈VH ⊂ R

n.

Fig. 2 Example of a square network with a FEM quadrilateration representation

Only fixed network nodes
encircled.

Both fixed network nodes
and fixed coarse grid nodes en-
circled.

(b)(a)

Fig. 3 Example illustrating the fixation of coarse network nodes for d = 1. The coarse grid nodes are
marked with squares and the network nodes with dots. Fixed nodes are encircled. To the left, fixed network
nodes are marked with circles, illustrating the set ND . Based on ND and the condition (3.2), the coarse
grid nodes which should be fixed,MD , have been marked with larger circles in the right plot

the coarse nodal basis functions of the grid T . For a quadrilateration, bilinear basis
functions are suitable, illustrated in Fig. 2b.

LetMD ⊂ {1, . . . ,m} be the set of indices corresponding to fixed coarse degrees of
freedom. The fixation of coarse grid nodes is determined from the set of fixed network
nodes, ND . Consider a coarse node with basis function Λi , describing for instance
the x-displacement of that node. If there exists a network node with fixed degree of
freedom j such that p j lies in the support of Λi , and j also describes x-displacement,
then the coarse degree of freedom i should be fixed. This is illustrated in Fig. 3. The
fixation condition is equivalently stated as:

i ∈ MD if ∃ j ∈ ND :
(
Λi (p j ) 
= 0 and i ≡ j(mod d)

)
. (3.2)

The modulo operation is used to check if two degrees of freedom, here i and j , corre-
spond to the same displacement direction (e.g. x or y for d = 2). For networks with
more complex boundary geometry, the coarse grid has to be refined at the boundary
to attain a proper representation of the fixed boundary conditions.
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LetM = {1, . . . ,m}\MD denote the set of nonprescribed coarse degrees of free-
dom. The positions of the coarse nodes, {Pi }mi=1, defined similarly as the positions of
the network nodes, are a subset of R2, likewise as the nodes of the network. However,
these two subsets do not have to be related, but as already noted, it is assumed that
each coarse element contains at least one network node.

Next, two vector spaces are introduced, the coarse space VH , and the detail space
W . The coarse space is defined from the coarse basis functions in the following way.
Let λi ∈ R

n, i = 1, . . . ,m, be the interpolation of the coarse nodal basis functions to
the network nodes given by

λi ( j) =
{

Λi (p j ), if i ≡ j (mod d),

0, else.

See Fig. 2c for an illustration of the interpolated vector λi of the coarse nodal basis
function Λi . Note that

(∑m
i=1 λi

)
( j) = 1, ∀ j = 1, . . . , n.

The coarse space is defined as the span of the interpolated non-fixed basis functions,
that is

VH = span({λi }i∈M ),

with dimension dim VH = mH := |M |. Note that λi is defined for all i = 1, . . . ,m,
but λi ∈ V only if i ∈ M . Let the matrix BH = [{λi }i∈M ] ∈ R

n×mH contain the
basis vectors of the coarse space VH as its columns. It is assumed that the columns
are linearly independent. The matrix BH is called the prolongation matrix and acts as
a map BH : RmH → VH .

To define the detail space, a restriction matrix CH ∈ R
mH×n is introduced acting

as a mapCH : Rn → R
mH . In this work, the restriction matrix is chosen asCH = BT

H
(for examples of other choices of restriction operator, see [4]). With CH = BT

H , an
equivalent definition of the coarse space VH is as the range of the map BHCH : V →
VH , that is

VH = {BHCHv : v ∈ V }.

The detail space is defined as the null space of the restriction matrix:

W = {v ∈ V : CHv = 0}.

With CH = BT
H it holds that v ∈ W if the bilinear weighted average of v is zero for

each interpolated bilinear basis function λi , i.e. λT
i v = 0, ∀i ∈ M .

The coarse space and the detail space constitute a splitting of V such that each
v ∈ V can be uniquely decomposed as v = vH + w where vH ∈ VH and w ∈ W .
Before proving this fact, a lemma is stated showing the relation between the spaces
R
mH , Rn and VH , and the maps in-between, illustrated in Fig. 4.

Lemma 3.1 If BH has linearly independent columns and CH = BT
H , then for each

vH ∈ VH there exists v̄H ∈ VH such that BHCH v̄H = vH . Moreover, if v1, v2 ∈ VH

such that BHCHv1 = BHCHv2, then v1 = v2.
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Fig. 4 A sketch of the two spaces RmH and R
n , and the subspace VH ⊂ R

n . The four mappings BH :
R
mH → VH , CH : Rn → R

mH , CH BH : RmH → R
mH and BHCH : Rn → VH are also shown

Proof The map BH : RmH → VH is one-to-one since BH has linearly independent
columns. Moreover, the map CH BH : R

mH → R
mH is invertible since CH BH =

BT
H BH is symmetric and positive definite due to the fact that xTCH BH x = |BH x |2 ≥

0 and |BH x | = 0 implies x = 0. Given vH ∈ VH , it exists a ∈ R
mH such that

BHa = vH , and since CH BH is invertible it exists b ∈ R
mH such that CH BHb = a.

Therefore vH = BHCH BHb leading to v̄H = BHb ∈ VH .
To prove the second part, assume v1 
= v2. Then there exists a1, a2 ∈ R

mH with
a1 
= a2 such that v1 = BHa1 and v2 = BHa2. SinceCH BH is invertible,CH BHa1 
=
CH BHa2, contradicting the fact that BHCH BHa1 = BHCH BHa2, hence v1 = v2. �
Proposition 3.1 If BH has linearly independent columns and CH = BT

H , then V =
VH ⊕ W uniquely.

Proof For v ∈ V , let vH = BHCHv. Lemma 3.1 states the existence of ṽH ∈ VH such
that vH = BHCH ṽH . Since BH has linearly independent columns the relation 0 =
vH−vH = BHCHv−BHCH ṽH = BH (CHv−CH ṽH ) implies thatCHv−CH ṽH = 0
with conclusion that v − ṽH ∈ W . Therefore v = ṽH + (v − ṽH ) is a desired
decomposition. To show uniqueness, consider two decompositions v = vH ,1 + w1
and v = vH ,2 + w2. Then vH ,1 + w1 = vH ,2 + w2, and applying BHCH on both
sides gives BHCHvH ,1 = BHCHvH ,2. From the last part of Lemma 3.1 it follows
that vH ,1 = vH ,2. �

Using the detail space W , together with the connectivity matrix K , the multiscale
space Vms is defined as the K -orthogonal complement of W :

Vms = {v ∈ V : wT Kv = 0, ∀w ∈ W }.

The spaces W and Vms constitute another splitting of V implying that every v ∈ V
can be decomposed uniquely as v = vms + w where vms ∈ Vms and w ∈ W .

Proposition 3.2 Assume BH has linearly independent columns and CH = BT
H . If K

is symmetric and positive definite on V , then V = Vms ⊕ W uniquely.

Proof Consider v ∈ V . From Proposition 3.1 it is known that v = vH + w̃ with
vH ∈ VH and w̃ ∈ W . Let z ∈ W : wT K z = wT KvH , ∀w ∈ W , which has a unique
solution since K is symmetric and positive definite on V . Define vms = vH − z and
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w = w̃ + z, where the second sum is in W . Since xT Kvms = xT KvH − xT K z =
0, ∀x ∈ W , it is true that vms ∈ Vms, giving the desired decomposition as v =
vms + w. To prove uniqueness, consider v = vms,1 + w1 and v = vms,2 + w2. Then
0 = xT K (v − v) = xT K (w1 + vms,1 − w2 − vms,2) = xT K (w1 − w2), ∀x ∈ W ,
implying that w1 = w2. �

The multiscale solution, ums ∈ Vms, to the original problem (3.1), is defined as the
solution to the problem

Find ums ∈ Vms : vT Kums = vT F, ∀v ∈ Vms. (3.3)

Proposition 3.3 Let K be symmetric and positive definite on V , and F ∈ V . Then
there exists a unique solution to problem (3.3).

Proposition 3.4 Let u f ∈ W be such that wT Ku f = wT F, ∀w ∈ W. Then the sum
u = ums + u f , where ums is the solution to the multiscale problem (3.3), solves the
original problem (3.1).

Proof Same arguments as used in Proposition 3.3 show that there exists a unique such
u f . According to Proposition 3.2, v ∈ V can be decomposed as v = vms + w, where
vms ∈ Vms andw ∈ W . Using orthogonality, and that u f and ums are solutions to their
respective problem, it can be derived that

vT Ku = (vms + w)T K (ums + u f )

= vTmsKums + vTmsKu f + wT Kums + wT Ku f

= vTmsF + 0 + 0 + wT F

= vT F .

�
To solve the multiscale problem (3.3), it is convenient to construct a basis for the
multiscale space Vms, which can be used to simplify the problem to a matrix equation.
A basis for Vms is constructed using the vectors λi , by defining modification vectors
φi ∈ V , i ∈ M , as solutions to the problems

φi ∈ W : wT K (λi − φi ) = 0, ∀w ∈ W . (3.4)

Proposition 3.5 If K is symmetric and positive definite on V , BH has linearly inde-
pendent columns and CH = BT

H , then the vectors {λi − φi }i∈M constitute a basis for
Vms.

Proof The problem to find φi such that wT Kφi = wT Kλi , ∀w ∈ W , has a unique
solution φi ∈ W since K is symmetric and positive definite on V . By construction, it is
also true that λi −φi ∈ Vms. To prove linear independence, consider

∑
ai (λi −φi ) = 0

and apply BHCH to both sides. Using that CHφi = 0 gives BHCH
∑

aiλi = 0 =
BHCH0, and by the second part of Lemma 3.1 it follows that

∑
aiλi = 0 implying

ai = 0. �
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Using the above constructed basis for Vms, {λi − φi }i∈M , to assemble the matrix

Bms = [{λi − φi }i∈M ] ∈ R
n×mH ,

reduces the variational form of the multiscale problem (3.3) to the equivalent matrix
problem

BT
msK BmsUms = BT

msF, (3.5)

where Ums ∈ R
mH and ums = BmsUms.

At this point, a multiscale space with low dimension compared to the solution space
V has been constructed as was desired in the problem formulation. Moreover, it has
been shown that the problemcan be solved through amatrix equation after constructing
a basis for the multiscale space. However, the problems of solving the modified basis
functions have the same size as the original problem. It turns out that this can be
circumvented, utilizing that the modifications φi decay exponentially, implying that
the problems can be localized. This is presented in the following section.

3.2 Localization

The describedmethod requires systems to be solved which are as large as K . However,
as will be demonstrated by numerical examples in Sect. 6, the modifications φi decay
fast away from its coarse node. Therefore the problems (3.4), of calculating φi , can
be localized with preserved convergence rates. The localization is accomplished by
solving each problem (3.4) on a restricted domain, called patch.

As in FEM, it is natural to assemble the stiffness matrix elementwise. In this work,
it is suitable to assemble the connectivity matrix K over each coarse element E , such
that K = ∑

E∈T KE . The local element connectivity matrices KE : V → V are
assembled for each element E ∈ T by only considering edges in each element. See
Fig. 5 for an illustration. For unstructured networks, edges may intersect the elements.
Such a situation is resolved by temporarily dividing the edges at intersection points.
Using the decomposition of the connectivity matrix into local element matrices, the
modificationsφi can analogously be assembled as

∑
E∈T φE

i , whereφE
i is the solution

to the problem

Find φE
i ∈ W : wT KφE

i = wT KEλi , ∀w ∈ W .

Proposition 3.6 The sumof the elementwisemodifications,
∑

E∈T φE
i , solves the orig-

inal problem (3.4).

Proof It follows that

wT K
∑
E∈T

φE
i =

∑
E∈T

wT KφE
i =

∑
E∈T

wT KEλi = wT
∑
E∈T

KEλi = wT Kλi .

�
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Fig. 5 Element E is marked with
a square and the edges which are
included in the assemble of KE
is marked with thick lines

Circular patch with origin at element
center.
(a) (b)Patch with one layer of elements sur-

rounding the element.

Fig. 6 Two square networks with different types of patch geometries

With elementwise assembly, it is convenient to use patches centred at each element. For
an element E ∈ T , let its patch be denoted ωE ⊂ R

2. One suitable choice of patch
geometry is a circle with center coinciding with the element center, as illustrated
in Fig. 6a. Another choice is to use a fixed number of layers of coarse elements
surrounding the considered element E , as depicted in Fig. 6b. Let the patch size be
described by the parameter ρ such that ρH is the radius of the patch, where H denotes
the coarse element size. In the two examples shown in Fig. 6, the value ofρ corresponds
to 1.5. LetNE ⊂ N , denote the degrees of freedom of network nodes that are in the
patch ωE . Similarly, let ME ⊂ M , denote the degrees of freedom of coarse nodes
that are in the patch of element E .

For each element E , its localized subspace of the detail space is defined according
to

W̃E = {w ∈ W : w(i) = 0, ∀i /∈ NE }.
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The localized modification φ̃i is attained by solving the problems

Find φ̃E
i ∈ W̃E : wT K φ̃E

i = wT KEλi , ∀w ∈ W̃E ,

for each element E , and taking the sum φ̃i = ∑
E∈T φ̃E

i . The resulting localized
multiscale space is denoted Ṽms, and is defined as

Ṽms = span({λi − φ̃i }i∈M ).

3.3 Algebraic formulation

In this section the algebraic formulation of the numerical multiscale method is pre-
sented. The multiscale method consists of two main steps. First, the basis for the
multiscale space Vms is constructed by calculating each φi from (3.4). Secondly, the
attained modified basis is used to solve the global multiscale problem (3.3). In this
section, elementwise assembling and localization, described in Sect. 3.2, is employed.

First, a useful matrix notation is introduced. Consider a matrix A ∈ R
a×b. Let

A ⊂ {1, 2, . . . , a} and B ⊂ {1, 2, . . . , b} be subsets of the matrix row and column
indices respectively. A new matrix A(A ,B) ∈ R

|A |×|B| is extracted from A by only
considering rows corresponding to indices inA and columns corresponding to indices
inB, that is A(A ,B) = (ai j )(i, j)∈A ×B .

Using the introducedmatrix notation, the followingmatrices and vectors are defined
for E ∈ T and i ∈ M :

K E = K (NE ,NE ),

CE
H = CH (ME ,NE ),

r Ei = KE (NE , :)λi .
The multiscale method can now be formulated as solving several matrix systems.

For each element E ∈ T , and each coarse degree of freedom i ∈ M , the following
system is solved

[
K E CE

H
T

CE
H 0

] [
ϕ̃E
i

ηE
i

]
=

[
r Ei
0

]
.

The correction vectors φ̃E
i is attained from ϕ̃E

i as

φ̃E
i (NE ) = ϕ̃E

i ,

φ̃E
i (N C

E ) = 0,

whereN C
E = {1, . . . , n}\NE . The full modifications are thereafter calculated accord-

ing to

φ̃i =
∑
E∈T

φ̃E
i , i ∈ M ,

123



Numerical upscaling of discrete network models

and used to assemble the modified basis matrix

B̃M = [{λi − φ̃i }i∈M ].

Finally, the following localized version of the global problem (3.5) is solved:

B̃T
M K B̃MŨms = B̃T

M F, (3.6)

where the fine multiscale solution is calculated as ũms = B̃MŨms.
Summarized, the algebraic formulation of the numerical multiscale method is:

1. For each i ∈ M and E ∈ T solve[
K E CE

H
T

CE
H 0

] [
ϕ̃E
i

ηE
i

]
=

[
r Ei
0

]
.

2. Assemble

φ̃i =
∑
E∈T

φ̃E
i , i ∈ M .

3. Solve

B̃T
M K B̃MŨms = B̃T

M F .

4. Calculate

ũms = B̃MŨms.

(3.7)

3.4 Non-zero fixed boundary conditions

Consider a displacement problem where F = 0 and the set of prescribed degrees of
freedom, ND , includes degrees with non-zero displacement. Let

VD = {u ∈ V : ui = gi , i ∈ ND},

where gi are the prescribed displacement of degree of freedom i ∈ ND . Let still
V = {u ∈ V : ui = 0, i ∈ ND}. The displacement problem is

Find u ∈ VD : vT Ku = 0, ∀v ∈ V . (3.8)

Assume u = u0 + gH where u0 ∈ V and gH for simplicity is a linear combination of
λi , i = 1, . . . ,m. The problem (3.8) is then equivalent to

Find u0 ∈ V : vT Ku0 = −vT KgH , ∀v ∈ V . (3.9)

The problem is in this way transformed back to the previous formulation and can be
solved with the same method.
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Proposition (3.4) states that the exact solution of the displacement problem is
u = ums + u f . For the case with non-zero prescribed displacements and gH ∈
span({λi }mi=1), which was described above, the correction vector u f turns out to be
a linear combination of the vectors φi , i = 1, . . . ,m, as the following derivation
shows. Consider the non-homogeneous displacement problem (3.9). The correction is
attained from

Find u f ∈ W : wT Ku f = −wT KgH , ∀w ∈ W , (3.10)

where gH was assumed to be a linear combination of λi , i.e.:

gH =
m∑
i=1

αiλi . (3.11)

The modification vectors φi , i = 1, . . . ,m, is attained from the problems

Find φi ∈ W : wT Kφi = wT Kλi , ∀w ∈ W . (3.12)

Note that the problems are solved for all i = 1, . . . ,m, compared to before, when
only i ∈ M were considered. This is necessary to construct the correction u f as will
be seen next.

Inserting (3.11) into (3.10) and using (3.12) gives

wT Ku f =−wT KgH =−
m∑
i=1

αiw
T Kλi =−

m∑
i=1

αiw
T Kφi =wT K

(
−

m∑
i=1

αiφi

)
,

implying that the correction is the sum

u f = −
m∑
i=1

αiφi .

For general fixed displacements gH , not necessarily in VH , see the work [6].

4 Error analysis

This paper concerns a quite general network model described by a connectivity matrix
K and a right hand side load F . In this section, some error bounds are shown. Because
of the generality of K , assumptions are needed. It is assumed that the coarse grid is a
quasi-uniform finite element mesh with mesh parameter H ≈ m−1/2. The following
two norms on the space V are introduced:

|||v||| := (vT Kv)1/2,

‖v‖h :=
(∑

i

h̄2i v
2
i

)1/2

,
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where h̄i is the average length of all edges connected to the node corresponding to
degree of freedom i . It is assumed that K is symmetric and positive definite on V , and
that the smallest eigenvalue of K , denoted ν, fulfils

|||v|||2
‖v‖2h

≥ ν, ∀v ∈ V , (4.1)

where ν is bounded from below by a constant independent of n. For the finite element
method posed on a quasi-uniform mesh these definitions and assumptions correspond
to the energy norm, a weighted l2-norm and a Poincaré inequality. A bilinear weighted
interpolant πH : V → VH is defined as πHv = ∑

i∈M (λT
i v)λi . i.e. πHv = BHCHv.

Assume the following error bound:

‖v − πHv‖h ≤ CH |||v|||, (4.2)

which is expected to hold for v ∈ V .
Introducing the notation F̄ , with components F̄i = Fi h̄

−2
i , the following variant of

the Cauchy–Schwarz inequality can be derived using the original version,

|vT F | =
∣∣∣∣∣
∑
i

h̄ivi h̄
−1
i Fi

∣∣∣∣∣ ≤
(∑

i

v2i h̄
2
i

)1/2 (∑
i

F2
i h̄

−2
i

)1/2

= ‖v‖h‖F̄‖h . (4.3)

The weighted load vector F̄ is O(1) in regard to n for distributed surface loads.
The main source of error in the proposed method is the localization of the multi-

scale basis functions to patches. To isolate this contribution the vector πH F ∈ VH is
introduced. Consider the modified model problem: find û ∈ V such that

vT K û = vTπH F, ∀v ∈ V .

Given the assumptions, it is noted that

∣∣∣∣∣∣u − û
∣∣∣∣∣∣2 = (u − û)T (F − πH F) ≤ ‖u − û‖h‖F̄ − πH F̄‖h

≤ C
∣∣∣∣∣∣u − û

∣∣∣∣∣∣‖F̄ − πH F̄‖h,

which together with (4.2) implies

∣∣∣∣∣∣u − û
∣∣∣∣∣∣ ≤ C‖F̄ − πH F̄‖h ≤ CH

∣∣∣∣∣∣F̄∣∣∣∣∣∣. (4.4)

This error is viewed as acceptable since the constantC is independent of data variation
in the connectivity matrix, and without loss of generality it is assumed that F ∈ VH .

First it is shown that the multiscale solution ums is equal to u if F ∈ VH .

Proposition 4.1 Let u and ums be defined according to

u ∈ V : vT Ku = vT F, ∀v ∈ V ,

ums ∈ Vms : vT Kums = vT F, ∀v ∈ Vms.
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If F ∈ VH , then it holds that u = ums.

Proof Since F ∈ VH , there exists an F̄ ∈ V such that BHCH F̄ = F . To show
vT Kums = vT F, ∀v ∈ V , it is noted that it holds for all v ∈ Vms from the definition
of ums. Due to the splitting V = Vms ⊕ W it is enough to show that it also is true for
all test functions v f ∈ W . For any v f ∈ W it holds that

vTf F − vTf Kums = vTf BHCH F̄ = (F̄T CT
H BT

Hv f )
T = 0,

since vTf Kums = 0 by orthogonality and BT
Hv f = CHv f = 0 by the definition of

the space W . Therefore ums solves the same equation as u, and due to uniqueness
ums = u. �

The error committed by localization is difficult to study without stronger assump-
tions on the connectivity matrix K . It has however been analysed for several concrete
cases, for instance when K is the stiffness matrix arising from discretizing the Poisson
equation [15] and the elasticity equations [7] with the finite element method. For these
cases it is true that

max
w∈Vms

min
v∈Ṽms

|||w − v|||
|||w||| ≤ Ce−cρ, (4.5)

whereC and c are constants independent of H . In Sect. 6 it is shown, through numerical
validation, that this relation is true for themore complicated networkmodel considered
there. The theoretical analysis of this result for the general network model proposed
in Sect. 5 is complicated and postponed to future work. Assuming this result gives the
following error bound.

Theorem 4.1 Assuming Eq. (4.5), the following error bound is true for any load vector
F ∈ V :

|||u − ũms||| ≤ C‖F̄ − πH F̄‖h + Ce−cρ‖F̄‖h .

Proof First consider the case F ∈ VH . The vectors u ∈ V, ums ∈ Vms and ũms ∈ Ṽms
solve

vT Ku = vT F, ∀v ∈ V,

vT Kums = vT F, ∀v ∈ Vms,

vT K ũms = vT F, ∀v ∈ Ṽms.

(4.6)

Since Ṽms ⊂ V , Galerkin orthogonality gives

|||u − ũms||| ≤ min
v∈Ṽms

|||u − v|||.
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Moreover, since F ∈ VH it holds that u = ums.Using this togetherwith the assumption
(4.5) with w = u = ums leads to

|||ums − ũms||| ≤ min
v∈Ṽms

|||ums − v||| ≤ Ce−cρ |||ums|||.

This together with the fact that

|||ums|||2 = |uTmsKums| = |uTmsF | ≤ ‖ums‖‖F̄‖h ≤ C |||ums|||‖F̄‖h,

gives

|||ums − ũms||| ≤ Ce−cρ‖F̄‖h . (4.7)

For the general case F ∈ V , let û, ûms and ˆ̃ums denote the different solutions to the
problems in (4.6), but with load vectors πH F . Using û = ûms and the inequalities
(4.4) and (4.7) finally result in

|||u − ũms||| =
∣∣∣
∣∣∣
∣∣∣u − û + ûms − ˆ̃ums + ˆ̃ums − ũms

∣∣∣
∣∣∣
∣∣∣

≤ ∣∣∣∣∣∣u − û
∣∣∣∣∣∣ +

∣∣∣
∣∣∣
∣∣∣ûms − ˆ̃ums

∣∣∣
∣∣∣
∣∣∣ +

∣∣∣
∣∣∣
∣∣∣ ˆ̃ums − ũms

∣∣∣
∣∣∣
∣∣∣

≤ C‖F̄ − πH F̄‖h + Ce−cρ‖πH F̄‖h + C‖F̄ − πH F̄‖h
≤ C‖F̄ − πH F̄‖h + Ce−cρ (‖F̄ − πH F̄‖h + ‖F̄‖h

)

≤ C‖F̄ − πH F̄‖h + Ce−cρ‖F̄‖h .
�

5 Networkmodel for paper-basedmaterials

In this section, a two-dimensional elasticity network model is presented, which can be
used to model fiber networks in paper-based materials. An elasticity network consists
of nodes and edges. When the nodes are displaced, internal forces act to restore the
displacements. These forces act at two types of elements, either on edges or on edge
pairs (two edges connected at a joint node). Three types of internal forces are included
in this model, one type is related to edges, and two types are related to edge pairs. The
model is two-dimensional, static and assumes small deformations.

The network mechanics are governed by force equilibrium equations assembled at
each node. The general form of the equation for each node i reads

F Internal
i + FExternal

i = 0,

where FExternal
i ∈ R

2 are all externally applied forces. The internal force F Internal
i ∈ R

2

is, as mentioned, a sum of three contributions:

F Internal
i = F I

i + F II
i + F III

i .
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Thefirst force contribution is related to the edges of the network and acts to compensate
for changes in length of the edges. The second force contribution acts on edge pairs
to compensate changes in the angle between the edges of each edge pair. The third
force contribution is included to model the Poisson effect. It acts on edge pairs by
introducing a resistance to changes in the total length of the two edges of the pair. In
the following sections, the three forces are described. Preparatory some nomenclature
is introduced.

Let the network consist of N nodes. Let (i, j) denote the edge connecting node i
to j and let E denote the set of all edges. Note that (i, j) = ( j, i). Edge pairs are
denoted by (i, j, l) where j is the central node. Denote byP the set of all edge pairs.
Note that (i, j, l) = (l, j, i). Each node i has two degrees of freedom, the x-directed
displacement and the y-directed displacement, contained in the vector δi ∈ R

2.
All force equilibrium equations can be assembled into a system of the form

−Ku + F = 0 where K ∈ R
n×n is called the elasticity matrix, u ∈ R

n is the node
displacements, and F ∈ R

n is the external forces. The elasticity matrix K is attained
by summation of matrices assembled at edges and edge pairs. The node displacement
vector u is arranged according to

[
u(2i − 1)
u(2i)

]
= δi , 1 ≤ i ≤ N ,

and the elasticity matrix is assembled such that the force equilibrium equation for
node i is at row 2i − 1 for the x-component, and at row 2i for the y-component.

Let the length of edge (i, j) be denoted Li j and assume that the edge has a width
wi j . All edges is assumed to have a uniform thickness z in the direction into the plane.
The direction vector, dai j , of an edge (i, j), with respect to node a ∈ {i, j}, is defined
as

dai j = pb − pa
|pb − pa | , b ∈ {i, j}, b 
= a.

The length change of edge (i, j) is denoted ΔLi j and given by

ΔLi j = (
δ j − δi

) · dii j .

In Fig. 7 some of the introduced notation is depicted. The length change ΔLi j of an
edge,which is not exact but approximated by taking the dot product of the displacement
difference onto the direction vector, is illustrated.

5.1 Extension of edges

The first force contribution acts at edges due to their internal resistance to length
change.When the nodes of an edge are displaced so that the projection of the difference
of the node displacements onto the initial edge direction is nonzero, anti-parallel forces
arise at the nodes of the edge to restore the length. The tendency of an edge to restore
its length is described by the elastic modulus ki j .

Consider an edge (i, j) as shown in Fig. 7b.When the nodes are displaced, the edge
(i, j) will give rise to two forces F I

a(i, j), a ∈ {i, j}, acting on node a according to
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(a) (b)

Fig. 7 Sketches showing the notation used for the network nodes, edges and edge pairs. To the right it is
illustrated how the approximate length change ΔLi j of an edge (i, j) is calculated

F I
a(i, j) = ki j

wi j z

Li j
ΔLi j d

a
i j , a ∈ {i, j}.

5.2 Angular deviations of edge pairs

The second force contribution acts at edge pairs from their internal tendency to resist
change of the angle between their two edges. When a change in angle occurs, two
torques arise at the connecting node acting on one edge each to restore the change. By
transforming these torques to force couples the effect can be converted into the force
equilibrium equations.

Consider an edge pair (i, j, l) as depicted in Fig. 7a. When the nodes are displaced,
an angular change Δθ i jl occurs, giving rise to two torques

τi = κi jl Vi jlΔθ i jl ẑ,

τl = −τi ,

acting on edge (i, j) and ( j, l) respectively, at the position of node j . The angular
change is a sum of two contributions according to

Δθ i jl = δθ j i + δθ jl .

Each term, δ j i and δ jl , is the angle deviation of respective edge from its initial ori-
entation, as can be seen in Fig. 8. By using the assumption α ≈ tan α, the angles
δθ ja, a ∈ {i, l} can be calculated according to

δθ ja ≈ tan θ ja = (δa − δ j ) · n j
ja

L ja
, a ∈ {i, l},

where the edge normals are calculated according to

n j
ji = d j

ji × ẑ,

n j
jl = −d j

jl × ẑ.
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Fig. 8 The initial position of the
edge pair (i, j, l) is shown with
dashed lines. After
displacement, forces act at the
nodes of the edge pair to restore
the angular change between the
edges. The angle deviation of
each edge is denoted δ j i and δ jl ,
respectively

Transforming the torques to force couples gives the resulting three forces F II
a (i, j, l),

a ∈ {i, j, l} from edge pair (i, j, l), acting on node a, according to

F II
a (i, j, l) = −κi jl Vi jlΔθ i jl

Laj
n j
ja, a ∈ {i, l},

F II
j (i, j, l) = −F II

i (i, j, l) − F II
l (i, j, l).

These forces are illustrated in Fig. 8.

5.3 Poisson effect of edge pairs

The third force contribution results in an effect similar to the Poisson effect and acts
at edge pairs. The idea is to add forces that work to keep the total length of the two
edges of the pair constant. Hence, when one edge changes length, two kind of forces
occur, on one hand forces acting to restore the length of the specific edge, on the other
hand forces acting to change the length of the other edge in the pair.

Consider an edge pair (i, j, l), as shown in Fig. 7a. The forces acting at the outer
nodes a ∈ {i, l} will be

F III
a (i, j, l) = −ηi jl

waj z

Laj

(
ΔLaj + γi jl

wbj

2

ΔLbj

Lbj
|n j

aj · d j
bj |

)
d j
aj ,

a, b ∈ {i, l}, b 
= a,

and at the central node

F III
j (i, j, l) = −F III

i (i, j, l) − F III
l (i, j, l).

5.4 Assembly of elasticity matrix

The governing equation −K̄ u + F = 0 contains all node equilibrium equations as
a matrix system. Here K̄ is the modification of K by explicitly including boundary
conditions. Since each edge and each edge pair leads to separate force contributions,
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the total elasticity matrix K can be assembled from separate element matrices for
each of the three force contributions. Let K I

i j , K
II
i jl , K

III
i jl ∈ R

n×n denote the matrices
assembled from the first, second and third force contribution respectively, at different
elements [edges (i, j) or edge pairs (i, j, l)]. These matrices are sparse and the only
nonzero elements are defined by the relations

K I
i j ({2a − 1, 2a}, {1, . . . , n})u = F I

a(i, j), a ∈ {i, j},
K II
i jl({2a − 1, 2a}, {1, . . . , n})u = F II

a (i, j, l), a ∈ {i, j, l},
K III
i jl({2a − 1, 2a}, {1, . . . , n})u = F III

a (i, j, l), a ∈ {i, j, l}.

The elasticity matrix K is assembled according to

K = −
∑

(i, j)∈E
K I
i j −

∑
(i, j,l)∈P

(
K II
i jl + K III

i jl

)
.

The matrix K is symmetric and semi-positive definite. With proper fixation of nodes,
the matrix will be positive definite on the restricted solution space. Moreover, for
a regular network with uniform coefficients k, κ , η and γ , the presented model is
equivalent to the finite difference discretization of the two-dimensional linear elasticity
equations.

6 Numerical results

In this section, two network problems are solved using the proposedmultiscalemethod
and the fiber network model. Both problems are similar, with different boundary
conditions and load vectors. Consider a unit square network with nodes and edges in
a regular grid pattern, as shown in Fig. 9a. Let the number of nodes be (r + 1)2. In
the examples r = 27 = 128 will be used. Let li and μi represent the standard Lamé
parameters, with one value for each node i . Set the parameters of the network model to

ki j = 2μ̄i j + l̄i j
5c

, κi j = μ̄i j

4c2
, ηi jl = 2μ j + l j

5c
, γi jl = 2l j

4ηi jl c2
, c = 1

2
,

where μ̄i j = μi+μ j
2 and l̄i j = li+l j

2 are the mean values of the two nodes of edge
(i, j). Using the above parameters, the elasticity matrix K is assembled. Let h = 1/r
denote the length of each network edge.

The first network problem, called the fixed boundary problem, is

K̄1u = F̄, (6.1)

where u(i) = 0 for all network nodes on the unit square boundary, and F(i) = 1
h2
. As

mentioned earlier, K̄ and F̄ correspond to the modification of K1 and F by explicitly
including the boundary conditions.
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Regular square network.(a) (b) (c)Network with coarse scale
grid representation.

Coarse scale basis function.

Fig. 9 Example of a regular square network with r = 16 and R = 4

Fig. 10 Example of a unit
square network with r = 32 and
randomly perturbed nodes

The second problem, called the displaced boundary problem, is

K̄2u = 0 (6.2)

where u(i) = 0 for all network nodes with x = 0, and u(i) = 0.1 for all x-directed
degrees of freedom with x = 1.

To solve the twoproblemsusing the proposednumericalmultiscalemethod, a coarse
FEM grid is introduced. The grid is similar to the network but with (R + 1)2 nodes.
The basis functions Λi are chosen as classic bilinear. See Fig. 9b for an illustration of
the network and coarse FEM grid. Let H = 1/R be the width of the coarse elements.
With the described network geometry, the fixed boundary conditions correspond to
fixation of coarse nodes at the boundary.

Each problem is solved with three different setups, first a basic setup with li =
μi = 1. Secondly, by using a realization of random coefficients li and μi sampled in
[0.1, 10] with uniform distribution. Thirdly, each node i is displaced [δxi , δyi ] where
δxi and δyi is randomly sampled in [−0.4h, 0.4h]with uniform distribution. For nodes
with initial coordinate x = 0 or x = 1, it is enforced that δxi = 0, and similarly for
nodes with y = 0 or y = 1, δyi = 0. In Fig. 10, a network with such random structure
is shown for r = 32.
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Fig. 11 Relative error
|||φi − φ̃i |||/|||φi ||| for a localized
modified basis function φ̃i for a
central node for the first problem
(6.1)

0.1 0.3 0.5 0.7

10-10

10-5

100

Fig. 12 The smallest eigenvalue
to the generalized eigenvalue
problem (6.3) for the three
different network setups and
r ∈ {22, 23, 24, 25, 26}. For
each case the smallest
eigenvalue is normalized with
the smallest eigenvalue for
r = 26
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The benefits of the multiscale method will be demonstrated by utilizing localization
as described in Sect. 3.2, by introducing patches that the local modification problems
are solved over. Which degrees of freedom that are included in each patch set NE ,
are chosen based on the radius ρH . A degree of freedom i ∈ N will be in NE , if
|pi − cE | ≤ ρH , where cE ∈ R

2 is the center of element E . Hence patches will have
the circular form as was illustrated in Fig. 6a. The rapid decay of the modified basis
{λi − φi }i∈M is demonstrated by solving the modification φ̃i with different ρ and
computing the relative error |||φi − φ̃i |||/|||φi |||. The degree of freedom i is chosen as
one of the central nodes but the trend is similar for all nodes. The resulting errors for
the first problem (6.1) are seen in Fig. 11.

Moreover, the validity of the assumed Poincaré inequality (4.1) is investigated by
solving the generalized eigenvalue problem

Kx = νDx, x ∈ V , (6.3)

and calculating the smallest eigenvalue. Here D denotes the diagonal matrix with
values h̄2i , i = 1, . . . , n on the diagonal. This is done for the three different setups
and r ∈ {22, 23, 24, 25, 26}. In Fig. 12, it is seen that the resulting eigenvalues are
independent of n. The values are normalized with the value for r = 26.

Next, the two problems (6.1) and (6.2) are solved using r = 27 = 128 for different
coarse grids with R = 2, 4, 8, 16, 32. The problems are solved using localization with
patch radius ρH = CH log2(H

−1) = k/2k where k = 1, 2, 3, 4, 5. For the first
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(f) l2-error random structure.

Fig. 13 Relative errors for the first problem (6.1). The coarse mesh size H and its square H2 are included
in the plots to clarify convergence rates. For the basic setup and the setup with random coefficients, also
the so-called FEM-error is included

problem (6.1), the constant is chosen to C = 1, and for the second problem (6.2) it
is C = 1.5. The second problem, with non-zero fixed displacement, is solved with
correction as described in Sect. 3.4. The resulting relative errors for the two problem
types and their three different setups are shown in Figs. 13 and 14. In some setups
the errors can be compared with the so-called FEM-error, corresponding to solving
the multiscale problem (3.6) with non-modified basis BH instead of the modified
multiscale basis B̃ms. It can be seen that this FEM-solution behaves poorly for the
setup with random coefficients.

7 Conclusion and future work

In this paper a numerical multiscale method for discrete networks is proposed. For a
set of different numerical examples, the convergence rates of the proposed method are
examined. For regular networks with low connectivity variation the method resembles
the convergence rates of the ordinary FEM. For networks with randomly varying con-
nectivity it is shown that the multiscale method performs better than ordinary FEM.
The method is moreover used to solve network problems with random structure, indi-
cating error convergence rates at least linear in energy norm and quadratic in l2-norm.

A challenging theoretical problem for the future is to extend the result in (4.5)
beyond finite element based discretization to more general networks, including the
presented network model. Further on, other fiber network models, for example beam
based, as well as three-dimensional, should be considered. Thereby the presented
numerical upscaling method will be applied to realistic macroscale paper networks,
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Fig. 14 Realtive errors for the second problem (6.2) with correction as in Sect. 3.4. The coarse mesh size
H and its square H2 are included in the plots to clarify convergence rates

investigating the problem size which can be studied and the computational efficiency
of the proposed method. Moreover, the proposed method will be used together with
the paper forming simulation framework presented in [12,14,19] to study virtual paper
sheets and macroscale mechanical properties such as tensile strength, tensile stiffness,
bending resistance, z-strength and fracture propagation.
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