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Abstract: Iterative point-wise reinforcement learning (IPWRL) is proposed for highly 
accurate indoor visible light positioning (VLP). By properly updating the height information 
in an iterative fashion, the IPWRL not only effectively mitigates the impact of non-
deterministic noise but also exhibits excellent tolerance to deterministic errors caused by the 
inaccurate a priori height information. The principle of the IPWRL is explained, and the 
performance of the IPWRL is experimentally evaluated in a received signal strength (RSS) 
based VLP system and compared with other positioning algorithms, including the 
conventional RSS algorithm, the k-nearest neighbors (KNN) algorithm and the PWRL 
algorithm where iterations exclude. Unlike the supervised machine learning method, e.g., the 
KNN, whose performance is highly dependent on the training process, the proposed IPWRL 
does not require training and demonstrates robust positioning performance for the entire 
tested area. Experimental results also show that when a large height information mismatch 
occurs, the IPWRL is able to first correct the height information and then offers robust 
positioning results with a rather low positioning error, while the positioning errors caused by 
the other algorithms are significantly higher. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The indoor positioning system (IPS) offers localization service complementing the global 
positioning system, which is often unavailable inside the building. The conventional IPS uses 
radio frequency (RF) technologies, such as RFID, Wi-Fi, ZigBee and Bluetooth [1–4], which 
generally have relatively low positioning accuracy (e.g., few meters in [4]) due to the carrier 
fading and are vulnerable to electromagnetic interference (EMI). On the other hand, accurate 
positioning is critical for location based services, such as navigation or location-based 
advertising on mobile devices, particularly for the indoor case. In this regard, visible light 
positioning (VLP) using optical carriers from the ubiquitous lighting systems (e.g., light 
emitting diodes LEDs) is an attractive solution for the IPS. The VLP overcomes the 
disadvantages of the RF technologies offering relatively high positioning accuracy [5] and is 
immune to the EMI [6]. 

In a VLP system, the light sources are pre-installed for illumination serving as beacons 
[7]. The receiver, which consists of one detector [8] or multiple detectors [9], converts the 
optical signal from the beacons into the electrical signal and estimates its position according 
to certain positioning algorithms. The VLP can be considered as a special application of the 
visible light communication, where the positioning algorithms translate the information in the 
received signal (e.g., received signal strength RSS [10]) into the position of the receiver by 
exploring the uniqueness of the optical channel between the transmitter (i.e., beacon) and 
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receiver (i.e., detector). Therefore, the positioning accuracy is affected by two types of errors: 
1) the noise/interference during the signal measurements (i.e., non-deterministic error) and 2) 
the inaccurate signal-to-position interpretation (i.e., deterministic error). It has been found 
that a receiver based on multiple detectors outperforms the one based on a single detector in 
terms of inter-cell interference mitigation [11]. Moreover, to improve the positioning 
accuracy, machine learning (ML) algorithms, especially supervised learning (SL), have been 
introduced to the VLP [12], such as k-nearest neighbors (KNN) [13], back-propagation [14], 
random forest based classifiers and adaBoost based classifiers [15]. However, performance of 
the SL assisted VLP systems is largely affected by the training data. For instance, the number 
of offline training samples and the spatial distribution of the sampling points [16], etc. may 
significantly impact the positioning results. To get rid of the sophisticated training phase, 
reinforcement learning (RL), which maximizes the expected benefits by emphasizing how 
should the Agent acts based on the Environment knowledge [17], has been introduced to the 
VLP system [18,19]. In our previous study, a point-wise reinforcement learning (PWRL) 
based VLP system has been demonstrated [20], which reduces the non-deterministic noise by 
the RL point by point with the Agent. 

In this paper, we extend the work presented in [20], and propose iterative point-wise 
reinforcement learning (IPWRL) for further improvement of accuracy in the VLP. The 
IPWRL is designed to compensate not only the non-deterministic noise, as that is already 
done in the PWRL, but also the deterministic noise caused by inaccurate a priori information 
of system parameters. By implementing the PWRL in an iterative fashion and updating the 
inaccurate parameters, i.e., the height difference of the receiver and LEDs, properly, the 
positioning error can be reduced significantly. Experimental investigations are conducted in a 
VLP system that is able to measure RSS to evaluate the positioning performance of the 
IPWRL. A comparison among the proposed IPWRL, the conventional RSS [10], the KNN 
[13], and the PWRL [20], is carried out. Our results reveal that the IPWRL is able to maintain 
the low positioning errors even when a large height difference is introduced, showing 
excellent robustness against deterministic errors, while the positioning errors of the other 
methods increase sharply. 

2. Operation principle 

A multi-detector VLP system is considered having a receiver with N detectors and M (M≥3) 
LEDs that are all on the ceiling and hence are assumed in the same height. The ith LED is 
located at position ( x

iL , y
iL , zL ) and transmits sinusoidal modulated signal with frequency fi. 

The RSS at frequency fi is used to estimate the distance between the detector and the ith LED. 
The received signal sn(t) of the nth detector at (xn, yn, 

zL h− ) from all the LEDs can be 
expressed as [10,21]: 
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in which A is the detector area, dn,i is the distance between the ith LED and the nth detector,β 
is the detector responsivity, w(t) denotes the noise, m (m′) is the Lambertian radiation pattern 
order of the LED (detector), φ and ψ are the radiation angle and incidence angle, respectively. 
pi(t) is the direct-current (DC) biased and windowed sinusoid waveform, where the time delay 
τi = dn,i/c and c is the speed of light in vacuum. 

The power spectrum of sn(t) consists of M peak components at fi (i = 1, 2, …, M). 
Assuming the detector is facing up ,cos( ) cos( ) / n ih dϕ ψ= = , the RSS of these components 

obtained by the N detectors can be represented by a M × N vector Rec: 
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A set of M × N equations can be established according to Eq. (11). To get an updated 

height difference between the receiver and LEDs ˆ,h  two different methods are proposed. The 
first method separates the M × N equations into N subsets on a per-detector basis by assuming 

hn,i = hn. After obtaining the estimation of hn in each subsets with LS estimation, ĥ  is 

calculated as the averaged value of the N estimations, i.e., 
=1

1ˆ .
N

nn
h h

N
=   The second 

method assumes hn,i = ĥ , and uses LS estimation based on the M × N equations to get ĥ . 
Hereafter, we refer IPWRL1 (IPWRL2) to as the IPWRL employing the first (second) method 

to get ĥ . 

By replacing h0 with ĥ , we employ the PWRL algorithm again and obtain a updated 

position of nth detector as ,( ).IPWRL IPWRL
n nx y  The position of receiver is then calculated by 

averaging the estimated coordinates of the detectors

1 1

1 1 ˆ( , , ).
N N

IPWRL IPWRL IPWRL IPWRL z
n n

n n

yx x y L h
N N= =

= = −   The pseudocode of the IPWRL algorithm 

is shown in Table 1. 

Table 1. Pseudocode for the IPWRL algorithm. 

Initialization: 16. Obtain diserror using Eq. (6) 
1. Set the target state 17. Update the state and reward 
2. Set G states according to Eq. (7) 18. end for 
3. Set K rewards according to Eq. (8) 19. Calculate the projected 2-D coordinate of N detectors 

,( )PWRL PWRL
n nx y  and corresponding 

PWRLRec  

Main:  
4. Input: the RSS vector Rec, h0  
5. Output: Coordinate of receiver 

ˆ)( , ,IPWRL IPWRL zx y L h− . 

20. Obtain the coordinate of receiver

0( ),,PWRL PWRL zx y L h−  by averaging the coordinate 

of detectors 
7. Obtain diserror using (6) 

21. Calculate ĥ  with Eqs. (11) and (12) for IPWRL1 
(IPWRL2) 

8. Obtain the current state and reward  
9. k = 0 

22. Update the difference in height h0 ← ĥ  
10. for k<the upper limit of the cycles do 23. Reuse PWRL algorithm (i.e., run Steps 7-18) 
11. k ← k + 1 24. Calculate the projected 2-D coordinate of N detectors 

,( )IPWRL IPWRL
n nx y  and corresponding 

IPWRLRec  

12. For the current state does not reach 
the target state and the reward is 
not less than the last one do 

 

13. Obtain 2M × N new RSS vectors Rec for 2M × 
N actions 

25. Obtain the coordinate of receiver
ˆ)( , ,IPWRL IPWRL zx y L h− by averaging the coordinate 

of detectors 
14. for each new Rec do  
15. Calculate the new 

coordinate of the nth 
detectors 

26. Return ˆ)( , ,IPWRL IPWRL zx y L h−  
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3. Experimental investigation 

3.1 Experiment setup 

The experimental setup of the investigated VLP system and the data processing flow are 
shown in Fig. 3. The overall size of our experimental platform is 120 cm × 120 cm × 120 cm, 
where four sinusoid signals of different frequencies (400/500/600/700 kHz) are first 
generated by four signal generators, and then combined with the DC signals by bias-tees, 
respectively. For simplicity, the signal from the four LEDs are distinguished by the signal 
frequency. The four LEDs are on the ceiling at (21.9, 20.8, 120), (76.9, 18.4, 120), (20.1, 
80.5, 120), (81.6, 79.2, 120) in cm, respectively. The considered receiver module has 4 
detectors (PDA100A2) situated in four corners of a square, where the edge (i.e., disreal12) can 
be adjusted. Note due to limited conditions for experimental setup, the size of the used 
detectors is relatively large, so disreal12 is difficult to set less than 10 cm. For practice, it may 
fit applications with large-size user equipment, such as a tablet, low-speed indoor vehicles. 
The height of the receiving plane is set to 17.95 cm, which means that the real height 
difference between transmitter and receiver is 102.05 cm. We used the method in [10] to 
experimentally measure the half power angle of the LEDs (detectors), and obtained the values 
of m (m’) as 1.68 (3.57). 

 

Fig. 3. Experimental setup of the VLP system and the corresponding data processing flow. 

Taking into account the size of the receiver module cannot be ignored, the sampling area 
is set to 70 cm × 70 cm. A spectrum analyzer is used to measure the RSS vector at 49 
different points (i.e., Fig. 4(a) shows the sampling points of Detector 1), which is used as 
input to the IPWRL algorithm. For comparison, the above test samples are also the input into 
the conventional RSS algorithm [10], the PWRL algorithm [20], and the KNN algorithm [13]. 
In order to collect training data for the KNN algorithm, we take 49 points at the same height 
for three times, 25 of which coincide with the points corresponding to test samples (i.e., 25 
red points shown in Fig. 4(b)). 
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Fig. 4. Sampling points of Detector 1: (a) input for testing different positioning algorithms and 
(b) training data for the KNN. The 25 red points in (b) coincide with some test points shown in 
(a). 

3.2 Performance investigation 

Figure 5(a) shows the mean positioning error with the conventional RSS algorithm (i.e., 
without any ML algorithm) and with the PWRL, KNN, IPWRL1 and IPWRL2 as a function 
of disreal12 (i.e., 10/20/30/40 cm) when the height information is considered accurate. In Fig. 
5, h0 in the IPWRL is 102.05 cm. The gain achieved by using reinforcement learning is 
obvious, regardless of the distance between detectors. When disreal12 is 10/20/30/40 cm, the 
mean positioning error is reduced from 2.34/2.46/2.65/2.75 cm to 2.24/2.07/1.94/2.01 cm by 
replacing the conventional RSS algorithm with the PWRL. In contrast, the performance of the 
KNN is not as robust as that of the PWRL or IPWRL, although is better than that of the 
conventional RSS algorithm at disreal12 = 30/40 cm. This may be due to fact that the samples 
obtained by the closely located detectors (i.e., disreal12 of 10/20 cm) are more correlated. The 
reduction in the diversity of samples makes it more difficult to find the correct samples in the 
KNN. The two IPWRL algorithms are better than the KNN and the conventional RSS, but 
slightly worse than the PWRL. For both the PWRL and IPWRL, the improvement over the 
conventional algorithm becomes more significant when increasing disreal12. The performance 
gap between the IPWRL and PWRL shrinks for a larger value of disreal12 and becomes 
negligible when disreal12 = 40 cm. 

Figure 5(b) is the cumulative distribution function (CDF) of the positioning error when 
disreal12 = 40 cm. The corresponding spatial distribution is shown in Fig. 5(c). Without any 
ML algorithm the mean positioning error is 2.75 cm, and 80% of samples have errors within 
[2.66 cm, 2.85 cm]. When the PWRL is employed, 80% of samples have errors within [1.85 
cm, 2.16 cm] and the mean positioning error is reduced to 2.01 cm, leading to a reduction of 
27%. The performance of the two IPWRL algorithms is similar as that of the PWRL: the 
corresponding mean positioning errors are 2.02 cm and 2.03 cm, and 80% of the sample 
errors are within the range of [1.89 cm, 2.16 cm] and [1.90 cm, 2.17 cm], respectively. 
Though in Fig. 5(b) a considerable number of points can get zero error by using the KNN 
algorithm, the results in Fig. 5(c) show that zero error can only be achieved when some of the 
test points coincide with the samples used in the training phase (i.e., red points in Fig. 4(b)). 
In contrast, the positioning error of those points that do not coincide with sampling points in 
the training phase are significantly higher. Therefore, the performance of the KNN is largely 
dependent on the training samples. It requires enough training data captured in the points that 
are the same or close to the test points, resulting in a higher implementation complexity. 
Compared with the KNN, the PWRL and IPWRL algorithms do not require any training 
process and show robust performance across the whole tested area. 
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Fig. 5. (a) Positioning error versus disreal12 (cm) for different positioning algorithms; (b) the 
cumulative distribution function and (c) spatial distribution of the positioning error (disreal12 = 
40 cm). 

 

Fig. 6. Spatial distribution of the positioning error when disreal12 = 40 cm with (a) h0 = 51.05 
cm and (b) h0 = 153.05 cm. 
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Fig. 7. Cumulative distribution function of the positioning error when disreal12 = 40 cm with (a) 
h0 = 51.05 cm and (b) h0 = 153.05 cm. 

It is also expected that the IPWRL performs similarly as the PWRL when the system 
parameters are accurate. However, such a conclusion no longer holds when there is some 
uncertainty existing in height information. We first assumed the input height difference is 
51.05 cm or 153.05 cm instead of the correct value of 102.05 cm. The spatial distribution and 
CDF of positioning error of the conventional RSS algorithm, PWRL and (IPWRL12) are 
shown in Figs. 6 and 7, when the h0 is set to 51 cm larger (i.e., Figs. 6(a) and 7(a)) or smaller 
(i.e., Figs. 6(b) and 7(b)) than the actual height difference hreal. The KNN algorithm does not 
take into account the height for positioning and cannot be robust to height difference. 
Therefore, we exclude it for comparison here. The results in Figs. 6 and 7 reveal that the 
positioning accuracy decreases sharply for the conventional algorithm. In contrast, the PWRL 
algorithm largely reduces the positioning error due to mismatched height information. 
Specifically, when h0 is 153.05 cm (51.05 cm), the PWRL can improve the mean positioning 
error from 19.52 cm (20.34 cm) to 8.24 cm (11.76 cm). It is obvious that the IPWRL offers 
even better performance than that of the PWRL. Figure 7 further shows that the results of the 
IPWRL1 and IPWRL2 algorithms are similar for h0 = 153.05 cm, which can reduce the mean 
positioning error to 1.84 cm and 1.90 cm, respectively. For h0 = 51.05 cm, the IPWRL2 
shows better performance, which reduces the mean positioning error to 3.14 cm, and 80% of 
the positioning error is less than 3.8 cm. While the IPWRL1 can reduce the mean positioning 
error to 5.45 cm, and 80% of the positioning error is less than 6.4 cm. 
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Fig. 8. Positioning error versus errors of height difference for the disreal12 of (a) 40 cm and (b) 

30 cm, and (c) the estimated ĥ  by the two IPWRL algorithms versus different h0 for the 
disreal12 of 40 cm. 

Without loss of generality, we further compare the performance of different positioning 
algorithms by adjusting h0 in a step of 3 cm within the range of [51.05 cm, 153.05 cm]. The 
measured mean positioning error are shown in Figs. 8(a) and 8(b) for disreal12 = 40 cm and 

disreal12 = 30 cm, respectively. Figure 8(c) shows the estimated ĥ  by the two IPWRL 
algorithms versus different h0 for disreal12 = 40 cm. Both the PWRL and IPWRL algorithms 
offer higher positioning accuracy than the conventional one for all cases. The enhancement of 
accuracy is more significant for a larger mismatch between h0 and hreal. When h0 is close to 
hreal, both IPWRL and PWRL can achieve a mean positioning error of ~2 cm regardless of the 
value of disreal12. Increasing the gap between h0 and hreal, the performance of the IPWRL is 
obviously better than that of the PWRL. Within the whole tested area, the mean positioning 
error can be reduced to about 5 cm by both of the IPWRL algorithms, while the performance 
of the PWRL degrades quickly at the boundary of the tested range. The positioning error of 
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the PWRL exceeds 5 cm for h0 > 141.05 cm (141.05 cm) and h0 < 78.05 cm (81.05 cm) for 
the disreal12 of 40 cm (30 cm). Therefore, with the help of the iteration, the IPWRL offers 
obviously higher tolerance to the height information mismatch. The IPWRL2 has almost the 
same performance as the IPWRL1 when the assumed height difference in the range [93.05 
cm, 153.05cm], but outperforms when the input height difference in the range [51.05 cm, 

93.05 cm]. This can be explained by the fact that the estimated ĥ  by using the IPWRL2 is 
closer the real height difference hreal than the IPWRL1, which is clearly shown in the Fig. 
8(c). The advantage of the IPWRL2 is more obvious when the difference between hreal and h0 
is larger. 

The IPWRL can be implemented by running the PWRL twice in a iterative fashion, where 
some parameters in the first iteration are updated and then employed in the second one. It is 
obvious the iterations in IPWRL linearly increase the total running time. It should be noted 
that the additional running time compared to the PWRL may decrease when a larger 
inaccuracy is introduced in height information. The additional complexity can be further 
reduced, which calls for a future study of algorithm optimization. 

4. Conclusion 

In this paper, we have proposed iterative point-wise reinforcement learning for high-accuracy 
indoor VLP systems. By using the PWRL twice in an iterative fashion, the IPWRL is able to 
compensate the positioning errors caused by the inaccurate height information as well as shot 
noise and thermal noise. Experimental results verify that the IPWRL inherits the advantage of 
the PWRL that outperforms the conventional RSS algorithm in terms of positioning accuracy, 
and the KNN algorithm in terms of robust performance without the need of training data. The 
results also show that when the height information mismatch is large, the proposed IPWRL 
maintains the mean positioning error low (~5 cm), ~75% and ~58% lower than that achieved 
by the conventional RSS algorithm and PWRL algorithm, respectively. 

Through simulations, it is found that the inaccurate LEDs’ locations could introduce 
impact similar as that did by the height difference. In the future, to make IPWRL suitable for 
abundant scenarios, we will enhance the IPWRL to address the accuracy issues caused by 
other deterministic errors (e.g., the inaccurate LEDs’ locations), while improving 
computational complexity in order to adapt to rapidly changed parameters. In addition, we 
have verified by simulation that the gain still exists regardless how short the distance between 
detectors is and will carry out a future work to further validate this finding by experiments. 
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