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Abstract—Pattern matching is a key building block of
Intrusion Detection Systems and firewalls, which are deployed
nowadays on commodity systems from laptops to massive web
servers in the cloud. In fact, pattern matching is one of their
most computationally intensive parts and a bottleneck to their
performance. In Network Intrusion Detection, for example,
pattern matching algorithms handle thousands of patterns and
contribute to more than 70% of the total running time of the
system.

In this paper, we introduce efficient algorithmic designs
for multiple pattern matching which (a) ensure cache locality
and (b) utilize modern SIMD instructions. We first identify
properties of pattern matching that make it fit for vectorization
and show how to use them in the algorithmic design. Second,
we build on an earlier, cache-aware algorithmic design and we
show how cache-locality combined with SIMD gather instruc-
tions, introduced in 2013 to Intel’s family of processors, can
be applied to pattern matching. We evaluate our algorithmic
design with open data sets of real-world network traffic: Our
results on two different platforms, Haswell and Xeon-Phi, show
a speedup of 1.8x and 3.6x, respectively, over Direct Filter
Classification (DFC), a recently proposed algorithm by Choi
et al. for pattern matching exploiting cache locality, and a
speedup of more than 2.3x over Aho-Corasick, a widely used
algorithm in today’s Intrusion Detection Systems.

Keywords-pattern matching; SIMD vectorization; gather;

I. INTRODUCTION

Security mechanisms, such as Network Intrusion Detec-
tion Systems and firewalls, are part of every networked
system and are analyzing network traffic to protect from
attacks. An essential building block of many such systems is
pattern matching, i.e., to discover if any of many predefined
patterns exist in an input stream (multiple pattern matching),
for whitelisting or blacklisting. In the context of Network
Intrusion Detection, the data stream is the reassembled
protocol stream of the packets on the monitored network
and the set of patterns (usually in the order of thousands)
represents signatures of malicious attacks that the system
aims to detect.

Motivation and Challenges. Pattern matching represents
a major performance bottleneck in many security mecha-
nisms, especially when there is a need to employ analysis
on the full packet’s payload (Deep Packet Inspection). In

intrusion detection, for example, more than 70% of the
total running time in spent on pattern matching [1, 2].
Moreover, with the increasing interest in Network Function
Virtualization (NFV) [3, 4], applications like firewalls and
Network Intrusion Detection are now moved into the cloud,
where they need to rely on commodity hardware features
for performance, like multi-core parallelism and vector pro-
cessing pipelines.

In this paper, we introduce a vectorizable design of
an exact pattern matching algorithm which nearly doubles
the performance when compared to the state of the art
on modern, SIMD capable commodity hardware, such as
Intel’s Haswell processors or Xeon Phi [5]. Vectorization
as a technique to increase throughput is gradually taking
a more central role [6]. For example, architectures with
SIMD instruction-sets now provide wider vector registers
(256 bits with AVX) and introduce new instructions, such
as gathers, that make vectorization applicable to a wider
range of applications. Moreover, modern processor designs
are shifting towards new architectures, like Intel’s Xeon
Phi [5], that, for example, supports 512 bit vector registers.
On those platforms, vectorization is not just an option but a
must, in order to achieve high performance [7]. In this work
we introduce algorithmic designs to utilize these capabilities.

Approach and Contributions. The introduction of gath-
ers and other advanced SIMD instructions (cf. section III)
allows even applications with irregular data patterns to gain
performance from data parallelism. For example, SIMD can
speed up regular expression matching [8, 9, 10]. Here, the
input is matched against a single regular expression at a
time, represented by a finite state machine that can fit in L1
or L2 cache. Working close to the CPU is crucial for these
approaches, otherwise the long latency of memory accesses
would hide any computation speedup through vectorization.

The domain of multiple pattern matching for Network
Intrusion Detection has challenging constraints that limit
the effectiveness of these approaches: applications need to
simultaneously evaluate thousands of patterns and traditional
state-machine-based algorithms, such as Aho-Corasick [11],
use big data structures that by far exceed the size of the
cache of today’s CPUs. The size of the patterns varies



greatly (from 1-byte to several hundred byte patterns) and
can appear anywhere in the input. That is why SIMD
techniques have not been previously considered for exact
multiple pattern matching — with a few exceptions discussed
in Section VI — for Network Intrusion Detection.

Building upon recent work [12, 13] that take steps in
addressing the cache-locality issues for this problem, our
approach fills this gap: we propose algorithmic designs for
multiple pattern matching that bring together cache local-
ity and modern SIMD instructions, to achieve significant
speedups when compared to the state of the art. Combining
cache locality and vectorization introduces new trade-offs
on existing algorithms. Compared to traditional approaches
that perform the minimum required number of instructions,
but on data that is away from the processor, our approach,
instead, performs more instructions, but these instructions
find data close to the processor and can process them in
parallel using vectorization.

In particular, our works build on a family of recent
methods [12, 13] that propose filtering of the input streams
using small, cache efficient data structures. We argue that, as
a result, memory latencies are no longer the dominant bottle-
neck for this family of algorithms while their computational
part becomes more significant. In this work, we follow a
two-step approach. First, we propose a refined and extended
method, which is able to benefit from vectorization while
ensuring cache locality. Second, we design its vectorized
version by utilizing SIMD hardware gather operations. To
evaluate our approach, we apply our techniques to the DFC
algorithm [12], as a representative example that outperforms
existing techniques in Network Intrusion Detection applica-
tions, including [13], on which our proposed approach can
be applied as well. In particular, we target the computational
part of pattern matching for performance optimization and
make the following contributions:

o« We propose algorithmic designs for multiple pattern
matching which (a) ensure cache locality and (b) utilize
modern SIMD instructions.

« We devise a new pattern matching algorithm, based
on these designs, that utilizes SIMD instructions to
outperform the state of the art, while staying flexible
with respect to pattern sizes.

« We (implement the algorithm and) thoroughly evaluate
it under both real-world traces and synthetic data sets.
We outperform the state of the art by up to 1.8x on
commodity hardware and up to 3.6x on the Xeon-Phi
platform.

The remainder of the paper is organized as follows:
Section II gives an overview of important pattern matching
algorithms and background on vectorization. Section III
describes our system model. In Section IV, we present our
approach leading to a new, vectorized design. Section V
presents our experimental evaluation. In Section VI, we

give an overview of other related work and we conclude
in Section VII.

II. BACKGROUND

In this section we present traditional approaches to pattern
matching, followed by a brief description of the DFC
algorithm (Choi et al. [12]) to which we apply our approach.
Next, we introduce the required background on vectorization
techniques.

A. Traditional Approach to Multiple-Pattern Matching

The most commonly used pattern matching algorithm for
network-based intrusion detection is by Aho-Corasick [11].
It creates a finite-state automaton from the set of patterns and
reads the input byte by byte to traverse the automaton and
match multiple patterns. Even though it performs a small
number of operations for every input byte, it implies— in
practice and on commodity hardware — a low instruction
throughput due to frequent memory accesses with poor cache
locality [12]: As the number of patterns increases, the size
of the state automaton increases exponentially and does not
fit in the cache. Nevertheless, the method is heavily used
in practice; e.g., both Snort [14], one of the best known
intrusion detection systems, as well as CloudFlare’s web
application firewall [15], use it for string matching.

B. Filtering Approaches and Cache Locality

Besides state-machine based approaches, there is a family
of algorithms that rely on filtering to separate the innocuous
input from the matches. Recent work focuses on alleviating
the problem of long latency lookups on large data structures.
Choi et al. [12] present a novel algorithmic design called
DFC (Direct Filter Classification), that replaces the state
machine approach of Aho-Corasick with a series of small,
succinct summaries called filters. Such a filter is a bit-
array that summarizes only a specific part of each pattern,
e.g. its first two bytes, having one bit for every possible
combination of two characters that can be found in the
patterns. The algorithm is structured in two phases, the
filtering and verification:

e In the filtering phase, a sliding window of two bytes
over the input goes through an initial filter, as described
above, to quickly evaluate whether the current position
is a possible starting point of a match. The two-byte
windows that passed the initial filter are fed to other,
similar filters, each specializing on a family of patterns
depending on their length. Since the filters are small (§KB
each), they usually fit in L1 cache. Thus, the main part
of the algorithm differs from Aho-Corasick and uses only
cache-resident data structures, resulting in up to 3.8 times
less cache misses [12].

o If a window of two characters passed all filters, there is
a strong indication that it is a starting point of a match.
For this reason, in the next verification phase, the DFC



algorithm performs lookups on specially designed hash
tables, containing the actual patterns and performs exact
matching on the input and the pattern, to verify the match.

Other algorithms in this family, like [13] as well as this
work, operate on the same idea: the input is filtered using
cache resident data structures, and only the “interesting”
parts of the input is forwarded for further evaluation.

C. Vectorization

Single Instruction Multiple Data (SIMD) is an execution
model for data parallel applications, which utilizes process-
ing units that operate on a vector of elements simultaneously,
instead of separate elements at a time. SIMD vectorization
is a desirable goal in computationally intensive, number-
crunching applications, where computation is performed on
independent data, sequentially stored in memory.

Vector instruction sets have evolved over time, introducing
bigger registers and support for more complex instructions.
Recently, vector instruction sets have been enriched with the
gather instruction [16] that enables accessing data from non-
contiguous memory locations (described in detail in Section
III). Polychroniou et al. [17] study the effect of vectorization
with the gather instruction on Bloom filters, hash tables joins
and selection scans among others.We are building on these
works with SIMD instructions and extend their design to
pattern matching with the applications we focus on.

III. SYSTEM MODEL

In this section we introduce the assumptions and require-
ments that our approach makes on the hardware. We focus
on mainstream CPUs, with vector processing units (VPUs)
that support gather instructions. The latter make it possible
to fetch memory from non-contiguous locations using only
SIMD instructions'

The semantics of gather are as follows: let W be the
vector length, which is the maximum number of elements
that each vector register can hold. The parameters to the
instruction are a vector register (/) that holds W indexes
and an array pointer (A). As output, gather returns a
vector register (O) with the W values of the array at the
respective indexes. It is important to note that gather does
not parallelize the memory accesses; the memory system can
only serve a few requests at a time. Instead, its usefulness
lies in the fact that it can be used to obtain values from
non-contiguous memory locations using only SIMD code.
This increases the flexibility of the SIMD model and allows
to efficiency employ it for workloads previously not consid-
ered, i.e., where the memory access patterns are irregular.
The alternative is to load the values using scalar code, then
transfer them one by one from the scalar registers into vector

!In Intel processors, the gather instruction was introduced with the AVX2
instruction set and is included in the latest family of mainstream processors
(Haswell and Broadwell); gather also exists in other architectures, such as
the Xeon Phi co-processor [5].

registers. Generally, switching between scalar and vector
code is not efficient [18, 17].

Apart from gather, the rest of the instructions we use
can be found across almost all the vector instruction sets
available. Worth mentioning is the shuffle instruction, that
makes it possible to permute individual elements within
the vector register in any desired order. For example, we
employ it for handling the input and output of the algorithm
(cf. Section 1V-B).

The size of the cache, especially the L1 and L2, is very
important for the algorithmic design, as we describe later
in Section IV. Common sizes in modern architectures is 32
KB of L1 data cache with 256 KB of L2 cache and we will
use this as a running example. Our design is applicable to
other cache sizes as well.

IV. ALGORITHMIC DESIGN

In this section, we begin by introducing S-PATCH, an
efficient algorithmic design for multiple pattern matching.
It is designed with both cache locality and vectorizability
in mind. Next, we propose our vectorization approach V-
PATCH, Vectorized PATTern matCHing.

A. S-PATCH: a vectorizable version of DFC

To enable efficient vectorization, we introduce significant
modifications to the original DFC design. The key insight for
the modifications, explained later in detail, is that small pat-
terns will be found frequently in real traffic, so they should
be identified quickly without adding too much overhead. On
the other hand, long patterns are found less frequently, but
detecting them takes longer and requires more characters
from the input to pinpoint them accurately.

As the original DFC, our approach has two parts, orga-
nized as two separate rounds. In the filtering round, we
examine the whole input and feed it through a series of filters
that bear some similarities to DFC, but adapted to consider
properties of realistic traffic, as motivated above. The ver-
ification round is as in DFC and performs exact matching
on the full patterns that are stored in hash tables. Compared
with DFC, S-PATCH focuses on efficient filtering in the first
round, because this is the computationally intensive part of
the algorithm that, as we show, can be efficiently vectorized.
Splitting the two parts in separate rounds improves cache
locality, since the data structures used in each round do
not evict each other and, as shown in Section IV-B, makes
vectorization more practical.

1) Filtering: In this first phase the goals are to (i) quickly
eliminate the parts of the input that cannot generate a match
and (ii) store the input positions where there is indication
for a match. In general, key properties of the filtering phase
include:

o Good filtering rate. A big fraction of the input is filtered
out at this stage.
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Figure 1. Filter Design of S-PATCH. HT stands for the Hash Tables that
contain the full patterns.

o Low overhead. Every filter introduces additional com-
putations and memory accesses, so there needs to be a
balance between its overhead and the amount of input
that is filtered out.

o Size-efficiency. All the filters need to fit in L1 or L2
cache, while also leaving room for the input and the
array for the intermediate results in cache. This is very
important, because it ensures that the lookups on the
filters will be fast and, as explained later, vectorization
using the gather instruction will be feasible.

Our proposed filter design (cf. Figure 1) consists of
three filters, each with a specific purpose. The first one
stores information about the short patterns (less than 4
characters). It has one bit for every possible combination
of two characters, and if a particular combination is the
beginning of a pattern, the corresponding bit is set. Similarly,
the second filter uses the same indexing and accounts for the
longer patterns together with the third filter. In more detail,
(cf. also Algorithm 1):

First filter. In the first part of the filtering, we examine
two bytes of the input at a time and use them to calculate
an index for filters 1 and 2. If the corresponding bit in the
first filter is set, we directly store the current input position
in an array for further processing (lines 5-7).

Second filter. We also perform a lookup on the second filter
using the same index, at line 8. A hit may indicate that we
have a match with a longer pattern, but it may also be a false
positive (e.g. compare the strings “attribute” and “attack”).
Thus, before storing the current input position after a match
with the second filter, the algorithm uses more bytes (in our
case four) from the input stream with a third filter to gain
stronger indications whether there is actually a match. Only
when the match in the second filter is corroborated with a
match from the third filter is the current position in the input
stream stored for further processing (line 11).

Third filter. For the third filter, the index is calculated
differently; we cannot have a filter with all combinations
of four bytes, due to cache-size limitations. Instead, we use
a multiplicative hash function for the four bytes of input to
compute the index in the filter, at line 9. There is a trade-off
between having a large enough filter to avoid collisions (thus
providing a good filtering rate) and having it small enough
to fit in cache. The reason why we choose four bytes as
input will become clear in the next section (4 bytes fit in

each one of the 32-bit vector register values).

Note that the performance of the filtering phase is intrin-
sically tied to the filter designs and the type of input. The
reason why our proposed design is more effective is twofold.
Short patterns, although few,? are likely to generate many
matches. As an example, if strings like GET and HTTP are
part of the pattern set, they will frequently be found in real
network traffic. Treating them separately in a dedicated filter
allows us to focus on the longer patterns in other filters. Long
patterns, found more rarely, require more information to be
distinguished from innocuous traffic.

2) Verification: After the filtering, all the possible match
positions in the input have been stored in a temporary array.
At this point, we need to compare the input at these positions
with the actual patterns, before we can safely report a match.
As mentioned before, the verification phase is as described
by Choi et al. [12], except that it is now done in a separate
round, after the current chunk of input has been processed
by the filtering phase. For ease of reference we paraphrase
here.

Among several optimizations, Choi et al. [12] use spe-
cially designed compact hash tables that are different for
different pattern lengths. Translated to our improved filtering
design, if the input at some position 7 passed the filtering,
in the verification phase the algorithm will perform a match
on the compact hash table that stores references to all the
patterns of appropriate size. For example, if ¢ passed the third
filter that stores information on patterns that are four bytes
or longer, in the verification phase, the algorithm performs a
match on the compact hash table that stores patterns of four
bytes or longer (lines 18-20). Each hash table is indexed
with as many bytes as the shortest pattern that the hash table
contains (in this case, four bytes of the input will be used
as an index to the hash table). Each bucket in the hash table
contains references to the full patterns and the algorithm
has to compare each one of them individually with the input,
before reporting a match. Eventually, the algorithm identifies
all the occurrences of all the patterns, producing the same
output as Aho-Corasick.

In general, the compact hash tables as we use them in
this phase, do not fit L1 or L2 cache (but they might fit
L3 cache) and accessing them incurs high latency misses.
However, the success of the approach lies in the fact that the
filtering phase will reject most of the input, so the algorithm
resorts to verification only when it is needed (when there is
a high probability for a match). That is why our efforts focus
on the filtering part, where the data structures are close to
the processor and can benefit from vectorization.

B. V-PATCH: Vectorized algorithmic design

A basic issue when vectorizing S-PATCH is its non-
contiguous memory accesses. The sequential version ac-
cesses the filters at nonadjacent locations for every window

221% of Snort’s v2.9.7 patterns are 1-4 bytes long [12].



Data: D: data to inspect
# A_short : temporary array for short patterns
# A_long : temporary array for long patterns
for i=0, i <D.length, i++ do
index = Read two bytes from pos i in D
if (Filterl[index] is set) then
| Store i in A_short
end
if (Filter2[index] is set) then
new_index = hash 4 bytes from input
if Filter3[new_index] is set) then
| Storeiin A_long
end
end

D-I-CIEE B N N N

-
W N =D

end

for i=0, i <A_short.length, i++ do
\ Verification for small patterns

end

for i=0, i <A_long.length, i++ do
\ Verification for big patterns

end

B e e e
S e ®» I n &

Algorithm 1: Pseudocode for S-PATCH.

Raw Input Vector Register: R
ABCD EFGH UKL MNOP QRST UVWX YZAB CDEF

~ 0 = shuffle(R, M) jj

Shuffling mask: M

Output Vector Register: O
AB BC CD DE EF FG GH HI

Figure 2. Input Transformation from consecutive characters to sliding
windows of two characters.

of two characters, whereas in a vectorized design W indexes
are stored in a vector register (of length W), each pointing to
a separate part of the data structure. For this reason, we use
the SIMD gather instruction that allows us to fetch values
from W separate places in memory and pack them in a
vector register.

Algorithm 2 gives a high level summary of the filtering
phase of V-PATCH. The first step towards vectorizing the
algorithm is loading the consecutive input characters from
memory and storing them in the appropriate vector registers.
Figure 2 shows the initial layout of the input and the
desired transformation to W elements, each holding a sliding
window of two characters. The transformation is efficiently
achieved with the use of the shuffle instruction, allowing to
manually reposition bytes in the vector registers (Algorithm
2, line 8).

Once the vector registers are filled, the next step is to
calculate the set of indexes for the filters. Note that every
2-byte input value maps to a specific bit in the filter, but
the memory locations in the filter are addressable in bytes.
A standard technique used in the literature [19, 12] is to
perform a bit-wise right shift of the input value to the
corresponding index in the filter. The remainder of the
shift indicates which bit to choose from the ones returned.

Data: D: input data to inspect

1 # W : the vector register length

2 # A_short : temporary array for short patterns

3 # A_long : temporary array for long patterns

4 # M1 : constant mask used to convert the input to 2 byte
sliding window format

5 # M2 : constant mask used to convert the input to 4 byte
sliding window format

6 for i=0, i <D.length, i += W do

7 = Fill register with raw input from D

8 Indexes = shuffle(ﬁ,]\ﬂ)

9 ‘71> = gather(filter] _address, Indexes)

10 if at least one element in V'1 is set then

11 \ Store positions of matches in A_short

12 end

13 ﬁ = gather(filter2_address, Indexes)

14 if at least one element in V2 is set then

15 Mlndemes = shuffle(ﬁ,m)

16 Keys = hash(NewlIndexes)

17 ﬁ = gather(filter3_address, I?y?s)

18 if at least one element in V3 is set then

19 ‘ Store positions of matches in A_long

20 end

21 end

22 end
Algorithm 2: Pseudocode for the V-PATCH filtering
phase.

Having computed the indexes, we use them as arguments to
the gather instruction that fetches the filter values at those
locations (Algorithm 2, lines 9 and 13).

Regarding the number of gather instructions used, to
optimize in latency, note that the first two filters (lines 9
and 13) are specifically designed to use the same indexes
for a given input value in gather but different base addresses
for the filters. Thus, with the filter merging optimization
where the filters are interleaved in memory (at the same
base address), we can merge lines 9 and 13 into a single
gather, to bring the information from both filters from
memory simultaneously. This optimization is not shown in
the pseudo-code but depicted in Figure 3, giving an example
in which a single gather instruction fetches information from
both filters. Using bit-wise operations we can choose one
filter or the other, once the data is in the vector register.

If at least one of the W values has passed the second
filter, they need to be further processed through the third
filter. Remember that the third filter uses a window of four
input characters as an index. Thus, we load a sliding window
of four input characters in each vector element in the register
(line 15) and create the hash values that we use as indexes
in the third filter (lines 16-17).

Not all of the values in the vector register are useful; only
the ones that passed the second filter need to be processed
further by the third filter. This is a common challenge when



Input Vector Register: |

Filter 1 in memory: F1 Filter 2 in memory: F2

31442671
o @ 9o 4
0l = gather (&F1, I) 02 = gather (&F2, I)

F1[3]F1[1]F1[4]F1[4]F1[2]F1[6]F1[7]F1[1] F2[3]F2[1]F2[4]F2[4]F2[2]F2[6]F2[7]F2[1]

Input Vector Register: |

314426171
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O = gather (&F1-2, I)

F1[3]F2[3]F1[1]F2[1]F1[4]F2[4]F1[2]F2[2] ..

Merged Filters 1 and 2
in memory: F1-2

Figure 3. Figure describing the filter merging optimization. In the upper
half, lookups on two filters require two gather invocations. Once the filters
are merged in memory in the lower half, one gather brings information
from both filters to the registers.

vectorizing algorithms with conditional statements, since
for different input we need to run different instructions.
There are approaches [19] that manipulate the elements in
the vector registers, so that they only operate on useful
elements. For this particular algorithm, experiments with
preliminary implementations showed that the cost of moving
the elements in the registers out-weighted the benefits. Thus,
we choose to speculatively perform the filtering on all the
values and then mask out the ones that do not pass the
second filter. In our evaluation (Section V), we observe that
operating speculatively on all the elements is actually not a
wasteful approach, especially with a large number of patterns
to match.

As with the scalar algorithm, after a hit in the first or
third filter we need to store the position of the input where a
potential match occurred. We store the positions of the input
that passed the filter from the set of W values in the register
(lines 11 and 19). Here, we postpone the actual verification
to avoid a potential costly mix of vectorized and scalar code,
where the values from the vector registers need to be written
to the stack and from there read into the scalar registers.
Such a conversion can be costly and can negate any benefits
we gain from vectorization [18].

Furthermore, to fully exploit the available instruction-
level parallelism, we manually unroll the main loop of the
algorithm by operating on two vectors (f2;) of W values
instead of one, a technique that has proven to be efficient
especially for SIMD code [19]. This has the benefit that,
while the results of a gather on one set of W values are
fetched from memory (line 9), the pipeline can execute
computations on the other set of values in parallel.

V. EVALUATION

In this section, we evaluate the benefits that our vec-
torization techniques bring to pattern matching algorithms.

Our evaluation criteria are the processing throughput and
the performance under varying number of patterns. We
show the improvements of V-PATCH with both realistic
and synthetic datasets, as well as with changing number
of patterns. For a comprehensive evaluation, we compare
the results from five different algorithms: the original Aho-
Corasick ([11]; implementation directly taken from the Snort
source code [14]), DFC (Choi et al. [12], summarized in
Section II-B), Vector-DFC (a direct vectorization of DFC
done by us), S-PATCH (the scalar version of our algorithm,
described in Section IV-A, that facilitates vectorization
and addresses properties of realistic traffic that were not
addressed before), and V-PATCH (the final vectorized al-
gorithm described in Section IV-B).

A. Experimental setup

Systems. For the evaluation we use both Intel Haswell
and Xeon-Phi. More specfically, the first system is an Intel
Xeon E5-2695 (Haswell) CPU with 32KB of L1 data cache,
256KB of L2 cache and 35MB of L3 cache. We use the
ICC compiler (version 16.0.3) with -O3 optimization under
the operating system CentOS. Unless otherwise noted, the
experiments in this section are run on this platform. The
second system is the Intel Xeon-Phi 3120 co-processor
platform. Xeon-Phi has 57 simple, in-order cores at 1.1
GHz each, with 512-bit vector processing units. The memory
subsystem includes a L1 data cache and a L2 cache (32KB
and 512KB respectively) private to each core, as well as a
6GB GDDRS5 memory, but no L3 cache. We compile with
ICC -0O3 (version 16.0.3) under embedded Linux 2.6. We
are only using Xeon-Phi in native mode as a co-processor.
The next versions of Xeon-Phi are standalone processors, so
the problem of processor-to-co-processor communication is
alleviated. Since different hardware threads can operate inde-
pendently on different parts of the stream, in our experiments
with both platforms, we focus on the speedup achieved by
a single hardware thread, through vectorization.

Patterns. We use two sets of patterns: a smaller one,
named S/, consisting of approximately 2,500 patterns that
comes with the standard distribution of Snort® [20] — the de-
facto standard for network intrusion detection systems — and
a larger one, named S2, with approximately 20, 000 patterns,
that is distributed by emergingthreats.net The patterns affect
the performance of the algorithm and this is analyzed in
detail in Section V-C.

Data sets. In our evaluation, we use both real-world
traces and synthetic data-sets. The real-world traces are the
ICSX dataset [21, 22] (created to evaluate intrusion detection
systems) and the DARPA intrusion detection dataset [23].
From ICSX, we randomly take 1GB of data from each of
days 2 and 6 (thereafter named ICSX day 2 and ICSX
day 6, respectively) and we also use 300MB of data from

3We used version 2.9.7 for our experiments.



the DARPA 2000 capture. We are aware of the artifacts in
the latter set, and the discussions in the community about its
suitability for measuring the detection capability of intrusion
detection systems [24]. In our experiments, we use it only for
the purpose of comparing throughput between algorithms,
allowing for future comparisons on a known dataset. The
synthetic data set consists of 1GB of randomly generated
characters.

An important point, considering the evaluation validity,
is that, typically, not all the patterns are evaluated at the
same time. In a Network Intrusion Detection System such
as Snort, patterns are organized in groups, depending on
the type of traffic they refer to. When traffic arrives in the
system, the reassembled payload is matched only against
patterns that are relevant (e.g. if the stream has HTTP traffic,
it is checked against HTTP related patterns, as well as more
general patterns that do not refer to a specific protocol or
service). To evaluate our algorithm in a realistic setting, we
also pair traffic with relevant patterns. Since, in our datasets,
most of the traffic is HTTP [21], we focus on HTTP traffic
and match it against the patterns that are applicable based on
the rule definitions. A similar approach can be used for other
protocols (e.g. DNS, FTP), but we focus on HTTP traffic as
it typically dominates the traffic mix and many attacks use
HTTP as a vector of infection.

B. Overall Throughput

In this section we compare the overall performance
between the different algorithms. Using the HTTP-related
patterns of each set gives us 2K patterns from pattern set S/
and 9K patterns from pattern set S2. All algorithms count
the number of matches. We use 10 independent runs of each
experiment. We report the average throughput values, as well
as standard deviation as error bars.

Figure 4a shows the throughput of all algorithms under
realistic traffic traces and synthetic traces, when matched
against the small pattern set (S7). In Figure 4b we use
the bigger pattern set (S2). The numbers above the bars
indicate the relative speedup compared to the original DFC
algorithm.

We first discuss the results by only considering each
pattern set and each traffic set separately. For realistic
traffic traces, our vectorized implementation consistently
outperforms the DFC algorithm by up to 1.86x (left parts
of Figure 4), due to the parallelization we introduce in
the filtering phase. The direct vectorization of the original
DFC algorithm (Vector-DFC) has limited performance gain,
because much of the running time of DFC is spent on
verification and not filtering. This is the main motivation
for introducing a modified version of DFC, in Section IV-A,
focused on improving the filtering phase. By treating small,
frequently occurring patterns separately and by examining
more information in the case of long patterns, S-PATCH
outperforms the original by up to 1.47x. More importantly,
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Figure 4. Performance comparison between the different algorithms for
public and random data sets, on the Xeon platform.

it allows for much greater vectorization potential, since the
biggest portion of the algorithm’s running time is shifted to
efficient filtering of the input, and verification is done much
more seldom.

Next, we evaluate the impact of the size of the ruleset on
the overall throughput (comparing Figure 4a with Figure 4b).
The overall throughput of the algorithms decreases, since the
input is more likely to match and identifying every match
consumes extra cycles. The performance of Aho-Corasick,
in particular, decreases by more than 40%, because the
extra patterns greatly increase the size of the state machine.
The rest of the algorithms experience a 23-34% drop in
performance.

It is important to note that the performance gain of the
algorithms (DFC versus Aho-Corasick, V-PATCH versus
DFC) is influenced by the input as follows: when feeding
the algorithms a data set that contains random strings, DFC
significantly outperforms AC (right part of Figure 4). In
this case, we do not expect to find many matches in the
input and the filtering phase will quickly filter out up to
95% of the input. This is also the reason why the modified
versions of the algorithm (S-PATCH and V-PATCH) perform
less efficiently compared to what they do in the different
input scenarios; the design of the two separate filters as
described in Section IV shows its benefits in more realistic
traffic mixes. In turn, this poses interesting questions for the
future in how to best design the filters based on the expected
traffic mix. Still, the vectorized versions provides speedups
over the scalar ones.

C. The effects of the number of patterns

As shown in Section V-B, it is important to account for
the actual traffic mix the algorithms are expected to run upon
when designing the filtering stage, as it has a large impact
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Figure a) compares the scalar and vectorized versions of our approach, as the number of patterns increases. Figure b) shows the filtering-to-

verification ratio (left axis), as well as the average number of useful elements in the vector registers after filter 2 (right axis), as the number of patterns
increases. Figure c) compares the scalar and vectorized approach, as the fraction of matches in the input increases.

on the performance. As new threats emerge, more malicious
patterns are introduced and the performance of the algorithm
must adapt to that change.

We measure the effects of the number of patterns on the
two best performing algorithms and summarize the results in
Figure 5a, also including the overall speedup of V-PATCH
compared to S-PATCH. In this experiment, we randomly
select the number of patterns from the complete set S2
(20,000 patterns) in order to test our algorithms with as
many patterns as possible. V-PATCH consistently performs
better compared to S-PATCH, regardless of the number of
patterns considered. Observe that:

e As the number of patterns increases, so does the input
fraction that passes the filters. This causes the verification
part, which is not vectorized, to take up more of the
running time, essentially reducing the parallel portion and,
by Amdahl’s law [25], the benefit of vectorization. The
portion of the running time spent in filtering, over the total
running time is shown in Figure 5b (blue line).

e As the number of patterns increases, the vectorization
of the filtering becomes more efficient. Remember that V-
PATCH will proceed with the third filter if at least one of
the values in the vector register block passes the second
filter. With a small number of patterns, we will seldom
pass the second filter. When we do, it is likely we only
have a single match, meaning that the rest of the values
in the register are disabled and any computation performed
for those values is wasteful work. Increasing the number
of patterns results in more potential matches in the second
filter and, as a consequence, less disabled values for the third
filter and thus more useful work. In Figure 5b (red line) we
measure this effect and show the average number of useful
items inside the vector register every time we reach the
third filter. Clearly, with an increasing number of patterns,
the vectorization is performed mainly on useful data and

therefore becomes more efficient.

e The two trends essentially cancel each other out, keeping
the overall performance benefit of V-PATCH compared to
S-PATCH constant after a point (Figure 5a), even though
the optimized filtering gradually becomes a smaller part of
the total running time.

e A similar effect is observed when we keep the number
of patterns constant, but increase the amount of matches
in the dataset (Figure 5c). For this experiment, we created
a synthetic input that contains increasingly more patterns,
randomly selected from a ruleset of 2, 000 patterns. As more
matching strings are inserted into the input, our vectorized
portion of the algorithm becomes more efficient and the
relative speedup compared to the scalar version slowly
increases.

D. Filtering Parallelism

In this section, in order to gain better insights about the
benefits of vectorization, we measure the speedup gained
in the filtering part in isolation. Figure 6 compares the
filtering throughput of the scalar S-PATCH and V-PATCH,
for pattern sets S1, S2, as well as the full pattern set (20K
patterns). In the same figure, we also report the performance
of the vectorized filtering, where we exclude the cost of
storing the matches in the filtering phase in the temporary
arrays. As we can see from the graph, the throughput of the
filtering part is increased by up to a factor of 1.84x, on the
small pattern set. Storing the matches of the filtering part in
arrays comes with a cost; when it is removed, performance
increases up to 2.15x for small pattern sets and up to 2.80x
for the full pattern set. Even though there is a small decrease
at the pattern set with 9K patterns (Figure 6b), the relative
speedups of vectorized filtering increase with the number of
patterns (Figure 6c¢).
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E. Changing the vector length: Results from Xeon-Phi

We have also evaluated the effectiveness of our approach
on an architecture with a wider vector processing pipeline.
The Xeon-Phi [5] co-processor from Intel supports vector
instructions that operate on 512-bit registers, thus able to
perform two times more operations in parallel, in the filtering
phase.

Figure 7 summarizes the results from Xeon Phi, where
the experiments are identical with those described in Sec-
tion V-B. Note that we report the throughput of a single
Xeon-Phi thread. V-PATCH takes advantage of the wider
vector registers and outperforms the original scalar DFC
algorithm, up to a factor of 3.6x on real data and 3.5x on
synthetic random data.

As Xeon-Phi threads have much slower clock (1.1 GHz)
and the pipeline is less sophisticated (e.g. there is no out-
of-order execution), it is not surprising that the absolute
throughput sustained by a single Phi thread is smaller
than that of the single thread performance of the Xeon
platform used in the previous experiments. When dealing
with multiple streams in parallel, due to the higher degree
of parallelism, the aggregated gain will naturally be higher.

An interesting observation is that the DFC algorithm is
slightly slower than AC on real data, where the number of
matches in the input is significantly higher. In the original
DFC algorithm, the filters are small and can easily fit L1
or L2 cache, and the hash tables containing the patterns
are bigger, but still expected to fit L3 cache. In Xeon-Phi
there is no L3 cache, so accesses to the hash tables in the
verification phase are typically served by the device memory,

Aho-Corasick v Vector-DFC V-PATCH
DFC W S-PATCH
0.5 - -
_ 361 _12- 3148
m - m
Boa- 316 B0
S 251 5
= 03- = T 08-
5 5
2., 1.63 L69 152 206- 1.43
o J 1.30 o
3 1_=141£0><1: 3 190’41.23 1.061,00 % ‘1.11 3 04- 190'3089
=N N <P N
N [\ L AN
0.0- ; ; | - 0074
ISCX day2 ISCX day6 DARPA 2000 random
(a) Snort web traffic patterns (2K).
05
_ 12
§ 04+ - ﬁl 1.0 - 2.96-
[ [ %
- 03- - 08-
5 5
£o2- 2.77 325 £°
B J 7 222 9, 1001'3:
o = 5 1
2 1.47 1.581.52 144 2 ~ @ 08¢
£ Ol'ogngov“g 1-1161.90’v4 N 0@71.30‘1‘;8 o2 a‘
%N oJN SN zNE
0.0 - — - - - 0.0 M NS
ISCX day2 ISCX day6 DARPA 2000 random

(b) ET open 2.9.0 web traffic patterns (9K).

Figure 7. Performance comparison between the different algorithms for
public and random data sets on the Xeon-Phi platform.

negating the benefits of cache locality that is part of the main
idea of the algorithm. Nonetheless, our improved filtering
design reduces the number of times we resort to verification
and access the device memory, thus resulting in 1.1x-1.5x
increased throughput on realistic traffic, compared to the
original DFC design.

VI. OTHER RELATED WORK
A. Pattern matching algorithms

Pattern matching has been an active field of research for
many years and there are numerous proposed approaches.
Aho-Corasick, explained before in Section II-A is one of
the fundamental algorithms in the fields. There are variants
of Aho-Corasick that decrease the size of the state transition
table (for example [26]) by changing the way it is mapped
in memory, but they come at an increased search cost,
compared to the standard version of Aho-Corasick used
in our evaluation. Other approaches apply heuristics that
enable the algorithm to skip some of the input bytes without
examining them at all, such as Wu-Manber [27] where a
table is used to store information of how many bytes one
can skip in the input. The main issue with these approaches
is that they perform poorly with short patterns. For the
problem domain investigated here, the patterns can be of
any length and the algorithm must handle all of them
gracefully. Moreover, in both Aho-Corasick and Wu-Manber
algorithms, there is no data parallelism because there are
dependencies between different iterations of the main loop
over the input.

Recent algorithms [12, 13] follow a different idea: Using
small data structures that hold information from the patterns
(directly addressable bitmaps in the case of [12], Bloom
filters in the case of [13]), they quickly filter out the
biggest parts of the input that will not match any patterns



and fallback to expensive verification when there is an
indication for a match. Our work is inspired by this family
of algorithms, showing how they can be modified to perform
better under realistic traffic and gain significant benefit from
vectorization.

B. SIMD approaches to pattern matching

Even though pattern matching algorithms are character-
ized by random access patterns, SIMD approaches have been
used before for pattern matching, especially in the field of
regular expression matching. Mytkowicz et al. [8] enumerate
all the possible state transitions for a given byte of input
to break data dependencies when traversing the DFA. Then
they use the shuffle instruction to implement gathers and to
compute the next set of states in the DFA. The algorithm
is applied on the case where the input is matched against
a single regular expression with a few hundreds of states
and does not scale for the case of multiple pattern matching
where we need to access thousands of states for every byte
of input. Sitaridi et al. [9] use the same hardware gathers as
we do, but apply them on database applications where the
multiple, independent strings need to be matched against
a single regular expression. There have been approaches
that use other SIMD instructions for multiple exact pattern
matching, but have constraints that make them impractical
for the case of Network Intrusion Detection. Faro et al. [28]
create fingerprints from patterns and hash them, but they
require that the patterns are long, which is not always true
for the typical set of patterns found e.g. in Snort.

C. Other architectures

Outside the range of approaches that target commodity
hardware, there is rich literature on network intrusion de-
tections systems that are customised for specific hardware.
For example, SIMD approaches that target DFA-based al-
gorithms have been applied on the Cell processor [29], as
well as GPUs and FPGAs [30, 31, 32]. Vasiliadis et al. [30]
build a GPU-based intrusion detection system that uses Aho-
Corasick as the core pattern matching engine. Kouzinopou-
los and Margaritis also experiment with pattern matching
algorithms on GPUs and apply them on genome sequence
analysis [31]. GPU parallelization has many similarities with
vectorization; in fact GPUs offer more parallelism that can
hide memory latencies. At the same time, it introduces
additional challenges e.g. long latencies when transferring
data between the host and the GPU. In this work we utilize
vector pipelines that are already part of modern commodity
architectures. Moreover, vectorization with CPUs requires
careful algorithmic design that makes use of caches and
advanced SIMD instructions. A main part of our work is
showing how this problem can be tackled for the case of
intrusion detection.

VII. CONCLUSION

In this paper, we introduce an efficient algorithmic design
for multiple pattern matching which ensures cache locality
and utilizes modern SIMD instructions. Specifically, we
introduce V-PATCH: it employs carefully designed and
engineered vectorization and cache locality for accelerated
pattern matching and nearly doubles the performance when
compared to the state of the art.

We thoroughly evaluate V-PATCH and its algorithmic
design with both open data sets of real-world network
traffic and synthetic ones in the context of network intrusion
detection. Our results on Haswell and Xeon-Phi show a
speedup of 1.8x and 3.6x, respectively, over single thread
performance of Direct Filter Classification (DFC), a recently
proposed algorithm by Choi et al. for pattern matching ex-
ploiting cache locality, and a speedup of more than 2.3x over
Aho-Corasick, a widely used algorithm in today’s Intrusion
Detection Systems. Moreover, we show that the performance
improvements of V-PATCH over the state of the art hold
across open, realistic data sets, regardless of the number of
patterns in the chosen ruleset. The experimental study also
provides insights about the net effect of vectorization as well
as trade-offs it implies in this family of algorithmic designs.
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