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Abstract. In Kac’s classification of finite-dimensional Lie superalgebras, the contragredient
ones can be constructed from Dynkin diagrams similar to those of the simple finite-dimensional
Lie algebras, but with additional types of nodes. For example, A(n — 1,0) = sl(1|n) can be
constructed by adding a “gray” node to the Dynkin diagram of A,_1 = sl(n), corresponding
to an odd null root. The Cartan superalgebras constitute a different class, where the simplest
example is W (n), the derivation algebra of the Grassmann algebra on n generators. Here we
present a novel construction of W(n), from the same Dynkin diagram as A(n — 1,0), but with
additional generators and relations.

This talk, given by JP at “The 32nd International Colloquium on Group Theoretical Methods
in Physics (Group32)” in Prague, 9-13 July, 2018, is based on [1], where more details and
references can be found.

In attempts to understand the origin of the duality symmetries appearing in supergravity
theories, the Lie algebras g describing the symmetries have been extended to infinite-dimensional
Lie superalgebras. These extensions include Borcherds superalgebras! [2], here denoted by %(g),
as well as tensor hierarchy algebras [3], here denoted by W(g) and S(g).

The construction of tensor hierarchy algebras in [3] was only applicable for finite-dimensional
g and thus in particular not to the cases g = F, for r = 9. Here we_solve this problem by a
new construction with generators and relations. We focus on the case g = A,_; since W (g)
and S(g) then turn out to be finite-dimensional and well known as Cartan type superalgebras.
In this sense, the general tensor hierarchy algebras 1/ (g) and S(g) are generalised Cartan type
superalgebras.

We consider algebras over an algebraically closed field K of characteristic zero. A superalgebra
G is an algebra with a Zs-grading, which means that it can be decomposed into a direct sum
G = G()®G (1) of an even subalgebra G gy and an odd subspace G|y), such that G ;)G ;) = G4
where 4,5 € Zz. (This means that G () does not close under the product and is thus not a
subalgebra.) In a Lie superalgebra, the product is a bracket that satisfies the identities

[,y] = —(=1)"¥I[y, 2], (1)
[z, [y, 2]] = [z, 9], 2] + (=) W[y, [z, 2], (2)

where |z| = 0 if z € G(g) and |z| = 1 if x € G(y).
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A Z-grading of the Lie superalgebra G is a decomposition of G into a direct sum of subspaces
G; for all integers 4, called levels, such that [G;,G;] < Giy;. The Z-grading is said to be
consistent if G; S G ;) for all levels i € Z, that is, if odd elements appear at odd levels and even
elements at even levels.

One way to obtain a Lie superalgebra if we only have a superalgebra G to start with (not
necessarily a Lie superalgebra) is to consider all even and odd derivations of it. Let |d| be equal
to either 1 or 0. A linear map d : G — G satisfying

d(zy) = d(x)y + (=1)zd(y) 3)

is an odd derivation if |d| = 1 and an even derivation if |d| = 0. All even and odd derivations of
G span a vector space which, together with the commutator as the bracket,

[e,d] = cod— (=1)llldld o, (4)

forms a Lie superalgebra. This is the derivation algebra of G, denoted der G.

The Grassmann algebra A(n) is a basic example of a superalgebra that is not a Lie
superalgebra. It is the associative superalgebra generated by n odd elements 6°,6%, ... 6",
modulo the relations §26° = —60%, where a,b = 0,1,...,n — 1. It is spanned by monomials
0% ... 0% where 0 < p < n, which are fully antisymmetric in the upper indices,

gM . ..9w — glar ... ganl (5)

The derivation algebra of A(n) has a basis consisting of elements

0
ai--a _ al . a
Koty = 60 6 (6)

acting on a monomial 6°! - -- 0% by a contraction,
K, o g0 0% s g Splerglar .. garlgez .. gl (7)

This Lie superalgebra der A(n) is also denoted by W (n). It is easy to see that it has a consistent
Z-grading where the subspace at level —p + 1 has a basis of elements K% % which are fully
antisymmetric in the upper indices, and thus there are no elements at level —p + 1 for p > n (or
p < 0). Negative and positive levels are here reversed compared to the usual conventions.

level basis
1 K,
0 K%,
L Kb, (8)

—n+1 | Kaon,

In the classification of simple finite-dimensional Lie superalgebras, W(n) appear as Lie
superalgebras of Cartan type. Such Lie superalgebras are distinguished from the classical Lie
superalgebras, which are further divided into basic and strange ones [4].

The basic Lie superalgebras are finite-dimensional cases of contragredient Lie superalgebras
[4], which means that they can be constructed from a (generalised) Cartan matrix, or from a
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Figure 1: The Dynkin diagram of #(A,_1) = A(n —1,0).

Dynkin diagram encoding the same information as the matrix. For a general contragredient Lie
superalgebra, the only condition on the Cartan matrix is that it be a square matrix By, with
values in K, where the index set labelling rows and columns is Zs-graded, that is, the disjoint
union of an odd and an even subset. Here we restrict to the cases where By, (a,b=0,1,2...,71)
is obtained by adding a row and a column to the Cartan matrix A;; (¢,j = 1,2...,7) of a
Kac—Moody algebra g of rank r, such that

-1 (a:1)7

0 (a#1), ©)

Bij:Aija BOa:BaO:{

and such that {0} and {1,2,...,r} are the odd and even subsets, respectively, of the index set
{0,1,2,...,r}. Furthermore, for simplicity we assume that A;; is symmetric (implying that By
is symmetric as well) and that both A;; and B, are non-degenerate. To this Cartan matrix we
associate a Zg-graded set M = M) u M) of generators,

Moy = {ei, fi, ha} My = {eo, fo}, (10)

where 1 = 1,2,...,r and a = 0,1,2,...,7. Let %(g) be the Lie superalgebra generated by the
set M modulo the Chevalley—Serre relations

[has €] = Bapes [has fo) = —Babfo [eas fb] = Savhe

(ad e,) 7P (&) = (ad fo)"Ber(fy) = 0. (11)

Then %(g) is the contragredient Lie superalgebra constructed from the Cartan matrix Bgy.
With the restrictions on By, here, %(g) is not only a contragredient Lie superalgebra but also
a Borcherds superalgebra [5]6].

Let us now apply the above construction to the case of the (finite-dimensional) Kac-Moody
algebra g = A,_1 (thus r = n—1) with a Cartan matrix A;; where row and column 1 correspond
to one of the end nodes in the Dynkin diagram. Then we get the Cartan matrix By, of %(g)
given in . We can associate a Dynkin diagram to it, given in Figure where row and column
0 correspond to the “gray” node.

0 -1 0 0 0
-1 2 -1 0 0
0 -1 2 0 0
Bay = (12)
0 0 0 2 -1
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The resulting Lie superalgebra #(A,,—1) is A(n—1,0), one of the basic Lie superalgebras in the
classification [4].

If we put eg and fy at level 1 and level —1, respectively, and all the other generators at level
0, then we get a consistent Z-grading of #(g). In the case g = A,,—1 there are no more levels,
this Z-grading of #(A,_1) is a 3-grading:

A(n— 1,0) = @_1 (—B%O(—B,@l (13)

The subalgebra % is sl(n) ® K = gl(n), and the basis elements can thus be written as gl(n)
tensors:

generators | level | basis
€0 1 Ea (14)
€i, fi7 ha 0 Gab
fo -1 | F
The commutation relations are
[G", G a] = 0p°G"a — 64°G %, [Eq, F'] = —G%4 + 6."G
[G%, F°] = 6, F, [G%, E.] = —0."Ep, [E,, Ey] = [F*, F®] =0, (15)
where G = Y"1 G%,. With the identifications
eo = Eop, fo=1F", ho=GY+G*%+ - +G" 1 =G-G%,
e =G, fi=Gi, hi=G"ti -G, (16)

the commutation relations follow from the Chevalley—Serre relations .

Let us now compare the basis of A(n—1,0) to the basis (8) of W(n). Level 1 and 0 have
the same index structure in W(n) as in A(n—1,0). If we consider level —1 in W(n), the tensors
can be decomposed into a traceless part and the trace, obtained by contracting the lower index
with one of the upper indices. If we take the subalgebra of W (n) generated by level 1 and only
the traceless part of level —1, then we get another Lie superalgebra of Cartan type, denoted
S(n), with traceless tensors all the way down to level —n + 2. If we instead take the subalgebra
generated by level 1 and only the trace part of level —1, then there will be no lower levels, and
we get A(n — 1,0). Thus A(n — 1,0) is a subalgebra of W (n), which can be constructed from
the generators and the relations . The question arises whether we can obtain not only
this subalgebra, but the whole of W (n) by extending the set of generators and relations.

We extend the set M = Mgy w M 1) of generators to M = Mgy v M’(l), where fj is replaced
by r generators fo,.

My = {es, fis hal M’ 1y = {eo, foa |a # 1}. (17)

Henceforth, whenever fy, appears we assume a = 0,2,3,...,r (with » = n — 1 in the case of
g = A,—1), and whenever f, appears we assume a # 0. As we will see, the new generator fy
corresponds to the old fy. Identifying them with each other, M’ is indeed an extension of M.
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We let WN/(g) be the Lie superalgebra generated by the set M’ modulo the relations and
the additional relations

leo, foa] = ha [Pas foo] = —Bao fob , le1, foa] =0,
[eaa [eaa€0b]] = [fCH [fa7fﬂb]] = Oa

iaj :2737"'7 r = [€i7[.fj7f0a]] :5ijBajf0j7 <18)

where a = 0,1,2,...,r.

In the same way as for #(g) we get a consistent Z-grading of WN/(g) if we put e at level 1,
all fy, at level —1, and all the other generators at level 0. The sum of the subspaces at level +1
and 0 constitute the local part of W(g) We then define W(g) as W(g) = WN/(g)/J, where J is
the maximal ideal of W(g) intersecting the local part trivially.

The following theorem summarises the main results of [1] (where the proof can be found).

Theorem. The Lie superalgebra W(A,—1) = W(An_l)/J is isomorphic to W(n). The ideal J
of W(Ap_1) is generated by the relations

[an)fOb] = [f0i7 [f0]7f1]] = [(fUQ - fOO)) [f()])fl]] = 07 (19)
where i,j =3,...,n— 1. Thus W(n) has generators and relations , (@ and (@

By removing hg and foo from the set M’ of generators we get a subalgebra S(g) of W(g).
In the case g = A,,—1 we have S(g) = S(n). In general, for finite-dimensional g this definition
of S(g) agrees with the definition of the corresponding tensor hierarchy algebra in [3]. In cases
other than g = A,_1 we do not know whether the relations generate the whole ideal J or
if additional relations are needed.

We conclude this talk with an overview of the cases where g belongs to the A, D or E series
of Kac—-Moody algebras, with node 1 being the node to which another node is connected when
going to the next algebra in the series. Another Lie superalgebra of Cartan type, H(2r), appears
as S(D,).

oo AU O o ob oo

g Ap—1 = sl(n) D, = so(2r) E,

AB(g) | A(n—1,0) =sl(n|1) | D(d,1) = 0sp(2r|2) | infinite-dimensional

S(g) S(n) H(2r) infinite-dimensional

Wi(g) W(n) infinite-dimensional | infinite-dimensional

In applications to extended geometry, the A, D and FE cases above correspond to
ordinary, double and exceptional geometry, respectively [7]. In cases where so-called ancillary
transformations are absent, the Borcherds superalgebras can be used to derive expressions
for the generalised diffeomorphisms [§] and furthermore an Lo, algebra encoding their gauge
structure [9,|10]. When ancillary transformations are present it seems that the Borcherds
superalgebra needs to be replaced by a tensor hierarchy algebra [11}/12].
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