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Abstract
Cavity optomechanical systems are one of the leading experimental platforms for controlling
mechanicalmotion in the quantum regime.We exemplify that the control over cavity optomechanical
systems greatly increases by coupling the cavity also to a two-level system, thereby creating a hybrid
optomechanical system. If the two-level system can be driven largely independently of the cavity, we
show that the nonlinearity thus introduced enables us to steer the extended system to non-classical
target states of themechanical oscillatorwithWigner functions exhibiting significant negative regions.
We illustrate how to use optimal control techniques beyond the linear regime to drive the hybrid
system from the near ground state into a Fock target state of themechanical oscillator.We base our
numerical optimization on realistic experimental parameters for exemplifying howoptimal control
enables the preparation of decidedly non-classical target states, where naive control schemes fail. Our
results thus pave theway for applying the toolbox of optimal control in hybrid optomechanical
systems for generating non-classicalmechanical states.

1. Introduction

In view of quantum technologies (see, e.g. [1]), optimal control techniques provide an increasingly useful
toolbox to take quantumhardware to the limits of reaching target states with highfidelity, precision, sensitivity
and robustness—one prominent example being feedback stabilization of predefined photon-number states in a
box [2, 3]. Systematic strategies to unlock and exploit the hardware potential in experimental settingswith the
help of optimal controlmethods can be found in a quantum control roadmap [4].

A recent physical system that has been added to the family of quantumhardware aremechanical resonators
[5–7]. Pioneering experiments realized cooling ofmechanicalmotion to the quantumground state by direct
cryogenic [8] or by laser-based cooling techniques [9, 10]. A current focus lies on generating non-classical
mechanical states, which are required to fully leveragemechanical resonators for applications in quantum
metrology [11, 12], as quantum transducers [13, 14] or for fundamental tests of quantummechanics [15–17].
Along these lines, the control over excitations of single phonons has been demonstrated by couplingmechanical
motion to artificial atoms [8, 18] or to cavity lightfields [19, 20].

Cavity optomechanical systems constitute a successful platform for quantum control ofmechanicalmotion
[7]. Importantly, the optomechanical interaction is intrinsically nonlinear and, thus, would lend itself for
directly generating non-classical states ofmechanicalmotion [15, 21, 22]. However, in real-world physical
realizations [9, 23], the single-photon strong coupling regime [24, 25] required for exploiting this nonlinearity
has not been achieved to date, with notable exceptions in cold atomoptomechanics setups [26, 27]. Therefore, it
is commonpractice to boost the optomechanical interaction by a coherent drive at the cost of losing its intrinsic
nonlinear character. Non-classicalmechanical states can nevertheless be generatedwhen coupling an
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optomechanical system to other nonlinear systems [8, 28–30], by introducing the nonlinearity in the
measurement process [19, 31–33], by injecting non-classical states of light [19, 20, 24, 25, 34], or by coupling to
the squaredmechanical position quadrature [35–38].

In the present workwe focus on a hybrid optomechanical system for non-classical state generation.More
precisely, we choose a system consisting of amechanical resonator that is parametrically andweakly coupled to a
cavity, which in turn is strongly coupled to a two-level system (see figure 1). Such a systemhas been analyzed
before in the context of strong atom-mechanics coupling [28], dissipative state engineering [29], tripartite
polaron dynamics [39], and optical bistability [40]. Itfinds direct relevance in present experimental
implementations [41, 42] and potential future implementations in nano-optic [9, 43] or ion-trap scenarios [44].

In our study, wefirst establish controllability of the optomechanical hybrid system in the absence of
dissipation processes.We then apply optimal control algorithms and suggest concrete controls in an
experimentally realistic setting for generating a non-classical state ofmechanicalmotion. As an example, we
choose to focus on generating a single-phonon Fock state and use numerical optimization tofind pulse
sequences for optimally generating such a state. In order to be close to realistic experimental settings, we adapt
parameters from the electromechanics implementation of [41] for illustrating the gain of optimal control over
established control techniques.

Inmany instances, quantumoptimal control [45–49] provides both framework and algorithms to go beyond
conventional approaches. In cavity optomechanics, standard control techniques implymaking use of
interactions in the linearized regime using cw-driving [50–56], multi-tone driving [57–59] or pulsed driving
[32, 37, 60] for generating entangled states [61–63], squeezed states [64–66] or for performing state tomography
[67]. The leap that optimal control techniques offer is to accommodate the specifics of the system forfinding
experimental protocols that can be run in amuch shorter time frame or that achieve a higherfidelity in state
preparation.Optimal controlmay, thus,find control sequences that embrace limitations in the system’s
parameters, which otherwisemay prevent generating desired target states. Indeed, optimal control schemes have
already been analyzed for optomechanical systems for enhancing cooling performance [68–70], for generating
optomechanical entanglement [71], or for squeezing [72]. A recent account on treating optomechanical systems
including feedback as linear control systems can be found in [56].

In the present work, wemove to the framework of bilinear control systems [73] and cutting-edge algorithms
[74] to showhow (by adding a two-level atom) this setting allows for generating a non-classicalmechanical Fock
state in a parameter regime, where conventional steeringmethods fail. Ourmethodology can be extended for
optimal generation ofmechanical Schrödinger cat states [22, 58] or cubic phase states [59], provided the
truncation of theHilbert space required for our computational optimization can be extended to higher Fock
state numbers.

Figure 1.Overview of the hybrid optomechanical system analyzed. (a)Weconsider the interaction of amechanical resonator

(represented by its annihilation operator b̂)with a cavityfield (represented by its annihilation operator â), which is at the same time
coupled to an atom (represented by its lowering operator s-ˆ ). Possible physical implementations of this conceptualmodel can be
realized in (b) an electromechanical circuit QED architecture (see [41, 42]) or (c) in an optomechanical cavity which simultaneously
traps an atom.
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Our paper is structured as follows: in section 2we present theHamiltonian of the hybrid optomechanical
system and derive a drift and control part, in section 3we discuss the controllability of our system from a general
perspective, in section 4we present the numerical algorithms our optimal control optimization is based on, in
section 5we use optimal control based on realistic experimental parameters to generate a single-phonon Fock
state andfinally, in section 6, we discuss the results and give an outlook on future work. TheAppendix
summarizes a detailed derivation of theHamiltonian of the hybrid optomechanical system treated here and it
lists the entire parameter setting.

2. Theoreticalmodels: drift and controlHamiltonian

The optomechanical systemof interest is described in the lab frame by theHamiltonian

 w

w f

= + W - +

+ + +

ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )
( ) ( ( ))( ˆ ˆ ) ( )

† † † †

†

H a a b b g a a b b

E t t t a acos , 1

c m

L L

om 0

where â and b̂ are the annihilation operators of the cavity and the oscillator, and the last term represents driving
of the optical cavity by a laser. The = +ˆ ˆ ˆ†Q a a quadrature of the cavity is defined as the direction of the driving.

The driving Rabi frequency is connected to the laser powerP and the cavity decay rateκ by


= k
w

E P2

L
.

The systemmay bemademore amenable to control by adding a strongly nonlinear element in the formof a
controllable two-level atom in the cavity with theHamiltonian
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Above, the three terms represent the atom itself, the atom-cavity coupling, and a classical control signal
driving the atom, respectively. sˆ denote the atomic raising and lowering operators.

Dissipation processes to be taken into account are decay processes in the cavity and damping of the
mechanical oscillator. The former are described by the Lindblad operator k=ˆ ˆV a1 . This assumes that the
effective temperature of the cavity surroundings is zero, which is a good approximation formost cavities. To

describe the damping in themechanical oscillatorwe use the Lindblad operators g= ¢ˆ ˆV b2 and g= ¢ˆ ˆ†
V x b3 ,

where g g¢ = +( ¯ )n 1 is the effective decay rate, γ the base decay rate, = -¯ ( )n x x1 the expected number of

oscillator phonons in the steady state, and


= - W
x e

m
kT the oscillator Boltzmann factor. Finally, we describe the

atomic decay by k s= -ˆ ˆV a4 with the atomdecay rate ka. Combining all dissipation processes we end upwith a
standardMarkovianmaster equation
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where ρ is the density operator of the overall system.
To get a set of equations better prone for numerical simulationwe simplify the described setup in a number

of steps (see appendix for detailed calculations):

1.We transform the cavity into a frame co-rotating with the laser by applying the unitary w( ˆ ˆ)†t a aexp i L . This is
followed by a rotatingwave approximation (RWA) to drop the counter-rotating terms.

2. Simultaneously, we transform the atomby w s s+ -( ˆ ˆ )texp i R and apply again the RWA.

3.Due to driving the cavity with a laser field, the cavity (without atom, and oscillator) ends up in a coherent
steady state añ∣ . From a computational point of view it is useful to consider oscillations around añ∣ (and not
around the cavity vacuum), since this step allowsmore radical truncations of the physicalHilbert space.
Hencewe apply a phase space shift to get new creation and annihilation operators †a a, , †b b, with

 = + = +h f z-ˆ ( ) ˆ ( )( )a a s b b re , ei iL

with appropriately chosen parameters h zs r, , , ; see appendix A.3 for exact values. The s shift, in particular,
will act as amultiplicative factor to g0 in a new linear interaction term coupling the cavity and the oscillator.

4. The atomic operators sˆ are replaced by the phase-rotated versions swith

s s f f f h f= = + + -f
+ +ˆe , .a c L

i
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5. If the average photon number is high, the nonlinear optomechanical interaction term can be linearized and
replaced by a hopping interaction.

6. At the end we drop another counter-rotating ab interaction term (i.e. another RWA), to make the system
completely time independent (apart from the control terms).

Finally, we end upwith the following drift and controlHamiltonians:

 w w w w s s
s

= ¢ - + + -
- + + +

+ -

+

( )( ) ( )
( ) ( ) ( )

† †

†
H a a b b

g s ab g ah.c. h.c. , 4
c R a R

ac

drift 0

0

 ps s p s s
p s s

= + +
+ - -

+ - + -

+ -

( ) ( ) ( ) ( )
( ) ( )( ) ( )

H t u t u t

u t i

2

, 5
control detuning atomX

atomY

andwith themodified Lindblad operators

k g g k s= = ¢ = ¢ = - ( )†V a V b V x b V, , , . 6a1 2 3 4

Nowwe can replace theHamiltonian part of equation (3) by +( ) ≔ ( )H t H H ttot drift control and the V̂i by the
Vi of equation (6) to get a newmaster equation
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-
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Its timedependence is entirelywrappedup in the control functionsuj(t)with Î { }j atomX, atomY, detuning .
In principle one could also control the frequency w w= ( )tL L and amplitude = ( )E E t of the laser drive (see, e.g.
[69]) thus leading to amodulationof the cavity-laser detuningD = D( )t and the cavity-oscillator coupling

= ( )g s g s t0 0 . For simplicity, in thisworkwekeep the cavity laser drive constant inorder to exploit the drive
continuously for three tasks: (i)coolingof the oscillator into its ground state, (ii)using the swap interaction
between cavity andoscillator and (iii)separating the interaction time scales between the atom-cavity and the
cavity-oscillator couplings. Yet, other parameter regimes or target statesmay require control of the external laser
drive, whichwe leave for futurework.

In our case, the optimal control task now amounts tofinding control amplitudes uj(t) such that an
appropriately chosen initial state r0 evolves after a timeT into some best approximation to a given target state
rT of themechanical oscillator (after tracing out cavity and atom). An obvious candidate for the initial state ρ0 is
the steady state the system evolves into if we only consider laser driving of the cavity. The steady state is
influenced by the presence of the atom and thus changes with the detuning of the atom. If the detuning is large,
ρ0 is close to the ground state.Numerical calculations can be found in appendix A.4.

3. Controllability

Before analyzing an experimentally realistic scenario, let us sketch that asking for controllability of the hybrid
optomechanical systemproposed is well-posed from a control theoretical point of view. To this end, we neglect
dissipation for themoment and solely look at the coherent evolution given by + ( )H H tdrift control .

It iswell known that the extent of control overharmonicoscillatormodes or lightmodes greatly increases by
coupling themodes to a controllable two-level atom,whereby the systemactually becomes fully controllable [75–77].
For the Jaynes–Cummingsmodel of oneor several atoms coupled to anoscillatormode, someofus showed in [78]
that breaking the symmetryσz⊗Nby controls on the atom leads to approximate full controllability (in the strong
operator topology).Hereσz acts on the atomandN is thenumberoperator of the oscillator.

Systematically extending similar lines, approximate controllability of the Jaynes–Cummings–Hubbardmodel (now
comprisinganentirenetworkof cavities eachcontainingonemodeandone two-level atom,where the interaction
between twocavities is givenbyahopping term) is analyzed indetail in [79]. It is shown that anypure stateof theoverall
systemcanbepreparedwitharbitrarily small error starting fromanarbitrarypure initial state by controlling the atoms
individually and the cavity–cavity interactions globally.Yetwhen looking at themechanical oscillator as another cavity,
this result doesnotdirectly coverour case, because theoscillator in turn isnot coupled to another controllable two-level
system.Moreover, the reasoning in [79] indicates that thegiven scenario is aminimal requirement for full
controllability.Hence, inour case thismeansonecouldnotprepare anypure state of the overall system either.

Fortunately, the overall state of the system is not needed, since in the extended system suggested here, we are
interested in the partial state of the oscillator only, where the situation ismuch easier. Consider the atom-cavity
subsystemfirst. This part is well studied and known to be fully controllable [76–78, 80, 81] in the sense that one
can reachwith arbitrary small error any pure state of atom and cavity from any initial state by using ( )u tatomX

and ( )u tatomY only—with ( )u tdetuning not needed except for speed-up.

4
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In contrast, cavity andoscillator alone just followquasi-free dynamics,which ismuchmore limited. Evenwhen
allowing for control of the coupling strength, one is far from full controllability, since the time-evolutionoperator
wouldbe confined to the Schrödinger representationof themetaplectic group [82].However,with theHamiltonian
components given in equations (4) and(5), it is easy to see that—in entire analogy to the classical phase space—the
states of cavity andoscillator become (approximately)flipped after a certain time.Hence apossible strategy to control
the overall system is: prepare a state of the cavityfirst andwait until itflips over to the oscillator. This indicates that one
can actually prepare anypure state of the oscillator fromanarbitrary pure initial state.

In this idealized controllability assessment of our setup, note that atom-cavity coupling gac is 10 times stronger
than the boosted cavity-oscillator couplingg s0 thus leading to a separation of time scales. In simple cases this
allows to treat atom-cavity and cavity-oscillator system independently as described above. In otherwords, a simple
cavity state canbeprepared before the swapping to theoscillator has effectively started. After this preparation
phase, the effects of the still present atom-cavity interaction can be continuously compensatedby further control
pulses on the atom (such that the swapping can goonundisturbed). This approximationonly breaks down if the
preparation of the cavity state takes so long that it gets compromisedby the cavity-oscillator swap. In that case it
may benecessary to resort to controlling the parameter s in order tomanipulate the cavity-oscillator couplingg s0 .
Another limitation to the controllability assessment just outlined is dissipation. Soboth thenumerical analysis and
the experiment have to addressmixed stateswith the dissipation time limiting the overall control time.

The state-of-the-art of using optimal control with linear feedback for optomechanical systems has been
summarized in the recent comprehensive review byHofer andHammerer [56]. Note that the systems thus far
addressed do not use the interactionwith an atom, but rather a feedback loop fromhomodyne detection on a
beam coupled out of the cavity. The information gathered is then used to drive the cavity with a linear feedback
Hamiltonian Hfb of the form

*  = - +( ( ) ( ) )†H t a t a ,fb

where †a a, are annihilation and creationoperators of the cavity and  Î( )t is the amplitudeof the feedback
signal. Fromthepoint of viewof Lie-algebraic systems and control theory, such systems comewith limitations: since
all terms in theoverallHamiltonian are atmost quadratic in creation andannihilationoperators,Hamiltonians of
that formconstitute afinite dimensionalLie algebra. Therefore, themanifoldof time evolutionoperators thus
generated is alsofinite dimensional (nomatterwhether the terms are timedependentornot) and can thus be
describedbyfinitelymanyparameters. A given initial statewithWigner functionW0 evolves following a classical
phaseflow, i.e.the solutionof the initial value problem for the classical system.The latter, however, is but amulti-
dimensional harmonicoscillator drivenby a forcewhich is constant in space.Hence, ifW0 has nonegative parts, this
cannot changeunder such a formof timeevolution. For instance, ifW0 isGaussian, it staysGaussian all the time.

Adding an atom interactingwith the cavity as used in our context ismeant to overcome exactly these
limitations. Onemay look at it as adding a third oscillator which only interacts via its two lowest levels with the
rest of the system. The corresponding interaction term cannot bewritten as a quadratic polynomial in creation
and annihilation operators of the now three-dimensional oscillator system. Therefore it breaks the covariance of
the canonical commutation relations given in terms of themetaplectic representation, and the reasoning from
the previous paragraph does not apply. Therefore, adding a two-level atom allows for preparing any state of the
harmonic oscillator subsystem from any initial state.—The remaining question of how severe the restrictions
imposed by a realistic dissipative system are, and up towhich degree the theoretical possibilities can actually be
exploited by pulse sequences shall be explored in the sequel by some examples using numerical optimal control.

4.Numerical algorithms

In view of going beyondGaussian states, the extended hybrid optomechanical setting lends itself to be treated as
a bilinear control system [73]with states X(t) following

å= + =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˙ ( ) ( ) ( ) ( ) ( )X t A u t B X t X Xwith 0 . 8

j
j j 0

Its form is determined by a non-switchable drift termA, while the control is brought about by (typically piecewise
constant) control amplitudes Î( )u tj governing the time dependence of the otherwise constant control
operators Bj. The connection to the Lindbladmaster equation (7) above is given by the identifications4

4
Here, driftĤ , controlĤ and Ĝ are linear ‘superoperators’ acting on the state ρ(t). For numerics, a convenient concrete representation takes ρ

as the column vector r( )vec stacking all columns of thematrixρ.With the conventions of [83, chp 4], Hamiltonian commutator
superoperator components Ĥj are obtained as  Ä - Äˆ ≔ ( )H H Hj j j , and the Lindbladian dissipator as G å Ä -ˆ ≔ V̄ Vk k k

 Ä + Ä( ( ) ( ¯ ) )†V V V Vk k k k
1

2
. The Lindbladmaster equation (7) can then readily be read and treated as vector differential equation

of the type


r r= - + G ( )( ) ˆ ˆ ( )Hvec veci .

5

QuantumSci. Technol. 4 (2019) 034001 VBergholm et al



r ( ) ≕ ( ) ( )t X t , 9

drift G -ˆ ˆ ≕ ( ( ) ( )) ( )H Ai equations 4 and 6 , 10

control  å- ˆ ( ) ≕ ( ) ( ( )) ( )H t u t Bi equation 5 . 11
j

j j

Given this equationofmotion, the optimal control task thenamounts tominimizing theEuclideandistance
between the (possiblymixed) target stateρTon theonehandand thefinal stateρ(T)of the systemon theotherhand.
Typicallyρ(T) results aftern stepsof timepropagation in slots of piecewise constant quantummaps F̂k (with
t - -≔ t tk k 1 for k=2,K, n asuniformwidthof time intervals)propagating the stateρ(0) according to equation (7)

r r= -( ) ˆ ◦ ˆ ◦ ◦ ˆ ◦ ◦ ˆ ( ) ( )T F F F F... ... 0 , where 12n n k1 1

åG -tˆ ≔ ˆ ≔ ˆ ( ) ˆ ( )ˆF L u t He with i . 13k
L

k
j

j k j
k

Likewise, the distance between the truncations to the sublevels of interest r( )trE T and r( ( ))TtrE may be taken, or
alternatively, a Lagrange-type penalty termmay be added to the cost functionals discussed in the outlook.

Explicitly allowing for changing purity andmixed target states requires some generalization of the standard
task (with constant purity) discussed in [74]. To this end, we extract from the (squared)Euclidean distance (in
terms of the Frobenius norm ∣∣ ∣∣ ≔ { }†A A AtrF )

r r r r r r- = + -≔ ∣∣ ( )∣∣ ∣∣ ∣∣ ∣∣ ( )∣∣ { ( )} ( )†D T T T2Retr 14T F T F F T
2 2 2

those terms depending on time (and therefore on the controls) and rescale to arrive at the cost functional

e r r r-≔ ∣∣ ( )∣∣ { ( )} ( )†T TRetr . 15F T
1

2
2

Taking the derivative with respect to the control amplitude uj in the kth time slot then gives

e
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where the difference r r-( ( ) )†T T instead of just r-( )†T now takes care of the purity change. In the unital case,

the derivative of the propagating quantummap F̂k wouldmake use of F̂k being normal (so in slight abuse of
language it has orthogonal eigenvectors l ñ∣ ( )

i
k associated to the real eigenvalues l( )

i
k ) to take the formdescribed

in [84, 85] and used in [74]
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In the general (non-normal) casemostly encountered herewe have to resort tofinite differences according to

d
¶
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where δ has to be sufficiently small in the sense d t ∣∣ ˆ ∣∣F1 k . Given
¶
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, steepest-descent of the cost

functional with the controls would follow a recursion in r reading

a
e
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21j
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withαr as step size, while the standardNewton update would take the form

a eñ = ñ + ñ+ -∣ ( ) ∣ ( ) ∣ ( ) ( )( ) ( ) ( )u t u t tgrad 22r
k

r
k r r

r
k

1 1

with-
r

1denoting the inverseHessian in the r th iteration. For convenience the array of piecewise constant
control amplitudes = ¼{ ( )∣ }( )u t j m1, 2, ,j

r
k is concatenated to the control vector ñ∣ ( )( )u tr

k for each time

slot = ¼{ ∣ }t k n1, 2, ,k , while e ñ∣ ( )grad r is the corresponding gradient vector. In this workwe use the BFGS
quasi-Newton algorithm [86] to approximate the inverseHessian as explained in [74].
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5. Results by optimal control

The numerical optimization results presented in this section are for two variants of the circuit cavity
electromechanical systemdescribed in [41]. It consists of amechanical oscillator coupled to amicrowave cavity.
The cavitymode is further coupled to a superconducting qubit (‘atom’). In the original implementation the
atom-cavity coupling is fairly strong, p =( )g 2 12.5 MHzac , but the cavity-oscillator coupling ismuchweaker,

p =( )g 2 300 Hz0 . In all of our simulationswe have artificially boosted the single-photon optomechanical
coupling strength g0 by one order ofmagnitude, which together with the boosts resulting from coherent driving
of the cavity brings the optomechanical system in the required strong-coupling regime5.

The two parameter sets we use are
• Set1: Coupling enhancement factor s=100, p( )g 20 is boosted by a factor of40 to 12kHz, cavity decay rate
κ/(2π)=1MHz and the device is operated at a temperature of 25 mK.

• Set2: Coupling enhancement factor s=120, p( )g 20 is boosted by a factor of10 to 3kHz, cavity decay rate
κ/(2π)=0.2 MHz and the device is operated at a temperature of 10 mK.Compared to Set1, we have
assumed an optical cavity with a smaller linewidth, which allowed us to reduce the boost of the
optomechanical coupling strength6.We have also assumed a dilution fridge operating at 10 mK.

Figure 2.Result of the Fock state ñ∣1 optimization using Set1 parameters.We can see that the states ñ∣2 and ñ∣3 are only slightly excited
due to the penalty functional applied during the optimization. (a) oscillator population, (b) cavity population, (c)Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.

5
Note that one could in principle boost s instead of g0 to reach the required strong coupling regime k g>·s g ,0 between themechanical

oscillator and the cavity. However, boosting s also increases the interaction of the atomwith the cavity, which complicates the control
scheme as discussed in appendix A.5.
6
If the g0 coupling strengthwe propose turns out to be experimentally infeasible, our results indicate that the loss in controllability due to a

lower g0 can be compensated by further decreasingκ.We are confident that one could reach a regime experimentally where g0 ismildly
increased beyond the value reported in [41], e.g.by reducing the gap between the plates of the capacitor, and at the same time the optical
quality factorκ of themicrowave cavity is improved, e.g.by using a three-dimensional implementation [87].
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A full list of parameters is found in the appendix in tableA1, alongwith relatedparameter ratios in tableA2. In the
following,we shortly discuss parameter ratios that are relevant for achievingquantumcontrol as commonly known
fromoptomechanical or cavityQEDsetups.We require the optomechanical system tobe sideband-resolved, i.e.
Ωm/κ>1.This facilitates efficient state swapof the cavity state to themechanical oscillator by selecting the beam-
splitter (hopping) interaction fromtheoptomechanical interactionHamiltonian andat the same time suppressing
theundesired two-mode squeezingpart of theHamiltonian.Weneed theoptomechanical cooperativity tobe larger

thanunity >
k g( )∣ ∣

¯
1

g s

n
0

2

, which allows themechanical oscillator tobe laser-cooled close to the quantumground state,

Figure 3.Result of the Fock state ñ∣1 optimization using Set2 parameters. Note that the states ñ∣2 and ñ∣3 are only slightly excited due
to the penalty functional applied during the optimization. (a)Oscillator population, (b) cavity population, (c)Wigner function of the
oscillator at the end of the sequence, (d) optimized control sequence.

Table 1. Summary of Fock state optimization results. The target state y ñ = ñ∣ ∣1T is a Fock state of the
mechanical oscillator. dimdenotes the truncation dimension of theHilbert spaces of the cavity and the oscillator
used in the simulation. The fidelity between amixedfinal stateρ and a pure target state y ñ∣ T is
r y y y r yñá = á ñ( ∣ ∣) ∣ ∣F , T T T T , which in this case is equal to the state ñ∣1 population of the oscillator. Asmeasure

of the negativity of theWigner function ar ( )W quantifying the non-classicality of the state ρ, we follow [88] and
use the so-calledCV-mana òr a a= r( ) ∣ ( )∣M Wlog d .

Parameter set Sequence type Dim FidelityF Wigner negativityM Figure

Set1 Optimal control 3 0.569 9 0.015 7

4 0.568 7 0.015 5 2

π-pulse 3 0.503 0 0

4 0.502 8 0 4

Set2 Optimal control 3 0.602 1 0.031 9

4 0.596 1 0.030 3 3

π-pulse 3 0.523 0 0.000 7

4 0.523 0 0.000 7 5
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the initial state of our system.Weneed tobe in the strong coupling regime, both for the cavity-oscillator part

>
k g( )∣ ∣

( )
1

g s

max ,
0 aswell as for the atom-cavity part >

k k( )( )
1

g

max ,
ac

a
. The former facilitates coherent swapping of the

state of the cavity to the oscillator, and the latter from the atomto the cavity.All these conditions are fulfilled for all
chosenparameter sets.

The system is controlled by driving the atomic transition harmonically (the atomX and atomY controls), and
by adjusting the atomic resonance frequencywa, which changes the detuning w w-a R of the atom from the
driving signal (the detuning control). The frequency wR of the driving signal is 2π·500MHz below the shifted
cavity resonance frequencyw¢c, which allows us to draw a clear separation between the atombeing resonant with
the drive, or with the cavity, or neither.

At the beginning of the optimization each control field in the sequence is initialized to a randomvalue. The
control sequence isfirst optimized for a short computational time (about 300 s)without dissipation to quickly
obtain a reasonable starting sequence, and then for a longer computational time (several hours)with the
computationally heavier dissipation processes included. Due tomany localminima (typical of open-system
optimization), generically one has to repeat the optimizationwith random initial sequences dozens of times to
obtain sufficiently good results.

We simulate the harmonic oscillatormodes by truncating the infinite-dimensional Fock space into afinite-
dimensional one. Tomake sure our control sequences remain valid in the untruncated case, we apply a penalty
functional on the population of the highest Fock state included in the simulation (currently ñ∣2 ) during the
optimization, thus obtaining control sequences which avoid exciting the higher-lying states. To verify the
results, wefinally simulate the optimized control sequence using a higher truncation dimension (4 instead of 3).
The evolution does not change significantly for any of our sequences thus justifying our optimizationmethod.

5.1. Fock state optimization
Here our optimization task is, starting from the steady state of the system, to create the Fock state ñ∣1 in the
oscillator, without exciting the states ñ∣2 and up in either the cavity or the oscillator. Note that the task cannot be
accomplished exactly due to dissipation.

Figure 4. Set1, excitation transfer using optimizedπpulses. (a)Oscillator population, (b) cavity population, (c)Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.
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Wequantify the non-classicality of the resulting oscillator state using theCV-mana [88], an easily
computablemonotone, as themeasure ofWigner negativity. It is defined as the logarithmof the integral of the
absolute value of theWigner function, òr a a= r( ) ∣ ( )∣M Wlog d . It has the value zero for all classical states

(i.e. states with nonnegativeWigner functions). For the exact target state ñ∣1 we obtain ñ »(∣ )M 1 0.355. The
purpose of the non-classicalitymeasure, given ameasurement procedure with a specific level of uncertainty, is to
saywhether themeasurement results expected in our state could have been produced by a classical state instead.

The results of the Fock state optimization are presented infigures 2 and 3, and summarized in table 1.We
notice that with both parameter sets we are able to obtain a clearly non-classical state (with the ñ∣1 population
significantly higher than the ñ∣0 population and theCV-mana noticeably larger than zero), while keeping the
excitation of the higher-lying states in both the cavity and the oscillator to aminimum. As expected, Set2 yields
a slightly better result. In both regimes,mereπ pulses leave the system in a classical state or indistinguishably
close to one, while optimal-control derived sequences attain significantly non-classical states withfidelities being
limitedmostly by dissipation.

5.1.1. Comparison toπ pulse sequences
Wemay compare the optimized control sequences preparing the ñ∣1 Fock state in the oscillator to a naive
excitation transfer control sequence consisting of justπpulses (or their driftHamiltonian analogs). The
sequence consists of three segments. Thefirst pulse excites the atom, the secondmoves the atom in resonance
with the cavity until the excitation is transferred there, and thefinal segmentmoves the atomback out of
resonance andwaits until the excitation has hopped from the cavity into the oscillator. Since there are several
simultaneously active interaction terms as well as dissipation, this somewhat naive sequence does not perform
verywell.

Wemay improve on it by optimizing the durations of each of the three pulses such that the population
transfer during each step ismaximized. The optimizedπ-pulse sequences are presented infigures 4 and 5, and
their performance is summarized in table 1. Unlike the fully optimized sequences, theπ pulses facilitate
observing the timescales of various interaction processes. For example, infigure 4(b) the population of the ñ∣1

Figure 5. Set2, excitation transfer using optimizedπpulses. (a)Oscillator population, (b) cavity population, (c)Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.
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state of the cavity first go up from zero to 0.84 on the timescale τ=2π/(4g) of the atom-cavity
interaction p =( )g 2 12.5 MHzac , and fall back to zero roughly on the timescale of the boosted cavity-
oscillator interaction p =( )g s 2 1.2 MHz0 , expedited by dissipation.

With the Set1 parameters theπ-pulse sequence fails to produce a substantially non-classical state, as can be
seen from theWigner functionwhich has a barely visible negative region in themiddle.With the Set2
parameters theπ pulses fare a little better, but remain inferior to the fully optimized control sequence, as shown
in table 1.

5.2. Entangled state optimization
Herewe aim for a different target state, namely the entangled cavity-oscillator state ñ + ñ(∣ ∣ )01 10 2 . Again,
dissipation prevents us from achieving this exact state.We quantify the entanglement between the optical and
themechanicalmode using the logarithmic negativity of the reduced cavity-oscillator state. The logarithmic
negativity of a bipartite stateρ is defined as r r= = å ( ) ( )L slog log i i2

PT
tr 2 , where si are the singular values of

the partial transpose ofρ. The logarithmic negativity is zero for all positive partial transpose (PPT) states (which
include all separable states), and has the value1 for the exact target state.

Figure 6.Result of the cavity-oscillator entangled state ñ + ñ(∣ ∣ )01 10 2 optimization using Set2 parameters. The states ñ∣2 and ñ∣3
are only slightly excited due to the penalty functional applied during the optimization. (a) oscillator population, (b) cavity population,
(c) logarithmic negativity of the cavity-oscillator state, (d) optimized control sequence.

Table 2. Summary of entangled-state optimization results. The target state y ñ = ñ + ñ∣ (∣ ∣ )01 10 2T entangles the
cavity and themechanical oscillator. dimdenotes the truncation dimension of theHilbert spaces of the cavity and
the oscillator used in the simulation. The entanglement between the two bosonicmodes is quantified using the
logarithmic negativity r r=  ( )L log2

PT
tr.

Parameter set Sequence type Dim FidelityF Log-negativityL Figure

Set2 Optimal control 3 0.6451 0.4643

4 0.6450 0.4680 6
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The results of the entangled state optimization are presented infigure 6, and summarized in table 2.With the
Set2 parameters we are able to obtain a decidedly non-classical entangled optomechanical state withminimal
excitation of the higher-lying Fock states.

6. Conclusions and outlook

In the present workwe have shownhow adding a steerable atomon top of a cavity coupled to amechanical
oscillator paves theway to (approximate) full controllability on the oscillator side. The system thus extended
allows for preparing any state of the harmonic oscillator subsystem from any initial state (within the limits
imposed by dissipation).More precisely, the extension overcomes the limitations of previous designs confined
to a cavity coupled to an oscillator (without interaction to an atom), where linear feedback fromhomodyne
detection camewith the inevitable confinement to interconvertingwithin equivalence classes of Gaussian
oscillator states ormore generally of states with constantWigner negativity. It is only by adding an interacting
atom that theway is paved to controlled dynamics including interconversion between different equivalence
classes of oscillator states.

For illustration, we focused on generating themechanical Fock state ñ∣1 , and the optomechanical entangled
state ñ + ñ(∣ ∣ )01 10 2 , truncating the control state space at dimension d=3.However, higher truncations at
d=5 or larger are imaginable. A larger control state space would allow studying the generation of further non-
classical states of interest, such asmechanical Schrödinger cat states [22, 58] or higherNOON states [89],
relevant for studyingmacroscopic non-classicality [15], or cubic phase states [59, 90], relevant forGaussian
quantum computation [59].

Another aspect, where optimal controlmay be important, is to account for themultimode character of the
mechanical oscillator [91, 92]. In particular, when using pulsed control schemes,multiplemechanicalmodes
lying in the finite bandwidth of the pulsed optical drive will be addressed simultaneously. Thismight lead to
undesired optomechanical correlations, which could readily be treated by including Lagrange-type penalties
into the target function subject to optimal control.

Optimal control techniques giving non-classicalmechanical states are thus anticipated tofind future
application, e.g. in nano-optic [9, 43], ion-trap [44] or circuitQED implementations [41, 42] of hybrid quantum
optomechanical systems.
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Appendix. Deriving the optomechanical Hamiltonian

A.1. Introduction
The simplest realization of an optomechanical system is a single-mode Fabry–Pérot cavity with onemirror
semitransparent for coupling to the outsideworld, and the othermirror attached to a sufficiently harmonic
mechanical oscillator [7]. The optical cavity is driven through the semitransparentmirror using laser(s). There
are also other systems that follow similar dynamics, e.g. quantum electromechanical circuits, and the discussion
below applies to them aswell.

Let us assume that there is just a single cavitymode and a single oscillatormode that are relevant.We denote

the annihilation operators of the cavity and the oscillator byâ and b̂ , and the corresponding dimensionless
position andmomentumby( ˆ ˆ)Q P, and ( ˆ ˆ)q p, , respectively.7 Let the zero-pointmotion of themechanical

oscillator have the standard deviation = á ñ∣ ˆ ∣x u q0 0q0
2 . The resonance frequency of the optical cavitywc

depends on its length, which ismodulated by the position of themechanical oscillator, given by

= = +ˆ ˆ ( ˆ ˆ )†
x x q x b b0 0 . Linearizing, we obtain

7
Weuse  =u uq p

1

2
, where uq and up are the units of the position andmomentumquadratures, i.e. the dimensionless position and

momentumoperators of the cavity are = +ˆ ˆ ˆ†Q a a and = - -ˆ ( ˆ ˆ )†P a ai , and those of the oscillator are = +ˆ ˆ ˆ†
q b b and = - -ˆ ( ˆ ˆ )†

p b bi .
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w w w w» - = - + = - +( ˆ) ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )† †
x Gx Gx b b g b b . A1c c c c0 0

In the lab frame the optomechanical system is thus described by theHamiltonian

 w w f= + W - + + + +ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ) ( ( ))( ˆ ˆ ) ( )† † † † †H a a b b g a a b b E t t t a acos , A2c m L Lom 0

where the last term represents driving of the optical cavity by a laser. The Q̂ quadrature of the cavity is defined as

the direction of the driving. The driving Rabi frequency is connected to the laser powerP by


= k
w

E P2

L
.

The systemmay bemademore controllable by adding a controllable two-level atom in the cavity, with the
Hamiltonian

 w s s s w f s= + + + + + +f f
+ - + +ˆ ˆ ( ˆ )( ˆ ) ( ) ( ( ))( ˆ ) ( )H g a R t t te h.c. e h.c. cos h.c. . A3a ac R Ratom

i ic a

Above, the three terms represent the atom itself, the atom-cavity coupling, and a classical control signal driving
the atom, respectively. The driving defines the atomicXdirection, andwe (for now) introduce the arbitrary
phasesfc andfa to keep the atom-cavity interaction term as generic as possible.

The dissipation processes in the cavity are described by the Lindblad operator k â. This assumes that the
effective temperature of the cavity surroundings is zero, which is an excellent approximation formicrowave
cavities cooled to ultra-low temperatures or for optical cavities operating at room temperature. Likewise, the
atomic decay is described by the Lindblad operator k s-ˆa . For themechanical oscillator, due to its lower

resonance frequency, we need both the annihilation and creation Lindblad operators g g¢ ¢{ ˆ ˆ }†
b x b, , where

g g¢ = +( ¯ )n 1 is the effective decay rate, = -¯ ( )n x x1 is the expected number of oscillator phonons in the

steady state given by the Bose–Einstein distribution function, and


= - W
x e

m
kT is the oscillator Boltzmann factor

fulfilling  <x0 1.
The summary of the symbols used can be found in table A1 alongwith the numerical values used in the

simulations.

A.2.Moving into a rotating frame
Tofix the terms driving the atom and the cavity we transform into a frame co-rotatingwith their frequencies,

 w w s s= + + -ˆ ˆ ˆ ˆ†H a aL R0 , obtaining

 w w¢ = - + W - + + + +f w f

-D

- +
  ( ) ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ˆ ( ) ) ( )† † † † ( )H a a b b g a a b b

E
a

2
e e h.c. , A4c L m

t
om 0

i i 2L L L

whereΔ is the detuning between the laser and the cavity, and

 w w s s s

w f s

w w s s s s

s

¢ = - + + +

+ + +

= - + + +

+ + +

w f w f

w

w w f f w w f f

f w f

+ -
- +

+
+

+

+ - +
- + +

+
+ - +

+
- +

( ) ˆ ˆ ( ˆ )( ˆ )
( ) ( ( ))( ˆ )

( ) ˆ ˆ ( ˆ ˆ ˆ ˆ )
( ) ( ˆ ( ) ) ( )

( ) ( )

(( ) ) † (( ) )

( )

H g a

R t t t

g a a

R t

e h.c. e h.c.

cos e h.c.

e e h.c.

2
e e h.c. . A5

a R ac
t t

R R
t

a R ac
t t

t

atom
i i

i

i i

i i 2

L c R a

R

R L c a L R c a

R R R

Wemay then perform aRWAand drop all three counter-rotating terms (and their hermitian conjugates).
The Lindblad operators in the rotating frame acquire a rotating complex phase factorwhich has no effect on

the dynamics since it cancels out.

A.3. Shifting and rotating the cavity and oscillator states
Ignoring the oscillator for themoment (setting =g 00 ), with constant laser driving a pure coherent steady
state añ∣ forms in the cavity, where

a
k

=
D +

f-
( )Ee 2

i 2
. A6

i L

If the average photon number aá ñ =ˆ ˆ ∣ ∣†a a 2 of the optical cavity is high enough, the nonlinear interaction
term is ‘linearized’; wemay introduce shifted and rotated versions a, b of the annihilation and creation
operators, describing oscillations around the steady state:





= +

= +

h f

z

-ˆ ( )
ˆ ( ) ( )

( )a a s

b b r

e ,

e , A7

i

i

L

where η, ζ are rotation angles and s, r are complex shifts in the harmonic oscillator phase space, all of them
unspecified for now.Moreover, we introduce the hatless position andmomentumoperators (Q,P) and (q, p)
based ona, b. This yields
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z z
h h

= + + +

+ = - +

+ = - +

z

f h

ˆ ˆ ( ) ( ) ∣ ∣
ˆ ˆ ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( )

† †

†
a a a a s Q s P s

b b q p r

a Q P s

Re Im ,

cos sin 2 Re e ,

e h.c. cos sin 2 Re e . A8

2

i

i iL

The cavity Lindblad operator k â is equivalent to k a combinedwith the extraHamiltonian term

*
k k

= - = - +( ) ( ( ) ( ) ) ( )†H s a sa s P s Q
2

i
2

Re Im , A9Lind, cavity

Table A1. Summary of used symbols and systemparameters.

Symbol Meaning Set1 Set2

s- Transformed atom annihilation operator

a Transformed cavity annihilation operator

b Transformed oscillator annihilation operator

s Cavity shift (boosts the linearized g0 coupling) 100 120

( )rRe Oscillator shift, real part 7.5 2.7

( )rIm Oscillator shift, imaginary part 3.6 1.3 -·10 5

wa Atom resonance frequency 2π· 9–13.5 GHz

wc Cavity resonance frequency 2π· 10.188 GHz

Wm Oscillator resonance frequency 2π· 15.9 MHz

gac Atom-cavity coupling 2π· 12.5 MHz

g0 Cavity-oscillator coupling 2π· 12 3 kHz

g sac Boosted atom-cavity coupling 2π· 1.25 1.50 GHz

g s0 Boosted cavity-oscillator coupling 2π· 1.2 0.36 MHz

ka Atomdecay rate 2π· 1 MHz

κ Cavity decay rate 2π· 1 0.2 MHz

γ Oscillator decay rate 2π· 150 Hz

wL Cavity-driving laser frequency

E Cavity-driving laser amplitude 2π· 3.18 3.82 GHz

f ( )tL Cavity-driving laser phase

wR Atom controlfrequency

( ) ⪅R t E

100
Atom control amplitude 2π· 32 38 MHz

f¢ ( )tR Atom control phase

- ( )g r2 Re0 Cavity resonance frequency shift 2π· −0.18 −0.016 MHz

w w¢ = - ( )g r2 Rec c 0 Shifted cavity resonance frequency 2π· 10.188 GHz

w wD = -L c Laser detuning

w wD¢ = - ¢L c Shifted laser detuning -Wm

d w w¢ = - ¢a a c Shifted atomdetuning

d w w¢ = - ¢R R c Shifted atomic control detuning

T temperature 25 10 mK
- w

e
a

kT AtomBoltzmann factor ~ -·3 10 8 ~ -·6 10 21

- w
e

c
kT Cavity Boltzmann factor -·3.2 10 9 -·5.8 10 22


= - W

x e
m

kT Oscillator Boltzmann factor 0.97 0.93

= -¯ ( )n x x1 Expected number of oscillator phonons 32.3 12.6

g g¢ = +( ¯ )n 1 Effective oscillator decay rate 2π· 5.0 2.0 kHz

TableA2. Important parameter ratios for the hybrid optomechanical system. Both parameter sets place us
in the high-cooperativity, strong-coupling, resolved-sideband regime.

Measure Definition Set1 Set2

Sideband resolution
k
Wm 15.9 79.5

Cavity-oscillator cooperativity
k g
∣ ∣

¯
g s

n
0

2
298 343

Cavity-oscillator coupling-dissipation ratio
k g

∣ ∣
( )

g s

max ,
0 1.2 1.8

Atom-cavity cooperativity
k k

g

a

ac
2

156 781

Atom-cavity coupling-dissipation ratio
k k( )

g

max , a

ac 12.5 12.5
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and the oscillator Lindblad operators to g g¢ ¢{ }†b x b, plus the extraHamiltonian term

*
g g

= -
¢

- = -
¢
- +( ) ( ) ( ) ( ( ) ( ) ) ( )†H x r b rb x r p r q1

2
i 1

2
Re Im . A10Lind, osc

Now the optomechanical Hamiltonian, expressed in terms of the transformed operators and including the
Lindblad-induced terms above, is



 

z z

h h

k g

 = ¢ + +

= -D - - + + + +

+ W + + + -

+ - + + -
¢
- +

z

( )
( ( ( ) ( ) ( )))( ( ) ( ) ∣ ∣ )

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( )

†

†

H H H H

g q p r a a s Q s P s

b b r q r p
E

Q P

s P s Q x r p r q

cos sin 2 Re e Re Im

Re Im
2

cos sin

2
Re Im 1

2
Re Im , A11

m

om om Lind, cavity Lind, osc

0
i 2

wherewe immediately dropped any terms that aremeremultiples of identity. Next, the unwanted interaction
cross-terms Pq,Qp andPp are eliminated by choosing z = =( ) ( )ssin Im 0. Thus s is real, and ζ=0 since
ζ=πwould be just an uninteresting q, p inversion.We obtain



h h
k

g

g

 = -D¢ + W - -

+ -D¢ + + - -

+ - + W + -
¢

+ W - -
¢

( ( )) ( ( ) )

( ∣ ∣ ( ) ( ) ( ))

( ( ) ( ) ( )) ( )

† † †H a a b b g sQq g a aq

Q s
E

P
E

s

q g s r x r

p r x r

2
cos

2
sin

2

Re 1
2

Im

Im 1
2

Re A12

m

m

m

om 0 0

0
2

where the shifted detuning w wD¢ D + = - ¢≔ ( )g r2 Re L c0 , and the shifted cavity frequency
w w¢ -≔ ( )g r2 Rec c 0 .We can see that the shifts acts as an enhancement factor on the linear cavity-oscillator
interaction term-g sQq0 . The remaining linear terms can be eliminated byfixing the remaining free parameters
η, s, r such that

h

h
k

g

g

= D +

=-

= W + -
¢

W = -
¢

( ) ( ( ))

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

E
g r s

E
s

g s r x r

r x r

2
cos 2 Re

2
sin

2

Re 1
2

Im

Im 1
2

Re A13

m

m

0

0
2

or

g

k

= W +
-
W

¢

= D + +⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( ) ( )

( ( )) ( )

g s
x

r

E
g r s

1

2
Re

2
2 Re

2
. A14

m
m

0
2

2 2

2

0
2

2
2

This yields a cubic equation for ( )rRe . If we approximate g¢ W m (given in nearly all cavity optomechanics

realizations), the oscillator shift is =
W

r
g s

m

0
2

. If we instead assume the coupling enhancement factor s>0 given

and treat the driving laser amplitudeE as a free parameter, wemay easily solve r andD¢, and thenE andη. This
waywe obtain a= ¢∣ ∣s and h a= ¢( )arg for the transformed coherent state parameter (see equation (A6))

a
k

¢ =
D¢ +

( )E 2

i 2
. A15

We thus end upwith the relatively simpleHamiltonian (plus the counter-rotating term)

 = -D¢ + W - - + +w f h- + -( ) ( )† † † ( )H a a b b g s Qq g a aq
E

a
2

e h.c. . A16m
t

om 0 0
i 2 2L L

Next, we perform the same operator substitutions to the atomicHamiltonian, again expressing â andb̂ in
terms of the hatless versions using equations (A7), togetherwith the further substitutions
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f f f h f

s s
f f f

= + + -

=
¢ = +

f
+ +ˆ

( ) ( ) ( )t t

,

e ,

, A17

a c L

R R

i

yielding

 

 w w s s s

s s

w w s s s s

s

 = - + + +

+ + + + +

= - + + +

+ + + + +

f w f f

w w w w f f

w w w w f f

f w f f w w w w f f

+ - +
- ¢ + ¢ -

+
-

+
+ - +

+ - +
-

+
+ - +

- ¢ + ¢ - - + - +
+⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( ( ) )

(( ) ( ) )
( ) ( )

( ) ( ) ( ) ( )

( )

( ) † (( ) )

( ) † (( ) )

( ) ( ) (( ) )

H
R t

g a s a s

g a a

R t
g s

2
e e h.c.

e e h.c.

e e h.c.

2
e e e e h.c. . A18

a R
t

ac
t t

a R ac
t t

t
ac

t t

atom
i i 2 2

i i 2 2

i i 2 2

i i 2 2 i i 2 2

R R R

R L L R a

R L L R a

R R R R L L R a

Since the newhatless atomic raising and lowering operators are simply phase-rotated versions of the originals,
no extraHamiltonian terms are induced by the Lindblad dissipator.

The phasesfL,fa andfcwere absorbed into the transformed operators and the control phasef¢R, and only
remain in the counter-rotating terms (whichwe approximate away as they perturb the dynamics only slightly).
The nonlinear term- †g a aq0 in Hom is also typically veryweak and can be ignored in ourweak coupling
scenario, i.e. k W ( )g , m0 . In table A3we show significance estimates for all the discarded terms.

The dynamics (in the rotating frame) given by  + H Hom atom togetherwith the Lindblad dissipator

k g g¢ ¢{ }†D a b x b, , are equivalent to ¢ + ¢H Hom atom together with k g g¢ ¢{ ˆ ˆ ˆ }†
D a b x b, , , but

expressed in terms of the new, rotated and shifted operators a andb, which fulfill the original bosonic
commutation relations. In terms of the eigenstates of the transformed number operator †a a, if =g 00 the cavity
steady state is ñ∣0 , andwith realistic enhanced coupling strengths it remains close to ñ∣0 .We have

 aá ñ = á ñ = á + ñ = = ¢h f h f f- - -ˆ ∣ ˆ∣ ∣( )∣ ( )( ) ( )a a a s s0 0 e 0 0 e e . A19i i iL L L

The operator shift(A7) thus enables us to truncate the computational Hilbert spacemuchmore heavily,
evenwhen ∣ ∣s is large. Fromnowonwe always use the shifted-and-rotated operators and their eigenstates.

A.4. Steady state
The full systemHamiltonian, after dropping the counter-rotating terms in equations (A16) and(A18), is

  w w w w s s

s s

 =  +  = ¢ - + W + - - -

+ + + + +w w f w w

+ -

+
- - ¢ -

+⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )

† † †

( ) ( )

H H H a a b b g s Qq g a aq

g a
R t

g se h.c.
2

e e h.c. . A20

c L m a R

t t

om atom 0 0

ac
i i

ac
iR L R R L

Depending onwhether wewant a two-mode squeezing or a hopping interaction, we choose the laser-cavity
detuning w wD¢ = - ¢ = WL c m.

In the absence of atomic control, =( )R t 0, wR is an arbitrary constant, andwemay choose w w=R L to obtain

 w w s s
s s

 =-D¢ + W + - - -
+ + + +

+ -

+ +

( )
( ) ( ) ( )

† † †H a a b b g s Qq g a aq

g a g sh.c. h.c. . A21
m a L 0 0

ac ac

The presence of the atommodifies the steady state intowhich the system evolves during an initial period of laser
driving of the cavity. The strong s ++( )g s h.c.ac termmakes the steady state impure, unless the atom is far
detuned from the cavity inwhich case the system ends up close to the ground state (of the transformed
operators), as the oscillator is cooled by the hopping interactionwith the cavity.With this assumption, with

TableA3. Significance estimates for variousHamiltonian terms. The driving laser co-rotating term is
shown for comparison. All the terms in the lower part of the table are discarded in rotatingwave
approximations.

Term Significance Set1 Set2

Driving laser, co-rotating
w w-∣ ∣

E

2 L c
99 120

Driving laser, counter-rotating
w w+∣ ∣

E

2 L c
0.078 0.094

Atomic control, counter-rotating
w w+∣ ( ) ∣

R

2 minR a
0.000 82 0.000 98

g0, nonlinear part W

g

m

0 0.000 75 0.000 19

g s0 , two-mode squeezing D ¢

∣ ∣
∣ ∣

g s

2
0 0.038 0.011

gac , counter-rotating w w+ ¢∣ ( ) ∣
g

min
ac

a c
0.000 63 0.000 63

g sac , counter-rotating w w+

∣ ∣
∣ ( ) ∣

g s

min
ac

a L
0.063 0.076
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Set1 parameters we obtain a steady state with the cavity populations p0=0.9922, p1=0.0078 and the
oscillator populations p0=0.9912, p1=0.0087.

At the start of the control sequence, t=0, we transform the steady state to the simulation frame. Since the
frames coincide at this point, this does nothing to the state.

A.5. Control system
If w w¹R L, in order to obtain a constant driftHamiltonian, we need onemore rotating frame transformation to
stop the rotation of the atom-cavity interaction termwhile keeping either the two-mode squeezing or the
hopping interaction termfixed. This is accomplished using the generator

 w w w w= - -( ) ( )† †H a a b bR L R L0 (in terms of the transformed operators), which yields

 d w w s s

s s

¢¢¢ = ¢ -  + - - + +

+ + + + +

w w w w

f w w

+ -
- - - - 

+
- ¢ -

+



⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )

† † ( )( ) † ( )( )

( )

H a a b b g s ab ab

g a
R t

g s

e e h.c.

h.c.
2

e e h.c. , A22

R a R
t t

t

0
i 1 1 i 1 1

ac
i

ac
i

R L R L

R R L

where d w w¢ = - ¢R R c .
The g sac term in the above equation, resulting from the shifted part of the atom-cavity interaction term, is

somewhat problematic.We propose three possible strategies for dealingwith it:

• Actively cancel it using the control signal f¢( ( ) ( ))R t t, R produced by the signal generator. For this strategy we
need a highRabi frequency for the control signal, and a high sample rate for the signal generator.

• Passively cancel it using another harmonic signal on top of ( )R t , which also requires a highRabi frequency for
the canceling signal. Such a strong driving has been, e.g. used in [93].

• Include it in the simulation and optimization. To have afixedHdrift we need to set w w=R L. Since wL is not
that far from cavity resonance, thismayweaken the control system.

We choose the hopping interaction by driving the cavity with a red-detuned laser, with the laser-cavity
detuning w wD¢ = - ¢ = -WL c m. Dropping the counter-rotating ab interaction term, equation (A22) yields the
time-independent drift Hamiltonian

 d w w s s s= - ¢ + + - - + + ++ - +( ) ( ) ( ) ( ) ( )† † †H a a b b g s ab g ah.c. h.c. . A23R a Rdrift 0 0 ac

In our control scheme, the atom resonance frequency w w p= + ( )u t2a a0 detuning is split into a constant part and
a tunable part.

The remaining terms in equation (A22) constitute the time-dependent controlHamiltonian. The atomic

control signal is split intoX andY components f= ¢
p

( ) ( ( ))( )u t tcosR t
RatomX 2

and f= ¢
p

( ) ( ( ))( )u t tsinR t
RatomY 2

that

can be independently adjusted:

 ps s s s

ps s f s s f s s

ps s p s s p s s

= + +

= + ¢ + + ¢ - -

= + + + - -

f f
+ -

- ¢
+

¢
-

+ - + - + -

+ - + - + -

( ) ( ) ( ) [ ]

( ) ( ) [ ( )( ) ( )( )( )]

( ) ( ) ( ) ( ) ( )( ) ( )

H t u t
R t

u t
R t

u t u t u t

2
2

e e

2
2

cos sin i

2 i . A24

R R

control detuning
i i

detuning

detuning atomX atomY

R R

The 2π factors were introduced tomake the control fields u(t)normal frequencies. The dissipation processes are
described using the Lindblad operators k g g k s¢ ¢ -{ }†a b x b, , , a .
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