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Abstract

Cavity optomechanical systems are one of the leading experimental platforms for controlling
mechanical motion in the quantum regime. We exemplify that the control over cavity optomechanical
systems greatly increases by coupling the cavity also to a two-level system, thereby creating a hybrid
optomechanical system. If the two-level system can be driven largely independently of the cavity, we
show that the nonlinearity thus introduced enables us to steer the extended system to non-classical
target states of the mechanical oscillator with Wigner functions exhibiting significant negative regions.
Weillustrate how to use optimal control techniques beyond the linear regime to drive the hybrid
system from the near ground state into a Fock target state of the mechanical oscillator. We base our
numerical optimization on realistic experimental parameters for exemplifying how optimal control
enables the preparation of decidedly non-classical target states, where naive control schemes fail. Our
results thus pave the way for applying the toolbox of optimal control in hybrid optomechanical
systems for generating non-classical mechanical states.

1. Introduction

In view of quantum technologies (see, e.g. [1]), optimal control techniques provide an increasingly useful
toolbox to take quantum hardware to the limits of reaching target states with high fidelity, precision, sensitivity
and robustness—one prominent example being feedback stabilization of predefined photon-number states in a
box [2, 3]. Systematic strategies to unlock and exploit the hardware potential in experimental settings with the
help of optimal control methods can be found in a quantum control roadmap [4].

A recent physical system that has been added to the family of quantum hardware are mechanical resonators
[5-7]. Pioneering experiments realized cooling of mechanical motion to the quantum ground state by direct
cryogenic [8] or by laser-based cooling techniques [9, 10]. A current focus lies on generating non-classical
mechanical states, which are required to fully leverage mechanical resonators for applications in quantum
metrology [11, 12], as quantum transducers [13, 14] or for fundamental tests of quantum mechanics [15-17].
Along these lines, the control over excitations of single phonons has been demonstrated by coupling mechanical
motion to artificial atoms [8, 18] or to cavity light fields [19, 20].

Cavity optomechanical systems constitute a successful platform for quantum control of mechanical motion
[7]. Importantly, the optomechanical interaction is intrinsically nonlinear and, thus, would lend itself for
directly generating non-classical states of mechanical motion [15, 21, 22]. However, in real-world physical
realizations [9, 23], the single-photon strong coupling regime [24, 25] required for exploiting this nonlinearity
has not been achieved to date, with notable exceptions in cold atom optomechanics setups [26, 27]. Therefore, it
is common practice to boost the optomechanical interaction by a coherent drive at the cost of losing its intrinsic
nonlinear character. Non-classical mechanical states can nevertheless be generated when coupling an
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Figure 1. Overview of the hybrid optomechanical system analyzed. (a) We consider the interaction of a mechanical resonator
(represented by its annihilation operator b)witha cavity field (represented by its annihilation operator d), which is at the same time
coupled to an atom (represented by its lowering operator & ). Possible physical implementations of this conceptual model can be
realized in (b) an electromechanical circuit QED architecture (see [41, 42]) or (c) in an optomechanical cavity which simultaneously
traps anatom.

optomechanical system to other nonlinear systems [8, 28-30], by introducing the nonlinearity in the
measurement process [19, 31-33], by injecting non-classical states of light [19, 20, 24, 25, 34], or by coupling to
the squared mechanical position quadrature [35-38].

In the present work we focus on a hybrid optomechanical system for non-classical state generation. More
precisely, we choose a system consisting of a mechanical resonator that is parametrically and weakly coupled to a
cavity, which in turn is strongly coupled to a two-level system (see figure 1). Such a system has been analyzed
before in the context of strong atom-mechanics coupling [28], dissipative state engineering [29], tripartite
polaron dynamics [39], and optical bistability [40]. It finds direct relevance in present experimental
implementations [41, 42] and potential future implementations in nano-optic [9, 43] or ion-trap scenarios [44].

In our study, we first establish controllability of the optomechanical hybrid system in the absence of
dissipation processes. We then apply optimal control algorithms and suggest concrete controls in an
experimentally realistic setting for generating a non-classical state of mechanical motion. As an example, we
choose to focus on generating a single-phonon Fock state and use numerical optimization to find pulse
sequences for optimally generating such a state. In order to be close to realistic experimental settings, we adapt
parameters from the electromechanics implementation of [41] for illustrating the gain of optimal control over
established control techniques.

In many instances, quantum optimal control [45-49] provides both framework and algorithms to go beyond
conventional approaches. In cavity optomechanics, standard control techniques imply making use of
interactions in the linearized regime using cw-driving [50-56], multi-tone driving [57-59] or pulsed driving
[32,37, 60] for generating entangled states [61-63], squeezed states [64—66] or for performing state tomography
[67]. The leap that optimal control techniques offer is to accommodate the specifics of the system for finding
experimental protocols that can be run in a much shorter time frame or that achieve a higher fidelity in state
preparation. Optimal control may, thus, find control sequences that embrace limitations in the system’s
parameters, which otherwise may prevent generating desired target states. Indeed, optimal control schemes have
already been analyzed for optomechanical systems for enhancing cooling performance [68—70], for generating
optomechanical entanglement [71], or for squeezing [72]. A recent account on treating optomechanical systems
including feedback as linear control systems can be found in [56].

In the present work, we move to the framework of bilinear control systems [73] and cutting-edge algorithms
[74] to show how (by adding a two-level atom) this setting allows for generating a non-classical mechanical Fock
state in a parameter regime, where conventional steering methods fail. Our methodology can be extended for
optimal generation of mechanical Schrodinger cat states [22, 58] or cubic phase states [59], provided the
truncation of the Hilbert space required for our computational optimization can be extended to higher Fock
state numbers.
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Our paper is structured as follows: in section 2 we present the Hamiltonian of the hybrid optomechanical
system and derive a drift and control part, in section 3 we discuss the controllability of our system from a general
perspective, in section 4 we present the numerical algorithms our optimal control optimization is based on, in
section 5 we use optimal control based on realistic experimental parameters to generate a single-phonon Fock
state and finally, in section 6, we discuss the results and give an outlook on future work. The Appendix
summarizes a detailed derivation of the Hamiltonian of the hybrid optomechanical system treated here and it
lists the entire parameter setting.

2. Theoretical models: drift and control Hamiltonian
The optomechanical system of interest is described in the lab frame by the Hamiltonian

How /i = wed'a + Qb6 — g,ata(b + b))
+ E(t)cos(wit + ¢, (1))@ + a¥), (1

where 4 and b are the annihilation operators of the cavity and the oscillator, and the last term represents driving
of the optical cavity by alaser. The Q = 4 + &' quadrature of the cavity is defined as the direction of the driving,

The driving Rabi frequency is connected to the laser power Pand the cavity decayrate x by E = | ?—P .
wr

The system may be made more amenable to control by adding a strongly nonlinear element in the form of a
controllable two-level atom in the cavity with the Hamiltonian

Hyom/h = w,0:6- + g, (del% + h.c.)(61e'% + h.c.)
+ R(t)cos(wrt + ¢x())(6+ + h.c.). 2)

Above, the three terms represent the atom itself, the atom-cavity coupling, and a classical control signal
driving the atom, respectively. &, denote the atomic raising and lowering operators.

Dissipation processes to be taken into account are decay processes in the cavity and damping of the
mechanical oscillator. The former are described by the Lindblad operator V; = /& d. This assumes that the
effective temperature of the cavity surroundings is zero, which is a good approximation for most cavities. To
describe the damping in the mechanical oscillator we use the Lindblad operators V;, = \/7 band Vs = \Jy/xb’,
where 7' = v(7i + 1) is the effective decay rate, vy the base decay rate, i = x/(1 — x) the expected number of
oscillator phonons in the steady state,and x = e~ " the oscillator Boltzmann factor. Finally, we describe the
atomic decay by V; = /&, & with the atom decay rate #,. Combining all dissipation processes we end up with a
standard Markovian master equation

. 4
4 T Hon + Huom 0] + Z(\ZW; - Ly, p}), 3)
dt h P 2
where pis the density operator of the overall system.

To get a set of equations better prone for numerical simulation we simplify the described setup in a number

of steps (see appendix for detailed calculations):

1. We transform the cavity into a frame co-rotating with the laser by applying the unitary exp(itwy 474). This is
followed by a rotating wave approximation (RWA) to drop the counter-rotating terms.
2. Simultaneously, we transform the atom by exp(itwg &,.6-) and apply again the RWA.

3. Due to driving the cavity with a laser field, the cavity (without atom, and oscillator) ends up in a coherent
steady state |v). From a computational point of view it is useful to consider oscillations around | ) (and not
around the cavity vacuum), since this step allows more radical truncations of the physical Hilbert space.
Hence we apply a phase space shift to get new creation and annihilation operators a, a’, b, b" with

4 =e=9(a +sl), b=-elH+rl)

with appropriately chosen parameters 7, s, (, r; see appendix A.3 for exact values. The s shift, in particular,
will act as a multiplicative factor to g, in a new linear interaction term coupling the cavity and the oscillator.

4. The atomic operators &y are replaced by the phase-rotated versions oy with

op =€y, ¢=¢,+ ¢ +n— b
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5. If the average photon number is high, the nonlinear optomechanical interaction term can be linearized and
replaced by a hopping interaction.

6. At the end we drop another counter-rotating ab interaction term (i.e. another RWA), to make the system
completely time independent (apart from the control terms).

Finally, we end up with the following drift and control Hamiltonians:

Hysiee /i = (W] — wr)(@a + bb) + (wap — wr) oo

— gy (ab' + h.c) + g, (ao; + h.c), (4)
Heontrol () /Tt = Udetuning (1) 2040 + tatomx (1) 7 (04 + 0-)
+ atomy (1) (=) (04 — o), )
and with the modified Lindblad operators
Vi= VEa, Vo= 7'b, V3= yxb', Vi= Jrs0.. (6)

Now we can replace the Hamiltonian part of equation (3) by Ho: (#) := Hasie + Heontrol () and the V; by the

V;of equation (6) to get a new master equation

d  —i . e f 1ot

4" = T o, ol + 1) with T(p) =57 (VipVi = SV ). ™
Its time dependence is entirely wrapped up in the control functions u;(f) with j € {atomX, atomY, detuning}.
In principle one could also control the frequency w; = wy (t) and amplitude E = E(¢) of the laser drive (see, e.g.
[69]) thus leading to a modulation of the cavity-laser detuning A = A(¢) and the cavity-oscillator coupling
8,5 = §,5(t). For simplicity, in this work we keep the cavity laser drive constant in order to exploit the drive
continuously for three tasks: (i) cooling of the oscillator into its ground state, (ii) using the swap interaction
between cavity and oscillator and (iii) separating the interaction time scales between the atom-cavity and the
cavity-oscillator couplings. Yet, other parameter regimes or target states may require control of the external laser
drive, which we leave for future work.

In our case, the optimal control task now amounts to finding control amplitudes u;(¢) such that an
appropriately chosen initial state p, evolves after a time Tinto some best approximation to a given target state
pr of the mechanical oscillator (after tracing out cavity and atom). An obvious candidate for the initial state py is
the steady state the system evolves into if we only consider laser driving of the cavity. The steady state is
influenced by the presence of the atom and thus changes with the detuning of the atom. If the detuning is large,
Po s close to the ground state. Numerical calculations can be found in appendix A.4.

3. Controllability

Before analyzing an experimentally realistic scenario, let us sketch that asking for controllability of the hybrid
optomechanical system proposed is well-posed from a control theoretical point of view. To this end, we neglect
dissipation for the moment and solely look at the coherent evolution given by Hyyitt + Heontrol (£)-

It is well known that the extent of control over harmonic oscillator modes or light modes greatly increases by
coupling the modes to a controllable two-level atom, whereby the system actually becomes fully controllable [75-77].
For the Jaynes—Cummings model of one or several atoms coupled to an oscillator mode, some of us showed in [78]
that breaking the symmetry o, ® Nby controls on the atom leads to approximate full controllability (in the strong
operator topology). Here o, acts on the atom and N is the number operator of the oscillator.

Systematically extending similar lines, approximate controllability of the Jaynes—Cummings—Hubbard model (now
comprising an entire network of cavities each containing one mode and one two-level atom, where the interaction
between two cavities is given by a hopping term) is analyzed in detail in [79]. It is shown that any pure state of the overall
system can be prepared with arbitrarily small error starting from an arbitrary pure initial state by controlling the atoms
individually and the cavity—cavity interactions globally. Yet when looking at the mechanical oscillator as another cavity,
this result does not directly cover our case, because the oscillator in turn is not coupled to another controllable two-level
system. Moreover, the reasoning in [79] indicates that the given scenario is a minimal requirement for full
controllability. Hence, in our case this means one could not prepare any pure state of the overall system either.

Fortunately, the overall state of the system is not needed, since in the extended system suggested here, we are
interested in the partial state of the oscillator only, where the situation is much easier. Consider the atom-cavity
subsystem first. This part is well studied and known to be fully controllable [76-78, 80, 81] in the sense that one
can reach with arbitrary small error any pure state of atom and cavity from any initial state by using t,¢omx (t)
and uaiomy (t) only—with gequning (t) not needed except for speed-up.

4
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In contrast, cavity and oscillator alone just follow quasi-free dynamics, which is much more limited. Even when
allowing for control of the coupling strength, one is far from full controllability, since the time-evolution operator
would be confined to the Schrédinger representation of the metaplectic group [82]. However, with the Hamiltonian
components given in equations (4) and (5), it is easy to see that—in entire analogy to the classical phase space—the
states of cavity and oscillator become (approximately) flipped after a certain time. Hence a possible strategy to control
the overall system is: prepare a state of the cavity first and wait until it flips over to the oscillator. This indicates that one
can actually prepare any pure state of the oscillator from an arbitrary pure initial state.

In this idealized controllability assessment of our setup, note that atom-cavity coupling g, _is 10 times stronger
than the boosted cavity-oscillator coupling g, s thusleading to a separation of time scales. In simple cases this
allows to treat atom-cavity and cavity-oscillator system independently as described above. In other words, a simple
cavity state can be prepared before the swapping to the oscillator has effectively started. After this preparation
phase, the effects of the still present atom-cavity interaction can be continuously compensated by further control
pulses on the atom (such that the swapping can go on undisturbed). This approximation only breaks down if the
preparation of the cavity state takes so long that it gets compromised by the cavity-oscillator swap. In that case it
may be necessary to resort to controlling the parameter s in order to manipulate the cavity-oscillator coupling g,s.
Another limitation to the controllability assessment just outlined is dissipation. So both the numerical analysis and
the experiment have to address mixed states with the dissipation time limiting the overall control time.

The state-of-the-art of using optimal control with linear feedback for optomechanical systems has been
summarized in the recent comprehensive review by Hofer and Hammerer [56]. Note that the systems thus far
addressed do not use the interaction with an atom, but rather a feedback loop from homodyne detection on a
beam coupled out of the cavity. The information gathered is then used to drive the cavity with a linear feedback
Hamiltonian Hg, of the form

Hp/h = —(e()*a + e(t)a'),

where a, a' are annihilation and creation operators of the cavityand e (t) € C is the amplitude of the feedback
signal. From the point of view of Lie-algebraic systems and control theory, such systems come with limitations: since
all terms in the overall Hamiltonian are at most quadratic in creation and annihilation operators, Hamiltonians of
that form constitute a finite dimensional Lie algebra. Therefore, the manifold of time evolution operators thus
generated is also finite dimensional (no matter whether the terms are time dependent or not) and can thus be
described by finitely many parameters. A given initial state with Wigner function W, evolves following a classical
phase flow, i.e. the solution of the initial value problem for the classical system. The latter, however, is but a multi-
dimensional harmonic oscillator driven by a force which is constant in space. Hence, if W, has no negative parts, this
cannot change under such a form of time evolution. For instance, if W, is Gaussian, it stays Gaussian all the time.
Adding an atom interacting with the cavity as used in our context is meant to overcome exactly these
limitations. One may look at it as adding a third oscillator which only interacts via its two lowest levels with the
rest of the system. The corresponding interaction term cannot be written as a quadratic polynomial in creation
and annihilation operators of the now three-dimensional oscillator system. Therefore it breaks the covariance of
the canonical commutation relations given in terms of the metaplectic representation, and the reasoning from
the previous paragraph does not apply. Therefore, adding a two-level atom allows for preparing any state of the
harmonic oscillator subsystem from any initial state.—The remaining question of how severe the restrictions
imposed by a realistic dissipative system are, and up to which degree the theoretical possibilities can actually be
exploited by pulse sequences shall be explored in the sequel by some examples using numerical optimal control.

4. Numerical algorithms

In view of going beyond Gaussian states, the extended hybrid optomechanical setting lends itself to be treated as
a bilinear control system [73] with states X(¢) following

X(t) =|A+ > uj(t)B; |X(t) with X(0) = X,. (8)
j

Its form is determined by a non-switchable drift term A, while the control is brought about by (typically piecewise
constant) control amplitudes u;(t) € R governing the time dependence of the otherwise constant control
operators B;. The connection to the Lindblad master equation (7) above is given by the identifications”

4 Here, I:Idnﬂ, ﬁconm and f‘ are linear ‘superoperators’ acting on the state p(1). For numerics, a convenient concrete representation takes P
as the column vector vec(p) stacklng all columns of the matrix p. With the conventions of [83, chp 4], Hamiltonian commutator
superoperator components H are obtained as H =(l®H; - HT ® 1), and the Lindbladian dissipator as " := S Vi ® Vi —

(Jl ® (Vk Vi) + (Vk Vi) ® Jl) The Lindblad master equatlon 7) can then readily be read and treated as vector differential equation
ofthe type vec(p) = (7 1A+ F)vec(p)
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p(t) = X (1), )
[ — iAgin/h= A (equations (4)and (6)), (10)
*iﬁcontrol(t)/ﬁ = Z uj(t)B; (equation (5)). (11)

J

Given this equation of motion, the optimal control task then amounts to minimizing the Euclidean distance
between the (possibly mixed) target state p-on the one hand and the final state p(T) of the system on the other hand.
Typically p(T) results after 1 steps of time propagation in slots of piecewise constant quantum maps E (with
T =ty — f_fork = 2, ..., nasuniform width of time intervals) propagating the state p(0) according to equation (7)

p(T) = E,oF, i0...0F0...0F p(0), where (12)
Boe= e owith fre=T — i w0 A, (13)
j

Likewise, the distance between the truncations to the sublevels of interest t1z(p;) and trz(p(T)) may be taken, or

alternatively, a Lagrange-type penalty term may be added to the cost functionals discussed in the outlook.
Explicitly allowing for changing purity and mixed target states requires some generalization of the standard

task (with constant purity) discussed in [74]. To this end, we extract from the (squared) Euclidean distance (in

terms of the Frobenius norm ||A||r = Jtr{ATA})
D= llpy — p(DIlz = llprlli + lp(DIl — 2Retr{p}.p(1)) (14)
those terms depending on time (and therefore on the controls) and rescale to arrive at the cost functional

e =1 lp(D)lp — Retr{p}.p(T)}. (15)

Taking the derivative with respect to the control amplitude u;in the kth time slot then gives

Oe .0 0

— R T)! Y - R i T 6
e etr{ﬂ( )8uj(tk)p( )} etr{ﬂr 8uj(tk)p( )} (16)
—Retrd (p(T) — p, ) T 17
e r{(p( ) — pr) 6u}_(tk)p( )} (17)

_ O f OF; f 2
=Retry (p(T) — pr) Fiok,—r0...0F 410 oF¢_0...0F p(0) (18)

auj(tk)

where the difference (p(T) — p; ) instead of just (— p; )" now takes care of the purity change. In the unital case,
the derivative of the propagating quantum map F would make use of £ being normal (so in slight abuse of
language it has orthogonal eigenvectors | \{*)) associated to the real eigenvalues A{¥)) to take the form described
in[84, 85]and used in [74]
S A
oF, — ()\(uk) iH; /\ik)> T e for )\(ak) = )\g‘)

= . (19)
Ouj(t) | = (APHAAP)

k) (k)
ef*a _ eT/\b

*) k)’
Y for A7 = A,

In the general (non-normal) case mostly encountered here we have to resort to finite differences according to

813k e’ (L (uj(t)—i6H) _ eTi (1))

o~ , 20
8uj (t) 6 (20)
where § has to be sufficiently small in thesense § < 1/||7 F|. Given OF; , steepest-descent of the cost
u; (2
functional with the controls would follow a recursion in r reading
e
(r+1) — 0
uj () = u () + o 21
! ! Ou;j(ty)
with o, as step size, while the standard Newton update would take the form
[ D (1)) = [u® (1)) + M, | grad e (1)) (22)

with , ' denoting the inverse Hessian in the rth iteration. For convenience the array of piecewise constant
control amplitudes {u](r)(tk)| j = 1,2,..., m}isconcatenated to the control vector |1 (#)) for each time
slot{t; | k =1, 2, ..., n},while| grad 5(’)> is the corresponding gradient vector. In this work we use the BFGS
quasi-Newton algorithm [86] to approximate the inverse Hessian as explained in [74].
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Figure 2. Result of the Fock state | 1) optimization using Set 1 parameters. We can see that the states |2) and |3) are only slightly excited
due to the penalty functional applied during the optimization. (a) oscillator population, (b) cavity population, (c) Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.

5. Results by optimal control

The numerical optimization results presented in this section are for two variants of the circuit cavity
electromechanical system described in [41]. It consists of a mechanical oscillator coupled to a microwave cavity.
The cavity mode is further coupled to a superconducting qubit (‘atom’). In the original implementation the
atom-cavity coupling is fairly strong, g /(27) = 12.5 MHz, but the cavity-oscillator coupling is much weaker,
8,/(2m) = 300 Hz. In all of our simulations we have artificially boosted the single-photon optomechanical
coupling strength g, by one order of magnitude, which together with the boost s resulting from coherent driving
of the cavity brings the optomechanical system in the required strong-coupling regime”.
The two parameter sets we use are

+ Set 1: Coupling enhancement factor s = 100, g,/(27) is boosted by a factor of 40 to 12 kHz, cavity decay rate

k/(2m) = 1 MHz and the device is operated at a temperature of 25 mK.

+ Set 2: Coupling enhancement factor s = 120, g,/(27) is boosted by a factor of 10 to 3 kHz, cavity decay rate
k/(2m) = 0.2 MHz and the device is operated at a temperature of 10 mK. Compared to Set 1, we have
assumed an optical cavity with a smaller linewidth, which allowed us to reduce the boost of the
optomechanical coupling strength®. We have also assumed a dilution fridge operating at 10 mK.

Note that one could in principle boost sinstead of g, to reach the required strong coupling regime s - g, > &, y between the mechanical
oscillator and the cavity. However, boosting s also increases the interaction of the atom with the cavity, which complicates the control
scheme as discussed in appendix A.5.

© Ifthe g, coupling strength we propose turns out to be experimentally infeasible, our results indicate that the loss in controllability due toa
lower g, can be compensated by further decreasing . We are confident that one could reach a regime experimentally where g, is mildly
increased beyond the value reported in [41], e.g. by reducing the gap between the plates of the capacitor, and at the same time the optical
quality factor x of the microwave cavity is improved, e.g. by using a three-dimensional implementation [87].

7
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Figure 3. Result of the Fock state | 1) optimization using Set 2 parameters. Note that the states |2) and |3) are only slightly excited due
to the penalty functional applied during the optimization. (a) Oscillator population, (b) cavity population, (c) Wigner function of the
oscillator at the end of the sequence, (d) optimized control sequence.

Table 1. Summary of Fock state optimization results. The target state [¢)7) = |1) isa Fock state of the
mechanical oscillator. dim denotes the truncation dimension of the Hilbert spaces of the cavity and the oscillator
used in the simulation. The fidelity between a mixed final state p and a pure target state |17) is

E(p, |¥r) (Yr]) = (¢r|plpr), which in this case is equal to the state | 1) population of the oscillator. As measure
of the negativity of the Wigner function W, () quantifying the non-classicality of the state p, we follow [88] and
use the so-called CV-mana M (p) = logf da [W,(a)].

Parameter set Sequence type Dim Fidelity F Wigner negativity M Figure
Set 1 Optimal control 3 0.569 9 0.0157
0.568 7 0.0155 2
m-pulse 3 0.503 0 0
0.502 8 0 4
Set 2 Optimal control 3 0.602 1 0.0319
0.596 1 0.030 3 3
m-pulse 3 0.523 0 0.000 7
0.5230 0.000 7 5

A full list of parameters is found in the appendix in table A1, along with related parameter ratios in table A2. In the
following, we shortly discuss parameter ratios that are relevant for achieving quantum control as commonly known
from optomechanical or cavity QED setups. We require the optomechanical system to be sideband-resolved, i.e.
Q,,/k > 1. This facilitates efficient state swap of the cavity state to the mechanical oscillator by selecting the beam-
splitter (hopping) interaction from the optomechanical interaction Hamiltonian and at the same time suppressing
the undesired two-mode squeezing part of the Hamiltonian. We need the optomechanical cooperativity to be larger

|g05|2
Ky

than unity (

> 1), which allows the mechanical oscillator to be laser-cooled close to the quantum ground state,
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Figure 4. Set 1, excitation transfer using optimized 7 pulses. (a) Oscillator population, (b) cavity population, (c) Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.

the initial state of our system. We need to be in the strong coupling regime, both for the cavity-oscillator part

( LS 1) as well as for the atom-cavity part (L > 1). The former facilitates coherent swapping of the

max(k, ) max(k, Kg)
state of the cavity to the oscillator, and the latter from the atom to the cavity. All these conditions are fulfilled for all
chosen parameter sets.

The system is controlled by driving the atomic transition harmonically (the atomX and atomY controls), and
by adjusting the atomic resonance frequency wj,, which changes the detuning w, — wg of the atom from the
driving signal (the detuning control). The frequency wy of the driving signal is 27t - 500 MHz below the shifted
cavity resonance frequency w!, which allows us to draw a clear separation between the atom being resonant with
the drive, or with the cavity, or neither.

At the beginning of the optimization each control field in the sequence is initialized to a random value. The
control sequence is first optimized for a short computational time (about 300 s) without dissipation to quickly
obtain a reasonable starting sequence, and then for alonger computational time (several hours) with the
computationally heavier dissipation processes included. Due to many local minima (typical of open-system
optimization), generically one has to repeat the optimization with random initial sequences dozens of times to
obtain sufficiently good results.

We simulate the harmonic oscillator modes by truncating the infinite-dimensional Fock space into a finite-
dimensional one. To make sure our control sequences remain valid in the untruncated case, we apply a penalty
functional on the population of the highest Fock state included in the simulation (currently |2)) during the
optimization, thus obtaining control sequences which avoid exciting the higher-lying states. To verify the
results, we finally simulate the optimized control sequence using a higher truncation dimension (4 instead of 3).
The evolution does not change significantly for any of our sequences thus justifying our optimization method.

5.1. Fock state optimization

Here our optimization task is, starting from the steady state of the system, to create the Fock state |1) in the
oscillator, without exciting the states |2) and up in either the cavity or the oscillator. Note that the task cannot be
accomplished exactly due to dissipation.
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Figure 5. Set 2, excitation transfer using optimized 7 pulses. (a) Oscillator population, (b) cavity population, (c) Wigner function of
the oscillator at the end of the sequence, (d) optimized control sequence.

We quantify the non-classicality of the resulting oscillator state using the CV-mana [88], an easily
computable monotone, as the measure of Wigner negativity. It is defined as the logarithm of the integral of the
absolute value of the Wigner function, M (p) = log f da |W, () ]. It has the value zero for all classical states
(i.e. states with nonnegative Wigner functions). For the exact target state | 1) we obtain M (|1)) & 0.355. The
purpose of the non-classicality measure, given a measurement procedure with a specific level of uncertainty, is to
say whether the measurement results expected in our state could have been produced by a classical state instead.

The results of the Fock state optimization are presented in figures 2 and 3, and summarized in table 1. We
notice that with both parameter sets we are able to obtain a clearly non-classical state (with the | 1) population
significantly higher than the |0) population and the CV-mana noticeably larger than zero), while keeping the
excitation of the higher-lying states in both the cavity and the oscillator to a minimum. As expected, Set 2 yields
aslightly better result. In both regimes, mere 7 pulses leave the system in a classical state or indistinguishably
close to one, while optimal-control derived sequences attain significantly non-classical states with fidelities being
limited mostly by dissipation.

5.1.1. Comparison to T pulse sequences

We may compare the optimized control sequences preparing the | 1) Fock state in the oscillator to a naive
excitation transfer control sequence consisting of just 7 pulses (or their drift Hamiltonian analogs). The
sequence consists of three segments. The first pulse excites the atom, the second moves the atom in resonance
with the cavity until the excitation is transferred there, and the final segment moves the atom back out of
resonance and waits until the excitation has hopped from the cavity into the oscillator. Since there are several
simultaneously active interaction terms as well as dissipation, this somewhat naive sequence does not perform
very well.

We may improve on it by optimizing the durations of each of the three pulses such that the population
transfer during each step is maximized. The optimized 7-pulse sequences are presented in figures 4 and 5, and
their performance is summarized in table 1. Unlike the fully optimized sequences, the 7 pulses facilitate
observing the timescales of various interaction processes. For example, in figure 4(b) the population of the | 1)
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Figure 6. Result of the cavity-oscillator entangled state (|01) + [10))/+/2 optimization using Set 2 parameters. The states |2) and |3)
are only slightly excited due to the penalty functional applied during the optimization. (a) oscillator population, (b) cavity population,
(c) logarithmic negativity of the cavity-oscillator state, (d) optimized control sequence.

Table 2. Summary of entangled-state optimization results. The target state |¢)7) = (]01) + |10))/+/2 entangles the
cavity and the mechanical oscillator. dim denotes the truncation dimension of the Hilbert spaces of the cavity and
the oscillator used in the simulation. The entanglement between the two bosonic modes is quantified using the
logarithmic negativity L(p) = log, || p"" |-

Parameter set Sequence type Dim Fidelity F Log-negativity L Figure
Set 2 Optimal control 3 0.6451 0.4643
4 0.6450 0.4680 6

state of the cavity first go up from zero to 0.84 on the timescale 7 = 277/(4g) of the atom-cavity
interaction g _/(2m) = 12.5 MHz, and fall back to zero roughly on the timescale of the boosted cavity-
oscillator interaction g,s/(2m) = 1.2 MHz, expedited by dissipation.

With the Set 1 parameters the m-pulse sequence fails to produce a substantially non-classical state, as can be
seen from the Wigner function which has a barely visible negative region in the middle. With the Set 2
parameters the 7 pulses fare a little better, but remain inferior to the fully optimized control sequence, as shown
intable 1.

5.2. Entangled state optimization

Here we aim for a different target state, namely the entangled cavity-oscillator state (|01) + |10)) /~/2. Again,
dissipation prevents us from achieving this exact state. We quantify the entanglement between the optical and
the mechanical mode using the logarithmic negativity of the reduced cavity-oscillator state. The logarithmic
negativity of a bipartite state pisdefinedas L(p) = log, || p"T|lx = log,(3;si), wheres; are the singular values of
the partial transpose of p. The logarithmic negativity is zero for all positive partial transpose (PPT) states (which
include all separable states), and has the value 1 for the exact target state.

11
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The results of the entangled state optimization are presented in figure 6, and summarized in table 2. With the
Set 2 parameters we are able to obtain a decidedly non-classical entangled optomechanical state with minimal
excitation of the higher-lying Fock states.

6. Conclusions and outlook

In the present work we have shown how adding a steerable atom on top of a cavity coupled to a mechanical
oscillator paves the way to (approximate) full controllability on the oscillator side. The system thus extended
allows for preparing any state of the harmonic oscillator subsystem from any initial state (within the limits
imposed by dissipation). More precisely, the extension overcomes the limitations of previous designs confined
to a cavity coupled to an oscillator (without interaction to an atom), where linear feedback from homodyne
detection came with the inevitable confinement to interconverting within equivalence classes of Gaussian
oscillator states or more generally of states with constant Wigner negativity. It is only by adding an interacting
atom that the way is paved to controlled dynamics including interconversion between different equivalence
classes of oscillator states.

For illustration, we focused on generating the mechanical Fock state |1), and the optomechanical entangled
state (|01) + |10))/~/2, truncating the control state space at dimension d = 3. However, higher truncations at
d = 5 or larger are imaginable. A larger control state space would allow studying the generation of further non-
classical states of interest, such as mechanical Schrodinger cat states [22, 58] or higher NOON states [89],
relevant for studying macroscopic non-classicality [15], or cubic phase states [59, 90], relevant for Gaussian
quantum computation [59].

Another aspect, where optimal control may be important, is to account for the multimode character of the
mechanical oscillator [91, 92]. In particular, when using pulsed control schemes, multiple mechanical modes
lying in the finite bandwidth of the pulsed optical drive will be addressed simultaneously. This might lead to
undesired optomechanical correlations, which could readily be treated by including Lagrange-type penalties
into the target function subject to optimal control.

Optimal control techniques giving non-classical mechanical states are thus anticipated to find future
application, e.g. in nano-optic [9, 43], ion-trap [44] or circuit QED implementations [41, 42] of hybrid quantum
optomechanical systems.
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Appendix. Deriving the optomechanical Hamiltonian

A.1.Introduction

The simplest realization of an optomechanical system is a single-mode Fabry—Pérot cavity with one mirror
semitransparent for coupling to the outside world, and the other mirror attached to a sufficiently harmonic
mechanical oscillator [7]. The optical cavity is driven through the semitransparent mirror using laser(s). There
are also other systems that follow similar dynamics, e.g. quantum electromechanical circuits, and the discussion
below applies to them as well.

Let us assume that there is just a single cavity mode and a single oscillator mode that are relevant. We denote
the annihilation operators of the cavity and the oscillator by 4 and b,and the corresponding dimensionless
position and momentum by (Q, P)and (4, p), respectively.” Let the zero-point motion of the mechanical
oscillator have the standard deviation x = u4/(0|42|0) . The resonance frequency of the optical cavity w,
depends on its length, which is modulated by the position of the mechanical oscillator, given by

X =x04 = xo(l; + IST). Linearizing, we obtain

" Weuse uguy/h = 7 ! where ugand u, are the un1ts of the position and momentum quadratures, i.e. the dimensionless posmon and
momentum operators ofthe cav1tyare Q=4+ a"and P = —i(a — a"), and those of the oscillator are q= b+ b and p= 71(b N ).
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we®) ~ we — GE = we — Gxo(b + b)) = w, — g, (b + b). (A1)
In the lab frame the optomechanical system is thus described by the Hamiltonian
Hom/h = wedta + Q0" — ga'a(h + b) + E(t)cos(wyt + ¢, (1)(@ + a), (A2)

where the last term represents driving of the optical cavity by a laser. The Q quadrature of the cavity is defined as
the direction of the driving. The driving Rabi frequency is connected to the laser power Pby E = | %P .
The system may be made more controllable by adding a controllable two-level atom in the cavity, with the

Hamiltonian
Hyom/h = w,6,6- + g, (de' + h.c.)(6ye'% + h.c.) + R(t)cos(wrt + ¢p(1)) (61 + h.c.). (A3)

Above, the three terms represent the atom itself, the atom-cavity coupling, and a classical control signal driving
the atom, respectively. The driving defines the atomic X direction, and we (for now) introduce the arbitrary
phases ¢.and ¢, to keep the atom-cavity interaction term as generic as possible.

The dissipation processes in the cavity are described by the Lindblad operator </« d. This assumes that the
effective temperature of the cavity surroundings is zero, which is an excellent approximation for microwave
cavities cooled to ultra-low temperatures or for optical cavities operating at room temperature. Likewise, the
atomic decay is described by the Lindblad operator /%, &_. For the mechanical oscillator, due to its lower

resonance frequency, we need both the annihilation and creation Lindblad operators { \/7 b , AV b T}, where
~' = v(@ + 1) is the effective decay rate, 7 = x/(1 — x) is the expected number of oscillator phonons in the

steady state given by the Bose—Einstein distribution function, and x = e~ " is the oscillator Boltzmann factor
fulfilling 0 < x < 1.

The summary of the symbols used can be found in table A1 along with the numerical values used in the
simulations.

A.2.Moving into a rotating frame
To fix the terms driving the atom and the cavity we transform into a frame co-rotating with their frequencies,
Hy/h = wpd'd + wr6,6, obtaining

HJh = (e — wp)d'a + Qub'b — goatah + b7 + E(aeis 4+ eiGaron) 4 b)), (A4)
—A 2

where A is the detuning between the laser and the cavity, and

Hlom/h = (wa — wr) 16 + g, (el 4% 4 h.c.)(6,e/@rt %) + h.c.)
+ R(t)cos(wrt + ¢p(1))(61e“r + h.c.)
= (w,; — wWRp) 0 + e (ﬁa-_‘_ei((wR*WL)er(ﬁﬁL%) + ﬁ'l'a—+ei((wL+WR)f*¢[+¢a) + h.c)
R(t ) . ‘
+ —; ) (b, (e + e@r160) 1 hc). (AS)

We may then perform a RWA and drop all three counter-rotating terms (and their hermitian conjugates).

The Lindblad operators in the rotating frame acquire a rotating complex phase factor which has no effect on
the dynamics since it cancels out.

A.3. Shifting and rotating the cavity and oscillator states
Ignoring the oscillator for the moment (setting g, = 0), with constant laser driving a pure coherent steady
state |«) forms in the cavity, where

e 0LE/2

o= — (A6)
A+ ik/2

If the average photon number (4'd) = |a|? of the optical cavity is high enough, the nonlinear interaction
term is ‘linearized’; we may introduce shifted and rotated versions 4, b of the annihilation and creation
operators, describing oscillations around the steady state:

a = el (g + sl),
b=eb + rl), (A7)
where 7, are rotation angles and s, r are complex shifts in the harmonic oscillator phase space, all of them

unspecified for now. Moreover, we introduce the hatless position and momentum operators (Q, P) and (¢, p)
based on a, b. This yields
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Table A1. Summary of used symbols and system parameters.
Symbol Meaning Set 1 Set 2
o Transformed atom annihilation operator
a Transformed cavity annihilation operator
b Transformed oscillator annihilation operator
s Cavity shift (boosts the linearized g, coupling) 100 120
Re(r) Oscillator shift, real part 7.5 2.7
Im(r) Oscillator shift, imaginary part 3.6 1.3 1073
Wy Atom resonance frequency 2 9-13.5 GHz
W, Cavity resonance frequency 2m- 10.188 GHz
Qun Oscillator resonance frequency 2m 15.9 MHz
Lac Atom-cavity coupling 2 12.5 MHz
£ Cavity-oscillator coupling 27 12 3 kHz
&S Boosted atom-cavity coupling 27 1.25 1.50 GHz
S Boosted cavity-oscillator coupling 27 1.2 0.36 MHz
Kq Atom decay rate 27 1 MH:z
K Cavity decay rate 27 1 0.2 MHz
Oscillator decay rate 27 150 Hz
wr, Cavity-driving laser frequency
E Cavity-driving laser amplitude 2m- 3.18 3.82 GHz
¢ (1) Cavity-driving laser phase
wR Atom controlfrequency
Rt 3 % Atom control amplitude 27 32 38 MHz
(D) Atom control phase
—2g, Re(r) Cavity resonance frequency shift 2m- —0.18 —0.016 MHz
Wi = w — 2g, Re(r) Shifted cavity resonance frequency 27 10.188 GHz
A=uw —w Laser detuning
A =wp — wl Shifted laser detuning —Q
8 = wy — Wl Shifted atom detuning
8= wp — Wl Shifted atomic control detuning
T . temperature 25 10 mK
e i Atom Boltzmann factor ~3-1078 ~6 - 1072
Tiwe
e kT Cavity Boltzmann factor 3.2-107 5.8 - 1072
1
X=e ir Oscillator Boltzmann factor 0.97 0.93
i=x/(1—x) Expected number of oscillator phonons 32.3 12.6
vy =@+ 1) Effective oscillator decay rate 2 5.0 2.0 kHz
Table A2. Important parameter ratios for the hybrid optomechanical system. Both parameter sets place us
in the high-cooperativity, strong-coupling, resolved-sideband regime.
Measure Definition Set 1 Set 2
Sideband resolution L 15.9 79.5
K
2
Cavity-oscillator cooperativity 1803 298 343
Kyl
Cavity-oscillator coupling-dissipation ratio 1891 1.2 1.8
max(k, )
2
Atom-cavity cooperativity 8ac 156 781
K Kq
Atom-cavity coupling-dissipation ratio S 12.5 12.5
max(k, K,)
ata = afa + Re(s)Q + Im(s)P + |31,
A /\-‘— . .
b+ b =cos({)q — sin({)p + 2Re(eir)1,
del’t + h.c. = cos(n)Q — sin(n)P + 2Re(e's)L (A8)

The cavity Lindblad operator </ d is equivalent to /< a combined with the extra Hamiltonian term

Hiind, cavity /1 = gi(s*a — sa) = g(—Re(s)P + Im(5)Q),

(A9)
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and the oscillator Lindblad operators to { \/7 b, /v'x b'} plus the extra Hamiltonian term
! !/
Hiing, ose/h = (1 = 025" = 1) = (1= ) T-(~Re(r)p + Im(r)q). (A10)

Now the optomechanical Hamiltonian, expressed in terms of the transformed operators and including the
Lindblad-induced terms above, is

Hé/m /h = (Hém + HLind, cavity + HLind, osc)/h
= (~A — gy(cos(O)q — sin(Q)p + 2Re(er))(ata + Re(s)Q + Im(9)P + [s1)
+ Q,,(b'b + Re(r)q + Im(r)p) + g(cos(n)Q — sin(n)P)

n g(—Re@P +Im(s)Q) + (1 — x)%(—Re(r)p + Im(r)g), (A11)

where we immediately dropped any terms that are mere multiples of identity. Next, the unwanted interaction
cross-terms Pg, Qp and Pp are eliminated by choosing sin({) = Im(s) = 0. Thussisreal,and { = 0since
¢ = mwould be just an uninteresting g, p inversion. We obtain

Hy,/h=—Nala + Q,b'b — g,sQq — g,a'aq

o E E. Nk
+ Q(—A's + 5 cos(n)) + P( 5 sin(n) 5 s)
+ q(—glsP? + QuRe(r) + (1 — x)%lm(r))

+ p(QpIm(r) — (1 — x)%/Re(r)) (A12)

where the shifted detuning A’ := A + 2g, Re(r) = w — w’, and the shifted cavity frequency

w = w, — 2g, Re(r). We can see that the shift sacts as an enhancement factor on the linear cavity-oscillator
interaction term —g;sQq. The remaining linear terms can be eliminated by fixing the remaining free parameters
7, s, rsuch that

gcos(n) = (A + 2g,Re(r))s
E . K
E sin(n) = 55
,y/
25*=QuRe(r) + (1 — x); Im(r)

Q,Im(r)=>1 — x)%/ Re(r) (A13)

or

1 — 2 1\2
{55 e

2 2
(g) = ((A + 2g,Re(r)* + (%) ]52. (A14)

This yields a cubic equation for Re(r). If we approximate v/ < (Q,, (given in nearly all cavity optomechanics
2
realizations), the oscillator shiftis r = 3;‘;—5. If we instead assume the coupling enhancement factor s > 0 given

and treat the driving laser amplitude E asa free parameter, we may easily solve rand A’, and then Eand 7. This
way we obtain s = |a/|and 7 = arg(a) for the transformed coherent state parameter (see equation (A6))

o = E—/z (A15)
Al +ik/2
We thus end up with the relatively simple Hamiltonian (plus the counter-rotating term)
Hl./h=—Ada'a+ Q,b'b — g5 Qq — ga’aq + g(ae‘i(zwit“‘bf’” + h.c). (A16)

Next, we perform the same operator substitutions to the atomic Hamiltonian, again expressing 4 and bin
terms of the hatless versions using equations (A7), together with the further substitutions
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Table A3. Significance estimates for various Hamiltonian terms. The driving laser co-rotating term is
shown for comparison. All the terms in the lower part of the table are discarded in rotating wave

approximations.
Term Significance Set 1 Set 2
Driving laser, co-rotating % 99 120
Driving laser, counter-rotating ﬁ 0.078 0.094
Atomic control, counter-rotating m 0.000 82 0.000 98
g,» nonlinear part o 0.000 75 0.000 19
£,5> two-mode squeezing “Zgg,l‘ 0.038 0.011
g,.> counter-rotating W 0.000 63 0.000 63
£,.5> counter-rotating m 0.063 0.076
¢:¢a+¢c+n_¢L)
oy = ei</)a'+,
/
Pp() = Pr() + ¢, (A17)
yielding
H' h = (s — wp) R(1) —ig! iQurt+dp—20)) 4 |
atom/ 0 = (Wg R) 040 + —2 (o(e7r 4 ¢ R + h.c.)

+ 8ac ((a + 5}1)0’+ei(wR_WL)t + ((ﬂ' + 5}1)0-+ei((u.1]_+0.«'}2)f—2¢+2¢”) + hC)
= a — iwr— i ‘ —2¢ ‘“ .C.
(w wR)O'+O' + gac(a0.+el(w wp)t + aT0-+el((w‘]_+uJR)t 20+2¢,) +h C)

+ I:(?(e@; + ei(2W1€t+¢;372@)) + gacs(ei(w‘R*WL)t + ei((wL+w1<)t72¢>+2@u)))0+ + hc:| (A18)

Since the new hatless atomic raising and lowering operators are simply phase-rotated versions of the originals,
no extra Hamiltonian terms are induced by the Lindblad dissipator.

The phases ¢r, ¢, and ¢, were absorbed into the transformed operators and the control phase qbgz, and only
remain in the counter-rotating terms (which we approximate away as they perturb the dynamics only slightly).
The nonlinear term —g a‘aq in Hy, is also typically very weak and can be ignored in our weak coupling
scenario, i.e. g, < (k, €2,,). In table A3 we show significance estimates for all the discarded terms.

The dynamics (in the rotating frame) given by H.», + H_,,.,, together with the Lindblad dissipator
D{JV~ka, \/717, \/%lf} are equivalent to Hém + H;tom together with D {/K 4, \/75, \/%lﬁ}, but
expressed in terms of the new, rotated and shifted operators a and b, which fulfill the original bosonic
commutation relations. In terms of the eigenstates of the transformed number operator a'a, if g, = 0 the cavity
steady state is |0), and with realistic enhanced coupling strengths it remains close to |0). We have

(@) = (0] al0) = el=2)(0|(a + s1)|0) = el1=%)s = e~1%q/, (A19)

The operator shift (A7) thus enables us to truncate the computational Hilbert space much more heavily,
even when |s|is large. From now on we always use the shifted-and-rotated operators and their eigenstates.

A.4. Steady state
The full system Hamiltonian, after dropping the counter-rotating terms in equations (A16) and (A18),1s

H"/h = (H}y + Hjjow) /B = (Wl — wp)ala + Qub'b + (w, — wp)oro- — gys Qq — ga’aq

+ gac(a@ei(”"*“’")t + h.c) + [(?eiok + gac.s‘ei(w:tw:,)t)mL + h.C.:|. (A20)

Depending on whether we want a two-mode squeezing or a hopping interaction, we choose the laser-cavity
detuning A’ = w; — Wl = £Q,,.
In the absence of atomic control, R(#) = 0, wg isan arbitrary constant, and we may choose wr = wy to obtain
H"/h=-Aa'a + Q,b'b + (w, — wp)oro. — g5 Qq — g,a'aq
+ g, .(aoy + h.c) + g, s(op + h.c). (A21)
The presence of the atom modifies the steady state into which the system evolves during an initial period of laser
driving of the cavity. The strong g, s (o + h.c.) term makes the steady state impure, unless the atom is far

detuned from the cavity in which case the system ends up close to the ground state (of the transformed
operators), as the oscillator is cooled by the hopping interaction with the cavity. With this assumption, with
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Set 1 parameters we obtain a steady state with the cavity populations pg = 0.9922, p; = 0.0078 and the
oscillator populations p, = 0.9912, p; = 0.0087.

At the start of the control sequence, t = 0, we transform the steady state to the simulation frame. Since the
frames coincide at this point, this does nothing to the state.

A.5. Control system

If wg = wg, in order to obtain a constant drift Hamiltonian, we need one more rotating frame transformation to
stop the rotation of the atom-cavity interaction term while keeping either the two-mode squeezing or the
hopping interaction term fixed. This is accomplished using the generator

Hy/h = (wg — wr)a’a F (wg — wp)b'b (in terms of the transformed operators), which yields

H"/h = 6x(—a'a £ b'b) + (w, — wr)oy0 — g,s (abe Wr—wDUFD! 4 ghfe-ilr—wn)(ED! 4 | )

+&Jw;+hay+ﬂgg%h%+&eﬂw“M}u+hL} (A22)

where 6% = wg — wl.
The g, s term in the above equation, resulting from the shifted part of the atom-cavity interaction term, is
somewhat problematic. We propose three possible strategies for dealing with it:

* Actively cancel it using the control signal (R(t), ¢, (t)) produced by the signal generator. For this strategy we
need a high Rabi frequency for the control signal, and a high sample rate for the signal generator.

+ Passively cancel it using another harmonic signal on top of R (t), which also requires a high Rabi frequency for
the canceling signal. Such a strong driving has been, e.g. used in [93].

+ Includeitin the simulation and optimization. To have a fixed Hy,iz we need to set wg = wy. Since wy is not
that far from cavity resonance, this may weaken the control system.

We choose the hopping interaction by driving the cavity with a red-detuned laser, with the laser-cavity
detuning A’ = w; — w! = —Q,,,. Dropping the counter-rotating ab interaction term, equation (A22) yields the
time-independent drift Hamiltonian

Hyi/h = —6g(a’a + b'b) + (wap — wr)oro- — gys (ab’ + h.c.) + g, (aoy + h.c.). (A23)

In our control scheme, the atom resonance frequency w, = wag + 2TUgetuning (t) is split into a constant part and
atunable part.

The remaining terms in equation (A22) constitute the time-dependent control Hamiltonian. The atomic
B cos(dfy (1)) and taomy (1) = 52 sin(d (¢)) that

control signal is split into X and Y components iomx (1) = > >

can be independently adjusted:

Hcontrol(t)/h = udetuning(t) 2noio- + %[eiiqﬁkolr + eilf)ka;]
_ R(1) / VI
= Udetuning (¢) 2moR.0- + T[COS(¢R)(U+ + 00) + sin(¢p) (=D (o} — 02)]
= udetuning(t) 27T0+07 + uatomX(t) 7T(0'+ + 07) + uatomY(t) 71—(_i)(UJr - OL)- (A24)

The 27 factors were introduced to make the control fields () normal frequencies. The dissipation processes are
described using the Lindblad operators { </~ g, \/7 b, J¥'xb%, ka0 }.
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