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Abstract
Context Software metrics play a significant role in many areas in the life-cycle of soft-
ware including forecasting defects and foretelling stories regarding maintenance, cost, etc.
through predictive analysis. Many studies have found code metrics correlated to each other
at such a high level that such correlated code metrics are considered redundant, which
implies it is enough to keep track of a single metric from a list of highly correlated metrics.

Objective Software is developed incrementally over a period. Traditionally, code metrics
are measured cumulatively as cumulative sum or running sum. When a code metric is mea-
sured based on the values from individual revisions or commits without consolidating values
from past revisions, indicating the natural development of software, this study identifies
such a type of measure as organic. Density and average are two other ways of measuring
metrics. This empirical study focuses on whether measurement types influence correlations
of code metrics.

Method To investigate the objective, this empirical study has collected 24 code metrics
classified into four categories, according to the measurement types of the metrics, from
11,874 software revisions (i.e., commits) of 21 open source projects from eight well-known
organizations. Kendall’s τ -B is used for computing correlations. To determine whether there
is a significant difference between cumulative and organic metrics, Mann-Whitney U test,
Wilcoxon signed rank test, and paired-samples sign test are performed.

Results The cumulative metrics are found to be highly correlated to each other with an
average coefficient of 0.79. For corresponding organic metrics, it is 0.49. When individ-
ual correlation coefficients between these two measure types are compared, correlations
between organic metrics are found to be significantly lower (with p <0.01) than cumulative
metrics. Our results indicate that the cumulative nature of metrics makes them highly
correlated, implying cumulative measurement is a major source of collinearity between
cumulative metrics. Another interesting observation is that correlations between metrics
from different categories are weak.
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Conclusions Results of this study reveal that measurement types may have a significant
impact on the correlations of code metrics and that transforming metrics into a different type
can give us metrics with low collinearity. These findings provide us a simple understanding
how feature transformation to a different measurement type can produce new non-collinear
input features for predictive models.

Keywords Software code metrics · Measurement effects on correlations · Collinearity ·
Software engineering · Cumulative measurement

1 Introduction

The exponential growth of software size (Deshpande and Riehle 2008) is bringing in many
challenges related to maintainability, release planning, and other software qualities. Thus,
a natural demand to predict external product quality factors to foresee the future state of
software has been observed. Maintainability is related to the size, complexity and documen-
tation of software (Coleman et al. 1994). Size and complexity metrics are common among
other metrics to predict software maintainability (Riaz et al. 2009). Growing software size
and complexity have made it increasingly difficult to select features to be implemented
in the next product release and have challenged existing assumptions and approaches for
release planning (Jantunen et al. 2011).

Validating software metrics has gained importance as predicting external software qual-
ities are becoming more demanding day by day to be able to manage future revisions of
software. Researchers have proposed many validation criteria for software metrics over
the last 40 years, e.g., a list of 47 criteria is reported in a systematic literature study by
Meneely et al. (2013) where one of them is non-collinearity. Collinearity (also known as
multicollinearity) exists between two independent features if they are linearly related. Since
prediction models are often multivariate, i.e., use more than one independent feature or met-
ric, it is important that there is no significant collinearity among the independent features.
Collinearity results in two major problems (Meloun et al. 2002). First, it makes a model less
useful as individual effects of the independent features on a dependent feature can no longer
be isolated. Second, extrapolation is most likely be highly erroneous. Thus, El Emam and
Schneidewind (2000) and Dormann et al. (2013) suggested diagnosing collinearity among
the independent features for a proper interpretation of regression models.

Many studies have explored correlations between various software metrics such as
McCabe’s cyclomatic complexity (Landman et al. 2016; Henry and Selig 1990; Henry et al.
1981; Tashtoush et al. 2014; Jay et al. 2009; Meulen and Revilla 2007), lines of code (Land-
man et al. 2016; Henry and Selig 1990; Tashtoush et al. 2014; Jay et al. 2009; Meulen and
Revilla 2007), Halstead’s metrics (Henry and Selig 1990; Henry et al. 1981; Tashtoush et al.
2014; Meulen and Revilla 2007) Kafura’s information flow (Henry et al. 1981), Number of
comments, Meulen and Revilla (2007), etc. Most of these studies have observed that code
metrics are highly correlated. However, they do not address whether measurement types of
metrics affect their correlations which is the primary difference between these studies and
our study. Rather than taking the usual way of checking correlations of code metrics, we
focus on finding the reason whether the construction of code metrics (meaning how they
are measured) have an influence on their correlations. Such an investigation is fundamental
toward understanding collinearity of code metrics. A description of the measurement types
used in this study are given below.
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– Cumulative: This indicates the traditional or the most common way how software code
metrics are measured by cumulative sum or running sum. Here, by a revision, we indi-
cate a commit, which is a single entry of source code in a repository. For example, if
the number of total Lines Of Code (LOC) written for a project’s first three revisions are
50, 30, and 30 consecutively, the corresponding cumulative measures of ncloc for the
revisions would be 50, 80, and 110.

– Density: This measure tells us how representative a measure is within a per unit of arti-
fact with a standard portion. Generally, the unit of density is a ratio. Within the context
of code, we consider 100 LOC as a unit, the measurement unit becomes a percentage.
Under this consideration, such a metric can take a value from 0 to 100. For example,
the metric comment lines density measures lines of comments per 100 lines of code.

– Average: This is the mean value of a measure with respect to artifacts related to a specific
type. An example of such a metric is file complexity which measures the mean complexity
per file.

– Organic: A metric that measures artifact from a single revision or two consecutive
revisions without being influenced by any other revisions in the repository is organic.
We have introduced the term organic as this measure has no effect from the entire list
of unbounded preceding revisions like the cumulative measure. An organic metric can
measure purely from a single revision, e.g., new lines measures the lines of code (that
are not comments) specific to a single revision. It can be zero in case no new code is
added to a revision however, it cannot be negative (like a code churn measure). An
organic metric can also measure a single revision relative to its one preceding revision.
Since in this case it reflects a change or delta compared to the preceding revision, it
can be positive, negative and zero.

The core idea of this study was developed while following a previous study (Mamun et al.
2017) where we focused on the domain-level correlation of metrics from four domains that
are size, complexity, documentation, and duplications. In the follow-up study, we explored
correlations at the metric-level and observed that the organic metrics consistently have lower
correlations. Based on this observation from the follow-up study, we initiated and designed
this study by grouping the code metrics based on how they are measured.

Due to the problems of collinearity when building predictive models, many studies have
investigated how different metrics are correlated with each other. However, to our knowl-
edge, no study has investigated the impact of measurement types on the correlations of
software code metrics. This knowledge is fundamental to understand the metrics better.
With a goal to understand the relationship between measurement types and correlations of
software code metrics, this study has the following research question.

– RQ: How measurement types affect correlations of code metrics?

This study has selected 21 open source projects from eight organizations and analyzed the
source code of a total 11,874 revisions fromall projects to extract codemetrics. We havemined
24 software metrics classified into four categories: cumulative, density, average, and organic.

The complete revision histories of the selected projects have been analyzed using a
static analysis tool to generate code metrics. The code metrics are then mined from the
database for analysis. Before performing data analysis, data is explored using various visual
and theoretical statistical tools. Based on the nature of data, we selected Kendall’s τ -B (a
non-parametric method for correlation), for all selected projects. Motivations for selecting
Kendall’s τ -B is discussed in Section 4. Correlation coefficients are divided into different
sets based on their level of strength and level of significance. Based on the results up to this
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point, we transformed all cumulative metrics into organic metrics and ran statistical tests to
determine whether there is a significant difference in correlation between these two sets.

Results of this study indicate how correlations of code metrics are influenced by their
measurement types, i.e., the way they are measured. We can see whether there is a difference
between intra-category correlations of metrics from the same category and inter-category
correlations of metrics from different categories. Based on the data analysis, we will
also report whether there is a significant difference between intra-category correlations of
cumulative metrics and intra-category correlations of organic metrics. These understandings
are fundamental because they can reveal whether high collinearity between code metrics
are due to their measurement types. Such knowledge can be helpful in making an informed
decision while selecting code metrics as features for predictive models.

In the following sections of this paper, we first discuss the methodology including design
of this study, data collection procedures, nature of the collected data and data processing.
Based on the nature of data observed in Section 3.3, Section 4 (data analysis method),
presents a comparative discussion of applicable correlation methods and pros and cons of
different measures to aggregate results from the data. Section 5 shows results and implica-
tions. Based on some results, this study performed an additional test. Retaining the actual
work flow of this study, we have put the design and execution of this test in Section 5.4.
This section also includes discussion, limitations and validity threats to this study. Finally,
Section 6 summarizes the conclusions of this study.

2 RelatedWork

Software code metrics are generally known to be highly correlated as many studies have
reported high correlation among various code metrics. A recent systematic literature review
from 2016 (Landman et al. 2016) presents a summary of 33 articles reporting correlations
between McCabe’s cyclomatic complexity (McCabe 1976) and LOC (lines of code). Henry
and Selig (1990) reported correlations of five code metrics (LOC, three Halstead’s software-
science metrics (N, V, and E), and McCabe’s cyclomatic complexity). They worked with
code written in Pascal language and observed three correlations significantly higher that
are (the values in parenthesis indicate the correlation coefficients): Halstead N - Halstead
V (0.989), LOC - Halstead N (0.893), and LOC - Halstead V (0.885). Henry et al. (1981)
compared three complexity metrics: McCabe’s cyclomatic complexity, Halstead’s effort,
and Kafura’s information flow. Taking the UNIX operating system as a subject, they found
McCabe’s cyclomatic complexity and Halstead’s effort highly correlated while Kafura’s
information flow is found to be independent. On NASA’s open dataset, Tashtoush et al.
(2014) studied cyclomatic complexity, Halstead complexity, and LOC metrics. They found
a strong correlation between cyclomatic complexity and Halstead’s complexity similar to
the study by Henry et al. (1981). LOC is observed to be highly correlated with both of these
complexity metrics. Jay et al. (2009), in a comprehensive study, also explored the relation-
ship between McCabe’s cyclomatic complexity and LOC. They worked with 1.2 million
C, C++ and Java source files randomly selected from SourceForge code repository. They
reported that cyclomatic complexity and LOC practically have a perfect linear relation-
ship irrespective of programming languages, programmers, code paradigms, and software
processes. Toward comparing four internal code metrics (McCabe’s cyclomatic complex-
ity, Halstead volume, LOC, and number of comments), Meulen and Revilla (2007) used
59 specifications each containing between 111 and 11,495 small (up to 40KB file size)
C/C++ programs. They observed strong correlations between LOC, Halstead volume, and
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cyclomatic complexity. A recent study by Landman et al. (2016) on an extensive Java and
C corpora (17.6 million Java methods and 6.3 million C functions) finds no strong linear
correlation between cyclomatic complexity and LOC to be considered as redundant. This
finding contradicts many earlier studies including (Henry et al. 1981; Tashtoush et al. 2014;
Saini et al. 2015; Jay et al. 2009; Meulen and Revilla 2007).

The studies discussed here, mostly cover McCabe’s cyclomatic complexity, Halstead’s
metrics, and LOC investigating correlations between them and showing different results.
However, they do not address whether measurement types of the studied metrics affect the
strength of correlations which is the primary difference between these studies and our study.
Rather than taking the usual way of checking correlations of code metrics, we focus on
finding the reason whether the construction of code metrics (meaning how they are mea-
sured) have an influence on their correlations. Such an investigation is fundamental toward
understanding collinearity of code metrics.

Zhou et al. (2009) have reported that size metrics have confounding effects on the asso-
ciations between object-oriented metrics and change-proneness. On a revisited study, Gil
and Lalouche (2017) reported similar results about the confounding of the size metric. Zhou
et al. (2009) have elaborately explained the confounding effect and models to identify them
in areas like health sciences and epidemiological research. Gil and Lalouche (2017) used
normalization as a way to remove the confounding effect. While they mentioned having
lower correlation coefficient for normalized metrics, they have not explicitly reported the
overall difference between correlations coming from the intra-cumulative and the intra-
normalized measures. They also did not report whether there exists a significant statistical
difference between the two. But it is understandable as their primary focus is on the validity
of metrics. Our focus, in contrast is solely toward understanding the effects of measurements
on the correlations of code metrics. We want to understand how much of the collinearity
come from the types of measures and how much of it exists naturally.

There have been studies toward understanding the distributions of software metrics. For
example, Wheeldon and Counsell (2003), Concas et al. (2007), and Louridas et al. (2008)
have investigated whether power law distributions are present among software metrics. They
have reported that various software metrics follow different distributions with long fat tails.
Louridas et al. (2008) have also reported correlations among eight software metrics includ-
ing LOC and number of methods. They reported a high correlation between LOC, number
of methods (NOM), and out degree of classes. Baxter et al. (2006) reported a similar study,
however, unlikeWheeldon and Counsell (2003), have observed some metrics that do not fol-
low the power laws. They opined, their use of a more extensive corpus compared to Wheel-
don and Counsell (2003) is the reason for the difference. In addition to looking at the distribu-
tions of metrics, Ferreira et al. (2012) have attempted to establish thresholds or reference values
for six object-oriented metrics. We have also looked at the statistical properties of the studied
metrics including their distributions. However, we have done this as part of out methodology
to find appropriate statistical methods, and this is not the main focus of this study.

Chidamber et al. (1998) have investigated six Chidamber and Kamerer (CK) metrics and
reported high collinearity among three of them which are coupling between objects (CBO),
response for a class (RFC), and NOM. Succi et al. (2005) have studied to what extent
collinearity is present in CK metrics. They suggested to completely avoid RFC metric as an
input feature for predictive models due to its high collinearity with other CK metrics. Given
the problems of collinearity, Shihab et al. (2010) have proposed an approach to select met-
rics that are less collinear from a set of metrics. These studies have mentioned collinearity
as a problem and reported collinearity among software metrics or proposed method to select
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metrics with low collinearity. However, they have not investigated from the perspective of
measurement types influencing collinearity.

3 Methodology

We have designed this empirical study following the guideline of Runeson and Höst (2008)
on designing, planning, and conducting case studies. This study is explorative with the intent
to find insights about relations between code metrics with different measurement types. We
have designed the study to minimize bias and validity threats and maximize the reliability of
the results, which involves project selection, data extraction, data cleaning, exploring nature
of the data, select appropriate statistical analysis methods based on the nature of data, and
being conservative when selecting and instrumenting statistical analysis.

Data sources for this research are open source software projects, more specifically, open
source Java projects on GitHub. Java is among the top three most frequently used project
languages on GitHub. Since extracted data is quantitative, analysis methods used in this
study are quantitative. We have followed a third-degree data collection method described by
Lethbridge et al. (2005). First, the case and the context of the study are defined, followed
by data sources and criteria for data collection. Assumptions for statistical methods are
thoroughly checked, which involves exploration of the nature of data and cleaning of data
as necessary. Regardless of the measurement types, extracted data is non-normal to the
extent that meaningful transformation is not possible. Thus, we have used non-parametric
statistical methods for analyzing data in this study.

3.1 Project Selection

GitHub’s search functionality was used to find candidate projects. However, due to limited
capabilities of GitHub search functionality, it was not possible to perform a compound query
that would fulfill all our criteria. Project selection was not randomized as we wanted to
assure that selected projects have specific criteria (e.g., minimum LOC, minimum commits,
etc.) and come from well-known development organizations that would not raise obvious
validity questions, e.g., “project is unrepresentative because it is a classroom project by a
novice programmer.” Thus, finding projects from reputed organizations was exploratory.
We started by screening projects from the 14 organizations listed in GitHub’s open source
organizations showcase1. We then explored whether other well-known organizations to our
knowledge are also hosting their projects on GitHub but are not in the showcase, e.g.,
Apache. For each organization, we made queries to find Java projects. Aswewant tominimize
blocking effects coming from various languages, we decided to stick with a single program-
ming language. We selected Java as it is a top-ranked programming language on GitHub.

Crawford et al. (2002) presented various methods for classifying software projects. We
take a more straightforward approach to make sure that our selected projects are repre-
sentative regarding size. A study2 on the dataset of International Software Benchmarking
Standards Group (ISBSG) classified software projects based on “Rule’s Relative Size
Scale”. Measurements of this study are based on IFPUGMkII and COSMIC which are also
translated into equivalent LOC. The combined distribution of all projects shows that more
than 93% of the projects are between S (small) and L (large) size where S is estimated as

1https://github.com/showcases/open-source-organizations
2https://www.totalmetrics.com/function-points-downloads/Function-Point-Scale-Project-Size.pdf

https://github.com/showcases/open-source-organizations
https://www.totalmetrics.com/function-points-downloads/Function-Point-Scale-Project-Size.pdf
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Fig. 1 Whiskers box plot showing durations of the selected projects

5300 and L as 150,000 LOC. We roughly followed this finding and selected projects in a
way that project sizes are about uniformly distributed within about the range of S and L. We
have projects ranging from 4059 LOC to 155,260 LOC indicating the code size of the latest
revision of projects. Sizes of the projects are determined with cloc tool3 using a bash script
to extract total LOC and Java LOC. We selected 21 GitHub projects from eight software
organizations where Java is tagged as the project language.

An overview of the selected projects is given in Table 1. In this table, ‘analyzed revisions’
indicates all the commits from which we collected data and which are available exclusively
in the master branch of the Git repositories. ‘Total revisions’ indicates all commits available
in the Git repository including the branches. Even though the selected projects are classified
as Java projects, they have source code from other languages too. Thus, ‘total code’ indicates
the amount of all lines of code and ‘Java code’ indicates only the lines of Java source
code. The table field ‘latest commit’ points to the Head of a Git repository at the time we
downloaded it. The time durations of the projects are presented in the whiskers box plot
in Fig. 1 showing duration of projects from five months to 109 months with a median of
43 months. About 33% of the projects are within the 4th-quartile ranging from 57 to 109
months.

3.2 Data Collection andMetrics Selection

We used SonarQube4 to analyze revisions of the selected projects. Kazman et al. (2015)
mentioned SonarQube as the de-facto source code analysis tool for automatically calculat-
ing technical debt. It has gained popularity in recent years, and Janes et al. (2017) mentioned
SonarQube as the de-facto industrial tool for Software Quality Assurance. This tool is based
on SQALE methodology (Letouzey and Ilkiewicz 2012). We used SonarQube version 6.1
and Sonar-Scanner version 2.8.

We run SonarQube on each revision available in the master branch of a project. Since
we ignore sub-branches, the number of analyzed revisions is less than the number of total
revisions as reported in Table 1. Sub-branches are eventually merged with the master branch
which means, we do not lose anything except the granularity of data.

Analyzing 11,874 software revisions needs be automated. Python scripts are used to
automate the process of traversing commits or revisions on the master branch of a project’s
Git repository and run SonarQube tool on commits. SonarQube provides web-services cov-
ering a range of functionalities including mining analysis results and software metrics. We
observed some of the metrics such as new lines are seen on SonarQube’s web-interface, but

3https://github.com/AlDanial/cloc
4https://www.sonarqube.org/

https://github.com/AlDanial/cloc
https://www.sonarqube.org/
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Table 3 Metric data representing five revisions of a project

they cannot be mined through the web-services. We later found that SonarQube computes
some metrics only for the latest software revision and removes them automatically.

Since we did not find any option to stop the auto-deletion, we added triggers and addi-
tional tables into SonarQube’s SQL database to recover the deleted records. In total, 47
metrics were mined from the database classified into six major domains namely size, docu-
mentation, complexity, duplications, issues, and maintainability. The classification is based
on what the metrics measure.

In our earlier study (Mamun et al. 2017), we used SonarQube’s classification of met-
rics and explored domain-level and metric-to-domain-level relationships. From the results
of the metric-to-domain-level relationships in that study, we had the indication that metrics
that measure artifacts based on individual values from each revision (i.e., organic metrics),
result in lower overall correlation. Since metrics such as new lines of type organic are inher-
ently different from metrics such as ncloc of type cumulative concerning how they measure
artifacts, it was understandable. However, as we started the follow-up study exploring the
metric-level correlations, we observed that organic metrics have much lower correlations
compared to other types of metrics. This observation influenced us to rethink how the met-
rics should be grouped for comparison. So the criteria to group the metrics changed from
earlier “what they measure” to “how they measure” artifacts. We looked at the metrics clas-
sified into four domains (i.e., size, complexity, documentation, and duplications) based on
“what they measure” by SonarQube. Reviewing them, we identified 24 metrics of four mea-
surement types that are cumulative, density, average, and organic. Table 2 shows the selected
metrics classified into these four measurement types along with a short description and value
type, taken from the MySQL database of SonarQube 6.1 and the metric definitions page.5

Table 3 shows metrics data corresponding to five revisions or commits of a project. In
this table, each row represents a software revision. For project malmo, we have analyzed
295 revisions; thus, we have 295 data rows from this project with the similar structure as
Table 3. Data used for this study is measured at the project-level. For example, for ncloc,
all lines of Java code in the entire project is counted, for classes, all classes within the
scope of a project are counted. In Table 3, the value of ncloc for the whole project is 9573
for revision 88. In the next revision (i.e., 89), ncloc becomes 9590 indicating an increase
of 17 lines of code. However, the corresponding new lines metric for this revision is 25
indicating the actual number of lines of code added to this revision disregarding possible
changes or deletions of the code. All the metrics are calculated by SonarQube according
to the description in Table 2. Among the four categories, density and average metrics are

5https://docs.sonarqube.org/latest/user-guide/metric-definitions/

https://docs.sonarqube.org/latest/user-guide/metric-definitions/
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Table 4 Considered methods for normality test

Graphical methods Numerical methods

Descriptive Histogram, box plot Skewness, Kurtosis

Theory-driven Q-Q plot Shapiro-Wilk, Kolmogorov-Smirnov test (Lillefors test)

derived metrics, meaning, they are measured based on the cumulative metrics. Equations
for constructing density and average metrics are given in Table 2.

SQL code to instrument the SonarQube database, Python code to automatically analyze
commits of a Git project with SonarQube, MySQL code to retrieve the desired data from
the database, and the collected data used for this study are published as public dataset6.

3.3 Exploring Nature of Data

Among different probability distribution functions, a normal distribution is more anticipated
by the researchers due to its relationship with the natural phenomenon “central limit theo-
rem.” Statistical methods are based on assumptions. After collecting data, before deciding
on the type of statistical methods, researchers need to investigate the nature of the collected
data. A crucial part is to check the distribution of data. If the distribution is normal, paramet-
ric statistical tests are considered. If data is non-normal and a meaningful transformation is
not possible, non-parametric tests are considered.

There is no straightforward way of determining whether a particular data is normally
distributed. Sample size plays a significant factor in statistical tests for normality. There are
graphical and numerical methods where each of them can be either descriptive or theoretical
(Park 2009). Since our selected projects have a varying number of revisions, we have chosen
a combination of tests appropriate to our data as shown in Table 4.

Histogram, a frequency distribution, is considered to be a useful graphical test when the
number of observations is large. It is particularly helpful because it can capture the shape
of the distribution given that bin size is appropriately chosen. If data is far from a normal
distribution, a single look at the histogram tells us that the data is non-normal. It also gives
a rough understanding of the overall nature of the distribution, such as skewness, kurtosis
or the type of distribution such as bi- and multi-modal, etc. Box plots are useful to identify
outliers and comparing the distribution of the quartiles. Normal Q-Q plot (quantile-quantile
plot) is a graphical representation of the comparison of two distributions. If data is normally
distributed, the data points in the normal Q-Q plot approximately follow a straight line. It
also helps us to understand the skewness and tails of the distribution. The graphical methods
help to understand the overall nature of the data quickly, but it does not provide objective
criteria (Park 2009).

There are different numerical methods to evaluate whether data is normally distributed
or not. Skewness and kurtosis are commonly used descriptive tools for this purpose. For a
perfectly normal distribution, the statistics for these two analyses should be zero. Since this
does not happen in practice, we calculate the z-score by dividing the statistic by the stan-
dard error. However, determining normality from z-score is not straightforward either. Kim
(2013) discussed how the sample size can affect the z-score. Field (2009) and Kim (2013)
suggested to consider different criteria for skewness and kurtosis based on the sample size.

6https://archive.org/details/EoMoCoSCM

https://archive.org/details/EoMoCoSCM
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Table 5 Descriptive statistics for four example metrics from the Apache zookeeper project

Category Metrics N Minimum Maximum Mean Std. Dev.

Statistic Std. Error

Cumulative ncloc 1473 10,804 73,009 44,192.4 485.3 18,626.9

Density comment lines density 1473 9.2 13.9 12.5 0.0 1.2

Average file complexity 1473 22.0 33.9 25.6 0.1 2.7

Organic new lines 1473 0 19,055 117.5 16.3 627.3

For a sample size less than 50, an absolute z-score for either of these methods should be
1.95 (corresponding to an α of 0.05); for a sample size less than 200, an absolute z-score of
3.29 (corresponding to an α of 0.001). However, for a sample size of 200 or more, it is more
meaningful to inspect the graphical methods and look at the skewness and kurtosis statistics
instead of evaluating the significance, i.e., z-score.

From analytical numerical methods, we consider Shapiro-Wilk and Kolmogorov-
Smirnov for normality test. Shapiro-Wilk works better with sample size up to 2000
and Kolmogorov-Smirnov works with large sample sizes (Park 2009). The literature has
reported different maximum values for these tests. For example, sample size over 300 might
produce an unreliable result for these two tests, observed by Kim (2013), and a range of 30
to 1000 is suggested by Hair (2006). We have sample sizes from 52 to 2302 for our metrics.
For large sample size, numerical methods can be unreliable; thus, Field (2009) suggested
to use the graphical methods besides the numerical methods to make an informed decision
about the nature of the data. We have computed all these tests in the statistical software
package SPSS. It can be noted that SPSS calculates Kurtosis − 3 for Kurtosis, meaning
subtracting three from the Kurtosis value.

Now, we present data of four metrics (ncloc, comment lines density, new lines, and
file complexity), each from a different measurement category, from the Apache zookeeper
project. Even though measures for these metrics vary in each project but we present them
here so the readers have a rough idea how sample data from a project might look like.
Table 5 shows the descriptive statistics for four metrics from four measurement types. The
sample size is the same, i.e., 1473 for all these metrics and minimum, maximum, mean, and
standard deviation values come from the whole sample. For example, among 1473 samples
of new lines, it has the minimum value 0 (i.e., a revision that adds no new lines of code) and

Fig. 2 Histogram, box plot and normal Q-Q plot for ncloc metric (cumulative type) from the Apache
zookeeper project
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Fig. 3 Histogram, box plot and normal Q-Q plot for comment lines density metric (density type) from the
Apache zookeeper project

maximum value 19,055 (i.e., a revision that adds 19,055 new lines of code). Based on these
statistics, it is evident that ncloc is entirely different from new lines. On the other hand, two
metrics from density and average categories are quite similar but different from cumulative
and organic metrics. The most notable number in this table is the tremendous 18,629.9 value
of standard deviation for ncloc. The cumulative way of measurement and the large sample
size are the key reasons for such a high standard deviation. Other cumulative metrics in our
dataset also have a similar effect of cumulation on them. These descriptive statistics give us
a quick overall idea about the nature of data, e.g., distribution, dispersion.

Histogram, box plot, and normal Q-Q plot for each of these four metrics are correspond-
ingly presented in Figs. 2, 3, 4, and 5. The organic metric new lines (see Fig. 2) has a
very high peak (in the histogram), a considerable amount of outliers (in box-plot) and a
positively-skewed plot (normal Q-Q). The other metrics from the organic category have sim-
ilar properties. Because of the very high peak in the distribution, the quartiles in the box-plot
are not even visible. The file complexity metric of type average (see Fig. 4) has a bimodal
distribution in the histogram. The outliers in the box plot and the disconnected observed val-
ues in the normal Q-Q plots are due to the bimodal distribution of file complexity metric. It
is interesting to see in the Q-Q plot that both distributions for file complexity are skewed in
opposite directions. Many metrics in average and density, and even in the cumulative cate-
gory have bimodal distributions, and some have multimodal distributions. The distributions
of the average and density metrics are apparently more normal compared to the distributions
of the cumulative metrics. However, all of them are still far away from a normal distribu-
tion. If we compare them all, organic metrics are distinctly different compared to the metrics
from other categories. When specific types of plots are compared, e.g., all histograms of

Fig. 4 Histogram, box plot and normal Q-Q plot for file complexity metric (average type) from the Apache
zookeeper project
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Fig. 5 Histogram, box plot and normal Q-Q plot for new lines metric (organic type) from the Apache
zookeeper project

metrics from a category, plots of the organic metrics are visually observed to be more con-
sistent to each other compared to the plots of metrics from other categories. On the other
hand, when plots are compared across categories, distributions of metrics from density and
average categories are observed to be more similar than others.

The depiction of the distributions and their properties by graphical methods are so much
deviated from normality that we could have omitted additional tests for them. However,
we perform them as part of the design of the study. Since we have a varying number of
sample sizes, we got some insights about the tests. However, such observations are beyond
the scope and focus of this study, thus, are not reported in this report.

Skewness and Kurtosis results are presented in Table 6. It is interesting that even though,
we have a considerable sample size, none of the metrics are indicating normal distribution in
the z-scores in this table, meaning data is non-normal because absolute z-scores are greater
than 3.29, thus, rejecting the null hypothesis. However, compared to these four metrics, the
ncloc and file complexity from the Apache kafka project having the largest sample size of
2302 have z-scores within the limit of normality, but we reject it because the graphical tests
do not show signs of a normal distribution.

We considered Shapiro-Wilk and Kolmogorov-Smirnov tests reliable up to a sample size
of 2000. Results from these tests are depicted in Table 7 showing a very strong indication
(i.e., the significance values are less than the considered α = 0.05) of non-normal data.

Likewise, these four metrics from the Apache zookeeper project, other metrics from these
measurements categories or from other projects are also observed to be non-normal. Due
to a high degree of non-normality and different distributions among the metrics make it
impractical to make transformations on these metrics. Thus, we are left with the option to
perform non-parametric statistical analysis methods.

Table 6 Skewness and Kurtosis check for four example metrics from the Apache zookeeper project

Metrics Skewness Kurtosis

Statistic Std. Error z-value Statistic Std. Error z-value

ncloc −0.24 0.06 −3.71 −1.13 0.13 −8.87

comment lines density −1.30 0.06 −20.40 0.91 0.13 7.11

file complexity 2.00 0.06 31.39 3.15 0.13 24.68

new lines 20.83 0.06 326.63 580.39 0.13 4,554.62
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Table 7 Shapiro-Wilk and Kolmogorov-Smirnov tests for four example metrics from the Apache zookeeper
project

Kolmogorov-Smirnov∗ Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

ncloc .098 1473 .000 .939 1473 .000

comment lines density .181 1473 .000 .842 1473 .000

file complexity .258 1473 .000 .693 1473 .000

new lines .426 1473 0.000 .150 1473 .000

*. Lilliefors Significance Correction

3.4 Data Processing

Besides the statistical analysis to understand the nature of the extracted data, we performed
manual inspections to check the data for possible anomalies especially at the boundaries
meaning, at the beginning and the ending of revision data.

We observed some organic metrics for some projects have either NaN (not a number)
or unusually high value for the first analyzed revision. Examples of such observations are
presented in Tables 8 and 9.

There might be several reasons why some projects start with a higher number of ncloc
from the beginning as we see in the case in Table 9. It can be due to a project not tracking its
code base through a version control from the beginning, or the project start with an existing
code base possibly because it is an extension of another project with a separate version
control. It is also observed that new lines has a higher value than ncloc in the first revision of
few projects. We removed data related to the first revisions in such cases. Since the number
of removed revisions is very insignificant compared to the total number of revisions, it is
less likely that this will have a major impact on this study.

4 Data Analysis Method

Since collected data is not normally distributed, non-parametric statistical methods are
appropriate for this research. Spearman’s ρ correlation coefficient and Kendall’s τ cor-
relation coefficient are two well-known non-parametric measures to assess relationships
between ranked data. We carefully investigated the nature of the collected data and proper-
ties of these two measures. A measure of Kendall’s τ is based on the number of concordant
and discordant pairs of the ranked data.

Calculating Spearman’s ρ by hand is much simpler than calculating Kendall’s τ because
it can be done pair-wise without being dependent on the rest of the data while computing
Kendall’s τ by hand is only feasible for small sample sizes because computing each data pair
requires exploring the remaining data. Xu et al. (2013) reported that the time complexity

Table 8 Data snippet from the first revision of project astyanax showing null value for new lines

ncloc New lines Classes Files directories

8409 NULL 170 157 12
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Table 9 Data snippet from the first three revisions of project ribbon showing a high value for new lines

ncloc New lines Classes Files Directories

6111 8461 80 61 9

6118 42 80 61 9

5981 15 79 60 9

of Spearman’s ρ is O(n ∗ log(n)) and for Kendall’s τ it is O(n2). In general, Spearman’s
ρ results in a higher correlation coefficient compared to Kendall’s τ where the latter is
generally known to be more robust and has an intuitive interpretation.

Studies from different disciplines have investigated the appropriateness of Spearman’s
ρ and Kendall’s τ concerning various factors. Both measures are invariant concerning
increasing monotone transformations (Kendall and Gibbons 1990). Moreover, being non-
parametric methods, both measures are robust against impulsive noise (Shevlyakov and
Vilchevski 2002; Croux and Dehon 2010). Croux and Dehon (2010) studied the robustness
of Spearman’s ρ and Kendall’s τ through their influence function and gross-error sensitiv-
ities. Even though it is commonly known that both of these measures are robust enough
to handle outliers, this study found that Kendall’s τ is more robust to handle outliers and
statistically slightly more efficient than Spearman’s ρ. In a more recent study, Xu et al.
(2013) investigated the applicability of Spearman’s ρ and Kendall’s τ based on different
requirements. Some of their key findings report Kendall’s τ as the desired measure when
the sample size is large, and there is impulsive noise in the data. Their results are based on
unbiased estimations of Spearman’s ρ and Kendall’s τ correlation coefficients.

In light of the above discussion, we think, Kendall’s τ is more appropriate for software
projects. We have observed outliers in many projects, and all projects have some revisions
with high data values indicating outliers. This can naturally happen to any software project
when existing code-base is added to a new project. Outliers in software revision data are
observed and their underlying reasons are discussed in earlier research (Aggarwal 2013;
Schroeder et al. 2016). The robust nature of Kendall’s τ handles such data points better
when compared to Spearman’s ρ.

Kendall’s τ has three different versions that are τ -A, τ -B, and τ -C. Both τ -A and τ -
B are suitable for square-shaped data meaning data with same variables on both rows
and columns. τ -C is used for rectangular-shaped data tables with different sized rows and
columns. A more important difference between τ -A and τ -B is that τ -B can handle tied
ranks while having otherwise the same characteristics of τ -A. Since our collected data has
tied ranks, we have used and measured τ -B according to the following equation7:

τb = P − Q√
(P + Q + m10)(P + Q + m20)

In this equation, m1, m2 are the two metrics for which we are checking correlation. We
denote correlation coefficients of Kendall’s τ as τb. P, Q are numbers of concordant and
discordant pairs respectively. m10 is the number of ties only in m1, and m20 is the number
of ties only in m2. The possible value of τb is −1 � τb � +1 where -1 indicates perfect
negative correlation, zero indicates no correlation, and +1 indicates perfect positive corre-
lations. Since we have 21 projects and 24 metrics in each project, we have calculated 21

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
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Table 10 Grouping and labeling τb

Statistical significance Negative τb value Positive τb value Label

α = 0.05 −1.0 � τb � −0.9 0.9 � τb � 1.0 Very strong τb

−0.9 < τb � −0.7 0.7 � τb < 0.9 Strong τb

−0.7 < τb � −0.4 0.4 � τb < 0.7 Moderate τb

−0.4 < τb � −0.0 0 � τb < 0.4 Weak τb

correlation matrices of size 24×24. All these correlation matrices are symmetric meaning
they are mirrored along the principal diagonal. τb for the diagonal elements are always +1,
indicating a perfect positive correlation of a metric with itself. Kendall’s τ also computes
statistical significance (p-value) for correlation coefficient (τb).

4.1 Landscape of Correlation Coefficients (τb )

Before start aggregating results, we need to understand τb and define concrete boundaries
for the interpretation of τb at different levels. τb indicates the strength of a correlation and τb

has the range −1 � τb � +1. As the value of τb approaches 0, it indicates less correlation
between two metrics. As the value of τb approaches to the boundaries, i.e., -1 or +1, it
indicates a higher correlation between two metrics. Researchers have used different ranges
to label the strengths of correlation coefficients (Taylor 1990). This paper has labeled τb

according to Table 10.
However, it is not enough just to look at the τb values, unless we look at their statistical

significance, which can be found from the p-value. If the p-value is greater than a chosen
significance level, we cannot reject the null hypothesis, meaning we do not have enough
evidence to differentiate that a corresponding τb is any different from τb= 0. For example,
for a p-value value of 0.05, there is a possibility that 5% of the τb values are indicating cor-
relation by chance even though there is no real correlation between the underlying metrics.
This study considers α = 0.05 for any τb to be statistically significance.

Now we like to focus on the landscape of τb depicted in Fig. 6. The outer circle is the
set of all τb, which is represented by Sτball

containing τb from correlation matrices resulted
from all projects. Similarly, the set of all significant τb is represented by Sτbsig

containing
all τb, for which the corresponding p-value has satisfied the specified significance level of
0.05. Set of very strong τb is represented by Sτbvs , set of strong τb by Sτbs , set of moderate
τb by Sτbm , and set of weak τb by Sτbw . These sets are calculated according to τb values
based on the levels defined in Fig. 10. Now we can also define the set of all non-significant
τb as Sτbnsig

where Sτbnsig
= Sτball

\ Sτbsig
.

4.2 Aggregating Correlation Coefficients (τb )

Now that we have 21 metrics of size 24x24, we want to aggregate meaningful data from
them. Let M = {m1, m2,m3...mn}, where n is the number of total metrics be the set of all
metrics and P = {p1, p2, p3...pq}, where q is the number of total projects be the set of all
projects.

Now we discuss several ways to aggregate τb from all the projects.

– Aggregating correlation coefficients (τb) based on the set of all correlation coefficients
(Sτball

)
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Fig. 6 Sets of correlation coefficients (τb). Text inside the circles indicates measures computed from τb

The simplest way of aggregating τb is by summing up all τb values for each possible
pair of metrics within M for each project within P . This results in a correlation matrix
of size 24×24, i.e., the same size of a correlation matrix from a project. The advantage
of this method is that we can compute a single aggregated matrix where each cell is
the sum of τb values from the corresponding cells from correlation matrices generated
from the projects. Such an aggregated matrix can also be transformed into a weighted
average matrix by dividing each cell (containing the sum of all τb for a particular pair
of metrics) by q.

However, there is a fundamental problem with this method. This method combines
all τb values irrespective of their corresponding p-value. If the p-value is greater than α

then we cannot reject the null hypothesis. This means, we only consider a τb valid when
its corresponding p-value is less than or equal to α. If this is not checked, there are two
implications. First, a result will be wrong due to the inclusion of the non-significant τb

or inclusion of τb from the set Sτbnsig
; second, we will not have any idea how big the

set Sτbnsig
is compared to Sτbsig

.
Aggregating results based on Sτball

is not problematic in the case when Sτball
=

Sτbsig
, meaning there is no τb with a non-significant p-value, which is an assump-

tion that should be checked for validity in case it is assumed. For example, the recent
research on the correlation of code metrics by Gil and Lalouche (2017) has not reported
anything about considering α, i.e., the significance level for p-value, thus, nothing about
the existence of τb with a non-significant p-value. In this case, the readers cannot know
the size of Sτbnsig

. If an assumption regarding the non-existence of non-significant p-
value is considered, then that should be documented and validated. In this research,
to aggregate results, we have avoided any value from the set Sτbnsig

. To calculate the
sample mean, τb values from Sτbnsig

are considered as zero.
– Aggregating correlation coefficients (τb) based on the set of all significant correlation

coefficients (Sτbsig
)
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Let τb(m1,m2,pi )
is the correlation coefficients for two metrics m1 and m2 in project

pi . Now we compute the mean for Sτbsig
by the following equation:

τb(m1,m2)
= 1

ν

q∑

i=0

τb(m1,m2,pi )
| τb(m1,m2,pi )

∈ τbsig
(1)

Since (1) is calculated based on Sτbsig
, ν indicates the total count of τb(m1,m2,pi )

from
all projects. To compute the sample mean, we only have to replace ν by m in (1).
Since we are unsure of the τb values within set Sτbnsig

due to their insignificant p-
value, considering a conservative measure, we take τb from set Sτbnsig

as zero. Thus,
τb(m1,m2,pi )

∈ Sτbsig
part in (1) still holds for the sample mean.

Like Sτball
, the advantage of aggregating τb from the set Sτbsig

is also that we can
report the results using a single matrix without having the mentioned problems of Sτball

based aggregation. However, from such results, we are not able to determine whether
τb(m1,m2)

is coming from a large or small value of ν. In other words, we are unable to tell
how representative τb(m1,m2)

is among the selected projects. Since we can calculate sam-
ple mean from Sτbsig

, we can also compute variance and standard deviation to see the
overall spread of τb within the samples. However, sample mean and standard deviation
of τb from Sτbsig

do not necessarily tell us about the distribution of τb within the four
strength levels in Table 10. Standard deviation gives us an indication of the variability,
but we do not have a way to know how the variability looks like regarding different
strength levels of τb.

– Aggregating correlation coefficients (τb) based on the sets Sτbvs , Sτbs , Sτbm , Sτbw

These four sets represent τb based on their strengths according to Table 10. These
sets make Sτbsig

i.e., Sτbvs ∪ Sτbs ∪ Sτbm ∪ Sτbw = Sτbsig
. We can consider two

measures from these sets as listed below.

– Count of τb based on their level of strength: We get this measure by sim-
ply counting the number of τb within a set. This simple measure gives us a
direct answer to the question, “how many projects report a certain correla-
tion between two metrics at a certain level of strength”? Since we have 21
projects, the maximum value count of τb can be 21 and minimum can be zero.
Looking at particular values of a count of τb for two metrics from the metrics
Sτbnsig

, Sτbvs , Sτbs , Sτbm , and Sτbw , we can understand the distribution of τb

among different sets toward having a better understanding about the nature of
relationships between metrics.

– Sum of τb based on their level of strength: Instead of taking counts, this adds
all τb within the set. Since the highest value of a single τb is 1.0, the maximum
value for sum of τb can also be 21 similar to the measure count of τb. However,
sum of τb does not tell us how many τb values are contributing for the sum,
which we can get from the count of τb. Thus, these two measures are mutually
exclusive.

These two proposed measures, count of τb and sum of τb, provide additional insights
about correlation coefficients compared to popular statistical measures sample mean
and standard deviation. In this report, when we mention the term ‘mean,’ we indicate
it for a certain set, and when data from all sets are considered, we write it as ‘sample
mean.’ For example, when we say ‘correlation between metricsm1 andm2 results in τb’
or ‘correlation between metrics m1 and m2 results in very strong/strong/moderate/weak
τb’, we refer to τb from the sample mean table.
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4.3 Missing Correlation Coefficients (τb )

Correlation cannot be computed if either or both of the variables have constant values or
missing values. In such a case, computation of correlation returns NaN (not a number) for
both τb and p-value. Set SNaN contains such data. SNaN is kept disjoint from the Sτball

in
Fig. 6, because τb value is missing to determine the level of strength and p-value is also
missing to determine the level of significance. Even though SNaN does not help us with
correlation, it tells us about the nature of specific metrics.

When discussing and reporting results in the following section, we have to point to
different sections of correlation matrices or derived matrices from them. To simplify the
referencing, we label different sections of such matrices as shown in Table 11.

When reporting this case study, we have tried to maintain the actual flow how this research
was carried out. Based on some interesting observations between inter-category correlations
of 15 cumulative and three organic metrics, this case study further tested the hypothesis:

“The median difference between correlations of metrics from cumulative and organict
categories equals to zero.”

This required deriving a set of 15 organic metrics denoted as organict corresponding to
the 15 cumulative metrics. The specifics of designing, performing and results of the test are
elaborated in Section 5.4.

5 Results

Before going into the results and discussion regarding significant correlation coefficient (i.e., τb

based on significant p-value), from the sets within Sτbsig
, we report how correlations coeffi-

cients outside Sτbsig
looks like to illustrate data that is not contributing to the main result.

5.1 Missing and Non-significant Correlation Coefficients (τb )

First, we look at the small set SNaN in Fig. 6, reporting cases where computing correlation was
not successful and resulted in null values (i.e., NaN) for τb and p-value for specific pairs
of metrics from M as reported in Table 19. Missing τb related to the metric directories as

Table 11 Labeling different sections of our matrices for easy referencing
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Table 12 Category-wise mean of
count of non-significant
correlation coefficients (τb) from
Table 17

seen in this table sourced from two projects,malmo and geometry-api-java. In both projects,
the metric directories has values (8 for malmo and 3 for geometry-api-java) that remained
unchanged throughout the project. The rest of the missing τb results from the project
cloud, and all six metrics are related to duplications category that are duplicated lines,
duplicated blocks, duplicated files, duplicated lines density, new duplicated lines, and
new duplicated blocks. Since the cloud project has no duplication related issues during the
analyzed revisions, all six metrics have the value 0.

If at least one metric from a pair contains a constant value (i.e., a metric having the same
value for all revisions), it is not possible to perform correlation on that pair of metrics, and
this results in NaN values for τb and p-value. We observed the directoriesmetric and metrics
related to duplications have fewer levels (meaning variations) compared to other metrics.

Now, we move to the set Sτbnsig
as reported in Table 17. Horizontal bars in this table and

all other similar tables reporting the count and sum measures are graphical representations
of the corresponding cell values. The maximum value for a cell corresponding to twometrics
(e.g., the cell between ncloc and classes) is q which is 21, the number of projects. Cells in
the principal diagonal are omitted, and thus, kept blank. The rightmost column reporting the
‘total count’ or ‘total sum’ of a row may have a maximum possible value of 483 (calculated
from n.q − q). The horizontal bars are drawn based on the maximum possible value a cell
can contain (i.e., 21 for regular cells between metrics and 483 for cells indicating ’total’)
but not on the maximum available value in a table.

A single glance at Table 17 gives us the impression that organic category is different from
all other categories. A more careful look tells us that there are three groups: cumulative and
organic having lowest and highest count of non-significant τb values correspondingly, and

Fig. 7 The overall distribution of count of τb (correlation coefficients) at different levels with respect to all
metrics
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density and average with the count of non-significant τb values in between. We can also see
it from the rightmost column ‘total count’. Since ‘total count’ comes from all four metric
categories, we show the category-wise mean of Tables 17 in 12.

We are interested to see the numbers in the principal diagonal of Table 12, which indi-
cates measures coming from correlations between metrics from within a category, i.e.,
intra-category correlations. We see section OO has the least amount of non-significant τb

followed by section CC, AA, and DD. Metrics within the organic category (section OO)
are interesting as they have the least amount of non-significant τb within itself, however,
organic scored highest when correlated to other categories. Another observation is that the
mean value of ‘count of non-significant τb’ within a category itself is always smaller than
the mean value of ‘count of non-significant τb’ between categories. Since we cannot draw
any conclusion whether τb is strong or weak from τb with non-significant p-value, it is better
to have less non-significant values within the context of making statistical analysis.

Key Observations:

– Correlating metrics from different categories results in more non-significant correlation
coefficients compared to correlating metrics within a category.

– Category organic is quite different from the other three categories by producing a lot of
non-significant τb for intra-category correlations.

– Category organic has least amount of non-significant τb followed by cumulative,
average, and density for inter-category correlations. Even though the mean value for
cumulative category is quite low (0.27) in this context, the contrast between the inter
and intra-category is clearly less noticeable compared to organic category.

5.2 Overall Distribution of Correlation Coefficients (τb )

Based on the labeling of τb in Table 10, we have reported two sets of measurements. They
are ‘count of τb’ (Tables 23, 24, 25, and 26) and ‘sum of τb’ (Tables 27, 28, 29, and 30) at
different levels.

Figure 7 is constructed based on the rightmost column ‘total count’ from Tables 17, 19 23,
24, 25, and 26. Similarly, Fig. 8 is constructed from the absolute values of the rightmost column
‘total sum’ from Tables 27, 28, 29, and 30. Since ‘total count/’ and ‘total sum’ columns in these

Fig. 8 Theoverall distributionof sumofτb (correlationcoefficients) at different levelswith respect toallmetrics
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tables are counts and sums of corresponding measures of a metric’s correlation with respect
to all other metrics, we get an overall distribution of τb for the metrics from these columns.

Both Figs. 7 and 8 are vertically equally scaled for better comparison. Between these
figures, the level ‘very strong’ has the least difference and level ‘weak’ has the highest
difference among the four strength levels of τb. While Fig. 7 gives us an overview of how
different sets of τb are representative, Fig. 8 shows the actual sum of τb. Since for Sτbnsig

τb

value is meaningless, and for SNaNτb value is missing; they are not included in Fig. 8.
In Fig. 8, we can see how the red bars, representing ‘very strong τb’ within the cumulative

metrics (metrics ncloc to duplicated files), are dominating compared to other levels. Met-
rics directories, duplicated lines, duplicated blocks, and duplicated files are comparatively
weaker in terms of ‘very strong τb’ compared to the other cumulative metrics. However,
all cumulative metrics have scored much higher than metrics from other measurement
categories. Metrics from the organic category have scored lowest among all metrics and
categories. These two figures represent data from all correlations, e.g., the horizontal bar

Table 13 Sample mean of significant correlation coefficients (τb) from the set Sτball
(set of all τb). The three

gray-scale cell colors indicate three levels of τb . Cells with red text indicate weak τb
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for ncloc comes from the correlation coefficient of ncloc with all other metrics. Thus, from
these figures, we cannot determine whether there is any difference between τb’s resulting
from intra-category metrics correlation and inter-category metric correlation. We study this
in more detail next.

5.3 Significant Correlation Coefficients

All reported τb from this subsection passed the significance α = 0.05, which we will
not mention any further for the rest of this subsection. When reporting τb, by default, we
indicate the sample mean as reported in Table 13.

First, we want to look at intra-category relations among the metrics. Table 13 shows the
sample mean of τb corresponding to the set Sτball

, and Table 21 in the Appendix shows
the mean of τb within the Sτbsig

. Here, we want to reiterate that we have considered any
non-significant τb from the set Sτball

as 0.

Perfect Correlations We are interested in the perfect correlation (i.e., τb = 1.0) reported
in Tables 13 and 21 between metrics (complexity, complexity in classes), (complexity,
complexity in functions), and (complexity in classes, complexity in functions) since this is
an indication that these three pairs of metrics are perfectly correlated meaning both metrics
within a pair measure exactly the same aspect. It can be noted that τb for these relations are
not exactly 1 as reported in Tables 13 and 21. This happens because we have reported τb

up to two decimal points, so anything greater or equal to 0.995 is reported as 1. To under-
stand these relations, we counted the perfect correlation coefficients between all metrics
from all projects, which is reported in Table 20 where we see five relations have perfect τb.
In 20 projects the correlation between complexity and complexity in classes is perfect. So
it is evident that the metrics complexity and complexity in classes are measuring the same
aspect and using one of them is sufficient. Since our data is coming from Java source code,
this is not a surprise because, in Java, code does not reside outside classes.

For the relation between complexity and complexity in functions, there exist perfect cor-
relations in nine projects. Since we found a perfect correlation in the sample mean of τb in
Table 13, it means the rest of the 12 τb for this relationmust be very strong.We have also calcu-
lated ‘sum of significant τb’ reported in Table 22. The ‘sum of significant τb’ for (complexity,
complexity in functions) is found to be 20.98 out of 21. This indicates that complexity and
complexity in functions also measure the same aspect with a negligible difference.

Even though the results in Table 20 does not show any perfect correlation between the
metrics ncloc, functions, statements, complexity, classes, files, and public api, but we see
τb greater than 0.9 meaning at the very strong level for all relations in the sample mean
in Table 13. Considering any relation at the τb-level greater or equal to 0.9 redundant, we
consider all these seven measures from the cumulative category as redundant. Under the
same consideration, public api is redundant to public undocumented api.

For relations between new duplicated lines and new duplicated blocks and between dupli-
cated blocks and duplicated files, perfect correlations, are found in only one project. ‘Sum
of significant τb’ for these two pairs are reported in Table 22 as 19.65 and 17.87 correspon-
dingly. Thus, we cannot say right away that metrics within these two pairs are duplicated.

5.3.1 Intra-Category Correlations

Intra-category correlations indicate correlations within the sections CC, DD, AA, and OO

where all correlations within a section are coming from metrics measured similarly.
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Table 14 Category-wise mean of
sample mean of significant
correlation coefficients (τb) from
Table 13

SectionCC The samplemean ofSτball
in Table 13 presents that metrics within the cumulative

category (i.e., section CC) are very highly correlated to each other, which we can see from
the category-wise mean of the sample mean values in Table 14. Here, section CC has a
mean value of 0.79 for τb which indicates a strong correlation coefficient between any
metrics for any projects. For a more detailed picture, we look at the sample mean values
in Table 13 where we can see metrics are mainly divided into three parts based on the
strength of correlations. The first part constitutes of nine redundant metrics (from ncloc
to public api), which we have discussed earlier, i.e., due to ‘very strong’ τb, any of these
metrics can explain the variability of the other two metrics to a high degree. The second part
has three metrics public undocumented api, comment lines, and directories that are mostly
within the τb level ‘strong’, except public undocumented api is redundant to public api (as
discussed in the preceding section), and the correlation between public undocumented api
and directories is ‘medium’. The third part has duplicated lines, duplicated blocks, and
duplicated files that are all ‘strongly’ correlated to each other but they are correlated at a
‘medium’ level with all the metrics from the other two parts.

Since the sample mean (i.e., from Sτball
) reported in Table 13 is a more conservative

measure than the mean of Sτbsig
in Table 21, we expect equal or better result (higher τb

value) in Table 21. From the data, we see a very small or no difference for most of the
mentioned metrics due to the few numbers of non-significant and missing τb in section CC.

Key Observations:

– Metrics complexity, complexity in classes, and complexity in functions measure
exactly the same aspect.

– Metrics ncloc, functions, statements, complexity, classes, files, public api, and includ-
ing the three metrics mentioned above are all redundant.

– Metrics public api and public undocumented api are redundant.
– Not a single correlation out of 105 total correlations within the cumulative metrics has

a weak correlation coefficient.

Sections DD, AA, OO As Table 14 shows, sections DD, AA, and OO have on average
weak to moderate correlations compared to strong correlations in section CC. Correla-
tions among all three metrics (comment lines density, public documented api density, and
duplicated lines density) from density category in section DD have weak τb. For section
AA, the correlation between file complexity and class complexity from average category
has a strong τb of 0.71. The other two correlations (including function complexity) for this
section have moderate τb. In section OO, the correlation between new duplicated lines and
new duplicated blocks is 0.94 and, based on our 0.9 limit; these two metrics are redundant.
Correlations of these two metrics with new lines are weak.

All four sections (related to intra-category) have less non-significant τb (in Table 12)
compared to other sections, and section OO has no non-significant τb. Section OO also has
the lowest category-wise mean of standard deviations of τb as reported in Table 15. The indi-
vidual records of standard deviations in Table 18 show that redundant metrics within section
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Table 15 Category-wise mean of
standard deviations of significant
correlation coefficients (τb) from
Table 18

CC have lower standard deviations than other metrics from the same category. Density met-
rics in section DD have the highest standard deviation and we have to look into ‘count of
τb’ (Tables 23, 24, 25 and 26) and ‘sum of τb’ (Tables 27, 28, 29 and 30) tables to fully
understand how τb values are distributed in this category.

Intra-category correlations among cumulative metrics are much higher than density, average,
and organic. Even though cumulative, average, and organic are all at the strong τb level, but for
cumulative the category-wise mean of the samplemean of τb is 0.79, thus, almost close to very
strong level. On the other hand, average and organic categories have scored 0.54 and 0.55
correspondingly. In addition, even though we do not see a single weak level correlation in
CC, more than half (5 out of 9) correlations in sections DD, AA, and OO have weak τb.

Key Observations:

– Metrics new duplicated lines and new duplicated blocks (in section OO) are redundant.
– All correlations among density metrics are weak.
– Intra-category correlations for density, average, and organic metrics result in lower τb

compared to cumulative metrics.

5.3.2 Inter-Category Correlations

Inter-category correlation happens on metrics that are measured differently. We want to
see whether there exist any noticeable difference in inter-category correlations compared to
intra-category correlations.

Inter-category correlations are available in the six sections that are CD, CA, DA, CO,
DO, and AO. These sections reflect all possible correlations, a total of 162, between
metrics from all four categories. All these correlations result in weak τb except three corre-
lations that result in moderate τb (values 0.56, 0.54, and 0.52) as shown in Table 13. Having
a look at the category-wise mean in Table 14, we see that sections CO, DO, and AO,
i.e., inter-category correlations of organic metrics with all other categories are the lowest.
Interestingly, standard deviations are also lower for these three sections related to organic
category (in Tables 18 and 15), meaning when organic metrics are correlated with metrics
from other categories, the variability of τb is low.When we look at the count of τb (Tables 23,
24, 25, and 26) and sum of τb (Tables 27, 28, 29, and 30), we see that sections CO, DO,
and AO have values only in Tables 26 and 30 reporting weak τb. In the remaining tables
these three sections have zero. For other three sections (CD, CA, and DA), we see ‘count
of τb’ and ‘sum of τb’ measures are available in all four levels and most concentrated at the
moderate level.

When we look at the difference between intra- and inter-category correlation of metrics,
it is clear that they are different. The grand mean of the category-wise mean (see Table 14)
of intra-category correlations is 0.49 (from (0.79 + 0.09 + 0.54 + 0.55)/4), however, for
inter-category correlations, it is 0.06 (from (0.08 + 0.24 + 0.01 + 0.03 − 0.01 + 0)/6).

The observation that correlation between metrics from different categories results in
overall weak correlation is important because this tells us that metrics from different
categories have low collinearity. Thus, software code metrics from different categories can
be used together as features in models for prediction, forecast, etc.
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Key Observations:

– Intra-category correlations of metrics are different from inter-category correlations by
resulting in much lower correlation coefficients.

– Correlation of metrics from different categories results in overall weak correlation
coefficient. Thus, code metrics from different categories are observed to have low
correlation coefficients, thus, are non-collinear.

Overall, we have observed that cumulative metrics are different because the intra-category
correlations of cumulative metrics result in higher τb values compared to correlations of
metrics within other categories.

5.4 Cumulative vs. Organic Metrics

The progression of development of software can be tracked in different ways. Traditionally,
we keep track of software through cumulative metrics. Cumulative metrics are intuitive in
the sense that they give us an overall idea of the state of the system. The same thing, i.e., tracking
the progression of software, can also be done through the organic way. Version control systems
like Git keep track of revisions through saving deltas from each revision. Taking the delta
from each consecutive software revisions, we can still calculate the total by a linear addition.
If we have either a cumulative or an organic measure, we can calculate one from the other.

Now we have a question whether the higher τb values among cumulative metrics occur
due to the cumulative way of measurement or it is just because the cumulative metrics are
more correlated to each other. If we want to test this, we have to transform all the cumulative
metrics in this study into organic metrics (which we denote as organict) then compute cor-
relations and check whether there is a significant difference or not. It can be noted that in
Table 2, the three organic metrics are different from the 15 cumulative metrics. Thus, we
need to create a new set of organic metrics equivalent to the cumulative metrics. Since we
have identified few perfectly correlated cumulative metrics, they can act as our point of
validation. Meaning, perfectly correlated metrics should always be perfectly correlated no
matter how they are measured. To check the difference between cumulative and organict
categories, we have considered the following hypothesis:

– Null hypothesis H0: The median difference between correlations of metrics from
cumulative and organict categories equals to zero.

5.4.1 Transformed Organic Metrics

We have transformed all 15 cumulative metrics into organict metrics by taking the difference
between consecutive revisions for each metric. We name these new metrics by adding an
underscore before the cumulative counterpart metrics from which they are transformed, e.g.,
ncloc is transformed into ncloc. It should be noted that the existing three metrics from
the organic category do not take any negative values. Meaning if ncloc decreases new lines
will hold a zero value because there are no new lines. However, organict metrics can hold
negative values reflecting a reduction of a metric’s measure in consecutive revisions.

5.4.2 Designing and Executing the Test

After computing the organict metrics, we went through the same procedure as we did for the
other metrics in this study, i.e., checking the nature of the data. We found organict metrics
to be similar to organic metrics in terms of kurtosis and short tails. However, for skewness,
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Table 16 Sample mean values for significant correlation coefficients (τb) of all metrics including trans-
formed organic metrics. Three gray-scale cell colors indicate three levels of τb . Cells with red text indicate
weak τb . A dot (.) in a cell indicates zero value
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organict metrics are not as extremely left skewed as organic metrics because organict metrics
can take negative values. However, overall, organict metrics are non-normal.

We performed Kendall’s τ for all 39 metrics and derived tables similar to the tables men-
tioned earlier in Section 5. The sample mean of the significant correlation coefficients is
presented in full in Table 16. However, in the interest of space, we only reported newly
derived table sections for standard deviation, count of non-significant τb, and count of
perfect correlations in Tables 31 and 32.

5.4.3 Results from the Test

In Tables 16, 31, and 32, we see that organict metrics are similar to organic metrics both in
terms of intra- and inter-category correlations.

Now we like to see whether organict metrics are able to produce perfect correlations
as produced by the cumulative metrics. Following the similar referencing style as per
Table 11, we refer the section containing τb from intra-category correlations of organict
metrics as OtOt . Intra-category correlation of cumulative metrics (in Section CC of
Table 20) have a total 46 counts of perfect correlations for six correlations. For organict
metrics, we see (in section OtOt of Table 32) 24 perfect correlations for four metrics are
exactly produced. However, for two correlations ((complexity, complexity in functions) and
(complexity in classes, complexity in functions)) 12 out of 22 perfect correlations are pro-
duced. So we look at the sample mean of these two correlations (see section OtOt of
Table 16) and find a value 0.994 for both of these correlations; the value 0.994 is so close
to the maximum possible τb value of 1 that we can consider 0.994 as a perfect correlation.
Thus, we see that both cumulative and organict metrics are equally able to detect perfect
correlations among metrics if there exist any.

At this point, we like to focus on testing the null hypothesis. The mean of sectionOtOt of
Table 16 is calculated as 0.49 which is much lower than the value of 0.79 for the cumulative
metrics (in section CC of Table 14). However, without performing a statistical test, we
cannot accept or reject our null hypothesis.

Earlier our data was the code metrics, but now it is the sample mean of the Kendall’s τ .
So now we need to check the distributions of data to be tested, i.e., section CC and OtOt

of Table 16. We have checked descriptive statistics, skewness, kurtosis, histograms, and
also performed the Shapiro-Wilk test on these two data sets and found the data non-normal.
Thus, we have to choose non-parametric tests.

We can consider the data as paired because a single τb value, say ncloc in section CC

and a corresponding τb value from section OtOt (i.e., ncloc) both measure the similar
aspect but they are measured differently. Then it can also be argued that ncloc and ncloc
are two different measures and they cannot be considered as paired. Taking both argu-
ments, we would like to execute two tests to see whether there is any significant difference.
Taking our two data sets as two independent samples, we perform the ‘Mann-Whitney U
Test’, and taking our data sets as dependent samples, we perform the ‘Wilcoxon Signed
Ranks Test’. After checking the assumptions of these tests, we remove two τb from section
CC and the two corresponding τb from section OtOt . Since the correlations between metrics
complexity, complexity in classes, complexity in functions in section CC and correspond-
ing organict measures from section OtOt are commonly identified as perfectly correlated
in both sections, we decide to keep only one of them and remove the other two so that the
assumption related to data dependency is no longer present. The ‘Wilcoxon Signed Ranks
Test’ has an assumption that all the difference between paired data should approximately be
equally distributed along the quartiles when plotted as a one-dimensional box-plot. This was
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Fig. 9 Statistical test considering cumulative and organict as two independent samples. Sub-figure 9a shows
test statistics for ‘Mann-Whitney U Test’ and 9b graphically shows distributions of τb values for metrics
within cumulative and organict categories

not met for our data. Since this assumption is a visual test, we decided to include a ‘Paired-
Samples Sign Test’, which does not have such an assumption. We report results from all
these three tests here.

We have a total 103 pairs. From the test ranks, we see that for both ‘Wilcoxon Signed Ranks
Test’ and ‘Paired-Samples Sign Test’ count of negative difference is 0, count of positive
difference is 102, and count of ties is one, taking CC as the first and OtOt as the second
variable. These numbers already tell us without looking at the significance levels, that the organict
category is lower than the cumulative category. From Figs. 9 and 10, we see that all the three
tests show a p-value less than 0.01 (i.e., considering an α = 0.01). Thus, we can reject the
null hypothesis and accept the alternative hypothesis, i.e., the median difference between
correlations of metrics from cumulative and organict categories is not equal to zero.

5.4.4 Implications of the Test Results

The finding that there exists a significant median difference between correlations of metrics
from cumulative and organic categories, implies that organic metrics are a set of measures
that are collectively different than the cumulative metrics. Therefore, organic metrics can be
considered as a new set of feature holding different characteristics than cumulative metrics
as a whole.

The intra-category correlations of cumulative metrics are much higher than their equiv-
alent sets of transformed organic metrics. Since correlations between cumulative metrics
are high, there exist high collinearity among these metrics. This makes cumulative met-
rics collinear, and only a single metric from a group of highly correlated metrics can be
considered as a valid input feature for a predictive model. The high collinearity among
software code metrics is not new information. However, the knowledge that transforming
cumulative metrics into organic can significantly reduce the collinearity is new. Since this

Fig. 10 Statistics for different statistical tests to determine the existence of significant differences between
correlations from cumulative and organict
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transformation does not alter the original footprint of how software is evolved, it is expected
to be free of side effects of normalization. Since organic metrics have lower collinearity, the
chance of having multiple valid input features from them is possible.

The inter-category correlations of metrics from different categories are observed to
be always low. This information can improve feature engineering by making the process
more systematic. First, this gives a simple and intuitive understanding of non-collinearity
based on measurement types. Second, this implies transforming a feature into a different
measurement type can produce a feature that is non-collinear with the original feature.

5.5 Discussion

Software engineering researchers have observed high collinearity among software code met-
rics. However, we did not have explicit knowledge whether the high collinearity is due to the
inherent nature of thecodemetrics or due to howwemeasure them. This study compares between
correlation coefficients of a set of 15 cumulative metrics and correlation coefficients of their cor-
responding organic metrics and reveals that a large portion of collinearity among cumulative
metrics results from the cumulative way of measurement. Since organic metrics are free
from the effects of cumulation representing the natural evolution of software, we think, cor-
relation coefficients among the organic metrics represent the inherent collinearity among
code metrics. Taking the difference between the intra-correlation coefficients of metrics from
these two categories, we can determine the added collinearity due to cumulative measurement.

High collinearity among a group of input features makes them weaker as a whole. We can
get a few valid input features from such a set because, during the validation process, features
with high collinearity are removed. Since organic metrics have lower collinearity among
themselves, we can possibly get more valid input features from them. Moreover, since the
collinearity between cumulative and organic metrics are very low, we can combine them to
have even more valid input features. The lower collinearity among cumulative and organic
metrics also means, even though we can calculate a set of organic metrics corresponding to
a set of cumulative metrics, they are mutually exclusive. Therefore, theoretically, we do not
have to restrict our choice of metrics from either of these two categories.

It is interesting that when we add density and average categories to the scenario described
above for cumulative and organic, still non-collinearity holds between metrics from differ-
ent measurement categories. It can be noted that the unit of measurement of the density
metrics is percentage. While cumulative and organic metrics have the same value type (i.e.,
integer), metrics are measured differently in both categories.

The findings that organicmetrics are collectively different than their corresponding cumulative
metrics (i.e., inter-category), the understanding of the effect of cumulation toward collinear-
ity among metrics (i.e., intra-category), and the general observation that metrics from
different measurement categories yield in overall weak correlation coefficients are signifi-
cant for the researchers and the practitioners in software engineering because they help us
better understand the nature of the code metrics. The findings open the possibility of new
research and revisiting existing research in this field. Based on our results, theoretically, we
have more valid input features from different measurement categories, however, in prac-
tice, research needs to be conducted to determine which predictors (i.e., input metrics) are
good for which targets (i.e., qualities that we want to predict or estimate). It could be the
case that specific metrics from a category work better in combination with other metrics
to predict a particular quality attribute. Researchers can also try to find new measurement
categories and their properties. This study has investigated some code metrics, other code
metrics not covered here can also be studied. These results can help the practitioners by
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giving them more insights about software metrics. Quality managers can re-prioritize the
metrics that a project keeps track. Tool developers can rethink about the metrics their tools
support. For example, SonarQube automatically removes new duplicated lines, new lines,
new duplicated blocks, and some other similar organic metrics. Based on the findings of
this study, they can decide to give users the option to keep track of such metrics. Software
engineers working with predictive analysis have more options when choosing input features
for their models. For example, for a predictive model, complexity (of type cumulative) is
identified as an input feature. At this point, the possibility of incorporating metrics related
to complexity from different measurement categories can be explored and complexity per
file (of type average) and complexity per commit or based on a specific time duration (of
type organic) can be considered as input features.

5.6 Threats to Validity and Limitations

5.6.1 Internal Validity

Today software is built with various languages and it is very common that a project uses
code from different languages. Still, a project is usually designated with a specific language
indicating the major portion of code, etc. Computer programming languages use different
constructs and measures of code metrics may dramatically vary due to language difference.
To eliminate this effect, we choose to focus on a single programming language, Java. It can
be noted that Java projects are among the top three ranks on GitHub.

We considered some other factors when selecting projects such as project types, project
size in LOC, number of revisions, number of developers. While selecting the projects, we
tried to combine these factors so that we have a good representation regarding these factors.
Besides, we looked at the number of issues and pull requests. We tried to select projects that
have reported issues and pull requests because these factors are signs of active involvements
of users and developers.

Tools measuring software code metrics are not perfect. Different tools implement mea-
sures differently even though they claim to measure a same aspect of code (Lincke et al.
2008). This study has selected one of the most widely used measurement tools for software
quality, and we have observed very strong correlations between the cumulative metrics sim-
ilar to the major studies. However, selecting a popular tool and similar observations to the
major studies do not entirely remove this threat. This is a general issue to any study like this
and we are aware of this.

We mentioned earlier that we only checked the revisions from the master branch of a Git
repository. This affects granularity of the collected data. Based on the finding in this study,
we know that reducing the cumulative effect reduces the correlation between metrics, thus,
avoiding partial cumulation of data due to Git branches could possibly make the result of
this study more stronger. Therefore, we do not consider this a major threat to our results.

5.6.2 External Validity

There are millions of software projects hosted on GitHub. Generalizing result for such a
large population is a key validity threat for any study and we also identified generalizability
as a considerable threat to validity. Selection of project is one of the most important things
to minimize this threat. We tried to carefully select projects from well-known organizations
to mitigate this risk. For example, we have included projects from Apache, a pioneering
organization in the open source community, Microsoft, and other organizations with diverse
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portfolios. On the positive side, we have found highly significant results from different tests.
For example, Mann-Whitney U Test in Fig. 9a, Wilcoxon Signed Ranks Test in Fig. 10a,
and Paired-Sample Sign Test in Fig. 10b have significance values 4.4e−18, 1.8e−18, and
1.5e−23 correspondingly.

To safeguard the internal validity, we choose to restrict our focus to Java source code.
This choice, however, seems to affect the external validity, meaning ‘do the results hold for
source code written in other programming languages?’. Since measurement types discussed
in this study are independent of the programming languages, such a threat is not highly
significant, in our opinion. However, more research can be done to be certain.

6 Conclusions

This empirical research investigates whether measurement types of software code metrics
have an effect on their correlations. Through collecting and analyzing 24 code metrics
from 11,874 revisions from 21 open source Java projects, we have found that measure-
ment types have an effect on correlations. Analysis of data shows that 10 out of total 15
metrics that are measured cumulatively are redundant based on our criteria two metrics
with a correlation coefficient of 0.9 or above are redundant. When the cumulative effect
of these metrics is removed by transforming these 15 metrics into type organic, only three
of them are identified as redundant. These three metrics are identified as perfectly corre-
lated (i.e., they measure exactly the same aspect) in both categories, implying if metrics are
truly correlated, correlations of their organic measures are able to identify it. In addition,
our analysis shows that organic metrics result in significantly lower correlation coefficients
compared to cumulative metrics for intra-category correlations. Furthermore, while some
software metrics are closely related to each other resulting in high correlation coefficients
to an extent to be considered redundant, many higher correlation coefficient values are due
to measuring these metrics cumulatively. In other words, we should not be surprised seeing
higher correlation coefficients for cumulative metrics, and we should be aware that measur-
ing metrics by their natural development, i.e., organically result in much lower correlation
coefficient.

Another interesting finding is correlations between metrics from different categories yield
in overall weak correlation coefficients. This finding is important because metrics from
cumulative, density, average, and organic categories can be combined together as features
for predictive models. From another view point, this could improve the process of fea-
ture engineering by providing the information that transforming a feature into a different
measurement type produces a new feature that is non-collinear with the original feature.

We have discussed why Kendall’s τ version B fits more for software projects. We also
discussed the landscape of correlation coefficients outlining possible sets considering both
correlation coefficient and p-value which can be helpful for this type of study.

This study has attempted to reveal the fundamental relationships between measurement
types and correlations of software code metrics. More evidence is required to generalize
and extend this knowledge. Thus, replicated studies can be conducted considering various
metrics, measurement tools, programming languages, and project types.
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Appendix

Here are the tables that are not put in the paper to enhance the reading experience.

Table 17 Count of non-significant correlation coefficients (τb) from Sτbnsig
(set of non-significant τb), where

corresponding p-values do not satisfy the level of significance α = 0.05

http://creativecommons.org/licenses/by/4.0/
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Table 18 Standard deviations of significant τb from Sτball
(set of all τb)
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Table 19 Count of NaN from set SNaN indicating missing correlation coefficients (τb) for certain pair of
metrics
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Table 20 Count of perfect correlation coefficient (i.e. τb = 1.0) from set Sτbvs
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Table 21 Mean values for significant (τb) from the set Sτbsig
. Three gray-scale cell colors indicate three

levels of τb . Cells with red text indicate weak τb
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Table 22 Sum of significant correlation coefficient (τb) from the set Sτbsig
. Cells with negative figures are

presented with red text
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Table 23 Count of very strong correlation coefficients (0.9 � abs(τb) � 1.0) from the set Sτbvs
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Table 24 Count of strong correlation coefficients (0.7 � abs(τb) < 0.9) from the set Sτbs
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Table 25 Count of moderate correlation coefficients (0.4 � abs(τb) < 0.7) from the set Sτbm
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Table 26 Count of weak correlation coefficients (0 � abs(τb) < 0.4) from the set Sτbw
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Table 27 Sum of very strong correlation coefficients (0.9 � abs(τb) � 1.0) from the set Sτbvs . Cells with
negative figures are presented with red text color instead of horizontal data bar. Dot (.) in a cell indicates zero
value
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Table 28 Sum of strong correlation coefficients (0.7 � abs(τb) < 0.9) from the set Sτbs . Cells with negative
figures are presented with red text color instead of horizontal data bar. Dot (.) in a cell indicates zero value
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Table 29 Sum of moderate correlation coefficients (0.4 � abs(τb) < 0.7) from the set Sτbm . Cells with
negative figures are presented with red text color instead of horizontal data bar. Dot (.) in a cell indicates zero
value
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Table 30 Sum of weak correlation coefficients (0 � abs(τb) < 0.4) from the set Sτbw . Cells with negative
figures are presented with red text color. Dot (.) in a cell indicates zero value
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Table 31 Standard deviations, count of non-significant τb , and count of perfect τb of significant correlation
coefficients for correlations between organict and metrics from cumulative and density categories from the
set Sτball

. Dot (.) in a cell indicates zero value
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Table 32 Standard deviations, count of non-significant τb , and count of perfect τb of significant correlation
coefficients for correlations between organict and metrics from average, organic and organict categories from
the set Sτball

. Dot (.) in a cell indicates zero value
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