
Thesis for The Degree of Licentiate of Engineering

Outsourcing Computations to
a Cloud That You Don’t Trust

Georgia Tsaloli

Division of Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2019

Outsourcing Computations to a Cloud That You Don’t Trust

Georgia Tsaloli

Copyright ©2019 Georgia Tsaloli
except where otherwise stated.
All rights reserved.

Technical Report No 201L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2019.

ii

Abstract

In many application scenarios, data need to be collected, stored and pro-
cessed. Often sensitive data are collected from IoT devices, which are con-
strained regarding their resources, and, thus, remote, untrusted cloud servers
are required to perform the computations. However, cloud computing raises
many security and privacy concerns since cloud providers cannot be fully
trustworthy. Data owners want their sensitive information to remain pri-
vate and expect con�dentiality guarantees; while users want to utilize the
computations’ results and desire correctness guarantees. Furthermore, in
some cases, standard cryptographic primitives are not su�cient to ensure
that there is no leakage of information.

In this work, we focus on the problem of outsourcing joint computa-
tions from joint sensitive inputs to multiple untrusted servers, while at the
same time achieving public veri�ability (i.e., everyone can verify the correct-
ness of the computed result). Additionally, we investigate how to avoid any
leakage of information by providing di�erential privacy guarantees on the
outsourced computation. More precisely, we introduce the notion of veri-
�able homomorphic secret sharing (VHSS) which allows multiple clients to
outsource joint computations on multiple servers providing also the capabil-
ity to verify the correctness of the computed result. We propose a concrete
instantiation of VHSS for the function that computes the product of n secret
inputs. Besides, we suggest three instantiations of computing the sum of n
secret inputs by employing homomorphic collision-resistant hash functions,
linearly homomorphic signatures, and a threshold signature scheme, respec-
tively. Moreover, we design a protocol that provides both di�erential privacy
and veri�able computation guarantees for outsourced computations.

Keywords: function secret sharing, homomorphic secret sharing, veri�able
computation, di�erential privacy, privacy-preservation, public veri�ability

iii

Acknowledgments

First, I would like to thank my supervisor Katerina, who gave me the op-
portunity to start this journey, believed in me and helped me think positively
and learn a lot. Thank you for your trust!

All the people in my division, Networks and Systems, deserve a "thank
you" for making work an enjoyable place. Thank you to all the administration
people for being so nice and friendly and always giving their support :)

Thank you, Bei, for the helpful research discussions at the beginning of
my Ph.D. studies. Thank you, Carlo, for always opening interesting "crypto"
discussions trying to �nd ways for collaboration :)

Thank you to my colleagues for the nice moments we spend together,
especially, in my favorite "after-work" gatherings.

Special thanks go to my family who made the person I am today and has
been a great support for me all these years.

Last but not least, a big thank you goes to my friends (you know who you
are) who have been there for me in negative situations but have also been
the reason to smile (or to smile again) and to create happy memories. Thank
you all for being in my life ♥

Georgia Tsaloli
Göteborg, September 2019

v

Contents

Introduction 1

1 Veri�able Homomorphic Secret Sharing 11
1.1 Introduction . 13

1.1.1 Related Work . 15
1.2 General De�nitions for the HSS and the VHSS 17
1.3 Additive Homomorphic Secret Sharing Scheme 21

1.3.1 Construction of the Additive HSS 21
1.3.2 Correctness of the Additive HSS 23
1.3.3 Security of the Additive HSS 23

1.4 Multiplicative Veri�able Homomorphic Secret Sharing Scheme 24
1.4.1 Construction of the Multiplicative VHSS 25
1.4.2 Correctness of the Multiplicative VHSS 26
1.4.3 Veri�ability of the Multiplicative VHSS 27
1.4.4 Security of the Multiplicative VHSS 28

1.5 Conclusion . 29

2 Di�erential Privacy meets Veri�able Computation: Achieving
Strong Privacy and Integrity Guarantees 31
2.1 Introduction . 33
2.2 Related Work . 34
2.3 Preliminaries . 35

2.3.1 Veri�able Computation 35
2.3.2 Di�erential Privacy 36

2.4 Veri�able Di�erentially Private Computation 37
2.4.1 A Publicly Veri�able Di�erentially Private Protocol . 39

2.5 Discussion . 41
2.6 Conclusion . 42

vii

Contents

3 Sum it Up: Veri�able Additive Homomorphic Secret Sharing 43
3.1 Introduction . 45

3.1.1 Related Work . 47
3.2 Preliminaries . 48
3.3 Veri�able Additive Homomorphic Secret Sharing 52

3.3.1 Construction of VAHSS using Homomorphic Hash
Functions . 52

3.3.2 Construction of VAHSS with Linear Homomorphic
Signatures . 56

3.3.3 Construction of VAHSS with Threshold Signature Shar-
ing . 59

3.4 Conclusion . 62

Bibliography 65

viii

Introduction

Motivation

In modern society, many applications involve joint computations on data col-
lected from multiple users. Computing statistics on electricity consumption
via smart metering and on health-related information from patients’ data are
some instances of collecting data to obtain useful results. Since data are often
collected from resource-constrained devices (IoT devices), that cannot sup-
port heavy computations, computationally powerful servers are required to
store and process the collected information. However, often these servers
are untrusted. It is possible that there are con�icting interests and, thus, the
returned results of the computations might be incorrect. Furthermore, the
collected data may concern the income of a person, his health information
or even the pro�ts of a company. This means that there is a need to ensure
that con�dential data remain private, even in the presence of untrusted par-
ties, and, additionally, that only the computed results, in which all parties are
interested in, are revealed rather than sensitive information of individuals.
Of course, since the result of the computations is itself important, another
challenge is to be able to certify that the computed result is correct and has
not been altered by malicious parties.

1

Introduction

Background

There exist di�erent scenarios in the literature addressing the problem of
outsourcing computations. In fact, a lot of work considers the single-client,
single-server setting [3, 25, 31, 33, 39, 40, 44], where one client outsources a
computation to a single server. Furthermore, some existing work focuses on
the multi-client setting [32, 35] where the computations are outsourced by
multiple clients as well as on the multi-server setting [2, 48], where the com-
putations are performed by multiple servers. However, in many application
scenarios (e.g., collecting users’ data from multiple sensors) multiple servers
might be needed to perform the computations to avoid single points of fail-
ure. In this context, the multi-client, multi-server setting has received limited
attention.

Many cryptographic primitives, such as veri�able computation, secret
sharing, and di�erentially private mechanisms, are useful in this context, and
also utilized in this thesis. Therefore, we provide a high-level introduction
to these areas.

Secret Sharing Schemes

Given a set of parties {c1, . . . , cm}, an access structure is a monotone1 collec-
tion of non-empty subsets of the parties [7,8]. For a certain domain of secrets,
a secret sharing scheme is a method such that a dealer (or data owner), as-
sumed to be honest, breaks a secret x into shares x1, . . . , xm and distributes
them to m parties in such a way that any unauthorized set of them learns
nothing about x from their shares, yet any authorized set of the parties can
reconstruct x [10, 24]. The �rst secret sharing schemes were designed by
Shamir [42] and Blakley [12], and are based on polynomial interpolation and
hyperplanes intersection respectively.

Consider the use case of cloud storage. Sensitive data owners use cloud
services to store their con�dential information. Yet, cloud providers can-
not be fully trusted. Encryption of the data before uploading [23, 49] can
partially solve this problem; however, problems such as availability failure
or data loss in a single cloud service provider scenario are not prevented.
Therefore, secret sharing allows cloud users to be able to control their con�-
dential data and store them securely. In particular, data owners can separate
their sensitive data into several sets (where each share reveals nothing about
the con�dential data) and store each share in di�erent clouds (see Figure 1).

In a secret sharing scheme, a certain number of shareholders (or cloud

1A collection A ⊆ 2{c1,...,cm} is monotone if B ∈ A and B ⊆ C imply that C ∈ A.

2

Outsourcing Computations to a Cloud That You Don’t Trust

Cloud Providers

SSS
Sensitive Data

SSS
Sensitive Data

Figure 1: Sensitive data are split using a Secret Sharing Scheme (SSS) and
distributed to multiple cloud service providers.

providers in the given example) is needed to reconstruct the sensitive data
given from the data owners. Such a scheme can be employed to perform
computations on the shared data. This fact often raises some security con-
cerns about malicious behaviors of the shareholders. Veri�able computation
techniques contribute to improving the security of this setting.

Verifiable Computation

Veri�able computation gives the ability to resource-constrained devices (e.g.,
IoT devices), which outsource expensive computations to untrusted cloud
providers, to verify the correctness of the returned results. The veri�cation
can be carried out either privately or publicly [1].

There are some essential requirements of veri�able computation [52].
More precisely, by essential requirements, we refer to requirements that any
veri�able computation scheme must ful�ll. These requirements are:

• Veri�cation Correctness: This requirement means that it has to be
almost impossible for an incorrect result to pass the test of a veri�able
computation scheme. In other words, an honest veri�er will con�rm
the correctness of the computation if and only if the result is correct.
This is what we mean by security in veri�able computation mecha-
nisms.

3

Introduction

Computed
Result

Computation Server

proof

proof

proof

Figure 2: Users/Voters get proofs that their input/vote is included and ev-
eryone gets proof that the announced result is correct.

• Veri�cation Con�dentiality: This requirement is about the privacy
of veri�able computation solutions. More precisely, it includes output
privacy and, in some cases, input privacy. Input privacy refers to the
fact that the servers should perform the computation but do not have
access to the input data on which the computation is done. Output pri-
vacy means that the �nal result should be revealed in such a way that
a veri�er does not learn anything about the input to the computation.

• High Veri�cation E�ciency: This requirement means that the ver-
i�able computation scheme has to be practical. In other words, the
veri�cation process must require less time than performing the actual
outsourced computation.

Several real-world scenarios are relevant to the concept of veri�able com-
putation. Consider the case of electronic voting systems. Every voter wants
to verify that their vote was collected and counted correctly. Additionally,
everyone should be able to verify that the voting system is trustworthy and,
therefore, the �nal result is true, while none of them needs to perform the
computation itself (see Figure 2).

As one of the essential requirements stated, the �nal outsourced result
must not reveal any information about the input data used in the computa-
tion. However, even when only the �nal result is revealed, some information
can be inferred about the data of individual clients. Di�erential privacy deals
with such privacy concerns.

4

Outsourcing Computations to a Cloud That You Don’t Trust

Collection of
Health information

Collection of
Health information
+ Georgia’s
health information

Query
Result

Query
Result

≈ The results are
roughly the same

Differential Private Analysis

Differential Private Analysis

Figure 3: Georgia’s health information is not leaked thanks to the di�eren-
tially private analysis.

Di�erential Privacy

Di�erential privacy is a rigorous mathematical de�nition of privacy. The
�rst formal de�nition of di�erential privacy was presented in [28]. Di�er-
ential privacy makes it possible for companies and organizations to collect
and share individuals’ personal information while preserving their privacy.
More speci�cally, di�erential privacy addresses the paradox of learning noth-
ing about an individual while learning useful information about a popula-
tion [29].

A di�erential private algorithm, which is applied to a dataset for per-
forming a computation, has the following property: whether a single indi-
vidual’s record is inside the dataset or not, the output of the computation
hardly changes (i.e., the result is distorted by employing noise in the com-
puted result). Consider, for instance, the case of computing statistics over a
group of individuals about "how many people have the disease X"? A di�er-
ential private algorithm guarantees that anyone having access to the result
of this query will basically create the same conclusion whether or not any
particular individual joined the input of the query (See Figure 3).

We should note here that, by increasing the noise added to the computed
result, we provide high privacy guarantees. However, this can also lead to the
low utility of the data. Therefore, it is important to maintain a good trade-o�
between privacy and utility when a di�erentially private mechanism is used.

5

Introduction

Problem Statement and Research �estions

The need for outsourcing joint computations to a cloud arises from the fact
that IoT devices, which collect the data, have typically limited resources and,
therefore, cannot accommodate the heavy computations. Often, these com-
putations are performed on data collected from multiple users (e.g., comput-
ing electricity consumption statistics on data collected from multiple clients,
monitoring environmental conditions from data collected from multiple sen-
sors). Furthermore, in the cloud computing scenario, assigning the computa-
tion to a single server carries the risks of data loss or loss of con�dentiality.
This situation makes the multi-client, multi-server setting more realistic.

Malicious servers might want to learn sensitive information from the col-
lected data about speci�c users. Hence, we need guarantees that users’ con-
�dential information is not leaked even though the computations are per-
formed by the servers. Consequently, in this thesis, we want to address the
following research question:

RQ1: How can we outsource joint computations from sensitive
datasets of multiple clients to multiple untrusted servers without re-
vealing con�dential data, while also avoiding single points of failure?

Another challenge while outsourcing computations to a cloud is that the
servers might misbehave. More precisely, the servers, even if they do not
have access to the raw data, might intentionally output an incorrect result.
An incorrect computation’s result is useless and, thus, it is essential that cor-
rectness guarantees are provided and that these guarantees are also publicly
available. Retail companies, for example, need statistical results before an-
nouncing their o�ers and they need to know that these statistics are correct.
Based on this challenge, the next research question that emerges is:

RQ2: How can we provide public veri�ability, in the context of out-
sourcing computations, while keeping our sensitive information pri-
vate?

Another important concern is coming from the fact that companies want
to aggregate big amounts of data to provide high-quality services to users
(providing, for instance, personalized recommendations) but this comes as
a risk of the users’ privacy. In this scenario, traditional privacy-preserving
tools (e.g., encryption mechanisms) are not enough to encounter this issue.
Individuals’ data, even if not leaked, might be combined with auxiliary data
and reveal sensitive information. Basic information of individuals might be

6

Outsourcing Computations to a Cloud That You Don’t Trust

enough to narrow down the possible identity of a person [43] or even reveal
their medical records [5]. The problem, then, is that we should be able to
ensure that the returned result of the computation does not reveal more in-
formation than the result itself. Thus, the research question that comes out
is:

RQ3: How can we design a protocol which guarantees that the com-
puted result does not leak information about the participation of an
individual’s data in the computation?

Contributions

We describe how we address the mentioned research questions in the
context of the following research contributions.

Paper 1: Verifiable Homomorphic Secret Sharing [45]

This paper explores the problem of outsourcing joint computations in the
multi-client, multi-server setting. More speci�cally, we introduce the notion
of veri�able homomorphic secret sharing (VHSS) which allows n clients to
outsource joint computations on their joint inputs to m servers without re-
quiring any communication between the clients or the servers; providing,
also, public veri�ability, which means that every user has the capability to
con�rm that the �nal output of the computation is correct. The VHSS de�-
nition contributes to both RQ1 and RQ2.

Furthermore, we provide a detailed example for casting Shamir’s secret
sharing scheme over a �nite �eldF as ann-client,m-server, t-secure, additive
HSS scheme for the function f which computes the sum of n �eld elements.
This construction allows multiple clients to split their secret input xi into
shares which reveals nothing about their input and distribute them to mul-
tiple untrusted servers. The servers will output the sum of the secret inputs
given. This solution contributes to the RQ1 by protecting the clients’ sensi-
tive data, while also avoiding single points of failure by employing multiple
servers for the computation.

Besides, we propose a concrete instantiation of an n-client, m-server,
t-secure, multiplicative VHSS scheme. More precisely, this construction al-
lows n clients to distribute shares of their secret inputs x1, . . . , xn to multiple
servers. The latter output a function value y = f(x1, . . . , xn) which corre-
sponds to the product of the n secret inputs as well as a proof σ that y is a
correct. Anyone can verify that y is computed correctly. Therefore, we have

7

Introduction

given a solution that contributes towards both RQ1 and RQ2 by outsourc-
ing the joint computation of the multiplication function to multiple servers;
while also achieving public veri�ability.

Paper 2: Di�erential Privacy meets Verifiable Computation:
Achieving Strong Privacy and Integrity Guarantees [46]

This short paper addresses the problem of outsourcing computations on sen-
sitive datasets and publishing statistical results over a population of users
while avoiding any leakage of information of individuals. In this paradigm,
individuals want guarantees that their sensitive data will remain private and
service providers want guarantees that the computation is correct. Since
encryption mechanisms are not su�cient to avoid leakage of information,
di�erential privacy can be employed to address this issue. Furthermore, veri-
�able computation mechanisms can be used to provide the veri�ability prop-
erty.

In this paper, we formalize the notion of veri�able di�erentially private
computation and provide its formal de�nition. Subsequently, we propose a
detailed protocol which provides both di�erential privacy and veri�able com-
putation guarantees for the outsourced computations. We consider a curator
which collects the data, an analyst, which performs the heavy computations,
and a reader, who wants to get and verify the computed result, in our so-
lution. We split our proposed protocol into two phases. The �rst phase is
related to the di�erential privacy requirements and the second phase is re-
lated to the veri�able computation guarantees. More precisely, in the �rst
phase, the reader and the curator agree on a randomness u to be used for the
computation of the di�erential private function value. In the second phase,
we employ our publicly veri�able di�erentially private computation scheme
(VDPCPub) to achieve public veri�able di�erential privacy.

Hence, our solution contributes to the RQ2 by providing public veri�a-
bility (e.g., everyone can verify that the function result is a correct evaluation
of the di�erentially private function). It also answers to the RQ3 since the
proposed protocol uses a di�erentially private algorithm for producing the
computed result and, therefore, the participation of any individual’s data is
not revealed.

Paper 3: Sum it Up: Verifiable Additive Homomorphic Secret Shar-
ing [47]

In this paper, we focus on the problem of outsourcing joint summations
on joint inputs to external cloud servers. More precisely, we consider the

8

Outsourcing Computations to a Cloud That You Don’t Trust

problem of veri�able homomorphic secret sharing (VHSS) for the function
f(x1, . . . , xn) = x1 + . . .+ xn which computes the sum of n secret inputs.
Our goal is to provide solutions such that: (i) clients protect their sensitive
information from the untrusted cloud servers, (ii) servers perform compu-
tations in order to output the sum of the clients’ data by holding shares of
them, and, (iii) anyone is able to verify that the computed result is correct
(public veri�ability). We propose three concrete constructions to solve the
veri�able additive homomorphic secret sharing (VAHSS) problem.

We employ three di�erent methods to achieve (public veri�ability) com-
bined with an additive homomorphic secret sharing (additive HSS) scheme
over a �nite �eld F for computing the sum of the input data according to the
requirements mentioned earlier. We discriminate three di�erent cases not
only depending on the primitive used for the veri�cation but, also, depend-
ing on whether the partials proofs (values which are used for the generation
of the proof of correctness) are generated by the clients or the servers. Fur-
thermore, we slightly modify the VHSS de�nition [45] to capture the di�erent
cases regarding the generations of the proofs and, therefore, allow the use of
VHSS in multiple application settings.

In our �rst VAHSS proposed instantiation, which is based on homomor-
phic collision-resistant hash functions, the clients are only responsible to
split their secret data into shares and distribute them to the di�erent servers;
while the servers perform the computations needed for generating the �nal
value y such that y = x1 + . . . + xn; as well as a proof σ that y, indeed,
corresponds to the sum of the secrets x1, . . . , xn. In this scheme, the hash
functions are used in the proof generation. Then, we suggest a construc-
tion based on linear homomorphic signatures. The clients distribute shares
of their secrets to the servers and use their signing key to sign their secret
data. The servers perform the calculations needed for the computation of
y = f(x1, . . . , xn) = x1 + . . . + xn as before. Finally, in our third con-
struction, we employ a (t, n)-threshold RSA signature scheme which allows
to successfully generate a proof σ even if t− 1 servers are corrupted. In this
setting, servers are responsible to compute both the function value y and
the �nal proof σ that y is correct. The �nal proof is mutually produced by
a coalition of t servers. In all three constructions, everyone can verify the
correctness of the computation. Hence, with these three constructions, we
contribute towards the RQ1 by allowing multiple clients to outsource the
sum computation to multiple untrusted servers without revealing their se-
cret data; and towards the RQ2 since we provide public veri�ability in all
proposed constructions.

9

