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Spatially coupled turbo-like codes:
a new trade-off between waterfall and error floor

Saeedeh Moloudi, Michael Lentmaier, Senior Member, IEEE,
and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—Spatially coupled turbo-like codes (SC-TCs) have
been shown to have excellent decoding thresholds due to the
threshold saturation effect. Furthermore, even for moderate
block lengths, simulation results demonstrate very good bit error
rate performance (BER) in the waterfall region. In this paper,
we discuss the effect of spatial coupling on the performance
of TCs in the finite block-length regime. We investigate the
effect of coupling on the error floor performance of SC-TCs
by establishing conditions under which spatial coupling either
preserves or improves the minimum distance of TCs. This allows
us to investigate the error floor performance of SC-TCs by
performing a weight enumerator function (WEF) analysis of the
corresponding uncoupled ensembles. Our results demonstrate
that spatial coupling changes the design trade-off between the
waterfall and error floor performance. Instead of optimizing the
BP threshold of uncoupled TCs, which in turn leads to a higher
error floor, we can take advantage of the threshold saturation
property of SC-TCs. Choosing strong ensembles, characterized
by good MAP thresholds and low error floors, the corresponding
SC-TCs are then able to simultaneously approach capacity and
achieve very low error floor.

Index Terms—Bound on minimum distance, expurgated
bounds,spatially coupled turbo-like codes, union bound, weight
enumerator analysis

I. INTRODUCTION

Turbo codes [1] and low-density parity check (LDPC)
codes [2] are adopted in many communication standards
[3]–[6] because they can practically approach the Shannon
limit. Recently, it has been proved that LDPC convolutional
codes [7], [8] —also known as spatially coupled LDPC (SC-
LDPC) codes—exhibit the remarkable threshold saturation
phenomenon [9]–[12], i.e., for an SC-LDPC ensemble, the
belief propagation (BP) decoder can achieve the threshold
of the optimal maximum-a-posteriori (MAP) decoder of the
underlying uncoupled ensemble. It then follows the remarkable
property that regular SC-LDPC codes achieve capacity with
BP decoding as their variable node degrees tend to infinity.
For finite block lengths, however, larger variable node degrees
increase the number of short cycles in the factor graph [13],
which negatively impacts the performance of a BP decoder.

Parts of this paper have been presented at the IEEE International Sympo-
sium on Information Theory and Its Applications (ISITA), 2016.
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In this work, we take another approach and consider some
generalized LDPC codes, for which the factor nodes represent
stronger component codes while the variable nodes have
degree one and two only. In particular, we consider a class
of codes defined by factor graphs with convolutional code
trellis constraints that we refer to as turbo-like codes (TCs).
Spatially coupled TCs (SC-TCs) were introduced in [14]–[16],
and it was proved that threshold saturation also occurs for
this class of codes. A density evolution analysis shows that,
by having stronger component codes, SC-TCs can achieve
excellent decoding thresholds with low variable node degrees.

The aim of this paper, which is an extension of [17], is
to investigate the performance of these codes in the finite
block-length regime. We consider the same TC ensembles
as those in [14]–[16], namely parallel concatenated codes
(PCCs) [1], serially concatenated codes (SCCs) [18], [19],
braided convolutional codes (BCCs) [20], [21], and hybrid
concatenated codes (HCCs) [22], [23]. As the first step of
our investigation, using the decoding thresholds on the binary
erasure channel (BEC) obtained in [15], [16] and the method
described in [24], [25], we predict the decoding thresholds
over the additive white Gaussian noise (AWGN) channel.
Using these thresholds together with the provided simulation
results, we discuss the effect of spatial coupling on the
performance of TCs in the waterfall region over the AWGN
channel. Then, we investigate the effect of coupling on the
error floor performance of TCs. We prove that any given
code from one of the uncoupled TC ensembles can be used
to construct a corresponding time-invariant SC-TC such that
for any codeword of a given Hamming weight there exists a
codeword in the corresponding uncoupled code with lower or
equal weight. Thus, the minimum Hamming distance of the
SC-TC is at least as large as that of the original uncoupled
code. The proof relies on some conditions on the permutations
used in the coupled code, which can serve as a guideline
for unwrapping codes from the TC ensembles. Based on
this minimum distance property and results from computer
simulations we conjecture that the error floor performance
of a TC is not degraded by spatial coupling if the derived
conditions are fulfilled, which is not always the case if the
permutations are chosen arbitrarily. A further advantage of
this connection between the minimum distance of TCs and
SC-TCs is that it does not require the computation of finite
length weight enumerator functions (WEFs) of the coupled
ensembles, which is computationally infeasible due to the large
number of different edge types in the factor graph. Instead, we
can perform a WEF analysis for the uncoupled TC ensembles
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Fig. 1. (a) Encoder block diagram of PCC. Compact graph representation of
(b) PCC, (c) SC-PCC.

to investigate and discuss their distance properties. Thus, we
compute the WEFs of TC ensembles [18], [26]–[28] to obtain
bounds on their bit error rate (BER) performance and a bound
on the minimum distance. Finally, in the last step of our
investigation, we use the obtained results to discuss the overall
performance of SC-TCs for the finite block-length regime.

The remainder of the paper is organized as follows. In Sec-
tion II, we briefly describe several TC and SC-TC ensembles
by use of the compact graph representation introduced in [15].
We discuss the decoding thresholds of these ensembles in
Section III. In the same section, we provide some simulation
results to discuss the waterfall region performance of SC-
TCs. In Section IV, we show how to construct SC-TCs
whose minimum distance is either better than or equal to the
minimum distance of codes from the corresponding uncoupled
ensembles. In Section V, we compute the average WEF of
TC ensembles to obtain bounds on their BER performance
and minimum distance. Finally, in Section VI, we discuss the
trade-off between waterfall and error floor performance of SC-
TCs, and we conclude the paper in the same section.

II. SPATIALLY COUPLED TURBO-LIKE CODES

In this section, we briefly describe four major classes of
TCs— namely, PCCs, SCCs, BCCs, and HCCs— and their
coupled counterparts. In particular, we discuss PCCs and SC-
PCCs with coupling memory m = 1, and refer the interested
reader to [15] for details on the other SC-TC ensembles and
higher coupling memories, m > 1.

Fig. 1(a) shows the block diagram of a rate R = 1/3
PCC encoder built of two recursive systematic convolutional
encoders, referred to as upper and lower encoder. As shown in
the figure, the information sequence u is encoded by the upper
encoder CU to produce the upper parity sequence vU. Likewise,
a reordered copy of u is encoded by the lower encoder CL

to produce the lower parity sequence vL. The corresponding
permutation is denoted by ΠUn. Finally, the output of the PCC
encoder is the sequence v = (u,vU,vL).

The compact graph representation [15] of the PCC ensemble
is depicted in Fig. 1(b). Each of the sequences u, vU, and
vL is represented by a black circle, referred to as variable
node. The trellises corresponding to the component encoders
are shown by squares, called factor nodes, and they are labeled
by the length of the trellises. The sequences u and vU are
connected to the upper trellis TU. Likewise, a reordered copy
of u and vL are connected to the lower trellis TL. In order
to emphasize that a reordered copy of u is connected to TL,
the corresponding permutation is represented by a line that
crosses the edge which connects u to TL.

Fig. 1(c) shows the compact graph representation of the
spatially coupled PCC (SC-PCC) ensemble with coupling
memory m = 1 at time t. Consider a collection of PCC
ensembles at time slots t = 1, . . . ,L, where L is the coupling
length. The SC ensemble can be obtained by dividing the
information sequence at time t, ut, and its reordered copy,
ũt, into two subsequences, denoted by ut,j and ũt,j , j = 0, 1,
respectively. Then these subsequences are spread over time t
and t+ 1. The input sequence to the upper encoder at time t
is the sequence (ut,0,ut−1,1), reordered by permutation ΠU

t .1

Likewise, the input sequence to the lower encoder at time t
is the sequence (ũt,0, ũt−1,1), reordered by permutation ΠL

t .
The information bits at time slots t ≤ 0 are initialized by zero
and the information bits at t = L are chosen in such a way
that uL,1 = 0 and ũL,1 = 0 (i.e., we consider the termination
of the coupled chain).

Fig. 2 shows the compact graph representation of the SCC,
BCC, and HCC ensembles, and their corresponding spatially
coupled ensembles. We refer the interested reader to [15], [16],
for a description and more details on these ensembles. In this
paper, we restrict ourselves to PCC, SCC and HCC ensembles
with identical 4-state component trellises and generator matrix
G = (1, 5/7), in octal notation. For the BCC ensemble,
we consider two identical 4-state component trellises with
generator matrix

G(D) =

(
1 0 1/7
0 1 5/7

)
. (1)

We also restrict ourselves to systematic TCs and SC-TCs with
rate R = 1/3. Therefore, for the SCC and HCC ensembles, we
consider full puncturing of the parity sequences of the outer
encoders [15], [16].

III. SPATIAL COUPLING: WATERFALL REGION
PERFORMANCE

A. Asymptotic Performance

Using the decoding threshold of an ensemble computed
for the BEC, it is possible to predict its decoding threshold
over the AWGN channel [24], [25]. This allows us to use the
decoding thresholds of the TC and SC-TCs from [15], [16] to
predict the corresponding thresholds over the AWGN channel.
The results are shown in Table I. In the table, we report
the uncoupled BP thresholds, Eb/N0 [dB]BP, MAP thresholds,
Eb/N0 [dB]MAP, and the coupled BP thresholds for coupling

1The multiplexer is represented by a rectangular in the compact graph
representation.
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Fig. 2. Compact graph representation of (a) SCC (b) SC-SCC, (c) BCC, (d) SC-BCC, (e) HCC (f) SC-HCC.

TABLE I
PREDICTED AWGN CHANNEL THRESHOLDS FOR RATE-1/3 TCS AND SC-TCS.

Ensemble Type Eb/N0 [dB]BP Eb/N0 [dB]MAP Eb/N0 [dB]1SC Eb/N0 [dB]3SC Eb/N0 [dB]5SC
CPCC/CSC−PCC - -0.1053 -0.3070 -0.3070 -0.3070 -0.3070
CSCC/CSC−SCC - 1.4024 -0.4740 -0.1196 -0.4673 -0.4740
CBCC Type-I 1.2139 -0.4723 -0.3992 -0.4573 -0.4673
CBCC Type-II 1.2139 -0.4723 -0.4690 -0.4723 -0.4723
CHCC/CSC−HCC Type-I 3.8846 -0.4941 1.0366 0.3038 0.0780
CHCC/CSC−HCC Type-II 3.8846 -0.4941 0.2809 -0.4706 -0.4941

memory m = 1, 3, 5, denoted by Eb/N0 [dB]1SC, Eb/N0 [dB]3SC,
and Eb/N0 [dB]5SC, respectively. For the BCC and HCC ensem-
bles, we consider two different types of coupling referred to as
Type-I a Type-II. Similar to the BEC [15], [16], among all the
uncoupled TC ensembles, the PCC ensemble has the best BP
threshold but the worst MAP threshold. Conversely, the HCC
ensemble has the worst BP threshold but the best MAP thresh-
old, which is very close to the Shannon limit. Our numerical
results confirm that for large enough coupling memory, the
BP thresholds of the considered SC-TC ensembles improve to
the MAP thresholds of the underlying uncoupled ensembles.
This means that threshold saturation occurs for the SC-TC
ensembles, and these ensembles can achieve close-to-capacity
BP thresholds.

B. Finite Block-Length Performance

Fig. 3 shows BER simulation results for PCCs, SCCs, SC-
PCCs, and spatially coupled SCC (SC-SCCs) with R = 1/3
and input block length K = 1024 and K = 4096. The
corresponding BP and MAP threshold predictions from Table
I are also marked in the figure. For the coupled ensembles,
we consider a coupling length L = 100 and a sliding window
decoder with window size W = 4 [21]. The decoding latency
is W ·K. It is well known that the PCC ensemble yields better
performance than the SCC ensemble in the waterfall region
[18]; however, the SCC ensemble has a much lower error
floor than the PCC ensemble. By applying spatial coupling,

the performance of the PCC and SCC ensembles improves
significantly for both input block lengths. This improvement
is more substantial for the SCC ensemble than for the PCC
ensemble. For instance, the performance of the SCC ensemble
with K = 1024 at BER= 10−5 improves more than 1 dB
with coupling. The coupling gains are in agreement with the
decoding thresholds in Table I. As it can be seen, the gap
between the BP and MAP threshold of the SCC ensemble is
larger than that of the PCC ensemble, hence the expected gain
from coupling is bigger for the SCC ensemble.

In Fig. 3, the uncoupled ensemble with K = 4096 and
the coupled ensemble with K = 1024 have equal latency,
i.e., both ensembles have a decoding latency of 4096 bits. For
this latency, the SC-SCC ensemble performs better than the
SCC ensemble. However, in the case of PCCs, for a latency
of 4096 bits, the uncoupled ensemble performs slightly better
than the corresponding coupled ensemble. Interestingly, for
equal latency, the SC-SCC ensemble outperforms the SC-PCC
ensemble in the waterfall region. Thus, the SC-SCC ensemble
yields better performance in both the waterfall and error floor
regions.

In the following section, we investigate the impact of spatial
coupling on the error floor performance of TCs in terms of
their minimum distance.
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IV. SPATIAL COUPLING: ERROR FLOOR REGION
PERFORMANCE

Similar to uncoupled TC ensembles, to analyze the per-
formance of SC-TC ensembles in the error floor region, one
could derive bounds based on the WEFs of the ensembles.
Unfortunately, deriving the WEF for SC-TCs is cumbersome.
In this section, we establish a connection between the code-
word weights of SC-TCs and TCs. In particular, we prove that,
by proper choice of the permutation matrices, spatial coupling
does not decrease the minimum distance of a given TC.

A similar connection between LDPC and SC-LDPC codes
is proved in [29]–[31]. Here, we restrict ourselves to SC-
TCs with coupling memory m = 1, but the proof can be
generalized to higher coupling memories.

Theorem 1: Consider an uncoupled PCC, C̃, (see Fig. 1(b))
with permutation ΠUn and parity-check matrices HU and HL
corresponding to the upper and lower component encoders.
It is possible to unwrap the PCC to form an SC-PCC, C
(Fig. 1(c)). For the SC-PCC, we assume a length-L cou-
pled chain with termination or tailbiting, and time-invariant
permutations. Let us denote the permutations by ΠU

t = ΠU,
ΠL

t = ΠL, and Πt = Π, and assume that they satisfy

ΠUn = (ΠU)−1 ·Π ·ΠL. (2)

Then, for any codeword v ∈ C, v = (v1, . . . ,vL), vt =
(ut,v

U
t ,vL

t ), with Hamming weight wH(v), there exists a
codeword ṽ ∈ C̃ such that

wH(ṽ) ≤ wH(v) .

Proof: We prove this theorem for tailbiting of the coupled
chain, which contains termination as a special case. The result
is thus valid for both cases. Any codeword v ∈ C satisfies the
local constraints for t = 1, . . . ,L. Therefore, at time t,

(
(ut,0,ut−1,1) ·ΠU vU

t

)
·HT

U = 0, (3)(
(u′t,0,u′t−1,1) ·ΠL vL

t

)
·HT

L = 0, (4)

where u′t = ut · Π. The constraints are linear and time-
invariant. Thus, for t = 1, . . . ,L, any superposition of the
vectors

(
(ut−1,1,ut,2)·Π1 vU

t

)
and

(
(u′t−1,1,u′t,2)·Π1 vL

t

)
satisfies (3) and (4), respectively. In particular, consider

L∑
t=1

(
(ut,0,ut−1,1) ·ΠU vU

t

)
=
( L∑
t=1

(ut,0,ut−1,1) ·ΠU
L∑

t=1

vU
t

)
=
( L∑
t=1

ut ·ΠU
L∑

t=1

vU
t

)
, (5)

and
L∑

t=1

(
(u′t,0,u′t−1,1) ·ΠL vL

t

)
=
( L∑
t=1

(u′t,0,u′t−1,1) ·ΠL
L∑

t=1

vL
t

)
=
( L∑
t=1

u′t ·ΠL
L∑

t=1

vL
t

)
=
( L∑
t=1

ut ·Π ·ΠL
L∑

t=1

vL
t

)
. (6)

Let

ũ =

L∑
t=1

ut ·ΠU, ṽU =

L∑
t=1

vU
t , ṽL =

L∑
t=1

vL
t .

Then, the vectors obtained from (5) and (6) can be rewritten
as (ũ ṽU) and (ũ ·ΠUn ṽL), respectively.

The vectors from (5) and (6) satisfy (3) and (4), respectively.
Thus,

(ũ ṽU) ·HT
U = 0, (7)

(ũ ·ΠUn ṽL) ·HT
L = 0. (8)

Therefore, ṽ = (ũ, ṽU, ṽL) is a codeword of the uncoupled
ensemble.

If all nonzero elements of vt, t = 1, . . . ,L, occur at
different positions, then wH(ṽ) = wH(v). Otherwise, the
overlap of the nonzero elements reduces the weight of ṽ and
wH(ṽ) < wH(v).

This theorem can be extended to the other TC ensembles.
Theorem 2: Consider an uncoupled SCC (BCC/HCC), C̃,

(Fig. 2). It is possible to unwrap the SCC (BCC/HCC) to
form an SC-SCC (BCC/SC-HCC), C (Fig. 2). For the cou-
pled code, we assume a length-L coupled chain with ter-
mination or tailbiting, and time-invariant permutations which
satisfy certain conditions. Then, for any codeword v ∈ C,
v = (v1, . . . ,vt, . . . ,vL), vt = (ut,v

U
t ,vL

t ), there exists a
codeword ṽ ∈ C̃ such that

wH(ṽ) ≤ wH(v) .

Proof: See Appendix.
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Corollary 1: The minimum distance of an SC-TC ensemble
C is larger than or equal to the minimum distance of the
underlying uncoupled TC ensemble C̃,

dmin(C) ≥ dmin(C̃) .

�
By the above theorems, we establish conditions on the per-
mutations under which SC-TCs have equal or better minimum
distance than their corresponding TCs. These conditions can
be considered as guidelines for selecting proper permutations
for SC-TCs.

It should be noted that an exact analysis of the error floor
performance of SC-TCs would require results on higher order
terms of the weight spectrum and their multiplicities, whose
efficient computation or estimation is much more complicated
and still an open problem. However, based on our analytical
results on the minimum distance as well as results from
computer simulations we conjecture that a WEF analysis of
uncoupled TC ensembles can be used to approximate the error
floor of SC-TCs constructed from such TCs.

V. WEIGHT ENUMERATOR ANALYSIS

In this section, we consider uncoupled TC ensembles and
describe how to derive upper bounds on the error rate perfor-
mance and bounds on the minimum distance of these ensem-
bles based on their WEFs [18], [26]. Then, we compare these
bounds for different classes of TCs. For that, we first derive
the average input-parity WEF (IP-WEF) of the component
encoders. In particular, we describe the steps for a rate-2/3
recursive systematic convolutional encoder. A similar method
can be used to derive the IP-WEF of any convolutional encoder
with arbitrary rate R. Then, we use the obtained IP-WEFs to
compute the average IP-WEFs of the TC ensembles.

A. Input-Parity Weight Enumerator

Let A(I1, I2,P ) denote the IP-WEF of a rate-2/3 recursive
systematic convolutional encoder,

A(I1, I2,P ) =
∑
i1

∑
i2

∑
p

Ai1,i2,p I
i1Ii2P p,

where the coefficient Ai1,i2,p denotes the number of codewords
with weight i1, i2, and p for the first input, the second input,
and the parity sequence, respectively.
A(I1, I2,P ) can be computed as follows. For a trellis with

s states, transitions within a trellis section can be described by
an s×s matrix M . The element of M in the rth row and the
cth column, [M ]r,c, corresponds to the trellis branch from the
rth state to the cth state. More precisely, [M ]r,c is a monomial
Ii11 I

i2
2 P

p, where i1, i2, and p are the weights corresponding
to the first, second, and third outputs of the transition from
the rth state to the cth state. For a trellis with N sections, the
overall transition matrix is MN . Considering that the trellis
is initialized and terminated to the all-zero state, the IP-WEF
is given by the element [MN ]1,1.

Example 1: Assume a terminated, rate-2/3 convolutional
encoder with three trellis sections and generator matrix in (1).

The transition matrix can be written as

M(I1, I2,P ) =


1 I2P I1I2 I1P
I1 I1I2P I2 P
I2P 1 I1P I1I2
I1I2P I1 P I2

 ,

and the IP-WEF becomes

A(I1, I2,P ) = [M3]1,1 =

1 + I32P
2 + 2I1I2P + I1I2P

3 + 2I1I
2
2P+

I1I
2
2P

3 + I21I2 + 2I21I2P
2 + 3I21I

2
2P

2 + I31P + I31I
3
2P .

4
For a rate-1/2 convolutional encoder, we can obtain the

transition matrix M in a similar way. Then, the IP-WEF of
the encoder is given by [MN ]1,1 and can be written as

A(I,P ) =
∑
i

∑
p

Ai,p I
iP p,

where Ai,p is the number of codewords of input weight i and
parity weight p.

Consider the PCC ensemble shown in Fig. 2(b). Let
ATU(I,P ) and ATL(I,P ) denote the IP-WEFs corresponding
to the upper and lower component encoder, respectively. The
overall IP-WEF depends on the IP-WEF of the component
encoders and the permutation used. Averaging over all possible
permutations, the coefficients of the average IP-WEF of the
PCC ensemble, ĀPCC

i,p , can be obtained as [26]

ĀPCC
i,p =

∑
p1
ATU

i,p1
·ATL

i,p−p1(
N
i

) . (9)

For the SCC ensemble shown in Fig. 2(b), we denote the
IP-WEFs of the outer and inner encoder by ATO(I,P ) and
ATI(I,P ), respectively. Similar to PCCs, the average IP-WEF
of the SCC ensemble, ĀSCC

i,p , can be computed by averaging
over all possible permutations [18]. The coefficients ĀSCC

i,p can
be written as

ĀSCC
i,p =

∑
p1

ATO
i,p1
·ATI

i+p1,p−p1(
2N
i+p1

) . (10)

We denote the IP-WEFs corresponding to the upper and
lower component encoders of the BCC ensemble (Fig. 2(c))
by ATU(I,P ) and ATL(I,P ), respectively. The coefficients of
the average IP-WEF, ĀBCC

i,p , can be computed as

ĀBCC
i,p =

∑
p1

ATU
i,p1,p−p1

·ATL
i,p−p1,p1(

N
i

)(
N
p1

)(
N

p−p1

) . (11)

To compute the average IP-WEF of the HCC ensemble,
ĀHCC

i,p , it is possible to combine the methods that we used for
PCCs and SCCs. First, the average IP-WEF of the parallel
component is computed. Then, ĀHCC

i,p can be obtained by
substituting ATO(I,P ) in (10) by the computed average IP-
WEF of the parallel component [22],

ĀHCC
i,p =

∑
p1

∑
p2

ATU
i,p1
·ATL

i,p2
·ATI

p1+p2,p−p1−p2(
N
i

)(
2N

p1+p2

) . (12)
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Fig. 4. Union bound on performance of the TCs, K = 512, R = 1/3.

It is worth mentioning that by the use of the compact graph
representation, TCs can be seen as a class of protograph-based
generalized LDPC (GLDPC) codes. Therefore, equivalently,
it is possible to compute the average IP-WEF of TCs by the
method developed for GLDPC codes in [27], [28].

B. Bounds on the Error Probability

Consider transmission of codewords of a rate-R TC ensem-
ble over the AWGN channel. For a maximum likelihood (ML)
decoder, the BER is upper bounded by

Pb ≤
N∑
i=1

N(1/R−1)∑
p=1

i

N
Āi,p Q

(√
2(i+ p)R

Eb

N0

)
. (13)

Likewise, the frame error rate (FER) is upper bounded by

PF ≤
N∑
i=1

N(1/R−1)∑
p=1

Āi,p Q

(√
2(i+ p)R

Eb

N0

)
, (14)

where
Q(x) =

1√
2π

∫ ∞
x

exp
(
− u2/2

)
du,

and Eb/N0 is the signal-to-noise ratio.
Fig. 4 shows the bounds on the BER performance of the

different classes of TCs for R = 1/3 and K = 512. The
bounds are truncated at weight w = 320, which is larger
than the corresponding Gilbert-Varshamov limit. The HCC
ensemble has the lowest error floor, while the BCC and
PCC ensembles have the highest error floors. Surprisingly,
the error floor of the BCC ensemble is not only high but
also has the worst slope among all TC ensembles. On the
other hand, the excellent MAP thresholds of the BCC en-
semble suggest a good performance for this ensemble under
MAP decoding. The contradiction between the excellent MAP
threshold of the BCC ensemble and its poor bound suggests
that the performance is dominated by few bad permutations.

1 2 3 4 5

10−7

10−5

10−3

10−1

Eb/N0 [dB]

B
E

R
/F

E
R

FER, Sim. unif. rand. perm.
BER, Sim. unif. rand. perm.
FER, Sim. fixed perm.
BER, Sim. fixed perm.
FER, bound
BER, bound

Fig. 5. Bounds on performance of the BCCs and simulation results for
uniformly random and fixed permutations, K = 512, R = 1/3.

To verify this, we simulated the BCCs for two scenarios; first,
a randomly selected but fixed set of permutations; second
randomly chosen permutations for each simulated block. The
results are shown in Fig. 5, together with the corresponding
bounds. The figure shows that the bounds are in agreement
with the simulation results for uniformly random permutations.
However, it indicates a significant improvement in FER for the
fixed set of permutations. For example, at Eb/N0 = 2.5 dB,
the FER improves from 9.5·10−5 to 6.8·10−7. This significant
improvement caused by fixing the permutations, supports that
the high floor of the BCC ensemble is caused by the poor
performance of a small fraction of codes. Thus, in the next
section, we compute expurgated union bounds.

C. Bound on the Minimum Distance and Expurgated Bounds

Consider a TC ensemble consisting of Ω codes in total.
The value Ω follows from the different possible combinations
of permutations and depends on the type of the ensemble.
Assume that all codes in the ensemble are selected with equal
probability. Then, the number of codewords with weight w
over all possible codes in the ensemble is ΩĀw, where Āw is
the average WEF of the ensemble. Therefore, given an integer
value d̃, the total number of codewords with weight w < d̃
can be computed as

Ωw<d̃ = Ω

d̃−1∑
w=1

Āw .

By considering that these codewords are spread over different
possible codes, we can obtain an upper bound on the number
of codes with minimum distance dmin ≥ d̃,

Ωw≥d̃ < Ω− Ω

d̃−1∑
w=1

Āw .
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Let α denote the fraction of codes with dmin ≥ d̃. Then, α is
upperbounded by

α < 1−
d̃−1∑
w=1

Āw . (15)

For a given α and Āw, an analytical bound on the minimum
distance of an ensemble can be obtained by computing the
largest d̃ which satisfies (15). In fact, this bound shows that
a fraction α of all possible codes has minimum distance
dmin ≥ d̃. In Fig. 6, considering different classes of TCs
with R = 1/3, this bound is computed for α = 0.5
and different input block lengths. For comparison, we have
computed Āw for unstructured (J ,K)-regular LDPC code
ensembles, as introduced and analyzed by Gallager [2], [32].
The corresponding minimum distance bound is also depicted
in the figure. As the results show, the HCC ensemble has the
best minimum distance, and the (2, 3) LDPC code ensemble
has the worst. As an example, for K = 300 the values
computed for HCCs, BCCs, SCCs, PCCs, (4, 6), and (2, 3)
LDPC code ensemble are d̃ = 129, 99, 37, 10, 119 and 3,
respectively.

For demonstrating the impact of the variable node degree
J , we have computed this bound for (J , 2J) LDPC code
ensembles with J = 2, . . . , 7, in comparison with punctured
TCs of R = 1/2. The results are shown in Fig. 7. According
to this figure, LDPC codes can be competitive in terms of
minimum distance, provided that the variable node degree
is chosen large enough. For example, to obtain a minimum
distance bound almost as good as that of the HCC ensemble,
the variable node degree J = 7 is needed. Among the TC
ensembles, according to Fig. 6 and Fig. 7, the minimum
distance grows linearly with the input block length for both
the BCC and the HCC ensembles [17], [22]. However, the
bound on the minimum distance of the HCC ensemble has a
higher slope and grows faster than that of the BCC ensemble.

It is also worth to mention that, comparing the results in
Fig. 6 and Fig. 7 with the thresholds in Table I, we can observe
that the TC ensembles with good MAP threshold also have
good minimum distance.

Consider excluding a fraction (1−α) of codes with dmin < d̃
from a TC ensemble. Then, it is possible to compute the upper
bound on the performance of this expurgated ensemble. The
average BER of the expurgated ensemble is upperbounded by

Pb ≤
1

α

kN∑
i=1

nN∑
w=d̃

i

N
Āi,w Q

(√
2wR

Eb

N0

)
. (16)

The bounds for the expurgated TC ensembles are shown in
Fig. 8 for α = 0.5, which means that half of the codes with
dmin < d̃(α) are excluded. For comparison, we also provide
the corresponding union bounds in the same figure. It can
be seen that for all TC ensembles except the PCC ensemble,
the error floor estimated by the expurgated bound is much
steeper and lower than that resulting from the union bound.
In other words, expurgation improves the performance of the
SCC, BCC, and HCC ensembles significantly.

For the BCC and HCC ensembles, the gap between the
expurgated bound and the union bound is very large and
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Fig. 6. Bound on the minimum distance, R = 1/3, fraction α = 0.5 of
codes have dmin > d̃.
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Fig. 7. Bound on the minimum distance, R = 1/2, fraction α = 0.5 of
codes have dmin > d̃.

notable. To investigate the influence of expurgation on the
performance of these ensembles, in Fig. 9 we provide the
expurgated bound on the BER of the BCC and HCC ensembles
for α = 0.5 and α = 0.99. Note that for α = 0.99, the
expurgated bounds are computed by excluding only 1% of
the possible codes, and these bounds are still significantly
lower and steeper than the corresponding union bounds. For
the BCC ensemble, the gap between the expurgated bounds for
α = 0.5 and α = 0.99 is much smaller than that of the HCC
ensemble. Therefore, for α = 0.99, the BCC ensemble has
slightly steeper and lower error floor than the HCC ensemble.
The fact that changing α has a little impact on the expurgation
of the BCC ensemble suggests that only a small fraction of
the codes have poor distance properties. This means that for
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Fig. 8. Expurgated union bound on performance of TCs, α = 0.5, K = 512,
and R = 1/3.
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Fig. 9. Expurgated union bound of HCCs and BCCs for α = 0.5 and α =
0.99, K = 512, R = 1/3.

a BCC with randomly selected but fixed permutations, with
high probability the error floor is as steep and low as the
corresponding expurgated bound for an ML decoder.

VI. DISCUSSION AND CONCLUSION

We investigated the performance of SC-TC ensembles with
finite block length in both waterfall and error floor regions.
The two primary results can be summarized as follows.
First, the performance improvement of spatial coupling in
the waterfall region is not only visible asymptotically, for
block lengths tending to infinity, as predicted by the threshold
saturation [15]. Our simulation results demonstrate that spatial
coupling can also improve the waterfall performance even for

moderate block length and fixed latency with window decod-
ing. Second, considering certain conditions, spatial coupling
either improves or preserves the minimum distance of TCs.
Therefore, we can construct from any given good TC an
SC-TC with equal or better minimum distance. Using this
fact, instead of performing the cumbersome WEF analysis for
the coupled ensemble, we derived the WEF for uncoupled
ensembles. Then, based on the WEF, we computed bounds
on BER performance and the minimum distance of TCs. As
the coupled ensembles have equal or larger minimum distance
than the uncoupled ensembles, we have used the computed
bounds for TCs to approximate the error floor of SC-TCs. The
results from the WEF analysis of TCs demonstrate very low
error floors for SCC, BCC, and HCC esnembles. Moreover, for
the BCC and HCC ensembles, the minimum distance grows
linearly with block length.

Comparing the thresholds of SC-TC ensembles (see Table I)
and the results from the WEF analysis, we observe that the en-
sembles with better MAP thresholds also have larger minimum
distance and lower error floor. However, so far, only PCCs
have been widely used in various standards—such as UMTS
and LTE— because of their good BP thresholds and good
performance in the waterfall region. Other TC ensembles have
received much less attention for commercial use, although they
have better MAP threshold and distance properties than PCCs.
Our results confirm that the BP thresholds of these ensembles
can be significantly improved by applying coupling. Also,
regarding the finite length regime, while their error floor stays
at very low error probabilities, their waterfall performance gets
much closer to capacity. This brings us to the conclusion that
by coupling a given ensemble with close to capacity MAP
threshold and low error floor, such as SCCs, BCCs, and HCCs,
the resulting ensemble is very promising and can perform
close-to-capacity, yet achieving low error floor, with a low
complexity iterative decoder.

Finally, we should remark that the considered bounds esti-
mate the error floor of an ML decoder. To obtain bounds on
the performance of the BP decoder, more investigations on the
corresponding absorbing sets [33] and pseudo-codewords [34]
need to be done.

APPENDIX A
PROOF OF Theorem 2

We prove the theorem for the general case of tailbiting.

A. Serially Concatenated Codes

Consider the SCC and SC-SCC ensembles in Fig. 2(a) and
(b), and assume that

ΠUn = Π(1) ·Π(2).

Any codeword v ∈ C satisfies the local constraints for t =
1, . . . ,L. Therefore, at time t,(

ut vO
t

)
·HT

O = 0 , (17)(
(ṽ′t,0 ṽ′t−1,1) ·Π(2) vI

t

)
·HT

I = 0 , (18)

where ṽ′t = (ut,v
O
t )·Π(1). The constraints are linear and time-

invariant. Therefore, any superposition of the vectors
(
ut vO

t

)
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and
(
(ṽ′t−1,1 ṽ′t,2) · Π(2) vI

t

)
from different time slots t =

1, . . . ,L, satisfy (17) and (18), respectively. In particular, we
can consider

L∑
t=1

(
ut vO

t

)
=
( L∑
t=1

ut

L∑
t=1

vO
t

)
, (19)

and
L∑

t=1

(
(ṽ′t,0 ṽ′t−1,1) ·Π(2) vI

t

)
=
( L∑
t=1

(ṽ′t,0 ṽ′t−1,1) ·Π(2)
L∑

t=1

vI
t

)
=
( L∑
t=1

ṽ′t ·Π(2)
L∑

t=1

vI
t

)
=
( L∑
t=1

(ut vO
t ) ·Π(1) ·Π(2)

L∑
t=1

vI
t

)
. (20)

Let

ũ =

L∑
t=1

u, ṽO =

L∑
t=1

vO, ṽI =

L∑
t=1

vI,

and substitute (19) and (20) into (17) and (18), respectively.
Then (

ũ ṽO) ·HT
O = 0 , (21)(

(ũ ṽO) ·ΠUn ṽI) ·HT
I = 0 . (22)

Therefore, ṽ = (ũ, ṽO, ṽI) is a codeword of the uncoupled
code. If all nonzero elements of vt, t = 1, . . . ,L, occur
at different positions, then wH(ṽ) = wH(v). Otherwise, the
overlap of the non zero elements reduces the weight of ṽ and
wH(ṽ) < wH(v).

B. Braided Convolutional Codes

Consider the SCC and SC-SCC ensembles in Fig. 2(c) and
(d), and assume that Πt = Π, ΠU

t = ΠU and ΠL
t = ΠL. A

valid code sequence of C has to satisfy the local constraints(
ut vL

t−1 ·ΠU
t vU

t

)
·HT

U = 0 , (23)(
ut ·Πt vU

t−1 ·ΠL
t vL

t

)
·HT

L = 0 (24)

for all t = 1, . . . ,L, where HU and HL are the parity-check
matrices that represent the constraints imposed by the trellises
of the upper and lower component encoders, respectively.
Since these constraints are linear and time-invariant, it follows
that any superposition of vectors vt = (ut,v

U
t ,vU

t ) from
different time instants t ∈ {1, . . . ,L} will also satisfy (23)
and (24). In particular, if we let

ũ =

L∑
t=1

ut , ṽL =

L∑
t=1

vL
t , ṽU =

L∑
t=1

vU
t

then (
ũ ṽL ·ΠU ṽU

)
·HT

U = 0 , (25)(
ũ ·Π ṽU ·ΠL ṽL

)
·HT

L = 0 . (26)

Here we have implicitly made use of the fact that vt = 0
for t < 1 and t > L. But now it follows from (25) and (26)
that ṽ = (ũ, ṽU, ṽL) ∈ C̃, i.e., we obtain a codeword of the
uncoupled code. If all nonzero symbols within vt occur at
different positions for t = 1, . . . ,L, then wH(ṽ) = wH(v). If,
on the other hand, the support of nonzero symbols overlaps,
the weight of ṽ is reduced accordingly and wH(ṽ) < wH(v).

The same result can be proved for HCCs by combining the
proofs for PCCs and SCCs.
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