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Microresonator frequency combs (microcombs) are a promising technology for generating frequency car-
riers for wavelength division multiplexing (WDM) systems. Multi-terabit per second WDM coherent 
transmitters have recently been demonstrated using both dissipative Kerr solitons and mode-locked dark 
pulses in optical microresonators. These experiments have focused on microcombs designed to cover a 
large portion of the erbium-doped fiber window. However, the question of optimum bandwidth for 
mi-crocombs in WDM systems has not been addressed. Here, we show that segmenting the bandwidth 
into smaller microcomb-driven superchannels results in an improvement of power per line. Through 
numer-ical simulations we establish a quantitative comparison between dark-pulse and soliton 
microcombs in WDM systems, including aspects such as conversion efficiency, tolerance to intrinsic 
cavity loss and group velocity dispersion engineering. We show that the improvement of minimum line 
power scales linearly with the number of superchannels for both types of microcombs. This work 
provides useful guidelines for the design of multi-terabit per second microcomb-based superchannel 
systems.

1. INTRODUCTION

Over the last decade, microresonator combs (or microcombs)
have attracted growing attention in the research community
[1, 2]. They are a chip-scale solution, employing the Kerr ef-
fect to generate equally spaced, coherent lines in the frequency
domain [3, 4]. The small cavity dimensions allow the line spac-
ing of the combs to be orders of magnitude larger than what
can be obtained with standard passively mode-locked lasers.
These qualities, along with the potential for hybrid integration
[5–8], justify the interest of microcombs for several applications
[3]. Each application has different requirements in terms of
bandwidth, power per line and line spacing. For instance, self-
referencing requires coherent octave-spanning bandwidth and
sufficient line spacing stability [9]. In contrast, telecommunica-
tions require a few THz of bandwidth, lines with low linewidth
and high conversion efficiency (i.e. the fraction of pump power
converted to other comb lines) in order to reach sufficiently high
power per line and optical signal to noise ratio (OSNR) [10–12].

Microcombs have been demonstrated as carrier generators
for wavelength division multiplexing (WDM) transmission links

[10, 13–18]. The findings in [17] showed that a pump laser of nar-
row linewidth is advantageous towards higher data rates. The
experiment in [15] used a microcomb having a dissipative Kerr
soliton [19] circulating in the cavity (henceforth soliton micro-
comb). Two microcombs pumped with high power lasers were
interleaved to generate a large number of lines covering the C
and L optical telecommunication bands. A series of transmission
experiments were conducted, resulting in data rates reaching
50 Tb/s using both QPSK and 16QAM modulation formats, de-
pending on individual comb line power. In [10], a mode-locked
dark pulse Kerr comb (henceforth dark-pulse microcomb) [20]
was used to generate carriers in the C-band with sufficient op-
tical signal to noise ratio (OSNR) per WDM channel to achieve
64QAM modulation and 4.4 Tb/s data rates.

Even more complex modulation formats or higher data rates
could be achieved with further optimization of the microcombs
in terms of line power. Starting with a microcomb with suffi-
ciently high power is critical to overcome the losses in an inte-
grated transmitter and attain the necessary OSNR per WDM
channel [10]. This is true regardless of whether the microcomb

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. The diagram in a) shows a basic layout where a single microcomb source provides all lines for a WDM system. In compari-
son, the diagram in b) shows how the same number of lines can be provided using narrower microcombs in an arrangement of M
superchannels. The sketches in c) and d) show the combined comb spectra of the systems in a) and b) respectively before equaliza-
tion of line power. The system in b) is expected to have M times higher power per line than the system in a), while still using the
same total optical input power.

sustains a dark pulse or a soliton state. However, it is so far not
clear which of these two coherent states would be more desirable
for WDM transmission experiments.

In the past years, the system dynamics of microcombs have
been rigorously investigated for both soliton [19, 21–26] and
dark-pulse microcombs [20, 23, 27–31]. Having a simple tem-
poral structure, an intracavity solution for the amplitude of
dissipative Kerr solitons has been derived [19, 32]. In contrast,
mode-locked dark pulses have a more complicated temporal
structure, for which an analytical solution has not been fully
determined. The circulating waveform consists of a bright back-
ground with a dip that contains ripples at the bottom [20, 29],
which can be described as an interlock between switching waves
connecting the homogeneous steady-state solutions of the bista-
bility curve in the cavity [33]. This waveform is relevant for
practical applications because it offers a superior conversion
efficiency compared to dissipative Kerr solitons, which promises
a higher power per line [27].

The closed-form solution of dissipative Kerr solitons has been
used to predict the scaling of the generated comb lines in terms
of bandwidth and power per line [21, 22]. The investigation
in [21] shows that the average power per line scales linearly
with the laser input power and inverse quadratically with the
number of lines generated. This implies that employing soli-
ton microcombs generating a lower number of lines would be
substantially beneficial from the perspective of improving the
overall conversion efficiency.

Here, instead of producing a large number of lines with a
single microcomb, we suggest to segment the WDM bandwidth
into superchannels, each driven by a narrower microcomb. A
superchannel contains a group of channels, which are modu-
lated with high spectral efficiency in the same place, routed
together through the same optical path and received together
at the same destination [34, 35]. This WDM architecture seg-
ments the transmission spectrum into multiple superchannels.
The superchannels are treated as separate entities in the optical
network, where each could be fed by a narrow microcomb.

Assuming that a single microcomb is replaced by M nar-
rower combs while keeping the same total optical power, this
approach suggests that the performance in terms of power per
line can be improved by a factor M (see Fig.1). At the same time,
by lowering the power from each laser, this approach becomes
more suitable for hybrid integration [5]. We show, through nu-

merical simulations, that soliton and dark-pulse microcombs
both benefit from segmenting the available bandwidth into nar-
rower superchannels. We show that the scaling of power per
line derived in [21] for dissipative Kerr solitons also applies for
mode-locked dark pulses. Part of this work was presented in
[36]. Here, we provide a more in-depth study quantifying the
impact of losses and nonlinearity, and discuss the scaling laws
with the group velocity dispersion (GVD) and conversion effi-
ciency. Furthermore, we investigate the practical feasibility of
the microcombs with state of the art silicon nitride technology.

The work is structured as follows. In section 2, we present
in detail the scaling laws of the superchannel arrangement. The
third section is devoted to numerical simulations that verify the
scaling laws from section 2 and their dependence with intrinsic
losses, GVD and conversion efficiency. Section 4 analyzes the
implications and challenges of dealing with narrower combs
with regards to waveguide designs based on silicon nitride.

2. SCALING OF MICROCOMB-DRIVEN SUPERCHAN-
NELS

A basic requirement for microcombs in optical communications
is to generate sufficient power per line to enable the desired
modulation format. In most WDM experiments the comb lines
are equalized to the line with the lowest power, Pmin, in order to
ensure even performance across the superchannel [10]. To opti-
mize this minimum line power, it is important to recognize the
performance scaling of microcombs. The conversion efficiency
and the 3-dB bandwidth can be deduced from the temporal field
of the soliton [21, 22], leading to the scaling equation for the
average power per line. Using a similar approach, the scaling of
the minimum line power is described as:

Pmin = K · θ2

(αiL + θ)2 ·
Pin

N2 , (1)

where θ is the power coupling coefficient between resonator and
bus waveguide, L is the cavity length, αi is the absorption per
unit length in the cavity and Pin is the power of the pump laser.
N is the number of generated lines within a certain bandwidth.
The value of the proportionality factor K depends on the ex-
act cutoff bandwidth. For an overcoupled cavity this equation
will mostly depend on the input power and number of lines
(Pmin ≈ K · Pin/N2).
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Fig. 2. An example of the optimization process for the generation of a microcomb with fixed number of lines and given pump
power (25 and 0.25 W in this case), with 100 GHz spacing. The figures in a) and b) show the figure of merit, Pmin, as a colormap in
terms of β2 and θ for soliton and dark-pulse microcombs, respectively. The optimization process is tridimensional because it also
includes the detuning parameter. The detuning has been chosen such that it maximizes Pmin for every pair (θ,β2). The maps show
that the figure of merit has a peak value with a relatively small roll-off factor in terms of β2 and θ. The combs plotted in c) and d)
correspond to the optima in a) and b), respectively. The optical spectra correspond to the outcoupled field whereas the inset shows
the corresponding intracavity temporal power. The set of optimum parameters are explicitly indicated on top of the figures.

Let us now compare two comb cases providing N carriers
over the C and L bands using P0 total optical power (see Fig.1).
The first case is a single comb pumped with optical power
P1 = P0 generating N1 = N lines. In the second case the fre-
quency band has been segmented in M superchannels, each
providing N2 = N/M lines while being pumped with optical
power P2 = P0/M. According to the overcoupled version of
Eq.(1), one can approximate the power per line in cases 1 and
2 as Pmin1 ∝ P1/N2

1 = P0/N2 and Pmin2 ∝ P2/N2
2 = M · P0/N2

respectively. This indicates M times higher power per line for
the case where the available bandwidth is distributed in M su-
perchannels. Hence, there is a tradeoff between integration com-
plexity and power efficiency, which can be balanced in different
ways. Filling up the C band with a channel spacing of 100 GHz
with a single microcomb would require 44 lines. Decreasing the
line spacing to 50 GHz would result in 4 times higher pump
power to maintain the same power per line. If instead one chose
to segment the bandwidth in four superchannels, each driven
by a 50 GHz microcomb (each with 22 lines), the power required
to drive each microcomb would decreased by a factor of 4, but
at the expense of quadrupling the number of pump lasers. The
optimum number of lines per superchannel will depend on the
specifics of the communication system, and would therefore
have to be determined on a case by case basis. For example, in
[37] the power savings due to the simplification of digital signal
processing will saturate when applied to over ten lines, whereas
in [15], the authors reported power consumption that decreases
considerably with the number of comb lines.

It is important to note that the derivation above relies on
scaling laws that have been derived only for soliton microcombs.
However, in the next section we verify and numerically demon-
strate that the same scaling applies for the minimum line power
of dark-pulse microcombs.

3. OPTIMIZED PERFORMANCE OF DISSIPATIVE KERR
SOLITONS AND MODE-LOCKED DARK PULSES IN
MICRORESONATORS

To confirm the scaling of the microcomb minimum line power,
we implement an optimization process similar to that discussed
in [10, 15]. The details of this optimization process are described
in the next subsections. After introducing the optimization, we
show that both soliton and dark-pulse microcombs display the
same scaling as described by Eq.(1). The analysis is followed
by an evaluation of the effects of the intrinsic quality factor (Qi).
The bandwidth dependence on group velocity dispersion is
discussed in the subsection after that. In the last subsection, we
analyze the origin of the scaling law for dark-pulse microcombs.

A. Optimization process

For WDM applications, a superchannel should have the same
power among the constituent carriers. Pmin is therefore used as
a figure of merit for the optimization process. This assumes that
the lines will be equalized to the weakest (lowest power) line
within the superchannel bandwidth.
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Fig. 3. The plots in a) and b) show the optimal combs in terms
of power per line found for different input power and num-
ber of lines, having 100 GHz spacing. The power per line is
described as Pmin, which is the minimum comb line power.
In a), the data has close to linear behavior for higher input
powers, where we draw a linear fit through data points with
Pin > 300 mW. In b) the power per line scales inverse quadrat-
ically with number of lines (∼ −20 dB/decade) when keeping
the input power constant. The scaling in a) and b) implies that
the power per line scales with ∼ Pin/N2 for both dark-pulse
and soliton microcombs.

The optimization requires a large collection of stable comb
states, each obtained through simulation trials over a parameter
space formed by the GVD coefficient (β2), the coupling coeffi-
cient (θ) and the phase detuning between the continuous-wave
(CW) pump and the closest resonance (δ0). With the parameters
β2 and θ being approachable through design and δ0 being a free
parameter within a certain range, Pmin can be then optimized
[10, 15]. After acquiring the comb states, we set the desired
number of lines and record Pmin.

A visual example of the optimization process for combs gen-
erating 25 lines using 0.25 W input power is displayed in Fig.2.
Numerical values for the simulations are given below. In plots
a) and b), for soliton and dark-pulse microcombs respectively,
the variation of the figure of merit is displayed as a colormap
in terms of β2 and θ. Note that Pmin has already been maxi-
mized in terms of δ0 for every pair of β2 and θ. The highest
performing combs found from the colormaps in a) and b) are
plotted in c) and d). The figures display the outcoupled spectral

field, while the inset shows the intracavity waveform. These
combs demonstrate an output conversion efficiency (combined
power of generated comb lines excluding the pump divided by
the input power) of ∼ 0.65 for the dark-pulse microcomb and
∼ 0.16 for the soliton. After equalizing the spectra to the level
of Pmin, the effective conversion efficiency will be ∼ 0.11 for
the dark-pulse microcomb and ∼ 0.06 for the soliton. Note also
that the optimal microresonators correspond to an overcoupled
configuration in both cases. This is consistent with the fact that
an overcoupled cavity provides a situation closer to effective
critical coupling when the comb losses from the pump perspec-
tive are considered [27]. These results indicate that, with proper
optimization of the cavity parameters, microcombs with 25 lines
featuring powers per line in the order of 1 mW can be achieved
for both dark-pulse and soliton microcombs using moderate
pump power levels.

One way of improving the conversion efficiency of the soliton
microcomb is to increase the number of solitons in the cavity.
These states typically consist of multiple solitons whose tempo-
ral separation is challenging to fix a priori [19, 38], resulting in a
minimum line power that is lower than that of a single soliton.
Another alternative microcomb source that has not yet been in-
troduced, the Turing rolls, can be used for WDM transmissions
[14]. These structures provide a microcomb with high stability
and reproducibility, but have a limited number of lines, often
with multiple FSR separation. Because of these challenges, the
Turing rolls and multi-soliton states are not considered in this
study, and the simulations are limited to single solitons and dark
pulses.

The simulations were carried out using the split-step method
combined with the coupling equations of the resonator [39],
solving the system of equations called the Ikeda map [40]. The
Ikeda map allows exploration of a broader range of coupling
rates than what is possible with the standard Lugiato-Lefever
equation. In addition, using this method, the fundamental noise
caused by quantum fluctuations can be added to the simulations
in a straight forward manner [41]. This allows for a quantitative
assessment of the signal to noise ratio per line. For a set of
parameters, a comb initiation was attempted using an initial
temporal field in the cavity, which was a dark square pulse
for dark-pulse microcombs [20], and a hyperbolic secant for
soliton microcombs [21]. Other states were found by tuning
the detuning parameter from already stable comb states. The
cavity losses were set to αi = 0.1 dB/cm (equivalent to Qi =
3.5 · 106), the free spectral range is FSR = 100 GHz , with a
group index ng = 2 and nonlinear coefficient γ = 2 W−1m−1,
unless mentioned otherwise. These parameters are similar to
what can be obtained using silicon nitride microresonators [42–
45]. The pump resonance was located close to the middle of
the combined C and L bands, i.e. at λ0 ≈ 1569 nm. All other
higher-order effects were neglected.

B. Line density scaling and pump power dependence
The aim here is to investigate whether the scaling of Pmin with
input power and number of lines will follow that of Eq.(1). Using
the optimization process described in the previous section, we
find the highest performing combs for different input powers
and number of lines. Therefore, each of these optimized combs
will have a specific GVD, detuning and coupling value. The
results can be found in Fig.3a-b.

The plot in Fig.3a shows that the minimum comb line grows
linearly with high pump powers for both dark-pulse and soliton
microcombs, which is consistent with Eq.(1) when the cavity is
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highly overcoupled. The dark-pulse microcombs furthermore
deliver roughly 2 dB higher power. A priori, this result seems
surprising since the conversion efficiency advantage of these
microcombs is significantly higher than 2 dB. The reason for
this apparent discrepancy is that our figure of merit places a
higher emphasis on the minimum line power within the target
bandwidth and thus on the smoothness of the spectral enve-
lope. Dark-pulse microcombs display a high spectral structure
and the high conversion efficiency is dominated by the lines
closest to the pump, which typically have much higher power
than the spectral wings (see Fig.2d). This is further analysed in
subsection E.

The plot in Fig.3b displays the relation between the mini-
mum line power and number of lines at two different pump
power levels. It shows that the power per line has close to an
inverse quadratic scaling with the number of generated lines,
both for dark pulse and soliton combs. The plots in a) and
b) in Fig.3 therefore demonstrate that optimum combs follow
∼ Pin/N2 scaling of minimum line power for N generated lines.
It indicates that the structure of both dark-pulse and soliton
microcombs are affected similarly when scaling the input power,
number of lines and optimization parameters. This supports pre-
vious suggestions of mode-locked dark pulses having solitonic
dynamics [20, 30].

Given that the optimum comb line scales as Pin/N2 for
both dark-pulse and soliton microcombs, the superchannel
engineering approach in Fig.1 is valid. As an example, we
can compare using a single broad comb generating N = 101
lines at Pin = 30 dBm to 4 superchannels side by side, each
generating 25 lines at Pin = 24 dBm. Using Fig.3a we find
Pmin = 0.5 dBm for 25 lines and Pmin = −5.5 dBm for 101 lines
for dark-pulse microcombs. Similarly for soliton microcombs
we find Pmin = −1.8 dBm for 25 lines and Pmin = −7.9 dBm for
101 lines. This is an improvement by a factor 4 in both cases,
which complies with the enhancements described in Fig.1.

C. Interplay between cavity losses, pump power and nonlin-
earity

The intracavity losses can induce a limitation on the performance
of microcombs in terms of minimum line power. In Fig.4 we
show how losses affect the minimum line power by compar-
ing optimized microcombs with intrinsic losses αi = 0 dB/cm
(Qi ∼ ∞) and αi = 0.4 dB/cm (Qi ∼ 880000) for different pump
powers. The GVD, detuning and coupling factor are therefore
optimized for both different loss and power levels. The losses
decrease the power per line, where the penalty is more severe
for lower powers. At low power levels, the required coupling
coefficient decreases (roughly as θ ∝

√
Pin), moving the cavity

towards the critical coupling condition. This makes the loss
contribution in Eq.(1) more significant, therefore decreasing the
power per line compared to the highly pumped regime. Dark-
pulse microcombs display a more drastic penalty compared to
soliton microcombs, which is caused by the optimal coupling be-
ing located at lower values. A good example of this is the peak
location of the figure of merit in Fig.2a-b, where the optimal
coupling for soliton microcombs is in the region θ = 0.03− 0.05,
but θ = 0.015− 0.025 for dark-pulse microcombs. The optimal
dark-pulse microcombs were observed to have a higher-order
structure, with multiple oscillations at bottom of the pulse. In
[31], these higher-order structures were found to be limited to
lower coupling values compared to the soliton space [23], in
agreement with our numerical results.

Additionally, we carried out an analysis of the impact of the
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nonlinear coefficient γ. The results are shown in Fig.5, where
the minimum line power is plotted in terms of the intrinsic
Q factor for γ = 2 W−1m−1 and γ = 8 W−1m−1, with the
input power kept constant at 250 mW. The figure shows that the
performance in terms of power per line is less affected by the
nonlinear coefficient as the intrinsic quality factor is increased.
However, when Qi is lowered, the performance depends more
on the nonlinear coefficient. From a superchannel perspective,
this observation justifies the efforts in improving the quality
factor in microresonators [44, 45] over alternative platforms that
offer a higher nonlinear coefficient at the expense of increased
losses.

D. Impact of group velocity dispersion
The group velocity dispersion is an important parameter when
it comes to scaling the number of generated lines [21, 46]. In
Fig.6 we display the optimal GVD, corresponding to the optimal
combs found in Fig.3b, as a function of the number of lines. The
plot shows a drastic change in dispersion with number of lines,
with a clear relation |β2| ∝ 1/N2, both for soliton and dark-
pulse microcombs. At the same time, the optimum detuning
and coupling coefficients were found to be close to constant.
Additionally, we observed that the GVD would decrease with
higher losses. While this trend is known for dissipative Kerr
solitons [21, 46], it has not been discussed for mode-locked dark
pulses. For sufficiently narrow microcombs, the required GVD
amount becomes extremely high which, as discussed in section
4, could be challenging to realize in practice in the case of soliton
microcombs.

E. Scaling of conversion efficiency
Previously we found that the scaling of Pmin with the number of
lines is ∼ 1/N2. Here, we investigate what causes this scaling.
For soliton microcombs, the conversion efficiency of the pump
to all comb lines scales as ∼ 1/N. Power distribution among

generated comb lines thus provides the ∼ 1/N2. The scaling
of the conversion efficiency for soliton microcombs is well es-
tablished, since for a fixed FSR, the width of the soliton (and
hence the duty factor) scales as ∼ 1/N [27]. For modelocked
dark pulses, the explanation for the scaling is less clear. Not
only can it be scaled through the GVD like the dissipative Kerr
soliton, but it can also be tuned into states with different or-
ders of oscillations [31]. This can be described by viewing the
dark pulse as the result of two switching waves moving towards
each other until their oscillatory tails lock them in place [33]. By
changing the detuning, the velocity of these switching waves is
changed, manipulating where the oscillatory tails lock together.
The width of the dark pulse will increase with the number of
oscillations, which leads to a change in conversion efficiency
[27]. In order to resolve the contribution from these different
effects, we numerically investigate the scaling of conversion ef-
ficiency with number of lines for individual dark-pulse states,
that is with a fixed detuning. Fig.7 compares the conversion
efficiency for the case of a soliton microcomb and a set of differ-
ent dark-pulse microcombs. The simulations use input power
Pin = 200 mW, intrinsic losses αi = 10 dB/m and a coupling
coefficient of θ = 0.016 for dark pulses and θ = 0.04 for the
dissipative Kerr soliton, which correspond to the values of the
maxima observed in Fig.2. The FSR is kept at 100 GHz and the
number of lines is adjusted by modifying the GVD value (see
Fig.6). Other parameters are the same as in Fig.2 (ng = 2 and
γ = 2 W−1m−1).

The results in Fig.7a reveal a clear ∼ 1/N scaling of the con-
version efficiency with the number of lines for the soliton, as
expected, but also for dark-pulse microcombs. We observed
that the corresponding GVD values scaled in the same way as
in Fig.6. For further insights we provide the temporal profile
for a few examples in Fig.7b. Clearly, the soliton pulse width
decreases as the number of lines increases; since the peak power
is maintained in this transition, it leads to the well-known cor-
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Fig. 8. Waveguide dispersion engineering (a) and the corresponding nonlinear Kerr parameter (b) for a rectangular waveguide with
silicon nitride core. According to Fig. 6, this implies that the optimal narrower combs are unattainable for solitons. The right figure
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respondence between conversion efficiency and duty cycle [27].
The detuning in the case of the dark pulses determines the num-
ber of oscillation ripples at the bottom of the pulse. Changing
the number of lines with the GVD results in a re-scaling of the
waveform, in an identical manner to the soliton case. This can
be seen in Fig.7b, where the temporal characteristics become
narrower with higher number of lines. Increasing the detuning
can widen the dark pulse again, which leads to an increase in
conversion efficiency. However, this does not always result in an
improvement of the figure of merit Pmin (see values denoted in
figure). Optimizing Pmin places a strong emphasis on the outer
comb lines in the spectrum, which correspond to the sharp tran-
sition between high and low power amplitude with the addition
of ripples on the pulse bottom. Increasing the pulse duration
adds smaller ripples to the pulse, each adding a small amount of
power to the outer comb lines. The interference of the oscillation
leads to a highly structured pattern in the frequency domain
that makes it difficult to find a direct correspondence between
an optimum Pmin and a wider dark pulse. Finally, the plateau
observed around N = 31 corresponds to the case where the
dark-pulse waveform approaches a duty cycle close to 0.5.

4. WAVEGUIDE DESIGN USING STOICHIOMETRIC SILI-
CON NITRIDE

In the section above, narrow microcombs were proven more
attractive in terms of power per line compared to broad mi-
crocombs. However, it is important to note that the design
parameters of these combs can be limited in fabrication. Mi-
croresonators can be fabricated on-chip using silicon nitride for
waveguides and silicon dioxide for cladding [42, 47]. These ma-
terials are CMOS-compatible, and have the potential of yielding
high intrinsic quality factors (Qi > 106) [44, 45] and a mod-
erately high Kerr nonlinearity [42, 48]. The coupling rate can
be changed through the distance between bus waveguide and
resonator [48, 49]. The β2 and γ can be tailored through mate-
rial [42] and cross-sectional design of the waveguides [50–52].
The desired FSR is then realized by designing the length of the
cavity. Since the aforementioned parameters generally display
frequency dependence, each microcomb should be specifically
designed for its target wavelength of operation.

Here we use a rectangular design of stoichiometric silicon
nitride to evaluate if the combs presented in Fig.6 are feasible
to design. Using a commercial finite element method solver,
we find the GVD and effective nonlinear coefficient at the 1570
nm wavelength for different rectangular waveguide dimensions.
The optical properties for the parameters had been retrieved
through ellipsometric measurements of stoichiometric silicon ni-
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tride [43]. The results are shown as maps in Fig.8. It is clear from
the GVD map that a broad range of normal dispersive values
are reachable (up to 2400 ps2/km), while anomalous dispersion
is limited to β2 > −200 ps2/km.

Since narrower combs require higher dispersion values (see
Fig. 6), it is evident that this platform favors dark-pulse micro-
combs when it comes to a narrowband superchannel design. The
map of the effective nonlinear coefficient shows that all the GVD
values within the range 2400 ps2/km > β2 > −200 ps2/km can
reach γ ≈ 1 W−1m−1. To gain additional flexibility in reaching
the desired GVD, more advanced designs, such as the use of
concentric waveguides [50, 51] or atomic layer deposition [52],
appear better suited for narrowband superchannels based on
soliton microcombs. It is worth noting that the performance
of Turing patterns is also affected by the GVD. Bringing their
line spacing to values more compatible with communications
(25-100 GHz) poses challenges with regards to increasing the
GVD amount [39].

Perturbations in the GVD can hinder the performance of
microcombs [53]. One such perturbation is caused by mode
coupling from different transverse modes, which can lead to di-
minished power in the resonances at the mode crossings. Using
high-Q silicon nitride resonators will typically display decreased
mode interactions [54], which reduces these effects. An alterna-
tive is to suppress the higher order modes, e.g. by adding to the
cavity an adiabatic transition to a single mode waveguide [55].

Higher order dispersion can affect the performance of micro-
combs as well [53]. In Fig.9, we show dark-pulse microcombs
simulated with all higher order dispersion obtained from the
FEM solver, for waveguide dimensions that generate the desired
GVD and γ. Like the dark-pulse combs in Fig.3, these combs
have been optimized to generate 101 and 25 lines at Pin = 1 W
and Pin = 0.25 W, respectively, but for a lower effective non-
linear coefficient γ = 1 W−1m−1. The figure shows that realis-
tic waveguide designs, which include higher-order dispersion
terms, still provide a comb line power close to the optimum
design.

5. CONCLUSIONS

In summary, we have revealed that the nonlinear scaling laws
for the minimum line power of soliton microcombs (similar to
those in [21]) also apply for dark-pulse microcombs. The scaling
suggests that for optical communications, segmenting the avail-
able bandwidth in multiple microcomb-driven superchannels
is more beneficial from a power perspective. Specifically, for
both dark-pulse and soliton microcombs, it shows that replacing
a single comb with M superchannels increases the power per
line M times, while keeping the total optical power and number
of lines constant. Since the optical power of each laser provid-
ing a superchannel is relaxed, this approach is desirable for full
integration.

We have shown how microcombs can be designed using rect-
angular silicon nitride waveguides, where narrower combs can
be reached in the normal dispersive regime, but are challenging
to attain for soliton microcombs.

The study provides guidelines for the design of microres-
onator frequency combs in WDM transmission systems.
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